1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/string.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/random.h>
17 #include <linux/sysfs.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31 
32 #define DEFAULT_CMD6_TIMEOUT_MS	500
33 #define MIN_CACHE_EN_TIMEOUT_MS 1600
34 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
35 
36 enum mmc_poweroff_type {
37 	MMC_POWEROFF_SUSPEND,
38 	MMC_POWEROFF_SHUTDOWN,
39 	MMC_POWEROFF_UNBIND,
40 };
41 
42 static const unsigned int tran_exp[] = {
43 	10000,		100000,		1000000,	10000000,
44 	0,		0,		0,		0
45 };
46 
47 static const unsigned char tran_mant[] = {
48 	0,	10,	12,	13,	15,	20,	25,	30,
49 	35,	40,	45,	50,	55,	60,	70,	80,
50 };
51 
52 static const unsigned int taac_exp[] = {
53 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
54 };
55 
56 static const unsigned int taac_mant[] = {
57 	0,	10,	12,	13,	15,	20,	25,	30,
58 	35,	40,	45,	50,	55,	60,	70,	80,
59 };
60 
61 /*
62  * Given the decoded CSD structure, decode the raw CID to our CID structure.
63  */
64 static int mmc_decode_cid(struct mmc_card *card)
65 {
66 	u32 *resp = card->raw_cid;
67 
68 	/*
69 	 * Add the raw card ID (cid) data to the entropy pool. It doesn't
70 	 * matter that not all of it is unique, it's just bonus entropy.
71 	 */
72 	add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
73 
74 	/*
75 	 * The selection of the format here is based upon published
76 	 * specs from SanDisk and from what people have reported.
77 	 */
78 	switch (card->csd.mmca_vsn) {
79 	case 0: /* MMC v1.0 - v1.2 */
80 	case 1: /* MMC v1.4 */
81 		card->cid.manfid	= unstuff_bits(resp, 104, 24);
82 		card->cid.prod_name[0]	= unstuff_bits(resp, 96, 8);
83 		card->cid.prod_name[1]	= unstuff_bits(resp, 88, 8);
84 		card->cid.prod_name[2]	= unstuff_bits(resp, 80, 8);
85 		card->cid.prod_name[3]	= unstuff_bits(resp, 72, 8);
86 		card->cid.prod_name[4]	= unstuff_bits(resp, 64, 8);
87 		card->cid.prod_name[5]	= unstuff_bits(resp, 56, 8);
88 		card->cid.prod_name[6]	= unstuff_bits(resp, 48, 8);
89 		card->cid.hwrev		= unstuff_bits(resp, 44, 4);
90 		card->cid.fwrev		= unstuff_bits(resp, 40, 4);
91 		card->cid.serial	= unstuff_bits(resp, 16, 24);
92 		card->cid.month		= unstuff_bits(resp, 12, 4);
93 		card->cid.year		= unstuff_bits(resp, 8, 4) + 1997;
94 		break;
95 
96 	case 2: /* MMC v2.0 - v2.2 */
97 	case 3: /* MMC v3.1 - v3.3 */
98 	case 4: /* MMC v4 */
99 		card->cid.manfid	= unstuff_bits(resp, 120, 8);
100 		card->cid.oemid		= unstuff_bits(resp, 104, 16);
101 		card->cid.prod_name[0]	= unstuff_bits(resp, 96, 8);
102 		card->cid.prod_name[1]	= unstuff_bits(resp, 88, 8);
103 		card->cid.prod_name[2]	= unstuff_bits(resp, 80, 8);
104 		card->cid.prod_name[3]	= unstuff_bits(resp, 72, 8);
105 		card->cid.prod_name[4]	= unstuff_bits(resp, 64, 8);
106 		card->cid.prod_name[5]	= unstuff_bits(resp, 56, 8);
107 		card->cid.prv		= unstuff_bits(resp, 48, 8);
108 		card->cid.serial	= unstuff_bits(resp, 16, 32);
109 		card->cid.month		= unstuff_bits(resp, 12, 4);
110 		card->cid.year		= unstuff_bits(resp, 8, 4) + 1997;
111 		break;
112 
113 	default:
114 		pr_err("%s: card has unknown MMCA version %d\n",
115 			mmc_hostname(card->host), card->csd.mmca_vsn);
116 		return -EINVAL;
117 	}
118 
119 	/* some product names include trailing whitespace */
120 	strim(card->cid.prod_name);
121 
122 	return 0;
123 }
124 
125 static void mmc_set_erase_size(struct mmc_card *card)
126 {
127 	if (card->ext_csd.erase_group_def & 1)
128 		card->erase_size = card->ext_csd.hc_erase_size;
129 	else
130 		card->erase_size = card->csd.erase_size;
131 
132 	mmc_init_erase(card);
133 }
134 
135 
136 static void mmc_set_wp_grp_size(struct mmc_card *card)
137 {
138 	if (card->ext_csd.erase_group_def & 1)
139 		card->wp_grp_size = card->ext_csd.hc_erase_size *
140 			card->ext_csd.raw_hc_erase_gap_size;
141 	else
142 		card->wp_grp_size = card->csd.erase_size *
143 			(card->csd.wp_grp_size + 1);
144 }
145 
146 /*
147  * Given a 128-bit response, decode to our card CSD structure.
148  */
149 static int mmc_decode_csd(struct mmc_card *card)
150 {
151 	struct mmc_csd *csd = &card->csd;
152 	unsigned int e, m, a, b;
153 	u32 *resp = card->raw_csd;
154 
155 	/*
156 	 * We only understand CSD structure v1.1 and v1.2.
157 	 * v1.2 has extra information in bits 15, 11 and 10.
158 	 * We also support eMMC v4.4 & v4.41.
159 	 */
160 	csd->structure = unstuff_bits(resp, 126, 2);
161 	if (csd->structure == 0) {
162 		pr_err("%s: unrecognised CSD structure version %d\n",
163 			mmc_hostname(card->host), csd->structure);
164 		return -EINVAL;
165 	}
166 
167 	csd->mmca_vsn	 = unstuff_bits(resp, 122, 4);
168 	m = unstuff_bits(resp, 115, 4);
169 	e = unstuff_bits(resp, 112, 3);
170 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
171 	csd->taac_clks	 = unstuff_bits(resp, 104, 8) * 100;
172 
173 	m = unstuff_bits(resp, 99, 4);
174 	e = unstuff_bits(resp, 96, 3);
175 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
176 	csd->cmdclass	  = unstuff_bits(resp, 84, 12);
177 
178 	e = unstuff_bits(resp, 47, 3);
179 	m = unstuff_bits(resp, 62, 12);
180 	csd->capacity	  = (1 + m) << (e + 2);
181 
182 	csd->read_blkbits = unstuff_bits(resp, 80, 4);
183 	csd->read_partial = unstuff_bits(resp, 79, 1);
184 	csd->write_misalign = unstuff_bits(resp, 78, 1);
185 	csd->read_misalign = unstuff_bits(resp, 77, 1);
186 	csd->dsr_imp = unstuff_bits(resp, 76, 1);
187 	csd->r2w_factor = unstuff_bits(resp, 26, 3);
188 	csd->write_blkbits = unstuff_bits(resp, 22, 4);
189 	csd->write_partial = unstuff_bits(resp, 21, 1);
190 
191 	if (csd->write_blkbits >= 9) {
192 		a = unstuff_bits(resp, 42, 5);
193 		b = unstuff_bits(resp, 37, 5);
194 		csd->erase_size = (a + 1) * (b + 1);
195 		csd->erase_size <<= csd->write_blkbits - 9;
196 		csd->wp_grp_size = unstuff_bits(resp, 32, 5);
197 	}
198 
199 	return 0;
200 }
201 
202 static void mmc_select_card_type(struct mmc_card *card)
203 {
204 	struct mmc_host *host = card->host;
205 	u8 card_type = card->ext_csd.raw_card_type;
206 	u32 caps = host->caps, caps2 = host->caps2;
207 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
208 	unsigned int avail_type = 0;
209 
210 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
211 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
212 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
213 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
214 	}
215 
216 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
217 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
218 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
219 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
220 	}
221 
222 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
223 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
224 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
225 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
226 	}
227 
228 	if (caps & MMC_CAP_1_2V_DDR &&
229 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
230 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
231 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
232 	}
233 
234 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
235 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
236 		hs200_max_dtr = MMC_HS200_MAX_DTR;
237 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
238 	}
239 
240 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
241 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
242 		hs200_max_dtr = MMC_HS200_MAX_DTR;
243 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
244 	}
245 
246 	if (caps2 & MMC_CAP2_HS400_1_8V &&
247 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
248 		hs200_max_dtr = MMC_HS200_MAX_DTR;
249 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
250 	}
251 
252 	if (caps2 & MMC_CAP2_HS400_1_2V &&
253 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
254 		hs200_max_dtr = MMC_HS200_MAX_DTR;
255 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
256 	}
257 
258 	if ((caps2 & MMC_CAP2_HS400_ES) &&
259 	    card->ext_csd.strobe_support &&
260 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
261 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
262 
263 	card->ext_csd.hs_max_dtr = hs_max_dtr;
264 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
265 	card->mmc_avail_type = avail_type;
266 }
267 
268 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
269 {
270 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
271 
272 	/*
273 	 * Disable these attributes by default
274 	 */
275 	card->ext_csd.enhanced_area_offset = -EINVAL;
276 	card->ext_csd.enhanced_area_size = -EINVAL;
277 
278 	/*
279 	 * Enhanced area feature support -- check whether the eMMC
280 	 * card has the Enhanced area enabled.  If so, export enhanced
281 	 * area offset and size to user by adding sysfs interface.
282 	 */
283 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
284 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
285 		if (card->ext_csd.partition_setting_completed) {
286 			hc_erase_grp_sz =
287 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
288 			hc_wp_grp_sz =
289 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
290 
291 			/*
292 			 * calculate the enhanced data area offset, in bytes
293 			 */
294 			card->ext_csd.enhanced_area_offset =
295 				(((unsigned long long)ext_csd[139]) << 24) +
296 				(((unsigned long long)ext_csd[138]) << 16) +
297 				(((unsigned long long)ext_csd[137]) << 8) +
298 				(((unsigned long long)ext_csd[136]));
299 			if (mmc_card_blockaddr(card))
300 				card->ext_csd.enhanced_area_offset <<= 9;
301 			/*
302 			 * calculate the enhanced data area size, in kilobytes
303 			 */
304 			card->ext_csd.enhanced_area_size =
305 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
306 				ext_csd[140];
307 			card->ext_csd.enhanced_area_size *=
308 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
309 			card->ext_csd.enhanced_area_size <<= 9;
310 		} else {
311 			pr_warn("%s: defines enhanced area without partition setting complete\n",
312 				mmc_hostname(card->host));
313 		}
314 	}
315 }
316 
317 static void mmc_part_add(struct mmc_card *card, u64 size,
318 			 unsigned int part_cfg, char *name, int idx, bool ro,
319 			 int area_type)
320 {
321 	card->part[card->nr_parts].size = size;
322 	card->part[card->nr_parts].part_cfg = part_cfg;
323 	sprintf(card->part[card->nr_parts].name, name, idx);
324 	card->part[card->nr_parts].force_ro = ro;
325 	card->part[card->nr_parts].area_type = area_type;
326 	card->nr_parts++;
327 }
328 
329 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
330 {
331 	int idx;
332 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
333 	u64 part_size;
334 
335 	/*
336 	 * General purpose partition feature support --
337 	 * If ext_csd has the size of general purpose partitions,
338 	 * set size, part_cfg, partition name in mmc_part.
339 	 */
340 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
341 	    EXT_CSD_PART_SUPPORT_PART_EN) {
342 		hc_erase_grp_sz =
343 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
344 		hc_wp_grp_sz =
345 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
346 
347 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
348 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
349 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
350 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
351 				continue;
352 			if (card->ext_csd.partition_setting_completed == 0) {
353 				pr_warn("%s: has partition size defined without partition complete\n",
354 					mmc_hostname(card->host));
355 				break;
356 			}
357 			part_size =
358 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
359 				<< 16) +
360 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
361 				<< 8) +
362 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
363 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
364 			mmc_part_add(card, part_size << 19,
365 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
366 				"gp%d", idx, false,
367 				MMC_BLK_DATA_AREA_GP);
368 		}
369 	}
370 }
371 
372 /* Minimum partition switch timeout in milliseconds */
373 #define MMC_MIN_PART_SWITCH_TIME	300
374 
375 /*
376  * Decode extended CSD.
377  */
378 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
379 {
380 	int err = 0, idx;
381 	u64 part_size;
382 	struct device_node *np;
383 	bool broken_hpi = false;
384 
385 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
386 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
387 	if (card->csd.structure == 3) {
388 		if (card->ext_csd.raw_ext_csd_structure > 2) {
389 			pr_err("%s: unrecognised EXT_CSD structure "
390 				"version %d\n", mmc_hostname(card->host),
391 					card->ext_csd.raw_ext_csd_structure);
392 			err = -EINVAL;
393 			goto out;
394 		}
395 	}
396 
397 	np = mmc_of_find_child_device(card->host, 0);
398 	if (np && of_device_is_compatible(np, "mmc-card"))
399 		broken_hpi = of_property_read_bool(np, "broken-hpi");
400 	of_node_put(np);
401 
402 	/*
403 	 * The EXT_CSD format is meant to be forward compatible. As long
404 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
405 	 * are authorized, see JEDEC JESD84-B50 section B.8.
406 	 */
407 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
408 
409 	/* fixup device after ext_csd revision field is updated */
410 	mmc_fixup_device(card, mmc_ext_csd_fixups);
411 
412 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
413 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
414 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
415 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
416 	if (card->ext_csd.rev >= 2) {
417 		card->ext_csd.sectors =
418 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
419 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
420 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
421 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
422 
423 		/* Cards with density > 2GiB are sector addressed */
424 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
425 			mmc_card_set_blockaddr(card);
426 	}
427 
428 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
429 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
430 
431 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
432 	card->ext_csd.raw_erase_timeout_mult =
433 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
434 	card->ext_csd.raw_hc_erase_grp_size =
435 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
436 	card->ext_csd.raw_boot_mult =
437 		ext_csd[EXT_CSD_BOOT_MULT];
438 	if (card->ext_csd.rev >= 3) {
439 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
440 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
441 
442 		/* EXT_CSD value is in units of 10ms, but we store in ms */
443 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
444 
445 		/* Sleep / awake timeout in 100ns units */
446 		if (sa_shift > 0 && sa_shift <= 0x17)
447 			card->ext_csd.sa_timeout =
448 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
449 		card->ext_csd.erase_group_def =
450 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
451 		card->ext_csd.hc_erase_timeout = 300 *
452 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
453 		card->ext_csd.hc_erase_size =
454 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
455 
456 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
457 
458 		/*
459 		 * There are two boot regions of equal size, defined in
460 		 * multiples of 128K.
461 		 */
462 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_host_can_access_boot(card->host)) {
463 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
464 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
465 				mmc_part_add(card, part_size,
466 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
467 					"boot%d", idx, true,
468 					MMC_BLK_DATA_AREA_BOOT);
469 			}
470 		}
471 	}
472 
473 	card->ext_csd.raw_hc_erase_gap_size =
474 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
475 	card->ext_csd.raw_sec_trim_mult =
476 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
477 	card->ext_csd.raw_sec_erase_mult =
478 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
479 	card->ext_csd.raw_sec_feature_support =
480 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
481 	card->ext_csd.raw_trim_mult =
482 		ext_csd[EXT_CSD_TRIM_MULT];
483 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
484 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
485 	if (card->ext_csd.rev >= 4) {
486 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
487 		    EXT_CSD_PART_SETTING_COMPLETED)
488 			card->ext_csd.partition_setting_completed = 1;
489 		else
490 			card->ext_csd.partition_setting_completed = 0;
491 
492 		mmc_manage_enhanced_area(card, ext_csd);
493 
494 		mmc_manage_gp_partitions(card, ext_csd);
495 
496 		card->ext_csd.sec_trim_mult =
497 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
498 		card->ext_csd.sec_erase_mult =
499 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
500 		card->ext_csd.sec_feature_support =
501 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
502 		card->ext_csd.trim_timeout = 300 *
503 			ext_csd[EXT_CSD_TRIM_MULT];
504 
505 		/*
506 		 * Note that the call to mmc_part_add above defaults to read
507 		 * only. If this default assumption is changed, the call must
508 		 * take into account the value of boot_locked below.
509 		 */
510 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
511 		card->ext_csd.boot_ro_lockable = true;
512 
513 		/* Save power class values */
514 		card->ext_csd.raw_pwr_cl_52_195 =
515 			ext_csd[EXT_CSD_PWR_CL_52_195];
516 		card->ext_csd.raw_pwr_cl_26_195 =
517 			ext_csd[EXT_CSD_PWR_CL_26_195];
518 		card->ext_csd.raw_pwr_cl_52_360 =
519 			ext_csd[EXT_CSD_PWR_CL_52_360];
520 		card->ext_csd.raw_pwr_cl_26_360 =
521 			ext_csd[EXT_CSD_PWR_CL_26_360];
522 		card->ext_csd.raw_pwr_cl_200_195 =
523 			ext_csd[EXT_CSD_PWR_CL_200_195];
524 		card->ext_csd.raw_pwr_cl_200_360 =
525 			ext_csd[EXT_CSD_PWR_CL_200_360];
526 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
527 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
528 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
529 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
530 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
531 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
532 	}
533 
534 	if (card->ext_csd.rev >= 5) {
535 		/* Adjust production date as per JEDEC JESD84-B451 */
536 		if (card->cid.year < 2010)
537 			card->cid.year += 16;
538 
539 		/* check whether the eMMC card supports BKOPS */
540 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
541 			card->ext_csd.bkops = 1;
542 			card->ext_csd.man_bkops_en =
543 					(ext_csd[EXT_CSD_BKOPS_EN] &
544 						EXT_CSD_MANUAL_BKOPS_MASK);
545 			card->ext_csd.raw_bkops_status =
546 				ext_csd[EXT_CSD_BKOPS_STATUS];
547 			if (card->ext_csd.man_bkops_en)
548 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
549 					mmc_hostname(card->host));
550 			card->ext_csd.auto_bkops_en =
551 					(ext_csd[EXT_CSD_BKOPS_EN] &
552 						EXT_CSD_AUTO_BKOPS_MASK);
553 			if (card->ext_csd.auto_bkops_en)
554 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
555 					mmc_hostname(card->host));
556 		}
557 
558 		/* check whether the eMMC card supports HPI */
559 		if (!mmc_card_broken_hpi(card) &&
560 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
561 			card->ext_csd.hpi = 1;
562 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
563 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
564 			else
565 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
566 			/*
567 			 * Indicate the maximum timeout to close
568 			 * a command interrupted by HPI
569 			 */
570 			card->ext_csd.out_of_int_time =
571 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
572 		}
573 
574 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
575 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
576 
577 		/*
578 		 * RPMB regions are defined in multiples of 128K.
579 		 */
580 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
581 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_can_cmd23(card->host)) {
582 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
583 				EXT_CSD_PART_CONFIG_ACC_RPMB,
584 				"rpmb", 0, false,
585 				MMC_BLK_DATA_AREA_RPMB);
586 		}
587 	}
588 
589 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
590 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
591 		card->erased_byte = 0xFF;
592 	else
593 		card->erased_byte = 0x0;
594 
595 	/* eMMC v4.5 or later */
596 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
597 	if (card->ext_csd.rev >= 6) {
598 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
599 
600 		card->ext_csd.generic_cmd6_time = 10 *
601 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
602 		card->ext_csd.power_off_longtime = 10 *
603 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
604 
605 		card->ext_csd.cache_size =
606 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
607 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
608 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
609 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
610 
611 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
612 			card->ext_csd.data_sector_size = 4096;
613 		else
614 			card->ext_csd.data_sector_size = 512;
615 
616 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
617 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
618 			card->ext_csd.data_tag_unit_size =
619 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
620 			(card->ext_csd.data_sector_size);
621 		} else {
622 			card->ext_csd.data_tag_unit_size = 0;
623 		}
624 	} else {
625 		card->ext_csd.data_sector_size = 512;
626 	}
627 
628 	/*
629 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
630 	 * when accessing a specific field", so use it here if there is no
631 	 * PARTITION_SWITCH_TIME.
632 	 */
633 	if (!card->ext_csd.part_time)
634 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
635 	/* Some eMMC set the value too low so set a minimum */
636 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
637 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
638 
639 	/* eMMC v5 or later */
640 	if (card->ext_csd.rev >= 7) {
641 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
642 		       MMC_FIRMWARE_LEN);
643 		card->ext_csd.ffu_capable =
644 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
645 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
646 
647 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
648 		card->ext_csd.device_life_time_est_typ_a =
649 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
650 		card->ext_csd.device_life_time_est_typ_b =
651 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
652 	}
653 
654 	/* eMMC v5.1 or later */
655 	if (card->ext_csd.rev >= 8) {
656 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
657 					     EXT_CSD_CMDQ_SUPPORTED;
658 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
659 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
660 		/* Exclude inefficiently small queue depths */
661 		if (card->ext_csd.cmdq_depth <= 2) {
662 			card->ext_csd.cmdq_support = false;
663 			card->ext_csd.cmdq_depth = 0;
664 		}
665 		if (card->ext_csd.cmdq_support) {
666 			pr_debug("%s: Command Queue supported depth %u\n",
667 				 mmc_hostname(card->host),
668 				 card->ext_csd.cmdq_depth);
669 		}
670 		card->ext_csd.enhanced_rpmb_supported =
671 					(card->ext_csd.rel_param &
672 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
673 	}
674 out:
675 	return err;
676 }
677 
678 static int mmc_read_ext_csd(struct mmc_card *card)
679 {
680 	u8 *ext_csd;
681 	int err;
682 
683 	if (!mmc_card_can_ext_csd(card))
684 		return 0;
685 
686 	err = mmc_get_ext_csd(card, &ext_csd);
687 	if (err) {
688 		/* If the host or the card can't do the switch,
689 		 * fail more gracefully. */
690 		if ((err != -EINVAL)
691 		 && (err != -ENOSYS)
692 		 && (err != -EFAULT))
693 			return err;
694 
695 		/*
696 		 * High capacity cards should have this "magic" size
697 		 * stored in their CSD.
698 		 */
699 		if (card->csd.capacity == (4096 * 512)) {
700 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
701 				mmc_hostname(card->host));
702 		} else {
703 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
704 				mmc_hostname(card->host));
705 			err = 0;
706 		}
707 
708 		return err;
709 	}
710 
711 	err = mmc_decode_ext_csd(card, ext_csd);
712 	kfree(ext_csd);
713 	return err;
714 }
715 
716 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
717 {
718 	u8 *bw_ext_csd;
719 	int err;
720 
721 	if (bus_width == MMC_BUS_WIDTH_1)
722 		return 0;
723 
724 	err = mmc_get_ext_csd(card, &bw_ext_csd);
725 	if (err)
726 		return err;
727 
728 	/* only compare read only fields */
729 	err = !((card->ext_csd.raw_partition_support ==
730 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
731 		(card->ext_csd.raw_erased_mem_count ==
732 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
733 		(card->ext_csd.rev ==
734 			bw_ext_csd[EXT_CSD_REV]) &&
735 		(card->ext_csd.raw_ext_csd_structure ==
736 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
737 		(card->ext_csd.raw_card_type ==
738 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
739 		(card->ext_csd.raw_s_a_timeout ==
740 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
741 		(card->ext_csd.raw_hc_erase_gap_size ==
742 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
743 		(card->ext_csd.raw_erase_timeout_mult ==
744 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
745 		(card->ext_csd.raw_hc_erase_grp_size ==
746 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
747 		(card->ext_csd.raw_sec_trim_mult ==
748 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
749 		(card->ext_csd.raw_sec_erase_mult ==
750 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
751 		(card->ext_csd.raw_sec_feature_support ==
752 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
753 		(card->ext_csd.raw_trim_mult ==
754 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
755 		(card->ext_csd.raw_sectors[0] ==
756 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
757 		(card->ext_csd.raw_sectors[1] ==
758 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
759 		(card->ext_csd.raw_sectors[2] ==
760 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
761 		(card->ext_csd.raw_sectors[3] ==
762 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
763 		(card->ext_csd.raw_pwr_cl_52_195 ==
764 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
765 		(card->ext_csd.raw_pwr_cl_26_195 ==
766 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
767 		(card->ext_csd.raw_pwr_cl_52_360 ==
768 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
769 		(card->ext_csd.raw_pwr_cl_26_360 ==
770 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
771 		(card->ext_csd.raw_pwr_cl_200_195 ==
772 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
773 		(card->ext_csd.raw_pwr_cl_200_360 ==
774 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
775 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
776 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
777 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
778 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
779 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
780 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
781 
782 	if (err)
783 		err = -EINVAL;
784 
785 	kfree(bw_ext_csd);
786 	return err;
787 }
788 
789 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
790 	card->raw_cid[2], card->raw_cid[3]);
791 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
792 	card->raw_csd[2], card->raw_csd[3]);
793 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
794 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
795 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
796 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9);
797 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
798 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
799 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
800 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
801 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
802 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
803 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
804 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
805 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
806 	card->ext_csd.device_life_time_est_typ_a,
807 	card->ext_csd.device_life_time_est_typ_b);
808 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
809 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
810 		card->ext_csd.enhanced_area_offset);
811 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
812 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
813 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
814 	card->ext_csd.enhanced_rpmb_supported);
815 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
816 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
817 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
818 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
819 
820 static ssize_t mmc_fwrev_show(struct device *dev,
821 			      struct device_attribute *attr,
822 			      char *buf)
823 {
824 	struct mmc_card *card = mmc_dev_to_card(dev);
825 
826 	if (card->ext_csd.rev < 7)
827 		return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
828 	else
829 		return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
830 				  card->ext_csd.fwrev);
831 }
832 
833 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
834 
835 static ssize_t mmc_dsr_show(struct device *dev,
836 			    struct device_attribute *attr,
837 			    char *buf)
838 {
839 	struct mmc_card *card = mmc_dev_to_card(dev);
840 	struct mmc_host *host = card->host;
841 
842 	if (card->csd.dsr_imp && host->dsr_req)
843 		return sysfs_emit(buf, "0x%x\n", host->dsr);
844 	else
845 		/* return default DSR value */
846 		return sysfs_emit(buf, "0x%x\n", 0x404);
847 }
848 
849 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
850 
851 static struct attribute *mmc_std_attrs[] = {
852 	&dev_attr_cid.attr,
853 	&dev_attr_csd.attr,
854 	&dev_attr_date.attr,
855 	&dev_attr_erase_size.attr,
856 	&dev_attr_preferred_erase_size.attr,
857 	&dev_attr_wp_grp_size.attr,
858 	&dev_attr_fwrev.attr,
859 	&dev_attr_ffu_capable.attr,
860 	&dev_attr_hwrev.attr,
861 	&dev_attr_manfid.attr,
862 	&dev_attr_name.attr,
863 	&dev_attr_oemid.attr,
864 	&dev_attr_prv.attr,
865 	&dev_attr_rev.attr,
866 	&dev_attr_pre_eol_info.attr,
867 	&dev_attr_life_time.attr,
868 	&dev_attr_serial.attr,
869 	&dev_attr_enhanced_area_offset.attr,
870 	&dev_attr_enhanced_area_size.attr,
871 	&dev_attr_raw_rpmb_size_mult.attr,
872 	&dev_attr_enhanced_rpmb_supported.attr,
873 	&dev_attr_rel_sectors.attr,
874 	&dev_attr_ocr.attr,
875 	&dev_attr_rca.attr,
876 	&dev_attr_dsr.attr,
877 	&dev_attr_cmdq_en.attr,
878 	NULL,
879 };
880 ATTRIBUTE_GROUPS(mmc_std);
881 
882 static const struct device_type mmc_type = {
883 	.groups = mmc_std_groups,
884 };
885 
886 /*
887  * Select the PowerClass for the current bus width
888  * If power class is defined for 4/8 bit bus in the
889  * extended CSD register, select it by executing the
890  * mmc_switch command.
891  */
892 static int __mmc_select_powerclass(struct mmc_card *card,
893 				   unsigned int bus_width)
894 {
895 	struct mmc_host *host = card->host;
896 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
897 	unsigned int pwrclass_val = 0;
898 	int err = 0;
899 
900 	switch (1 << host->ios.vdd) {
901 	case MMC_VDD_165_195:
902 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
903 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
904 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
905 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
906 				ext_csd->raw_pwr_cl_52_195 :
907 				ext_csd->raw_pwr_cl_ddr_52_195;
908 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
909 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
910 		break;
911 	case MMC_VDD_27_28:
912 	case MMC_VDD_28_29:
913 	case MMC_VDD_29_30:
914 	case MMC_VDD_30_31:
915 	case MMC_VDD_31_32:
916 	case MMC_VDD_32_33:
917 	case MMC_VDD_33_34:
918 	case MMC_VDD_34_35:
919 	case MMC_VDD_35_36:
920 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
921 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
922 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
923 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
924 				ext_csd->raw_pwr_cl_52_360 :
925 				ext_csd->raw_pwr_cl_ddr_52_360;
926 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
927 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
928 				ext_csd->raw_pwr_cl_ddr_200_360 :
929 				ext_csd->raw_pwr_cl_200_360;
930 		break;
931 	default:
932 		pr_warn("%s: Voltage range not supported for power class\n",
933 			mmc_hostname(host));
934 		return -EINVAL;
935 	}
936 
937 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
938 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
939 				EXT_CSD_PWR_CL_8BIT_SHIFT;
940 	else
941 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
942 				EXT_CSD_PWR_CL_4BIT_SHIFT;
943 
944 	/* If the power class is different from the default value */
945 	if (pwrclass_val > 0) {
946 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
947 				 EXT_CSD_POWER_CLASS,
948 				 pwrclass_val,
949 				 card->ext_csd.generic_cmd6_time);
950 	}
951 
952 	return err;
953 }
954 
955 static int mmc_select_powerclass(struct mmc_card *card)
956 {
957 	struct mmc_host *host = card->host;
958 	u32 bus_width, ext_csd_bits;
959 	int err, ddr;
960 
961 	/* Power class selection is supported for versions >= 4.0 */
962 	if (!mmc_card_can_ext_csd(card))
963 		return 0;
964 
965 	bus_width = host->ios.bus_width;
966 	/* Power class values are defined only for 4/8 bit bus */
967 	if (bus_width == MMC_BUS_WIDTH_1)
968 		return 0;
969 
970 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
971 	if (ddr)
972 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
973 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
974 	else
975 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
976 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
977 
978 	err = __mmc_select_powerclass(card, ext_csd_bits);
979 	if (err)
980 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
981 			mmc_hostname(host), 1 << bus_width, ddr);
982 
983 	return err;
984 }
985 
986 /*
987  * Set the bus speed for the selected speed mode.
988  */
989 static void mmc_set_bus_speed(struct mmc_card *card)
990 {
991 	unsigned int max_dtr = (unsigned int)-1;
992 
993 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
994 	     max_dtr > card->ext_csd.hs200_max_dtr)
995 		max_dtr = card->ext_csd.hs200_max_dtr;
996 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
997 		max_dtr = card->ext_csd.hs_max_dtr;
998 	else if (max_dtr > card->csd.max_dtr)
999 		max_dtr = card->csd.max_dtr;
1000 
1001 	mmc_set_clock(card->host, max_dtr);
1002 }
1003 
1004 /*
1005  * Select the bus width amoung 4-bit and 8-bit(SDR).
1006  * If the bus width is changed successfully, return the selected width value.
1007  * Zero is returned instead of error value if the wide width is not supported.
1008  */
1009 static int mmc_select_bus_width(struct mmc_card *card)
1010 {
1011 	static unsigned ext_csd_bits[] = {
1012 		EXT_CSD_BUS_WIDTH_8,
1013 		EXT_CSD_BUS_WIDTH_4,
1014 		EXT_CSD_BUS_WIDTH_1,
1015 	};
1016 	static unsigned bus_widths[] = {
1017 		MMC_BUS_WIDTH_8,
1018 		MMC_BUS_WIDTH_4,
1019 		MMC_BUS_WIDTH_1,
1020 	};
1021 	struct mmc_host *host = card->host;
1022 	unsigned idx, bus_width = 0;
1023 	int err = 0;
1024 
1025 	if (!mmc_card_can_ext_csd(card) ||
1026 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1027 		return 0;
1028 
1029 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1030 
1031 	/*
1032 	 * Unlike SD, MMC cards dont have a configuration register to notify
1033 	 * supported bus width. So bus test command should be run to identify
1034 	 * the supported bus width or compare the ext csd values of current
1035 	 * bus width and ext csd values of 1 bit mode read earlier.
1036 	 */
1037 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1038 		/*
1039 		 * Host is capable of 8bit transfer, then switch
1040 		 * the device to work in 8bit transfer mode. If the
1041 		 * mmc switch command returns error then switch to
1042 		 * 4bit transfer mode. On success set the corresponding
1043 		 * bus width on the host.
1044 		 */
1045 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1046 				 EXT_CSD_BUS_WIDTH,
1047 				 ext_csd_bits[idx],
1048 				 card->ext_csd.generic_cmd6_time);
1049 		if (err)
1050 			continue;
1051 
1052 		bus_width = bus_widths[idx];
1053 		mmc_set_bus_width(host, bus_width);
1054 
1055 		/*
1056 		 * If controller can't handle bus width test,
1057 		 * compare ext_csd previously read in 1 bit mode
1058 		 * against ext_csd at new bus width
1059 		 */
1060 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1061 			err = mmc_compare_ext_csds(card, bus_width);
1062 		else
1063 			err = mmc_bus_test(card, bus_width);
1064 
1065 		if (!err) {
1066 			err = bus_width;
1067 			break;
1068 		} else {
1069 			pr_warn("%s: switch to bus width %d failed\n",
1070 				mmc_hostname(host), 1 << bus_width);
1071 		}
1072 	}
1073 
1074 	return err;
1075 }
1076 
1077 /*
1078  * Switch to the high-speed mode
1079  */
1080 static int mmc_select_hs(struct mmc_card *card)
1081 {
1082 	int err;
1083 
1084 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1085 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1086 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1087 			   true, true, MMC_CMD_RETRIES);
1088 	if (err)
1089 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1090 			mmc_hostname(card->host), err);
1091 
1092 	return err;
1093 }
1094 
1095 /*
1096  * Activate wide bus and DDR if supported.
1097  */
1098 static int mmc_select_hs_ddr(struct mmc_card *card)
1099 {
1100 	struct mmc_host *host = card->host;
1101 	u32 bus_width, ext_csd_bits;
1102 	int err = 0;
1103 
1104 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1105 		return 0;
1106 
1107 	bus_width = host->ios.bus_width;
1108 	if (bus_width == MMC_BUS_WIDTH_1)
1109 		return 0;
1110 
1111 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1112 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1113 
1114 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1115 			   EXT_CSD_BUS_WIDTH,
1116 			   ext_csd_bits,
1117 			   card->ext_csd.generic_cmd6_time,
1118 			   MMC_TIMING_MMC_DDR52,
1119 			   true, true, MMC_CMD_RETRIES);
1120 	if (err) {
1121 		pr_err("%s: switch to bus width %d ddr failed\n",
1122 			mmc_hostname(host), 1 << bus_width);
1123 		return err;
1124 	}
1125 
1126 	/*
1127 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1128 	 * signaling.
1129 	 *
1130 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1131 	 *
1132 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1133 	 * in the JEDEC spec for DDR.
1134 	 *
1135 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1136 	 * host controller can support this, like some of the SDHCI
1137 	 * controller which connect to an eMMC device. Some of these
1138 	 * host controller still needs to use 1.8v vccq for supporting
1139 	 * DDR mode.
1140 	 *
1141 	 * So the sequence will be:
1142 	 * if (host and device can both support 1.2v IO)
1143 	 *	use 1.2v IO;
1144 	 * else if (host and device can both support 1.8v IO)
1145 	 *	use 1.8v IO;
1146 	 * so if host and device can only support 3.3v IO, this is the
1147 	 * last choice.
1148 	 *
1149 	 * WARNING: eMMC rules are NOT the same as SD DDR
1150 	 */
1151 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1152 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1153 		if (!err)
1154 			return 0;
1155 	}
1156 
1157 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1158 	    host->caps & MMC_CAP_1_8V_DDR)
1159 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1160 
1161 	/* make sure vccq is 3.3v after switching disaster */
1162 	if (err)
1163 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1164 
1165 	return err;
1166 }
1167 
1168 static int mmc_select_hs400(struct mmc_card *card)
1169 {
1170 	struct mmc_host *host = card->host;
1171 	unsigned int max_dtr;
1172 	int err = 0;
1173 	u8 val;
1174 
1175 	/*
1176 	 * HS400 mode requires 8-bit bus width
1177 	 */
1178 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1179 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1180 		return 0;
1181 
1182 	/* Switch card to HS mode */
1183 	val = EXT_CSD_TIMING_HS;
1184 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1185 			   EXT_CSD_HS_TIMING, val,
1186 			   card->ext_csd.generic_cmd6_time, 0,
1187 			   false, true, MMC_CMD_RETRIES);
1188 	if (err) {
1189 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1190 			mmc_hostname(host), err);
1191 		return err;
1192 	}
1193 
1194 	/* Prepare host to downgrade to HS timing */
1195 	if (host->ops->hs400_downgrade)
1196 		host->ops->hs400_downgrade(host);
1197 
1198 	/* Set host controller to HS timing */
1199 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1200 
1201 	/* Reduce frequency to HS frequency */
1202 	max_dtr = card->ext_csd.hs_max_dtr;
1203 	mmc_set_clock(host, max_dtr);
1204 
1205 	err = mmc_switch_status(card, true);
1206 	if (err)
1207 		goto out_err;
1208 
1209 	if (host->ops->hs400_prepare_ddr)
1210 		host->ops->hs400_prepare_ddr(host);
1211 
1212 	/* Switch card to DDR */
1213 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1214 			 EXT_CSD_BUS_WIDTH,
1215 			 EXT_CSD_DDR_BUS_WIDTH_8,
1216 			 card->ext_csd.generic_cmd6_time);
1217 	if (err) {
1218 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1219 			mmc_hostname(host), err);
1220 		return err;
1221 	}
1222 
1223 	/* Switch card to HS400 */
1224 	val = EXT_CSD_TIMING_HS400 |
1225 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1226 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1227 			   EXT_CSD_HS_TIMING, val,
1228 			   card->ext_csd.generic_cmd6_time, 0,
1229 			   false, true, MMC_CMD_RETRIES);
1230 	if (err) {
1231 		pr_err("%s: switch to hs400 failed, err:%d\n",
1232 			 mmc_hostname(host), err);
1233 		return err;
1234 	}
1235 
1236 	/* Set host controller to HS400 timing and frequency */
1237 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1238 	mmc_set_bus_speed(card);
1239 
1240 	if (host->ops->execute_hs400_tuning) {
1241 		mmc_retune_disable(host);
1242 		err = host->ops->execute_hs400_tuning(host, card);
1243 		mmc_retune_enable(host);
1244 		if (err)
1245 			goto out_err;
1246 	}
1247 
1248 	if (host->ops->hs400_complete)
1249 		host->ops->hs400_complete(host);
1250 
1251 	err = mmc_switch_status(card, true);
1252 	if (err)
1253 		goto out_err;
1254 
1255 	return 0;
1256 
1257 out_err:
1258 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1259 	       __func__, err);
1260 	return err;
1261 }
1262 
1263 int mmc_hs200_to_hs400(struct mmc_card *card)
1264 {
1265 	return mmc_select_hs400(card);
1266 }
1267 
1268 int mmc_hs400_to_hs200(struct mmc_card *card)
1269 {
1270 	struct mmc_host *host = card->host;
1271 	unsigned int max_dtr;
1272 	int err;
1273 	u8 val;
1274 
1275 	/* Reduce frequency to HS */
1276 	max_dtr = card->ext_csd.hs_max_dtr;
1277 	mmc_set_clock(host, max_dtr);
1278 
1279 	/* Switch HS400 to HS DDR */
1280 	val = EXT_CSD_TIMING_HS;
1281 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1282 			   val, card->ext_csd.generic_cmd6_time, 0,
1283 			   false, true, MMC_CMD_RETRIES);
1284 	if (err)
1285 		goto out_err;
1286 
1287 	if (host->ops->hs400_downgrade)
1288 		host->ops->hs400_downgrade(host);
1289 
1290 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1291 
1292 	err = mmc_switch_status(card, true);
1293 	if (err)
1294 		goto out_err;
1295 
1296 	/* Switch HS DDR to HS */
1297 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1298 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1299 			   0, false, true, MMC_CMD_RETRIES);
1300 	if (err)
1301 		goto out_err;
1302 
1303 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1304 
1305 	err = mmc_switch_status(card, true);
1306 	if (err)
1307 		goto out_err;
1308 
1309 	/* Switch HS to HS200 */
1310 	val = EXT_CSD_TIMING_HS200 |
1311 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1312 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1313 			   val, card->ext_csd.generic_cmd6_time, 0,
1314 			   false, true, MMC_CMD_RETRIES);
1315 	if (err)
1316 		goto out_err;
1317 
1318 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1319 
1320 	/*
1321 	 * For HS200, CRC errors are not a reliable way to know the switch
1322 	 * failed. If there really is a problem, we would expect tuning will
1323 	 * fail and the result ends up the same.
1324 	 */
1325 	err = mmc_switch_status(card, false);
1326 	if (err)
1327 		goto out_err;
1328 
1329 	mmc_set_bus_speed(card);
1330 
1331 	/* Prepare tuning for HS400 mode. */
1332 	if (host->ops->prepare_hs400_tuning)
1333 		host->ops->prepare_hs400_tuning(host, &host->ios);
1334 
1335 	return 0;
1336 
1337 out_err:
1338 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1339 	       __func__, err);
1340 	return err;
1341 }
1342 
1343 static void mmc_select_driver_type(struct mmc_card *card)
1344 {
1345 	int card_drv_type, drive_strength, drv_type = 0;
1346 	int fixed_drv_type = card->host->fixed_drv_type;
1347 
1348 	card_drv_type = card->ext_csd.raw_driver_strength |
1349 			mmc_driver_type_mask(0);
1350 
1351 	if (fixed_drv_type >= 0)
1352 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1353 				 ? fixed_drv_type : 0;
1354 	else
1355 		drive_strength = mmc_select_drive_strength(card,
1356 							   card->ext_csd.hs200_max_dtr,
1357 							   card_drv_type, &drv_type);
1358 
1359 	card->drive_strength = drive_strength;
1360 
1361 	if (drv_type)
1362 		mmc_set_driver_type(card->host, drv_type);
1363 }
1364 
1365 static int mmc_select_hs400es(struct mmc_card *card)
1366 {
1367 	struct mmc_host *host = card->host;
1368 	int err = -EINVAL;
1369 	u8 val;
1370 
1371 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1372 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1373 
1374 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1375 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1376 
1377 	/* If fails try again during next card power cycle */
1378 	if (err)
1379 		goto out_err;
1380 
1381 	err = mmc_select_bus_width(card);
1382 	if (err != MMC_BUS_WIDTH_8) {
1383 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1384 			mmc_hostname(host), err);
1385 		err = err < 0 ? err : -ENOTSUPP;
1386 		goto out_err;
1387 	}
1388 
1389 	/* Switch card to HS mode */
1390 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1391 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1392 			   card->ext_csd.generic_cmd6_time, 0,
1393 			   false, true, MMC_CMD_RETRIES);
1394 	if (err) {
1395 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1396 			mmc_hostname(host), err);
1397 		goto out_err;
1398 	}
1399 
1400 	/*
1401 	 * Bump to HS timing and frequency. Some cards don't handle
1402 	 * SEND_STATUS reliably at the initial frequency.
1403 	 */
1404 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1405 	mmc_set_bus_speed(card);
1406 
1407 	err = mmc_switch_status(card, true);
1408 	if (err)
1409 		goto out_err;
1410 
1411 	/* Switch card to DDR with strobe bit */
1412 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1413 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1414 			 EXT_CSD_BUS_WIDTH,
1415 			 val,
1416 			 card->ext_csd.generic_cmd6_time);
1417 	if (err) {
1418 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1419 			mmc_hostname(host), err);
1420 		goto out_err;
1421 	}
1422 
1423 	mmc_select_driver_type(card);
1424 
1425 	/* Switch card to HS400 */
1426 	val = EXT_CSD_TIMING_HS400 |
1427 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1428 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1429 			   EXT_CSD_HS_TIMING, val,
1430 			   card->ext_csd.generic_cmd6_time, 0,
1431 			   false, true, MMC_CMD_RETRIES);
1432 	if (err) {
1433 		pr_err("%s: switch to hs400es failed, err:%d\n",
1434 			mmc_hostname(host), err);
1435 		goto out_err;
1436 	}
1437 
1438 	/* Set host controller to HS400 timing and frequency */
1439 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1440 
1441 	/* Controller enable enhanced strobe function */
1442 	host->ios.enhanced_strobe = true;
1443 	if (host->ops->hs400_enhanced_strobe)
1444 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1445 
1446 	err = mmc_switch_status(card, true);
1447 	if (err)
1448 		goto out_err;
1449 
1450 	return 0;
1451 
1452 out_err:
1453 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1454 	       __func__, err);
1455 	return err;
1456 }
1457 
1458 /*
1459  * For device supporting HS200 mode, the following sequence
1460  * should be done before executing the tuning process.
1461  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1462  * 2. switch to HS200 mode
1463  * 3. set the clock to > 52Mhz and <=200MHz
1464  */
1465 static int mmc_select_hs200(struct mmc_card *card)
1466 {
1467 	struct mmc_host *host = card->host;
1468 	unsigned int old_timing, old_signal_voltage, old_clock;
1469 	int err = -EINVAL;
1470 	u8 val;
1471 
1472 	old_signal_voltage = host->ios.signal_voltage;
1473 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1474 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1475 
1476 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1477 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1478 
1479 	/* If fails try again during next card power cycle */
1480 	if (err)
1481 		return err;
1482 
1483 	mmc_select_driver_type(card);
1484 
1485 	/*
1486 	 * Set the bus width(4 or 8) with host's support and
1487 	 * switch to HS200 mode if bus width is set successfully.
1488 	 */
1489 	err = mmc_select_bus_width(card);
1490 	if (err > 0) {
1491 		val = EXT_CSD_TIMING_HS200 |
1492 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1493 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1494 				   EXT_CSD_HS_TIMING, val,
1495 				   card->ext_csd.generic_cmd6_time, 0,
1496 				   false, true, MMC_CMD_RETRIES);
1497 		if (err)
1498 			goto err;
1499 
1500 		/*
1501 		 * Bump to HS timing and frequency. Some cards don't handle
1502 		 * SEND_STATUS reliably at the initial frequency.
1503 		 * NB: We can't move to full (HS200) speeds until after we've
1504 		 * successfully switched over.
1505 		 */
1506 		old_timing = host->ios.timing;
1507 		old_clock = host->ios.clock;
1508 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1509 		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1510 
1511 		/*
1512 		 * For HS200, CRC errors are not a reliable way to know the
1513 		 * switch failed. If there really is a problem, we would expect
1514 		 * tuning will fail and the result ends up the same.
1515 		 */
1516 		err = mmc_switch_status(card, false);
1517 
1518 		/*
1519 		 * mmc_select_timing() assumes timing has not changed if
1520 		 * it is a switch error.
1521 		 */
1522 		if (err == -EBADMSG) {
1523 			mmc_set_clock(host, old_clock);
1524 			mmc_set_timing(host, old_timing);
1525 		}
1526 	}
1527 err:
1528 	if (err) {
1529 		/* fall back to the old signal voltage, if fails report error */
1530 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1531 			err = -EIO;
1532 
1533 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1534 		       __func__, err);
1535 	}
1536 	return err;
1537 }
1538 
1539 /*
1540  * Activate High Speed, HS200 or HS400ES mode if supported.
1541  */
1542 static int mmc_select_timing(struct mmc_card *card)
1543 {
1544 	int err = 0;
1545 
1546 	if (!mmc_card_can_ext_csd(card))
1547 		goto bus_speed;
1548 
1549 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1550 		err = mmc_select_hs400es(card);
1551 		goto out;
1552 	}
1553 
1554 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1555 		err = mmc_select_hs200(card);
1556 		if (err == -EBADMSG)
1557 			card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1558 		else
1559 			goto out;
1560 	}
1561 
1562 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1563 		err = mmc_select_hs(card);
1564 
1565 out:
1566 	if (err && err != -EBADMSG)
1567 		return err;
1568 
1569 bus_speed:
1570 	/*
1571 	 * Set the bus speed to the selected bus timing.
1572 	 * If timing is not selected, backward compatible is the default.
1573 	 */
1574 	mmc_set_bus_speed(card);
1575 	return 0;
1576 }
1577 
1578 /*
1579  * Execute tuning sequence to seek the proper bus operating
1580  * conditions for HS200 and HS400, which sends CMD21 to the device.
1581  */
1582 static int mmc_hs200_tuning(struct mmc_card *card)
1583 {
1584 	struct mmc_host *host = card->host;
1585 
1586 	/*
1587 	 * Timing should be adjusted to the HS400 target
1588 	 * operation frequency for tuning process
1589 	 */
1590 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1591 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1592 		if (host->ops->prepare_hs400_tuning)
1593 			host->ops->prepare_hs400_tuning(host, &host->ios);
1594 
1595 	return mmc_execute_tuning(card);
1596 }
1597 
1598 /*
1599  * Handle the detection and initialisation of a card.
1600  *
1601  * In the case of a resume, "oldcard" will contain the card
1602  * we're trying to reinitialise.
1603  */
1604 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1605 	struct mmc_card *oldcard)
1606 {
1607 	struct mmc_card *card;
1608 	int err;
1609 	u32 cid[4];
1610 	u32 rocr;
1611 
1612 	WARN_ON(!host->claimed);
1613 
1614 	/* Set correct bus mode for MMC before attempting init */
1615 	if (!mmc_host_is_spi(host))
1616 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1617 
1618 	/*
1619 	 * Since we're changing the OCR value, we seem to
1620 	 * need to tell some cards to go back to the idle
1621 	 * state.  We wait 1ms to give cards time to
1622 	 * respond.
1623 	 * mmc_go_idle is needed for eMMC that are asleep
1624 	 */
1625 	mmc_go_idle(host);
1626 
1627 	/* The extra bit indicates that we support high capacity */
1628 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1629 	if (err)
1630 		goto err;
1631 
1632 	/*
1633 	 * For SPI, enable CRC as appropriate.
1634 	 */
1635 	if (mmc_host_is_spi(host)) {
1636 		err = mmc_spi_set_crc(host, use_spi_crc);
1637 		if (err)
1638 			goto err;
1639 	}
1640 
1641 	/*
1642 	 * Fetch CID from card.
1643 	 */
1644 	err = mmc_send_cid(host, cid);
1645 	if (err)
1646 		goto err;
1647 
1648 	if (oldcard) {
1649 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1650 			pr_debug("%s: Perhaps the card was replaced\n",
1651 				mmc_hostname(host));
1652 			err = -ENOENT;
1653 			goto err;
1654 		}
1655 
1656 		card = oldcard;
1657 	} else {
1658 		/*
1659 		 * Allocate card structure.
1660 		 */
1661 		card = mmc_alloc_card(host, &mmc_type);
1662 		if (IS_ERR(card)) {
1663 			err = PTR_ERR(card);
1664 			goto err;
1665 		}
1666 
1667 		card->ocr = ocr;
1668 		card->type = MMC_TYPE_MMC;
1669 		card->rca = 1;
1670 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1671 	}
1672 
1673 	/*
1674 	 * Call the optional HC's init_card function to handle quirks.
1675 	 */
1676 	if (host->ops->init_card)
1677 		host->ops->init_card(host, card);
1678 
1679 	/*
1680 	 * For native busses:  set card RCA and quit open drain mode.
1681 	 */
1682 	if (!mmc_host_is_spi(host)) {
1683 		err = mmc_set_relative_addr(card);
1684 		if (err)
1685 			goto free_card;
1686 
1687 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1688 	}
1689 
1690 	if (!oldcard) {
1691 		/*
1692 		 * Fetch CSD from card.
1693 		 */
1694 		err = mmc_send_csd(card, card->raw_csd);
1695 		if (err)
1696 			goto free_card;
1697 
1698 		err = mmc_decode_csd(card);
1699 		if (err)
1700 			goto free_card;
1701 		err = mmc_decode_cid(card);
1702 		if (err)
1703 			goto free_card;
1704 	}
1705 
1706 	/*
1707 	 * handling only for cards supporting DSR and hosts requesting
1708 	 * DSR configuration
1709 	 */
1710 	if (card->csd.dsr_imp && host->dsr_req)
1711 		mmc_set_dsr(host);
1712 
1713 	/*
1714 	 * Select card, as all following commands rely on that.
1715 	 */
1716 	if (!mmc_host_is_spi(host)) {
1717 		err = mmc_select_card(card);
1718 		if (err)
1719 			goto free_card;
1720 	}
1721 
1722 	if (!oldcard) {
1723 		/* Read extended CSD. */
1724 		err = mmc_read_ext_csd(card);
1725 		if (err)
1726 			goto free_card;
1727 
1728 		/*
1729 		 * If doing byte addressing, check if required to do sector
1730 		 * addressing.  Handle the case of <2GB cards needing sector
1731 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1732 		 * ocr register has bit 30 set for sector addressing.
1733 		 */
1734 		if (rocr & BIT(30))
1735 			mmc_card_set_blockaddr(card);
1736 
1737 		/* Erase size depends on CSD and Extended CSD */
1738 		mmc_set_erase_size(card);
1739 	}
1740 
1741 	/*
1742 	 * Reselect the card type since host caps could have been changed when
1743 	 * debugging even if the card is not new.
1744 	 */
1745 	mmc_select_card_type(card);
1746 
1747 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1748 	if (card->ext_csd.rev >= 3) {
1749 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1750 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1751 				 card->ext_csd.generic_cmd6_time);
1752 
1753 		if (err && err != -EBADMSG)
1754 			goto free_card;
1755 
1756 		if (err) {
1757 			/*
1758 			 * Just disable enhanced area off & sz
1759 			 * will try to enable ERASE_GROUP_DEF
1760 			 * during next time reinit
1761 			 */
1762 			card->ext_csd.enhanced_area_offset = -EINVAL;
1763 			card->ext_csd.enhanced_area_size = -EINVAL;
1764 		} else {
1765 			card->ext_csd.erase_group_def = 1;
1766 			/*
1767 			 * enable ERASE_GRP_DEF successfully.
1768 			 * This will affect the erase size, so
1769 			 * here need to reset erase size
1770 			 */
1771 			mmc_set_erase_size(card);
1772 		}
1773 	}
1774 	mmc_set_wp_grp_size(card);
1775 	/*
1776 	 * Ensure eMMC user default partition is enabled
1777 	 */
1778 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1779 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1780 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1781 				 card->ext_csd.part_config,
1782 				 card->ext_csd.part_time);
1783 		if (err && err != -EBADMSG)
1784 			goto free_card;
1785 	}
1786 
1787 	/*
1788 	 * Enable power_off_notification byte in the ext_csd register
1789 	 */
1790 	if (card->ext_csd.rev >= 6) {
1791 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1792 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1793 				 EXT_CSD_POWER_ON,
1794 				 card->ext_csd.generic_cmd6_time);
1795 		if (err && err != -EBADMSG)
1796 			goto free_card;
1797 
1798 		/*
1799 		 * The err can be -EBADMSG or 0,
1800 		 * so check for success and update the flag
1801 		 */
1802 		if (!err)
1803 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1804 	}
1805 
1806 	/* set erase_arg */
1807 	if (mmc_card_can_discard(card))
1808 		card->erase_arg = MMC_DISCARD_ARG;
1809 	else if (mmc_card_can_trim(card))
1810 		card->erase_arg = MMC_TRIM_ARG;
1811 	else
1812 		card->erase_arg = MMC_ERASE_ARG;
1813 
1814 	/*
1815 	 * Select timing interface
1816 	 */
1817 	err = mmc_select_timing(card);
1818 	if (err)
1819 		goto free_card;
1820 
1821 	if (mmc_card_hs200(card)) {
1822 		host->doing_init_tune = 1;
1823 
1824 		err = mmc_hs200_tuning(card);
1825 		if (!err)
1826 			err = mmc_select_hs400(card);
1827 
1828 		host->doing_init_tune = 0;
1829 
1830 		if (err)
1831 			goto free_card;
1832 	} else if (mmc_card_hs400es(card)) {
1833 		if (host->ops->execute_hs400_tuning) {
1834 			err = host->ops->execute_hs400_tuning(host, card);
1835 			if (err)
1836 				goto free_card;
1837 		}
1838 	} else {
1839 		/* Select the desired bus width optionally */
1840 		err = mmc_select_bus_width(card);
1841 		if (err > 0 && mmc_card_hs(card)) {
1842 			err = mmc_select_hs_ddr(card);
1843 			if (err)
1844 				goto free_card;
1845 		}
1846 	}
1847 
1848 	/*
1849 	 * Choose the power class with selected bus interface
1850 	 */
1851 	mmc_select_powerclass(card);
1852 
1853 	/*
1854 	 * Enable HPI feature (if supported)
1855 	 */
1856 	if (card->ext_csd.hpi) {
1857 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1858 				EXT_CSD_HPI_MGMT, 1,
1859 				card->ext_csd.generic_cmd6_time);
1860 		if (err && err != -EBADMSG)
1861 			goto free_card;
1862 		if (err) {
1863 			pr_warn("%s: Enabling HPI failed\n",
1864 				mmc_hostname(card->host));
1865 			card->ext_csd.hpi_en = 0;
1866 		} else {
1867 			card->ext_csd.hpi_en = 1;
1868 		}
1869 	}
1870 
1871 	/*
1872 	 * If cache size is higher than 0, this indicates the existence of cache
1873 	 * and it can be turned on. Note that some eMMCs from Micron has been
1874 	 * reported to need ~800 ms timeout, while enabling the cache after
1875 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1876 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1877 	 */
1878 	if (card->ext_csd.cache_size > 0) {
1879 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1880 
1881 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1882 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1883 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1884 		if (err && err != -EBADMSG)
1885 			goto free_card;
1886 
1887 		/*
1888 		 * Only if no error, cache is turned on successfully.
1889 		 */
1890 		if (err) {
1891 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1892 				mmc_hostname(card->host), err);
1893 			card->ext_csd.cache_ctrl = 0;
1894 		} else {
1895 			card->ext_csd.cache_ctrl = 1;
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1901 	 * be used with Command Queue.
1902 	 */
1903 	card->ext_csd.cmdq_en = false;
1904 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1905 		err = mmc_cmdq_enable(card);
1906 		if (err && err != -EBADMSG)
1907 			goto free_card;
1908 		if (err) {
1909 			pr_warn("%s: Enabling CMDQ failed\n",
1910 				mmc_hostname(card->host));
1911 			card->ext_csd.cmdq_support = false;
1912 			card->ext_csd.cmdq_depth = 0;
1913 		}
1914 	}
1915 	/*
1916 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1917 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1918 	 * Command Queue.
1919 	 */
1920 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1921 
1922 	if (host->cqe_ops && !host->cqe_enabled) {
1923 		err = host->cqe_ops->cqe_enable(host, card);
1924 		if (!err) {
1925 			host->cqe_enabled = true;
1926 
1927 			if (card->ext_csd.cmdq_en) {
1928 				pr_info("%s: Command Queue Engine enabled\n",
1929 					mmc_hostname(host));
1930 			} else {
1931 				host->hsq_enabled = true;
1932 				pr_info("%s: Host Software Queue enabled\n",
1933 					mmc_hostname(host));
1934 			}
1935 		}
1936 	}
1937 
1938 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1939 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1940 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1941 			mmc_hostname(host));
1942 		err = -EINVAL;
1943 		goto free_card;
1944 	}
1945 
1946 	if (!oldcard)
1947 		host->card = card;
1948 
1949 	return 0;
1950 
1951 free_card:
1952 	if (!oldcard)
1953 		mmc_remove_card(card);
1954 err:
1955 	return err;
1956 }
1957 
1958 static bool mmc_card_can_sleep(struct mmc_card *card)
1959 {
1960 	return card->ext_csd.rev >= 3;
1961 }
1962 
1963 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1964 {
1965 	struct mmc_host *host = cb_data;
1966 
1967 	*busy = host->ops->card_busy(host);
1968 	return 0;
1969 }
1970 
1971 static int mmc_sleep(struct mmc_host *host)
1972 {
1973 	struct mmc_command cmd = {};
1974 	struct mmc_card *card = host->card;
1975 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1976 	bool use_r1b_resp;
1977 	int err;
1978 
1979 	/* Re-tuning can't be done once the card is deselected */
1980 	mmc_retune_hold(host);
1981 
1982 	err = mmc_deselect_cards(host);
1983 	if (err)
1984 		goto out_release;
1985 
1986 	cmd.opcode = MMC_SLEEP_AWAKE;
1987 	cmd.arg = card->rca << 16;
1988 	cmd.arg |= 1 << 15;
1989 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1990 
1991 	err = mmc_wait_for_cmd(host, &cmd, 0);
1992 	if (err)
1993 		goto out_release;
1994 
1995 	/*
1996 	 * If the host does not wait while the card signals busy, then we can
1997 	 * try to poll, but only if the host supports HW polling, as the
1998 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1999 	 * to wait the sleep/awake timeout.
2000 	 */
2001 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
2002 		goto out_release;
2003 
2004 	if (!host->ops->card_busy) {
2005 		mmc_delay(timeout_ms);
2006 		goto out_release;
2007 	}
2008 
2009 	err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
2010 
2011 out_release:
2012 	mmc_retune_release(host);
2013 	return err;
2014 }
2015 
2016 static bool mmc_card_can_poweroff_notify(const struct mmc_card *card)
2017 {
2018 	return card &&
2019 		mmc_card_mmc(card) &&
2020 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2021 }
2022 
2023 static bool mmc_host_can_poweroff_notify(const struct mmc_host *host,
2024 					 enum mmc_poweroff_type pm_type)
2025 {
2026 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)
2027 		return true;
2028 
2029 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND &&
2030 	    pm_type == MMC_POWEROFF_SUSPEND)
2031 		return true;
2032 
2033 	return pm_type == MMC_POWEROFF_SHUTDOWN;
2034 }
2035 
2036 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2037 {
2038 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
2039 	int err;
2040 
2041 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2042 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2043 		timeout = card->ext_csd.power_off_longtime;
2044 
2045 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2046 			EXT_CSD_POWER_OFF_NOTIFICATION,
2047 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2048 	if (err)
2049 		pr_err("%s: Power Off Notification timed out, %u\n",
2050 		       mmc_hostname(card->host), timeout);
2051 
2052 	/* Disable the power off notification after the switch operation. */
2053 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2054 
2055 	return err;
2056 }
2057 
2058 /*
2059  * Card detection - card is alive.
2060  */
2061 static int mmc_alive(struct mmc_host *host)
2062 {
2063 	return mmc_send_status(host->card, NULL);
2064 }
2065 
2066 /*
2067  * Card detection callback from host.
2068  */
2069 static void mmc_detect(struct mmc_host *host)
2070 {
2071 	int err;
2072 
2073 	mmc_get_card(host->card, NULL);
2074 
2075 	/*
2076 	 * Just check if our card has been removed.
2077 	 */
2078 	err = _mmc_detect_card_removed(host);
2079 
2080 	mmc_put_card(host->card, NULL);
2081 
2082 	if (err) {
2083 		mmc_remove_card(host->card);
2084 		host->card = NULL;
2085 
2086 		mmc_claim_host(host);
2087 		mmc_detach_bus(host);
2088 		mmc_power_off(host);
2089 		mmc_release_host(host);
2090 	}
2091 }
2092 
2093 static bool _mmc_cache_enabled(struct mmc_host *host)
2094 {
2095 	return host->card->ext_csd.cache_size > 0 &&
2096 	       host->card->ext_csd.cache_ctrl & 1;
2097 }
2098 
2099 /*
2100  * Flush the internal cache of the eMMC to non-volatile storage.
2101  */
2102 static int _mmc_flush_cache(struct mmc_host *host)
2103 {
2104 	int err = 0;
2105 
2106 	if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag)
2107 		return 0;
2108 
2109 	if (_mmc_cache_enabled(host)) {
2110 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2111 				 EXT_CSD_FLUSH_CACHE, 1,
2112 				 CACHE_FLUSH_TIMEOUT_MS);
2113 		if (err)
2114 			pr_err("%s: cache flush error %d\n", mmc_hostname(host), err);
2115 		else
2116 			host->card->written_flag = false;
2117 	}
2118 
2119 	return err;
2120 }
2121 
2122 static int _mmc_suspend(struct mmc_host *host, enum mmc_poweroff_type pm_type)
2123 {
2124 	unsigned int notify_type = EXT_CSD_POWER_OFF_SHORT;
2125 	int err = 0;
2126 
2127 	if (pm_type == MMC_POWEROFF_SHUTDOWN)
2128 		notify_type = EXT_CSD_POWER_OFF_LONG;
2129 
2130 	mmc_claim_host(host);
2131 
2132 	if (mmc_card_suspended(host->card))
2133 		goto out;
2134 
2135 	err = _mmc_flush_cache(host);
2136 	if (err)
2137 		goto out;
2138 
2139 	if (mmc_card_can_poweroff_notify(host->card) &&
2140 	    mmc_host_can_poweroff_notify(host, pm_type))
2141 		err = mmc_poweroff_notify(host->card, notify_type);
2142 	else if (mmc_card_can_sleep(host->card))
2143 		err = mmc_sleep(host);
2144 	else if (!mmc_host_is_spi(host))
2145 		err = mmc_deselect_cards(host);
2146 
2147 	if (!err) {
2148 		mmc_power_off(host);
2149 		mmc_card_set_suspended(host->card);
2150 	}
2151 out:
2152 	mmc_release_host(host);
2153 	return err;
2154 }
2155 
2156 /*
2157  * Host is being removed. Free up the current card and do a graceful power-off.
2158  */
2159 static void mmc_remove(struct mmc_host *host)
2160 {
2161 	get_device(&host->card->dev);
2162 	mmc_remove_card(host->card);
2163 
2164 	_mmc_suspend(host, MMC_POWEROFF_UNBIND);
2165 
2166 	put_device(&host->card->dev);
2167 	host->card = NULL;
2168 }
2169 
2170 /*
2171  * Suspend callback
2172  */
2173 static int mmc_suspend(struct mmc_host *host)
2174 {
2175 	int err;
2176 
2177 	err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND);
2178 	if (!err) {
2179 		pm_runtime_disable(&host->card->dev);
2180 		pm_runtime_set_suspended(&host->card->dev);
2181 	}
2182 
2183 	return err;
2184 }
2185 
2186 /*
2187  * This function tries to determine if the same card is still present
2188  * and, if so, restore all state to it.
2189  */
2190 static int _mmc_resume(struct mmc_host *host)
2191 {
2192 	int err = 0;
2193 
2194 	mmc_claim_host(host);
2195 
2196 	if (!mmc_card_suspended(host->card))
2197 		goto out;
2198 
2199 	mmc_power_up(host, host->card->ocr);
2200 	err = mmc_init_card(host, host->card->ocr, host->card);
2201 	mmc_card_clr_suspended(host->card);
2202 
2203 out:
2204 	mmc_release_host(host);
2205 	return err;
2206 }
2207 
2208 /*
2209  * Shutdown callback
2210  */
2211 static int mmc_shutdown(struct mmc_host *host)
2212 {
2213 	int err = 0;
2214 
2215 	/*
2216 	 * If the card remains suspended at this point and it was done by using
2217 	 * the sleep-cmd (CMD5), we may need to re-initialize it first, to allow
2218 	 * us to send the preferred poweroff-notification cmd at shutdown.
2219 	 */
2220 	if (mmc_card_can_poweroff_notify(host->card) &&
2221 	    !mmc_host_can_poweroff_notify(host, MMC_POWEROFF_SUSPEND))
2222 		err = _mmc_resume(host);
2223 
2224 	if (!err)
2225 		err = _mmc_suspend(host, MMC_POWEROFF_SHUTDOWN);
2226 
2227 	return err;
2228 }
2229 
2230 /*
2231  * Callback for resume.
2232  */
2233 static int mmc_resume(struct mmc_host *host)
2234 {
2235 	pm_runtime_enable(&host->card->dev);
2236 	return 0;
2237 }
2238 
2239 /*
2240  * Callback for runtime_suspend.
2241  */
2242 static int mmc_runtime_suspend(struct mmc_host *host)
2243 {
2244 	int err;
2245 
2246 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2247 		return 0;
2248 
2249 	err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND);
2250 	if (err)
2251 		pr_err("%s: error %d doing aggressive suspend\n",
2252 			mmc_hostname(host), err);
2253 
2254 	return err;
2255 }
2256 
2257 /*
2258  * Callback for runtime_resume.
2259  */
2260 static int mmc_runtime_resume(struct mmc_host *host)
2261 {
2262 	int err;
2263 
2264 	err = _mmc_resume(host);
2265 	if (err && err != -ENOMEDIUM)
2266 		pr_err("%s: error %d doing runtime resume\n",
2267 			mmc_hostname(host), err);
2268 
2269 	return 0;
2270 }
2271 
2272 static bool mmc_card_can_reset(struct mmc_card *card)
2273 {
2274 	u8 rst_n_function;
2275 
2276 	rst_n_function = card->ext_csd.rst_n_function;
2277 	return ((rst_n_function & EXT_CSD_RST_N_EN_MASK) == EXT_CSD_RST_N_ENABLED);
2278 }
2279 
2280 static int _mmc_hw_reset(struct mmc_host *host)
2281 {
2282 	struct mmc_card *card = host->card;
2283 
2284 	/*
2285 	 * In the case of recovery, we can't expect flushing the cache to work
2286 	 * always, but we have a go and ignore errors.
2287 	 */
2288 	_mmc_flush_cache(host);
2289 
2290 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2291 	     mmc_card_can_reset(card)) {
2292 		/* If the card accept RST_n signal, send it. */
2293 		mmc_set_clock(host, host->f_init);
2294 		host->ops->card_hw_reset(host);
2295 		/* Set initial state and call mmc_set_ios */
2296 		mmc_set_initial_state(host);
2297 	} else {
2298 		/* Do a brute force power cycle */
2299 		mmc_power_cycle(host, card->ocr);
2300 		mmc_pwrseq_reset(host);
2301 	}
2302 	return mmc_init_card(host, card->ocr, card);
2303 }
2304 
2305 static const struct mmc_bus_ops mmc_ops = {
2306 	.remove = mmc_remove,
2307 	.detect = mmc_detect,
2308 	.suspend = mmc_suspend,
2309 	.resume = mmc_resume,
2310 	.runtime_suspend = mmc_runtime_suspend,
2311 	.runtime_resume = mmc_runtime_resume,
2312 	.alive = mmc_alive,
2313 	.shutdown = mmc_shutdown,
2314 	.hw_reset = _mmc_hw_reset,
2315 	.cache_enabled = _mmc_cache_enabled,
2316 	.flush_cache = _mmc_flush_cache,
2317 };
2318 
2319 /*
2320  * Starting point for MMC card init.
2321  */
2322 int mmc_attach_mmc(struct mmc_host *host)
2323 {
2324 	int err;
2325 	u32 ocr, rocr;
2326 
2327 	WARN_ON(!host->claimed);
2328 
2329 	/* Set correct bus mode for MMC before attempting attach */
2330 	if (!mmc_host_is_spi(host))
2331 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2332 
2333 	err = mmc_send_op_cond(host, 0, &ocr);
2334 	if (err)
2335 		return err;
2336 
2337 	mmc_attach_bus(host, &mmc_ops);
2338 	if (host->ocr_avail_mmc)
2339 		host->ocr_avail = host->ocr_avail_mmc;
2340 
2341 	/*
2342 	 * We need to get OCR a different way for SPI.
2343 	 */
2344 	if (mmc_host_is_spi(host)) {
2345 		err = mmc_spi_read_ocr(host, 1, &ocr);
2346 		if (err)
2347 			goto err;
2348 	}
2349 
2350 	rocr = mmc_select_voltage(host, ocr);
2351 
2352 	/*
2353 	 * Can we support the voltage of the card?
2354 	 */
2355 	if (!rocr) {
2356 		err = -EINVAL;
2357 		goto err;
2358 	}
2359 
2360 	/*
2361 	 * Detect and init the card.
2362 	 */
2363 	err = mmc_init_card(host, rocr, NULL);
2364 	if (err)
2365 		goto err;
2366 
2367 	mmc_release_host(host);
2368 	err = mmc_add_card(host->card);
2369 	if (err)
2370 		goto remove_card;
2371 
2372 	mmc_claim_host(host);
2373 	return 0;
2374 
2375 remove_card:
2376 	mmc_remove_card(host->card);
2377 	mmc_claim_host(host);
2378 	host->card = NULL;
2379 err:
2380 	mmc_detach_bus(host);
2381 
2382 	pr_err("%s: error %d whilst initialising MMC card\n",
2383 		mmc_hostname(host), err);
2384 
2385 	return err;
2386 }
2387