1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/string.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/random.h> 17 #include <linux/sysfs.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 #include "bus.h" 27 #include "mmc_ops.h" 28 #include "quirks.h" 29 #include "sd_ops.h" 30 #include "pwrseq.h" 31 32 #define DEFAULT_CMD6_TIMEOUT_MS 500 33 #define MIN_CACHE_EN_TIMEOUT_MS 1600 34 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 35 36 enum mmc_poweroff_type { 37 MMC_POWEROFF_SUSPEND, 38 MMC_POWEROFF_SHUTDOWN, 39 MMC_POWEROFF_UNBIND, 40 }; 41 42 static const unsigned int tran_exp[] = { 43 10000, 100000, 1000000, 10000000, 44 0, 0, 0, 0 45 }; 46 47 static const unsigned char tran_mant[] = { 48 0, 10, 12, 13, 15, 20, 25, 30, 49 35, 40, 45, 50, 55, 60, 70, 80, 50 }; 51 52 static const unsigned int taac_exp[] = { 53 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 54 }; 55 56 static const unsigned int taac_mant[] = { 57 0, 10, 12, 13, 15, 20, 25, 30, 58 35, 40, 45, 50, 55, 60, 70, 80, 59 }; 60 61 /* 62 * Given the decoded CSD structure, decode the raw CID to our CID structure. 63 */ 64 static int mmc_decode_cid(struct mmc_card *card) 65 { 66 u32 *resp = card->raw_cid; 67 68 /* 69 * Add the raw card ID (cid) data to the entropy pool. It doesn't 70 * matter that not all of it is unique, it's just bonus entropy. 71 */ 72 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 73 74 /* 75 * The selection of the format here is based upon published 76 * specs from SanDisk and from what people have reported. 77 */ 78 switch (card->csd.mmca_vsn) { 79 case 0: /* MMC v1.0 - v1.2 */ 80 case 1: /* MMC v1.4 */ 81 card->cid.manfid = unstuff_bits(resp, 104, 24); 82 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); 83 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); 84 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); 85 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); 86 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); 87 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8); 88 card->cid.prod_name[6] = unstuff_bits(resp, 48, 8); 89 card->cid.hwrev = unstuff_bits(resp, 44, 4); 90 card->cid.fwrev = unstuff_bits(resp, 40, 4); 91 card->cid.serial = unstuff_bits(resp, 16, 24); 92 card->cid.month = unstuff_bits(resp, 12, 4); 93 card->cid.year = unstuff_bits(resp, 8, 4) + 1997; 94 break; 95 96 case 2: /* MMC v2.0 - v2.2 */ 97 case 3: /* MMC v3.1 - v3.3 */ 98 case 4: /* MMC v4 */ 99 card->cid.manfid = unstuff_bits(resp, 120, 8); 100 card->cid.oemid = unstuff_bits(resp, 104, 16); 101 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); 102 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); 103 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); 104 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); 105 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); 106 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8); 107 card->cid.prv = unstuff_bits(resp, 48, 8); 108 card->cid.serial = unstuff_bits(resp, 16, 32); 109 card->cid.month = unstuff_bits(resp, 12, 4); 110 card->cid.year = unstuff_bits(resp, 8, 4) + 1997; 111 break; 112 113 default: 114 pr_err("%s: card has unknown MMCA version %d\n", 115 mmc_hostname(card->host), card->csd.mmca_vsn); 116 return -EINVAL; 117 } 118 119 /* some product names include trailing whitespace */ 120 strim(card->cid.prod_name); 121 122 return 0; 123 } 124 125 static void mmc_set_erase_size(struct mmc_card *card) 126 { 127 if (card->ext_csd.erase_group_def & 1) 128 card->erase_size = card->ext_csd.hc_erase_size; 129 else 130 card->erase_size = card->csd.erase_size; 131 132 mmc_init_erase(card); 133 } 134 135 136 static void mmc_set_wp_grp_size(struct mmc_card *card) 137 { 138 if (card->ext_csd.erase_group_def & 1) 139 card->wp_grp_size = card->ext_csd.hc_erase_size * 140 card->ext_csd.raw_hc_erase_gap_size; 141 else 142 card->wp_grp_size = card->csd.erase_size * 143 (card->csd.wp_grp_size + 1); 144 } 145 146 /* 147 * Given a 128-bit response, decode to our card CSD structure. 148 */ 149 static int mmc_decode_csd(struct mmc_card *card) 150 { 151 struct mmc_csd *csd = &card->csd; 152 unsigned int e, m, a, b; 153 u32 *resp = card->raw_csd; 154 155 /* 156 * We only understand CSD structure v1.1 and v1.2. 157 * v1.2 has extra information in bits 15, 11 and 10. 158 * We also support eMMC v4.4 & v4.41. 159 */ 160 csd->structure = unstuff_bits(resp, 126, 2); 161 if (csd->structure == 0) { 162 pr_err("%s: unrecognised CSD structure version %d\n", 163 mmc_hostname(card->host), csd->structure); 164 return -EINVAL; 165 } 166 167 csd->mmca_vsn = unstuff_bits(resp, 122, 4); 168 m = unstuff_bits(resp, 115, 4); 169 e = unstuff_bits(resp, 112, 3); 170 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 171 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100; 172 173 m = unstuff_bits(resp, 99, 4); 174 e = unstuff_bits(resp, 96, 3); 175 csd->max_dtr = tran_exp[e] * tran_mant[m]; 176 csd->cmdclass = unstuff_bits(resp, 84, 12); 177 178 e = unstuff_bits(resp, 47, 3); 179 m = unstuff_bits(resp, 62, 12); 180 csd->capacity = (1 + m) << (e + 2); 181 182 csd->read_blkbits = unstuff_bits(resp, 80, 4); 183 csd->read_partial = unstuff_bits(resp, 79, 1); 184 csd->write_misalign = unstuff_bits(resp, 78, 1); 185 csd->read_misalign = unstuff_bits(resp, 77, 1); 186 csd->dsr_imp = unstuff_bits(resp, 76, 1); 187 csd->r2w_factor = unstuff_bits(resp, 26, 3); 188 csd->write_blkbits = unstuff_bits(resp, 22, 4); 189 csd->write_partial = unstuff_bits(resp, 21, 1); 190 191 if (csd->write_blkbits >= 9) { 192 a = unstuff_bits(resp, 42, 5); 193 b = unstuff_bits(resp, 37, 5); 194 csd->erase_size = (a + 1) * (b + 1); 195 csd->erase_size <<= csd->write_blkbits - 9; 196 csd->wp_grp_size = unstuff_bits(resp, 32, 5); 197 } 198 199 return 0; 200 } 201 202 static void mmc_select_card_type(struct mmc_card *card) 203 { 204 struct mmc_host *host = card->host; 205 u8 card_type = card->ext_csd.raw_card_type; 206 u32 caps = host->caps, caps2 = host->caps2; 207 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 208 unsigned int avail_type = 0; 209 210 if (caps & MMC_CAP_MMC_HIGHSPEED && 211 card_type & EXT_CSD_CARD_TYPE_HS_26) { 212 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 213 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 214 } 215 216 if (caps & MMC_CAP_MMC_HIGHSPEED && 217 card_type & EXT_CSD_CARD_TYPE_HS_52) { 218 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 219 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 220 } 221 222 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 223 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 224 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 225 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 226 } 227 228 if (caps & MMC_CAP_1_2V_DDR && 229 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 230 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 231 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 232 } 233 234 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 235 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 236 hs200_max_dtr = MMC_HS200_MAX_DTR; 237 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 238 } 239 240 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 241 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 242 hs200_max_dtr = MMC_HS200_MAX_DTR; 243 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 244 } 245 246 if (caps2 & MMC_CAP2_HS400_1_8V && 247 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 248 hs200_max_dtr = MMC_HS200_MAX_DTR; 249 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 250 } 251 252 if (caps2 & MMC_CAP2_HS400_1_2V && 253 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 254 hs200_max_dtr = MMC_HS200_MAX_DTR; 255 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 256 } 257 258 if ((caps2 & MMC_CAP2_HS400_ES) && 259 card->ext_csd.strobe_support && 260 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 261 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 262 263 card->ext_csd.hs_max_dtr = hs_max_dtr; 264 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 265 card->mmc_avail_type = avail_type; 266 } 267 268 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 269 { 270 u8 hc_erase_grp_sz, hc_wp_grp_sz; 271 272 /* 273 * Disable these attributes by default 274 */ 275 card->ext_csd.enhanced_area_offset = -EINVAL; 276 card->ext_csd.enhanced_area_size = -EINVAL; 277 278 /* 279 * Enhanced area feature support -- check whether the eMMC 280 * card has the Enhanced area enabled. If so, export enhanced 281 * area offset and size to user by adding sysfs interface. 282 */ 283 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 284 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 285 if (card->ext_csd.partition_setting_completed) { 286 hc_erase_grp_sz = 287 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 288 hc_wp_grp_sz = 289 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 290 291 /* 292 * calculate the enhanced data area offset, in bytes 293 */ 294 card->ext_csd.enhanced_area_offset = 295 (((unsigned long long)ext_csd[139]) << 24) + 296 (((unsigned long long)ext_csd[138]) << 16) + 297 (((unsigned long long)ext_csd[137]) << 8) + 298 (((unsigned long long)ext_csd[136])); 299 if (mmc_card_blockaddr(card)) 300 card->ext_csd.enhanced_area_offset <<= 9; 301 /* 302 * calculate the enhanced data area size, in kilobytes 303 */ 304 card->ext_csd.enhanced_area_size = 305 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 306 ext_csd[140]; 307 card->ext_csd.enhanced_area_size *= 308 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 309 card->ext_csd.enhanced_area_size <<= 9; 310 } else { 311 pr_warn("%s: defines enhanced area without partition setting complete\n", 312 mmc_hostname(card->host)); 313 } 314 } 315 } 316 317 static void mmc_part_add(struct mmc_card *card, u64 size, 318 unsigned int part_cfg, char *name, int idx, bool ro, 319 int area_type) 320 { 321 card->part[card->nr_parts].size = size; 322 card->part[card->nr_parts].part_cfg = part_cfg; 323 sprintf(card->part[card->nr_parts].name, name, idx); 324 card->part[card->nr_parts].force_ro = ro; 325 card->part[card->nr_parts].area_type = area_type; 326 card->nr_parts++; 327 } 328 329 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 330 { 331 int idx; 332 u8 hc_erase_grp_sz, hc_wp_grp_sz; 333 u64 part_size; 334 335 /* 336 * General purpose partition feature support -- 337 * If ext_csd has the size of general purpose partitions, 338 * set size, part_cfg, partition name in mmc_part. 339 */ 340 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 341 EXT_CSD_PART_SUPPORT_PART_EN) { 342 hc_erase_grp_sz = 343 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 344 hc_wp_grp_sz = 345 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 346 347 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 348 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 349 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 350 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 351 continue; 352 if (card->ext_csd.partition_setting_completed == 0) { 353 pr_warn("%s: has partition size defined without partition complete\n", 354 mmc_hostname(card->host)); 355 break; 356 } 357 part_size = 358 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 359 << 16) + 360 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 361 << 8) + 362 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 363 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 364 mmc_part_add(card, part_size << 19, 365 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 366 "gp%d", idx, false, 367 MMC_BLK_DATA_AREA_GP); 368 } 369 } 370 } 371 372 /* Minimum partition switch timeout in milliseconds */ 373 #define MMC_MIN_PART_SWITCH_TIME 300 374 375 /* 376 * Decode extended CSD. 377 */ 378 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 379 { 380 int err = 0, idx; 381 u64 part_size; 382 struct device_node *np; 383 bool broken_hpi = false; 384 385 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 386 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 387 if (card->csd.structure == 3) { 388 if (card->ext_csd.raw_ext_csd_structure > 2) { 389 pr_err("%s: unrecognised EXT_CSD structure " 390 "version %d\n", mmc_hostname(card->host), 391 card->ext_csd.raw_ext_csd_structure); 392 err = -EINVAL; 393 goto out; 394 } 395 } 396 397 np = mmc_of_find_child_device(card->host, 0); 398 if (np && of_device_is_compatible(np, "mmc-card")) 399 broken_hpi = of_property_read_bool(np, "broken-hpi"); 400 of_node_put(np); 401 402 /* 403 * The EXT_CSD format is meant to be forward compatible. As long 404 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 405 * are authorized, see JEDEC JESD84-B50 section B.8. 406 */ 407 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 408 409 /* fixup device after ext_csd revision field is updated */ 410 mmc_fixup_device(card, mmc_ext_csd_fixups); 411 412 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 413 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 414 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 415 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 416 if (card->ext_csd.rev >= 2) { 417 card->ext_csd.sectors = 418 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 419 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 420 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 421 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 422 423 /* Cards with density > 2GiB are sector addressed */ 424 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 425 mmc_card_set_blockaddr(card); 426 } 427 428 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 429 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 430 431 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 432 card->ext_csd.raw_erase_timeout_mult = 433 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 434 card->ext_csd.raw_hc_erase_grp_size = 435 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 436 card->ext_csd.raw_boot_mult = 437 ext_csd[EXT_CSD_BOOT_MULT]; 438 if (card->ext_csd.rev >= 3) { 439 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 440 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 441 442 /* EXT_CSD value is in units of 10ms, but we store in ms */ 443 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 444 445 /* Sleep / awake timeout in 100ns units */ 446 if (sa_shift > 0 && sa_shift <= 0x17) 447 card->ext_csd.sa_timeout = 448 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 449 card->ext_csd.erase_group_def = 450 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 451 card->ext_csd.hc_erase_timeout = 300 * 452 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 453 card->ext_csd.hc_erase_size = 454 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 455 456 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 457 458 /* 459 * There are two boot regions of equal size, defined in 460 * multiples of 128K. 461 */ 462 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_host_can_access_boot(card->host)) { 463 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 464 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 465 mmc_part_add(card, part_size, 466 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 467 "boot%d", idx, true, 468 MMC_BLK_DATA_AREA_BOOT); 469 } 470 } 471 } 472 473 card->ext_csd.raw_hc_erase_gap_size = 474 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 475 card->ext_csd.raw_sec_trim_mult = 476 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 477 card->ext_csd.raw_sec_erase_mult = 478 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 479 card->ext_csd.raw_sec_feature_support = 480 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 481 card->ext_csd.raw_trim_mult = 482 ext_csd[EXT_CSD_TRIM_MULT]; 483 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 484 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 485 if (card->ext_csd.rev >= 4) { 486 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 487 EXT_CSD_PART_SETTING_COMPLETED) 488 card->ext_csd.partition_setting_completed = 1; 489 else 490 card->ext_csd.partition_setting_completed = 0; 491 492 mmc_manage_enhanced_area(card, ext_csd); 493 494 mmc_manage_gp_partitions(card, ext_csd); 495 496 card->ext_csd.sec_trim_mult = 497 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 498 card->ext_csd.sec_erase_mult = 499 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 500 card->ext_csd.sec_feature_support = 501 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 502 card->ext_csd.trim_timeout = 300 * 503 ext_csd[EXT_CSD_TRIM_MULT]; 504 505 /* 506 * Note that the call to mmc_part_add above defaults to read 507 * only. If this default assumption is changed, the call must 508 * take into account the value of boot_locked below. 509 */ 510 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 511 card->ext_csd.boot_ro_lockable = true; 512 513 /* Save power class values */ 514 card->ext_csd.raw_pwr_cl_52_195 = 515 ext_csd[EXT_CSD_PWR_CL_52_195]; 516 card->ext_csd.raw_pwr_cl_26_195 = 517 ext_csd[EXT_CSD_PWR_CL_26_195]; 518 card->ext_csd.raw_pwr_cl_52_360 = 519 ext_csd[EXT_CSD_PWR_CL_52_360]; 520 card->ext_csd.raw_pwr_cl_26_360 = 521 ext_csd[EXT_CSD_PWR_CL_26_360]; 522 card->ext_csd.raw_pwr_cl_200_195 = 523 ext_csd[EXT_CSD_PWR_CL_200_195]; 524 card->ext_csd.raw_pwr_cl_200_360 = 525 ext_csd[EXT_CSD_PWR_CL_200_360]; 526 card->ext_csd.raw_pwr_cl_ddr_52_195 = 527 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 528 card->ext_csd.raw_pwr_cl_ddr_52_360 = 529 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 530 card->ext_csd.raw_pwr_cl_ddr_200_360 = 531 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 532 } 533 534 if (card->ext_csd.rev >= 5) { 535 /* Adjust production date as per JEDEC JESD84-B451 */ 536 if (card->cid.year < 2010) 537 card->cid.year += 16; 538 539 /* check whether the eMMC card supports BKOPS */ 540 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 541 card->ext_csd.bkops = 1; 542 card->ext_csd.man_bkops_en = 543 (ext_csd[EXT_CSD_BKOPS_EN] & 544 EXT_CSD_MANUAL_BKOPS_MASK); 545 card->ext_csd.raw_bkops_status = 546 ext_csd[EXT_CSD_BKOPS_STATUS]; 547 if (card->ext_csd.man_bkops_en) 548 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 549 mmc_hostname(card->host)); 550 card->ext_csd.auto_bkops_en = 551 (ext_csd[EXT_CSD_BKOPS_EN] & 552 EXT_CSD_AUTO_BKOPS_MASK); 553 if (card->ext_csd.auto_bkops_en) 554 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 555 mmc_hostname(card->host)); 556 } 557 558 /* check whether the eMMC card supports HPI */ 559 if (!mmc_card_broken_hpi(card) && 560 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 561 card->ext_csd.hpi = 1; 562 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 563 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 564 else 565 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 566 /* 567 * Indicate the maximum timeout to close 568 * a command interrupted by HPI 569 */ 570 card->ext_csd.out_of_int_time = 571 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 572 } 573 574 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 575 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 576 577 /* 578 * RPMB regions are defined in multiples of 128K. 579 */ 580 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 581 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_can_cmd23(card->host)) { 582 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 583 EXT_CSD_PART_CONFIG_ACC_RPMB, 584 "rpmb", 0, false, 585 MMC_BLK_DATA_AREA_RPMB); 586 } 587 } 588 589 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 590 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 591 card->erased_byte = 0xFF; 592 else 593 card->erased_byte = 0x0; 594 595 /* eMMC v4.5 or later */ 596 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 597 if (card->ext_csd.rev >= 6) { 598 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 599 600 card->ext_csd.generic_cmd6_time = 10 * 601 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 602 card->ext_csd.power_off_longtime = 10 * 603 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 604 605 card->ext_csd.cache_size = 606 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 607 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 608 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 609 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 610 611 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 612 card->ext_csd.data_sector_size = 4096; 613 else 614 card->ext_csd.data_sector_size = 512; 615 616 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 617 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 618 card->ext_csd.data_tag_unit_size = 619 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 620 (card->ext_csd.data_sector_size); 621 } else { 622 card->ext_csd.data_tag_unit_size = 0; 623 } 624 } else { 625 card->ext_csd.data_sector_size = 512; 626 } 627 628 /* 629 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 630 * when accessing a specific field", so use it here if there is no 631 * PARTITION_SWITCH_TIME. 632 */ 633 if (!card->ext_csd.part_time) 634 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 635 /* Some eMMC set the value too low so set a minimum */ 636 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 637 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 638 639 /* eMMC v5 or later */ 640 if (card->ext_csd.rev >= 7) { 641 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 642 MMC_FIRMWARE_LEN); 643 card->ext_csd.ffu_capable = 644 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 645 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 646 647 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 648 card->ext_csd.device_life_time_est_typ_a = 649 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 650 card->ext_csd.device_life_time_est_typ_b = 651 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 652 } 653 654 /* eMMC v5.1 or later */ 655 if (card->ext_csd.rev >= 8) { 656 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 657 EXT_CSD_CMDQ_SUPPORTED; 658 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 659 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 660 /* Exclude inefficiently small queue depths */ 661 if (card->ext_csd.cmdq_depth <= 2) { 662 card->ext_csd.cmdq_support = false; 663 card->ext_csd.cmdq_depth = 0; 664 } 665 if (card->ext_csd.cmdq_support) { 666 pr_debug("%s: Command Queue supported depth %u\n", 667 mmc_hostname(card->host), 668 card->ext_csd.cmdq_depth); 669 } 670 card->ext_csd.enhanced_rpmb_supported = 671 (card->ext_csd.rel_param & 672 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 673 } 674 out: 675 return err; 676 } 677 678 static int mmc_read_ext_csd(struct mmc_card *card) 679 { 680 u8 *ext_csd; 681 int err; 682 683 if (!mmc_card_can_ext_csd(card)) 684 return 0; 685 686 err = mmc_get_ext_csd(card, &ext_csd); 687 if (err) { 688 /* If the host or the card can't do the switch, 689 * fail more gracefully. */ 690 if ((err != -EINVAL) 691 && (err != -ENOSYS) 692 && (err != -EFAULT)) 693 return err; 694 695 /* 696 * High capacity cards should have this "magic" size 697 * stored in their CSD. 698 */ 699 if (card->csd.capacity == (4096 * 512)) { 700 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 701 mmc_hostname(card->host)); 702 } else { 703 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 704 mmc_hostname(card->host)); 705 err = 0; 706 } 707 708 return err; 709 } 710 711 err = mmc_decode_ext_csd(card, ext_csd); 712 kfree(ext_csd); 713 return err; 714 } 715 716 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 717 { 718 u8 *bw_ext_csd; 719 int err; 720 721 if (bus_width == MMC_BUS_WIDTH_1) 722 return 0; 723 724 err = mmc_get_ext_csd(card, &bw_ext_csd); 725 if (err) 726 return err; 727 728 /* only compare read only fields */ 729 err = !((card->ext_csd.raw_partition_support == 730 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 731 (card->ext_csd.raw_erased_mem_count == 732 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 733 (card->ext_csd.rev == 734 bw_ext_csd[EXT_CSD_REV]) && 735 (card->ext_csd.raw_ext_csd_structure == 736 bw_ext_csd[EXT_CSD_STRUCTURE]) && 737 (card->ext_csd.raw_card_type == 738 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 739 (card->ext_csd.raw_s_a_timeout == 740 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 741 (card->ext_csd.raw_hc_erase_gap_size == 742 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 743 (card->ext_csd.raw_erase_timeout_mult == 744 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 745 (card->ext_csd.raw_hc_erase_grp_size == 746 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 747 (card->ext_csd.raw_sec_trim_mult == 748 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 749 (card->ext_csd.raw_sec_erase_mult == 750 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 751 (card->ext_csd.raw_sec_feature_support == 752 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 753 (card->ext_csd.raw_trim_mult == 754 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 755 (card->ext_csd.raw_sectors[0] == 756 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 757 (card->ext_csd.raw_sectors[1] == 758 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 759 (card->ext_csd.raw_sectors[2] == 760 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 761 (card->ext_csd.raw_sectors[3] == 762 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 763 (card->ext_csd.raw_pwr_cl_52_195 == 764 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 765 (card->ext_csd.raw_pwr_cl_26_195 == 766 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 767 (card->ext_csd.raw_pwr_cl_52_360 == 768 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 769 (card->ext_csd.raw_pwr_cl_26_360 == 770 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 771 (card->ext_csd.raw_pwr_cl_200_195 == 772 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 773 (card->ext_csd.raw_pwr_cl_200_360 == 774 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 775 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 776 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 777 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 778 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 779 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 780 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 781 782 if (err) 783 err = -EINVAL; 784 785 kfree(bw_ext_csd); 786 return err; 787 } 788 789 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 790 card->raw_cid[2], card->raw_cid[3]); 791 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 792 card->raw_csd[2], card->raw_csd[3]); 793 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 794 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 795 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 796 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9); 797 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 798 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 799 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 800 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 801 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 802 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 803 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 804 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 805 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 806 card->ext_csd.device_life_time_est_typ_a, 807 card->ext_csd.device_life_time_est_typ_b); 808 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 809 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 810 card->ext_csd.enhanced_area_offset); 811 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 812 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 813 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 814 card->ext_csd.enhanced_rpmb_supported); 815 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 816 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 817 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 818 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 819 820 static ssize_t mmc_fwrev_show(struct device *dev, 821 struct device_attribute *attr, 822 char *buf) 823 { 824 struct mmc_card *card = mmc_dev_to_card(dev); 825 826 if (card->ext_csd.rev < 7) 827 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev); 828 else 829 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 830 card->ext_csd.fwrev); 831 } 832 833 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 834 835 static ssize_t mmc_dsr_show(struct device *dev, 836 struct device_attribute *attr, 837 char *buf) 838 { 839 struct mmc_card *card = mmc_dev_to_card(dev); 840 struct mmc_host *host = card->host; 841 842 if (card->csd.dsr_imp && host->dsr_req) 843 return sysfs_emit(buf, "0x%x\n", host->dsr); 844 else 845 /* return default DSR value */ 846 return sysfs_emit(buf, "0x%x\n", 0x404); 847 } 848 849 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 850 851 static struct attribute *mmc_std_attrs[] = { 852 &dev_attr_cid.attr, 853 &dev_attr_csd.attr, 854 &dev_attr_date.attr, 855 &dev_attr_erase_size.attr, 856 &dev_attr_preferred_erase_size.attr, 857 &dev_attr_wp_grp_size.attr, 858 &dev_attr_fwrev.attr, 859 &dev_attr_ffu_capable.attr, 860 &dev_attr_hwrev.attr, 861 &dev_attr_manfid.attr, 862 &dev_attr_name.attr, 863 &dev_attr_oemid.attr, 864 &dev_attr_prv.attr, 865 &dev_attr_rev.attr, 866 &dev_attr_pre_eol_info.attr, 867 &dev_attr_life_time.attr, 868 &dev_attr_serial.attr, 869 &dev_attr_enhanced_area_offset.attr, 870 &dev_attr_enhanced_area_size.attr, 871 &dev_attr_raw_rpmb_size_mult.attr, 872 &dev_attr_enhanced_rpmb_supported.attr, 873 &dev_attr_rel_sectors.attr, 874 &dev_attr_ocr.attr, 875 &dev_attr_rca.attr, 876 &dev_attr_dsr.attr, 877 &dev_attr_cmdq_en.attr, 878 NULL, 879 }; 880 ATTRIBUTE_GROUPS(mmc_std); 881 882 static const struct device_type mmc_type = { 883 .groups = mmc_std_groups, 884 }; 885 886 /* 887 * Select the PowerClass for the current bus width 888 * If power class is defined for 4/8 bit bus in the 889 * extended CSD register, select it by executing the 890 * mmc_switch command. 891 */ 892 static int __mmc_select_powerclass(struct mmc_card *card, 893 unsigned int bus_width) 894 { 895 struct mmc_host *host = card->host; 896 struct mmc_ext_csd *ext_csd = &card->ext_csd; 897 unsigned int pwrclass_val = 0; 898 int err = 0; 899 900 switch (1 << host->ios.vdd) { 901 case MMC_VDD_165_195: 902 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 903 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 904 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 905 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 906 ext_csd->raw_pwr_cl_52_195 : 907 ext_csd->raw_pwr_cl_ddr_52_195; 908 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 909 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 910 break; 911 case MMC_VDD_27_28: 912 case MMC_VDD_28_29: 913 case MMC_VDD_29_30: 914 case MMC_VDD_30_31: 915 case MMC_VDD_31_32: 916 case MMC_VDD_32_33: 917 case MMC_VDD_33_34: 918 case MMC_VDD_34_35: 919 case MMC_VDD_35_36: 920 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 921 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 922 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 923 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 924 ext_csd->raw_pwr_cl_52_360 : 925 ext_csd->raw_pwr_cl_ddr_52_360; 926 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 927 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 928 ext_csd->raw_pwr_cl_ddr_200_360 : 929 ext_csd->raw_pwr_cl_200_360; 930 break; 931 default: 932 pr_warn("%s: Voltage range not supported for power class\n", 933 mmc_hostname(host)); 934 return -EINVAL; 935 } 936 937 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 938 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 939 EXT_CSD_PWR_CL_8BIT_SHIFT; 940 else 941 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 942 EXT_CSD_PWR_CL_4BIT_SHIFT; 943 944 /* If the power class is different from the default value */ 945 if (pwrclass_val > 0) { 946 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 947 EXT_CSD_POWER_CLASS, 948 pwrclass_val, 949 card->ext_csd.generic_cmd6_time); 950 } 951 952 return err; 953 } 954 955 static int mmc_select_powerclass(struct mmc_card *card) 956 { 957 struct mmc_host *host = card->host; 958 u32 bus_width, ext_csd_bits; 959 int err, ddr; 960 961 /* Power class selection is supported for versions >= 4.0 */ 962 if (!mmc_card_can_ext_csd(card)) 963 return 0; 964 965 bus_width = host->ios.bus_width; 966 /* Power class values are defined only for 4/8 bit bus */ 967 if (bus_width == MMC_BUS_WIDTH_1) 968 return 0; 969 970 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 971 if (ddr) 972 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 973 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 974 else 975 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 976 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 977 978 err = __mmc_select_powerclass(card, ext_csd_bits); 979 if (err) 980 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 981 mmc_hostname(host), 1 << bus_width, ddr); 982 983 return err; 984 } 985 986 /* 987 * Set the bus speed for the selected speed mode. 988 */ 989 static void mmc_set_bus_speed(struct mmc_card *card) 990 { 991 unsigned int max_dtr = (unsigned int)-1; 992 993 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 994 max_dtr > card->ext_csd.hs200_max_dtr) 995 max_dtr = card->ext_csd.hs200_max_dtr; 996 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 997 max_dtr = card->ext_csd.hs_max_dtr; 998 else if (max_dtr > card->csd.max_dtr) 999 max_dtr = card->csd.max_dtr; 1000 1001 mmc_set_clock(card->host, max_dtr); 1002 } 1003 1004 /* 1005 * Select the bus width amoung 4-bit and 8-bit(SDR). 1006 * If the bus width is changed successfully, return the selected width value. 1007 * Zero is returned instead of error value if the wide width is not supported. 1008 */ 1009 static int mmc_select_bus_width(struct mmc_card *card) 1010 { 1011 static unsigned ext_csd_bits[] = { 1012 EXT_CSD_BUS_WIDTH_8, 1013 EXT_CSD_BUS_WIDTH_4, 1014 EXT_CSD_BUS_WIDTH_1, 1015 }; 1016 static unsigned bus_widths[] = { 1017 MMC_BUS_WIDTH_8, 1018 MMC_BUS_WIDTH_4, 1019 MMC_BUS_WIDTH_1, 1020 }; 1021 struct mmc_host *host = card->host; 1022 unsigned idx, bus_width = 0; 1023 int err = 0; 1024 1025 if (!mmc_card_can_ext_csd(card) || 1026 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1027 return 0; 1028 1029 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1030 1031 /* 1032 * Unlike SD, MMC cards dont have a configuration register to notify 1033 * supported bus width. So bus test command should be run to identify 1034 * the supported bus width or compare the ext csd values of current 1035 * bus width and ext csd values of 1 bit mode read earlier. 1036 */ 1037 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1038 /* 1039 * Host is capable of 8bit transfer, then switch 1040 * the device to work in 8bit transfer mode. If the 1041 * mmc switch command returns error then switch to 1042 * 4bit transfer mode. On success set the corresponding 1043 * bus width on the host. 1044 */ 1045 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1046 EXT_CSD_BUS_WIDTH, 1047 ext_csd_bits[idx], 1048 card->ext_csd.generic_cmd6_time); 1049 if (err) 1050 continue; 1051 1052 bus_width = bus_widths[idx]; 1053 mmc_set_bus_width(host, bus_width); 1054 1055 /* 1056 * If controller can't handle bus width test, 1057 * compare ext_csd previously read in 1 bit mode 1058 * against ext_csd at new bus width 1059 */ 1060 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1061 err = mmc_compare_ext_csds(card, bus_width); 1062 else 1063 err = mmc_bus_test(card, bus_width); 1064 1065 if (!err) { 1066 err = bus_width; 1067 break; 1068 } else { 1069 pr_warn("%s: switch to bus width %d failed\n", 1070 mmc_hostname(host), 1 << bus_width); 1071 } 1072 } 1073 1074 return err; 1075 } 1076 1077 /* 1078 * Switch to the high-speed mode 1079 */ 1080 static int mmc_select_hs(struct mmc_card *card) 1081 { 1082 int err; 1083 1084 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1085 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1086 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1087 true, true, MMC_CMD_RETRIES); 1088 if (err) 1089 pr_warn("%s: switch to high-speed failed, err:%d\n", 1090 mmc_hostname(card->host), err); 1091 1092 return err; 1093 } 1094 1095 /* 1096 * Activate wide bus and DDR if supported. 1097 */ 1098 static int mmc_select_hs_ddr(struct mmc_card *card) 1099 { 1100 struct mmc_host *host = card->host; 1101 u32 bus_width, ext_csd_bits; 1102 int err = 0; 1103 1104 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1105 return 0; 1106 1107 bus_width = host->ios.bus_width; 1108 if (bus_width == MMC_BUS_WIDTH_1) 1109 return 0; 1110 1111 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1112 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1113 1114 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1115 EXT_CSD_BUS_WIDTH, 1116 ext_csd_bits, 1117 card->ext_csd.generic_cmd6_time, 1118 MMC_TIMING_MMC_DDR52, 1119 true, true, MMC_CMD_RETRIES); 1120 if (err) { 1121 pr_err("%s: switch to bus width %d ddr failed\n", 1122 mmc_hostname(host), 1 << bus_width); 1123 return err; 1124 } 1125 1126 /* 1127 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1128 * signaling. 1129 * 1130 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1131 * 1132 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1133 * in the JEDEC spec for DDR. 1134 * 1135 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1136 * host controller can support this, like some of the SDHCI 1137 * controller which connect to an eMMC device. Some of these 1138 * host controller still needs to use 1.8v vccq for supporting 1139 * DDR mode. 1140 * 1141 * So the sequence will be: 1142 * if (host and device can both support 1.2v IO) 1143 * use 1.2v IO; 1144 * else if (host and device can both support 1.8v IO) 1145 * use 1.8v IO; 1146 * so if host and device can only support 3.3v IO, this is the 1147 * last choice. 1148 * 1149 * WARNING: eMMC rules are NOT the same as SD DDR 1150 */ 1151 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1152 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1153 if (!err) 1154 return 0; 1155 } 1156 1157 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1158 host->caps & MMC_CAP_1_8V_DDR) 1159 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1160 1161 /* make sure vccq is 3.3v after switching disaster */ 1162 if (err) 1163 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1164 1165 return err; 1166 } 1167 1168 static int mmc_select_hs400(struct mmc_card *card) 1169 { 1170 struct mmc_host *host = card->host; 1171 unsigned int max_dtr; 1172 int err = 0; 1173 u8 val; 1174 1175 /* 1176 * HS400 mode requires 8-bit bus width 1177 */ 1178 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1179 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1180 return 0; 1181 1182 /* Switch card to HS mode */ 1183 val = EXT_CSD_TIMING_HS; 1184 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1185 EXT_CSD_HS_TIMING, val, 1186 card->ext_csd.generic_cmd6_time, 0, 1187 false, true, MMC_CMD_RETRIES); 1188 if (err) { 1189 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1190 mmc_hostname(host), err); 1191 return err; 1192 } 1193 1194 /* Prepare host to downgrade to HS timing */ 1195 if (host->ops->hs400_downgrade) 1196 host->ops->hs400_downgrade(host); 1197 1198 /* Set host controller to HS timing */ 1199 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1200 1201 /* Reduce frequency to HS frequency */ 1202 max_dtr = card->ext_csd.hs_max_dtr; 1203 mmc_set_clock(host, max_dtr); 1204 1205 err = mmc_switch_status(card, true); 1206 if (err) 1207 goto out_err; 1208 1209 if (host->ops->hs400_prepare_ddr) 1210 host->ops->hs400_prepare_ddr(host); 1211 1212 /* Switch card to DDR */ 1213 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1214 EXT_CSD_BUS_WIDTH, 1215 EXT_CSD_DDR_BUS_WIDTH_8, 1216 card->ext_csd.generic_cmd6_time); 1217 if (err) { 1218 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1219 mmc_hostname(host), err); 1220 return err; 1221 } 1222 1223 /* Switch card to HS400 */ 1224 val = EXT_CSD_TIMING_HS400 | 1225 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1226 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1227 EXT_CSD_HS_TIMING, val, 1228 card->ext_csd.generic_cmd6_time, 0, 1229 false, true, MMC_CMD_RETRIES); 1230 if (err) { 1231 pr_err("%s: switch to hs400 failed, err:%d\n", 1232 mmc_hostname(host), err); 1233 return err; 1234 } 1235 1236 /* Set host controller to HS400 timing and frequency */ 1237 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1238 mmc_set_bus_speed(card); 1239 1240 if (host->ops->execute_hs400_tuning) { 1241 mmc_retune_disable(host); 1242 err = host->ops->execute_hs400_tuning(host, card); 1243 mmc_retune_enable(host); 1244 if (err) 1245 goto out_err; 1246 } 1247 1248 if (host->ops->hs400_complete) 1249 host->ops->hs400_complete(host); 1250 1251 err = mmc_switch_status(card, true); 1252 if (err) 1253 goto out_err; 1254 1255 return 0; 1256 1257 out_err: 1258 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1259 __func__, err); 1260 return err; 1261 } 1262 1263 int mmc_hs200_to_hs400(struct mmc_card *card) 1264 { 1265 return mmc_select_hs400(card); 1266 } 1267 1268 int mmc_hs400_to_hs200(struct mmc_card *card) 1269 { 1270 struct mmc_host *host = card->host; 1271 unsigned int max_dtr; 1272 int err; 1273 u8 val; 1274 1275 /* Reduce frequency to HS */ 1276 max_dtr = card->ext_csd.hs_max_dtr; 1277 mmc_set_clock(host, max_dtr); 1278 1279 /* Switch HS400 to HS DDR */ 1280 val = EXT_CSD_TIMING_HS; 1281 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1282 val, card->ext_csd.generic_cmd6_time, 0, 1283 false, true, MMC_CMD_RETRIES); 1284 if (err) 1285 goto out_err; 1286 1287 if (host->ops->hs400_downgrade) 1288 host->ops->hs400_downgrade(host); 1289 1290 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1291 1292 err = mmc_switch_status(card, true); 1293 if (err) 1294 goto out_err; 1295 1296 /* Switch HS DDR to HS */ 1297 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1298 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1299 0, false, true, MMC_CMD_RETRIES); 1300 if (err) 1301 goto out_err; 1302 1303 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1304 1305 err = mmc_switch_status(card, true); 1306 if (err) 1307 goto out_err; 1308 1309 /* Switch HS to HS200 */ 1310 val = EXT_CSD_TIMING_HS200 | 1311 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1312 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1313 val, card->ext_csd.generic_cmd6_time, 0, 1314 false, true, MMC_CMD_RETRIES); 1315 if (err) 1316 goto out_err; 1317 1318 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1319 1320 /* 1321 * For HS200, CRC errors are not a reliable way to know the switch 1322 * failed. If there really is a problem, we would expect tuning will 1323 * fail and the result ends up the same. 1324 */ 1325 err = mmc_switch_status(card, false); 1326 if (err) 1327 goto out_err; 1328 1329 mmc_set_bus_speed(card); 1330 1331 /* Prepare tuning for HS400 mode. */ 1332 if (host->ops->prepare_hs400_tuning) 1333 host->ops->prepare_hs400_tuning(host, &host->ios); 1334 1335 return 0; 1336 1337 out_err: 1338 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1339 __func__, err); 1340 return err; 1341 } 1342 1343 static void mmc_select_driver_type(struct mmc_card *card) 1344 { 1345 int card_drv_type, drive_strength, drv_type = 0; 1346 int fixed_drv_type = card->host->fixed_drv_type; 1347 1348 card_drv_type = card->ext_csd.raw_driver_strength | 1349 mmc_driver_type_mask(0); 1350 1351 if (fixed_drv_type >= 0) 1352 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1353 ? fixed_drv_type : 0; 1354 else 1355 drive_strength = mmc_select_drive_strength(card, 1356 card->ext_csd.hs200_max_dtr, 1357 card_drv_type, &drv_type); 1358 1359 card->drive_strength = drive_strength; 1360 1361 if (drv_type) 1362 mmc_set_driver_type(card->host, drv_type); 1363 } 1364 1365 static int mmc_select_hs400es(struct mmc_card *card) 1366 { 1367 struct mmc_host *host = card->host; 1368 int err = -EINVAL; 1369 u8 val; 1370 1371 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1372 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1373 1374 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1375 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1376 1377 /* If fails try again during next card power cycle */ 1378 if (err) 1379 goto out_err; 1380 1381 err = mmc_select_bus_width(card); 1382 if (err != MMC_BUS_WIDTH_8) { 1383 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1384 mmc_hostname(host), err); 1385 err = err < 0 ? err : -ENOTSUPP; 1386 goto out_err; 1387 } 1388 1389 /* Switch card to HS mode */ 1390 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1391 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1392 card->ext_csd.generic_cmd6_time, 0, 1393 false, true, MMC_CMD_RETRIES); 1394 if (err) { 1395 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1396 mmc_hostname(host), err); 1397 goto out_err; 1398 } 1399 1400 /* 1401 * Bump to HS timing and frequency. Some cards don't handle 1402 * SEND_STATUS reliably at the initial frequency. 1403 */ 1404 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1405 mmc_set_bus_speed(card); 1406 1407 err = mmc_switch_status(card, true); 1408 if (err) 1409 goto out_err; 1410 1411 /* Switch card to DDR with strobe bit */ 1412 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1413 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1414 EXT_CSD_BUS_WIDTH, 1415 val, 1416 card->ext_csd.generic_cmd6_time); 1417 if (err) { 1418 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1419 mmc_hostname(host), err); 1420 goto out_err; 1421 } 1422 1423 mmc_select_driver_type(card); 1424 1425 /* Switch card to HS400 */ 1426 val = EXT_CSD_TIMING_HS400 | 1427 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1428 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1429 EXT_CSD_HS_TIMING, val, 1430 card->ext_csd.generic_cmd6_time, 0, 1431 false, true, MMC_CMD_RETRIES); 1432 if (err) { 1433 pr_err("%s: switch to hs400es failed, err:%d\n", 1434 mmc_hostname(host), err); 1435 goto out_err; 1436 } 1437 1438 /* Set host controller to HS400 timing and frequency */ 1439 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1440 1441 /* Controller enable enhanced strobe function */ 1442 host->ios.enhanced_strobe = true; 1443 if (host->ops->hs400_enhanced_strobe) 1444 host->ops->hs400_enhanced_strobe(host, &host->ios); 1445 1446 err = mmc_switch_status(card, true); 1447 if (err) 1448 goto out_err; 1449 1450 return 0; 1451 1452 out_err: 1453 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1454 __func__, err); 1455 return err; 1456 } 1457 1458 /* 1459 * For device supporting HS200 mode, the following sequence 1460 * should be done before executing the tuning process. 1461 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1462 * 2. switch to HS200 mode 1463 * 3. set the clock to > 52Mhz and <=200MHz 1464 */ 1465 static int mmc_select_hs200(struct mmc_card *card) 1466 { 1467 struct mmc_host *host = card->host; 1468 unsigned int old_timing, old_signal_voltage, old_clock; 1469 int err = -EINVAL; 1470 u8 val; 1471 1472 old_signal_voltage = host->ios.signal_voltage; 1473 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1474 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1475 1476 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1477 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1478 1479 /* If fails try again during next card power cycle */ 1480 if (err) 1481 return err; 1482 1483 mmc_select_driver_type(card); 1484 1485 /* 1486 * Set the bus width(4 or 8) with host's support and 1487 * switch to HS200 mode if bus width is set successfully. 1488 */ 1489 err = mmc_select_bus_width(card); 1490 if (err > 0) { 1491 val = EXT_CSD_TIMING_HS200 | 1492 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1493 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1494 EXT_CSD_HS_TIMING, val, 1495 card->ext_csd.generic_cmd6_time, 0, 1496 false, true, MMC_CMD_RETRIES); 1497 if (err) 1498 goto err; 1499 1500 /* 1501 * Bump to HS timing and frequency. Some cards don't handle 1502 * SEND_STATUS reliably at the initial frequency. 1503 * NB: We can't move to full (HS200) speeds until after we've 1504 * successfully switched over. 1505 */ 1506 old_timing = host->ios.timing; 1507 old_clock = host->ios.clock; 1508 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1509 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr); 1510 1511 /* 1512 * For HS200, CRC errors are not a reliable way to know the 1513 * switch failed. If there really is a problem, we would expect 1514 * tuning will fail and the result ends up the same. 1515 */ 1516 err = mmc_switch_status(card, false); 1517 1518 /* 1519 * mmc_select_timing() assumes timing has not changed if 1520 * it is a switch error. 1521 */ 1522 if (err == -EBADMSG) { 1523 mmc_set_clock(host, old_clock); 1524 mmc_set_timing(host, old_timing); 1525 } 1526 } 1527 err: 1528 if (err) { 1529 /* fall back to the old signal voltage, if fails report error */ 1530 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1531 err = -EIO; 1532 1533 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1534 __func__, err); 1535 } 1536 return err; 1537 } 1538 1539 /* 1540 * Activate High Speed, HS200 or HS400ES mode if supported. 1541 */ 1542 static int mmc_select_timing(struct mmc_card *card) 1543 { 1544 int err = 0; 1545 1546 if (!mmc_card_can_ext_csd(card)) 1547 goto bus_speed; 1548 1549 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) { 1550 err = mmc_select_hs400es(card); 1551 goto out; 1552 } 1553 1554 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) { 1555 err = mmc_select_hs200(card); 1556 if (err == -EBADMSG) 1557 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200; 1558 else 1559 goto out; 1560 } 1561 1562 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1563 err = mmc_select_hs(card); 1564 1565 out: 1566 if (err && err != -EBADMSG) 1567 return err; 1568 1569 bus_speed: 1570 /* 1571 * Set the bus speed to the selected bus timing. 1572 * If timing is not selected, backward compatible is the default. 1573 */ 1574 mmc_set_bus_speed(card); 1575 return 0; 1576 } 1577 1578 /* 1579 * Execute tuning sequence to seek the proper bus operating 1580 * conditions for HS200 and HS400, which sends CMD21 to the device. 1581 */ 1582 static int mmc_hs200_tuning(struct mmc_card *card) 1583 { 1584 struct mmc_host *host = card->host; 1585 1586 /* 1587 * Timing should be adjusted to the HS400 target 1588 * operation frequency for tuning process 1589 */ 1590 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1591 host->ios.bus_width == MMC_BUS_WIDTH_8) 1592 if (host->ops->prepare_hs400_tuning) 1593 host->ops->prepare_hs400_tuning(host, &host->ios); 1594 1595 return mmc_execute_tuning(card); 1596 } 1597 1598 /* 1599 * Handle the detection and initialisation of a card. 1600 * 1601 * In the case of a resume, "oldcard" will contain the card 1602 * we're trying to reinitialise. 1603 */ 1604 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1605 struct mmc_card *oldcard) 1606 { 1607 struct mmc_card *card; 1608 int err; 1609 u32 cid[4]; 1610 u32 rocr; 1611 1612 WARN_ON(!host->claimed); 1613 1614 /* Set correct bus mode for MMC before attempting init */ 1615 if (!mmc_host_is_spi(host)) 1616 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1617 1618 /* 1619 * Since we're changing the OCR value, we seem to 1620 * need to tell some cards to go back to the idle 1621 * state. We wait 1ms to give cards time to 1622 * respond. 1623 * mmc_go_idle is needed for eMMC that are asleep 1624 */ 1625 mmc_go_idle(host); 1626 1627 /* The extra bit indicates that we support high capacity */ 1628 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1629 if (err) 1630 goto err; 1631 1632 /* 1633 * For SPI, enable CRC as appropriate. 1634 */ 1635 if (mmc_host_is_spi(host)) { 1636 err = mmc_spi_set_crc(host, use_spi_crc); 1637 if (err) 1638 goto err; 1639 } 1640 1641 /* 1642 * Fetch CID from card. 1643 */ 1644 err = mmc_send_cid(host, cid); 1645 if (err) 1646 goto err; 1647 1648 if (oldcard) { 1649 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1650 pr_debug("%s: Perhaps the card was replaced\n", 1651 mmc_hostname(host)); 1652 err = -ENOENT; 1653 goto err; 1654 } 1655 1656 card = oldcard; 1657 } else { 1658 /* 1659 * Allocate card structure. 1660 */ 1661 card = mmc_alloc_card(host, &mmc_type); 1662 if (IS_ERR(card)) { 1663 err = PTR_ERR(card); 1664 goto err; 1665 } 1666 1667 card->ocr = ocr; 1668 card->type = MMC_TYPE_MMC; 1669 card->rca = 1; 1670 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1671 } 1672 1673 /* 1674 * Call the optional HC's init_card function to handle quirks. 1675 */ 1676 if (host->ops->init_card) 1677 host->ops->init_card(host, card); 1678 1679 /* 1680 * For native busses: set card RCA and quit open drain mode. 1681 */ 1682 if (!mmc_host_is_spi(host)) { 1683 err = mmc_set_relative_addr(card); 1684 if (err) 1685 goto free_card; 1686 1687 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1688 } 1689 1690 if (!oldcard) { 1691 /* 1692 * Fetch CSD from card. 1693 */ 1694 err = mmc_send_csd(card, card->raw_csd); 1695 if (err) 1696 goto free_card; 1697 1698 err = mmc_decode_csd(card); 1699 if (err) 1700 goto free_card; 1701 err = mmc_decode_cid(card); 1702 if (err) 1703 goto free_card; 1704 } 1705 1706 /* 1707 * handling only for cards supporting DSR and hosts requesting 1708 * DSR configuration 1709 */ 1710 if (card->csd.dsr_imp && host->dsr_req) 1711 mmc_set_dsr(host); 1712 1713 /* 1714 * Select card, as all following commands rely on that. 1715 */ 1716 if (!mmc_host_is_spi(host)) { 1717 err = mmc_select_card(card); 1718 if (err) 1719 goto free_card; 1720 } 1721 1722 if (!oldcard) { 1723 /* Read extended CSD. */ 1724 err = mmc_read_ext_csd(card); 1725 if (err) 1726 goto free_card; 1727 1728 /* 1729 * If doing byte addressing, check if required to do sector 1730 * addressing. Handle the case of <2GB cards needing sector 1731 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1732 * ocr register has bit 30 set for sector addressing. 1733 */ 1734 if (rocr & BIT(30)) 1735 mmc_card_set_blockaddr(card); 1736 1737 /* Erase size depends on CSD and Extended CSD */ 1738 mmc_set_erase_size(card); 1739 } 1740 1741 /* 1742 * Reselect the card type since host caps could have been changed when 1743 * debugging even if the card is not new. 1744 */ 1745 mmc_select_card_type(card); 1746 1747 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1748 if (card->ext_csd.rev >= 3) { 1749 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1750 EXT_CSD_ERASE_GROUP_DEF, 1, 1751 card->ext_csd.generic_cmd6_time); 1752 1753 if (err && err != -EBADMSG) 1754 goto free_card; 1755 1756 if (err) { 1757 /* 1758 * Just disable enhanced area off & sz 1759 * will try to enable ERASE_GROUP_DEF 1760 * during next time reinit 1761 */ 1762 card->ext_csd.enhanced_area_offset = -EINVAL; 1763 card->ext_csd.enhanced_area_size = -EINVAL; 1764 } else { 1765 card->ext_csd.erase_group_def = 1; 1766 /* 1767 * enable ERASE_GRP_DEF successfully. 1768 * This will affect the erase size, so 1769 * here need to reset erase size 1770 */ 1771 mmc_set_erase_size(card); 1772 } 1773 } 1774 mmc_set_wp_grp_size(card); 1775 /* 1776 * Ensure eMMC user default partition is enabled 1777 */ 1778 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1779 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1780 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1781 card->ext_csd.part_config, 1782 card->ext_csd.part_time); 1783 if (err && err != -EBADMSG) 1784 goto free_card; 1785 } 1786 1787 /* 1788 * Enable power_off_notification byte in the ext_csd register 1789 */ 1790 if (card->ext_csd.rev >= 6) { 1791 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1792 EXT_CSD_POWER_OFF_NOTIFICATION, 1793 EXT_CSD_POWER_ON, 1794 card->ext_csd.generic_cmd6_time); 1795 if (err && err != -EBADMSG) 1796 goto free_card; 1797 1798 /* 1799 * The err can be -EBADMSG or 0, 1800 * so check for success and update the flag 1801 */ 1802 if (!err) 1803 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1804 } 1805 1806 /* set erase_arg */ 1807 if (mmc_card_can_discard(card)) 1808 card->erase_arg = MMC_DISCARD_ARG; 1809 else if (mmc_card_can_trim(card)) 1810 card->erase_arg = MMC_TRIM_ARG; 1811 else 1812 card->erase_arg = MMC_ERASE_ARG; 1813 1814 /* 1815 * Select timing interface 1816 */ 1817 err = mmc_select_timing(card); 1818 if (err) 1819 goto free_card; 1820 1821 if (mmc_card_hs200(card)) { 1822 host->doing_init_tune = 1; 1823 1824 err = mmc_hs200_tuning(card); 1825 if (!err) 1826 err = mmc_select_hs400(card); 1827 1828 host->doing_init_tune = 0; 1829 1830 if (err) 1831 goto free_card; 1832 } else if (mmc_card_hs400es(card)) { 1833 if (host->ops->execute_hs400_tuning) { 1834 err = host->ops->execute_hs400_tuning(host, card); 1835 if (err) 1836 goto free_card; 1837 } 1838 } else { 1839 /* Select the desired bus width optionally */ 1840 err = mmc_select_bus_width(card); 1841 if (err > 0 && mmc_card_hs(card)) { 1842 err = mmc_select_hs_ddr(card); 1843 if (err) 1844 goto free_card; 1845 } 1846 } 1847 1848 /* 1849 * Choose the power class with selected bus interface 1850 */ 1851 mmc_select_powerclass(card); 1852 1853 /* 1854 * Enable HPI feature (if supported) 1855 */ 1856 if (card->ext_csd.hpi) { 1857 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1858 EXT_CSD_HPI_MGMT, 1, 1859 card->ext_csd.generic_cmd6_time); 1860 if (err && err != -EBADMSG) 1861 goto free_card; 1862 if (err) { 1863 pr_warn("%s: Enabling HPI failed\n", 1864 mmc_hostname(card->host)); 1865 card->ext_csd.hpi_en = 0; 1866 } else { 1867 card->ext_csd.hpi_en = 1; 1868 } 1869 } 1870 1871 /* 1872 * If cache size is higher than 0, this indicates the existence of cache 1873 * and it can be turned on. Note that some eMMCs from Micron has been 1874 * reported to need ~800 ms timeout, while enabling the cache after 1875 * sudden power failure tests. Let's extend the timeout to a minimum of 1876 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1877 */ 1878 if (card->ext_csd.cache_size > 0) { 1879 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1880 1881 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1882 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1883 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1884 if (err && err != -EBADMSG) 1885 goto free_card; 1886 1887 /* 1888 * Only if no error, cache is turned on successfully. 1889 */ 1890 if (err) { 1891 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1892 mmc_hostname(card->host), err); 1893 card->ext_csd.cache_ctrl = 0; 1894 } else { 1895 card->ext_csd.cache_ctrl = 1; 1896 } 1897 } 1898 1899 /* 1900 * Enable Command Queue if supported. Note that Packed Commands cannot 1901 * be used with Command Queue. 1902 */ 1903 card->ext_csd.cmdq_en = false; 1904 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1905 err = mmc_cmdq_enable(card); 1906 if (err && err != -EBADMSG) 1907 goto free_card; 1908 if (err) { 1909 pr_warn("%s: Enabling CMDQ failed\n", 1910 mmc_hostname(card->host)); 1911 card->ext_csd.cmdq_support = false; 1912 card->ext_csd.cmdq_depth = 0; 1913 } 1914 } 1915 /* 1916 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1917 * disabled for a time, so a flag is needed to indicate to re-enable the 1918 * Command Queue. 1919 */ 1920 card->reenable_cmdq = card->ext_csd.cmdq_en; 1921 1922 if (host->cqe_ops && !host->cqe_enabled) { 1923 err = host->cqe_ops->cqe_enable(host, card); 1924 if (!err) { 1925 host->cqe_enabled = true; 1926 1927 if (card->ext_csd.cmdq_en) { 1928 pr_info("%s: Command Queue Engine enabled\n", 1929 mmc_hostname(host)); 1930 } else { 1931 host->hsq_enabled = true; 1932 pr_info("%s: Host Software Queue enabled\n", 1933 mmc_hostname(host)); 1934 } 1935 } 1936 } 1937 1938 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1939 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1940 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1941 mmc_hostname(host)); 1942 err = -EINVAL; 1943 goto free_card; 1944 } 1945 1946 if (!oldcard) 1947 host->card = card; 1948 1949 return 0; 1950 1951 free_card: 1952 if (!oldcard) 1953 mmc_remove_card(card); 1954 err: 1955 return err; 1956 } 1957 1958 static bool mmc_card_can_sleep(struct mmc_card *card) 1959 { 1960 return card->ext_csd.rev >= 3; 1961 } 1962 1963 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1964 { 1965 struct mmc_host *host = cb_data; 1966 1967 *busy = host->ops->card_busy(host); 1968 return 0; 1969 } 1970 1971 static int mmc_sleep(struct mmc_host *host) 1972 { 1973 struct mmc_command cmd = {}; 1974 struct mmc_card *card = host->card; 1975 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1976 bool use_r1b_resp; 1977 int err; 1978 1979 /* Re-tuning can't be done once the card is deselected */ 1980 mmc_retune_hold(host); 1981 1982 err = mmc_deselect_cards(host); 1983 if (err) 1984 goto out_release; 1985 1986 cmd.opcode = MMC_SLEEP_AWAKE; 1987 cmd.arg = card->rca << 16; 1988 cmd.arg |= 1 << 15; 1989 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1990 1991 err = mmc_wait_for_cmd(host, &cmd, 0); 1992 if (err) 1993 goto out_release; 1994 1995 /* 1996 * If the host does not wait while the card signals busy, then we can 1997 * try to poll, but only if the host supports HW polling, as the 1998 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 1999 * to wait the sleep/awake timeout. 2000 */ 2001 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 2002 goto out_release; 2003 2004 if (!host->ops->card_busy) { 2005 mmc_delay(timeout_ms); 2006 goto out_release; 2007 } 2008 2009 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host); 2010 2011 out_release: 2012 mmc_retune_release(host); 2013 return err; 2014 } 2015 2016 static bool mmc_card_can_poweroff_notify(const struct mmc_card *card) 2017 { 2018 return card && 2019 mmc_card_mmc(card) && 2020 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 2021 } 2022 2023 static bool mmc_host_can_poweroff_notify(const struct mmc_host *host, 2024 enum mmc_poweroff_type pm_type) 2025 { 2026 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) 2027 return true; 2028 2029 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND && 2030 pm_type == MMC_POWEROFF_SUSPEND) 2031 return true; 2032 2033 return pm_type == MMC_POWEROFF_SHUTDOWN; 2034 } 2035 2036 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 2037 { 2038 unsigned int timeout = card->ext_csd.generic_cmd6_time; 2039 int err; 2040 2041 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 2042 if (notify_type == EXT_CSD_POWER_OFF_LONG) 2043 timeout = card->ext_csd.power_off_longtime; 2044 2045 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2046 EXT_CSD_POWER_OFF_NOTIFICATION, 2047 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 2048 if (err) 2049 pr_err("%s: Power Off Notification timed out, %u\n", 2050 mmc_hostname(card->host), timeout); 2051 2052 /* Disable the power off notification after the switch operation. */ 2053 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 2054 2055 return err; 2056 } 2057 2058 /* 2059 * Card detection - card is alive. 2060 */ 2061 static int mmc_alive(struct mmc_host *host) 2062 { 2063 return mmc_send_status(host->card, NULL); 2064 } 2065 2066 /* 2067 * Card detection callback from host. 2068 */ 2069 static void mmc_detect(struct mmc_host *host) 2070 { 2071 int err; 2072 2073 mmc_get_card(host->card, NULL); 2074 2075 /* 2076 * Just check if our card has been removed. 2077 */ 2078 err = _mmc_detect_card_removed(host); 2079 2080 mmc_put_card(host->card, NULL); 2081 2082 if (err) { 2083 mmc_remove_card(host->card); 2084 host->card = NULL; 2085 2086 mmc_claim_host(host); 2087 mmc_detach_bus(host); 2088 mmc_power_off(host); 2089 mmc_release_host(host); 2090 } 2091 } 2092 2093 static bool _mmc_cache_enabled(struct mmc_host *host) 2094 { 2095 return host->card->ext_csd.cache_size > 0 && 2096 host->card->ext_csd.cache_ctrl & 1; 2097 } 2098 2099 /* 2100 * Flush the internal cache of the eMMC to non-volatile storage. 2101 */ 2102 static int _mmc_flush_cache(struct mmc_host *host) 2103 { 2104 int err = 0; 2105 2106 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag) 2107 return 0; 2108 2109 if (_mmc_cache_enabled(host)) { 2110 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2111 EXT_CSD_FLUSH_CACHE, 1, 2112 CACHE_FLUSH_TIMEOUT_MS); 2113 if (err) 2114 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err); 2115 else 2116 host->card->written_flag = false; 2117 } 2118 2119 return err; 2120 } 2121 2122 static int _mmc_suspend(struct mmc_host *host, enum mmc_poweroff_type pm_type) 2123 { 2124 unsigned int notify_type = EXT_CSD_POWER_OFF_SHORT; 2125 int err = 0; 2126 2127 if (pm_type == MMC_POWEROFF_SHUTDOWN) 2128 notify_type = EXT_CSD_POWER_OFF_LONG; 2129 2130 mmc_claim_host(host); 2131 2132 if (mmc_card_suspended(host->card)) 2133 goto out; 2134 2135 err = _mmc_flush_cache(host); 2136 if (err) 2137 goto out; 2138 2139 if (mmc_card_can_poweroff_notify(host->card) && 2140 mmc_host_can_poweroff_notify(host, pm_type)) 2141 err = mmc_poweroff_notify(host->card, notify_type); 2142 else if (mmc_card_can_sleep(host->card)) 2143 err = mmc_sleep(host); 2144 else if (!mmc_host_is_spi(host)) 2145 err = mmc_deselect_cards(host); 2146 2147 if (!err) { 2148 mmc_power_off(host); 2149 mmc_card_set_suspended(host->card); 2150 } 2151 out: 2152 mmc_release_host(host); 2153 return err; 2154 } 2155 2156 /* 2157 * Host is being removed. Free up the current card and do a graceful power-off. 2158 */ 2159 static void mmc_remove(struct mmc_host *host) 2160 { 2161 get_device(&host->card->dev); 2162 mmc_remove_card(host->card); 2163 2164 _mmc_suspend(host, MMC_POWEROFF_UNBIND); 2165 2166 put_device(&host->card->dev); 2167 host->card = NULL; 2168 } 2169 2170 /* 2171 * Suspend callback 2172 */ 2173 static int mmc_suspend(struct mmc_host *host) 2174 { 2175 int err; 2176 2177 err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND); 2178 if (!err) { 2179 pm_runtime_disable(&host->card->dev); 2180 pm_runtime_set_suspended(&host->card->dev); 2181 } 2182 2183 return err; 2184 } 2185 2186 /* 2187 * This function tries to determine if the same card is still present 2188 * and, if so, restore all state to it. 2189 */ 2190 static int _mmc_resume(struct mmc_host *host) 2191 { 2192 int err = 0; 2193 2194 mmc_claim_host(host); 2195 2196 if (!mmc_card_suspended(host->card)) 2197 goto out; 2198 2199 mmc_power_up(host, host->card->ocr); 2200 err = mmc_init_card(host, host->card->ocr, host->card); 2201 mmc_card_clr_suspended(host->card); 2202 2203 out: 2204 mmc_release_host(host); 2205 return err; 2206 } 2207 2208 /* 2209 * Shutdown callback 2210 */ 2211 static int mmc_shutdown(struct mmc_host *host) 2212 { 2213 int err = 0; 2214 2215 /* 2216 * If the card remains suspended at this point and it was done by using 2217 * the sleep-cmd (CMD5), we may need to re-initialize it first, to allow 2218 * us to send the preferred poweroff-notification cmd at shutdown. 2219 */ 2220 if (mmc_card_can_poweroff_notify(host->card) && 2221 !mmc_host_can_poweroff_notify(host, MMC_POWEROFF_SUSPEND)) 2222 err = _mmc_resume(host); 2223 2224 if (!err) 2225 err = _mmc_suspend(host, MMC_POWEROFF_SHUTDOWN); 2226 2227 return err; 2228 } 2229 2230 /* 2231 * Callback for resume. 2232 */ 2233 static int mmc_resume(struct mmc_host *host) 2234 { 2235 pm_runtime_enable(&host->card->dev); 2236 return 0; 2237 } 2238 2239 /* 2240 * Callback for runtime_suspend. 2241 */ 2242 static int mmc_runtime_suspend(struct mmc_host *host) 2243 { 2244 int err; 2245 2246 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2247 return 0; 2248 2249 err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND); 2250 if (err) 2251 pr_err("%s: error %d doing aggressive suspend\n", 2252 mmc_hostname(host), err); 2253 2254 return err; 2255 } 2256 2257 /* 2258 * Callback for runtime_resume. 2259 */ 2260 static int mmc_runtime_resume(struct mmc_host *host) 2261 { 2262 int err; 2263 2264 err = _mmc_resume(host); 2265 if (err && err != -ENOMEDIUM) 2266 pr_err("%s: error %d doing runtime resume\n", 2267 mmc_hostname(host), err); 2268 2269 return 0; 2270 } 2271 2272 static bool mmc_card_can_reset(struct mmc_card *card) 2273 { 2274 u8 rst_n_function; 2275 2276 rst_n_function = card->ext_csd.rst_n_function; 2277 return ((rst_n_function & EXT_CSD_RST_N_EN_MASK) == EXT_CSD_RST_N_ENABLED); 2278 } 2279 2280 static int _mmc_hw_reset(struct mmc_host *host) 2281 { 2282 struct mmc_card *card = host->card; 2283 2284 /* 2285 * In the case of recovery, we can't expect flushing the cache to work 2286 * always, but we have a go and ignore errors. 2287 */ 2288 _mmc_flush_cache(host); 2289 2290 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset && 2291 mmc_card_can_reset(card)) { 2292 /* If the card accept RST_n signal, send it. */ 2293 mmc_set_clock(host, host->f_init); 2294 host->ops->card_hw_reset(host); 2295 /* Set initial state and call mmc_set_ios */ 2296 mmc_set_initial_state(host); 2297 } else { 2298 /* Do a brute force power cycle */ 2299 mmc_power_cycle(host, card->ocr); 2300 mmc_pwrseq_reset(host); 2301 } 2302 return mmc_init_card(host, card->ocr, card); 2303 } 2304 2305 static const struct mmc_bus_ops mmc_ops = { 2306 .remove = mmc_remove, 2307 .detect = mmc_detect, 2308 .suspend = mmc_suspend, 2309 .resume = mmc_resume, 2310 .runtime_suspend = mmc_runtime_suspend, 2311 .runtime_resume = mmc_runtime_resume, 2312 .alive = mmc_alive, 2313 .shutdown = mmc_shutdown, 2314 .hw_reset = _mmc_hw_reset, 2315 .cache_enabled = _mmc_cache_enabled, 2316 .flush_cache = _mmc_flush_cache, 2317 }; 2318 2319 /* 2320 * Starting point for MMC card init. 2321 */ 2322 int mmc_attach_mmc(struct mmc_host *host) 2323 { 2324 int err; 2325 u32 ocr, rocr; 2326 2327 WARN_ON(!host->claimed); 2328 2329 /* Set correct bus mode for MMC before attempting attach */ 2330 if (!mmc_host_is_spi(host)) 2331 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2332 2333 err = mmc_send_op_cond(host, 0, &ocr); 2334 if (err) 2335 return err; 2336 2337 mmc_attach_bus(host, &mmc_ops); 2338 if (host->ocr_avail_mmc) 2339 host->ocr_avail = host->ocr_avail_mmc; 2340 2341 /* 2342 * We need to get OCR a different way for SPI. 2343 */ 2344 if (mmc_host_is_spi(host)) { 2345 err = mmc_spi_read_ocr(host, 1, &ocr); 2346 if (err) 2347 goto err; 2348 } 2349 2350 rocr = mmc_select_voltage(host, ocr); 2351 2352 /* 2353 * Can we support the voltage of the card? 2354 */ 2355 if (!rocr) { 2356 err = -EINVAL; 2357 goto err; 2358 } 2359 2360 /* 2361 * Detect and init the card. 2362 */ 2363 err = mmc_init_card(host, rocr, NULL); 2364 if (err) 2365 goto err; 2366 2367 mmc_release_host(host); 2368 err = mmc_add_card(host->card); 2369 if (err) 2370 goto remove_card; 2371 2372 mmc_claim_host(host); 2373 return 0; 2374 2375 remove_card: 2376 mmc_remove_card(host->card); 2377 mmc_claim_host(host); 2378 host->card = NULL; 2379 err: 2380 mmc_detach_bus(host); 2381 2382 pr_err("%s: error %d whilst initialising MMC card\n", 2383 mmc_hostname(host), err); 2384 2385 return err; 2386 } 2387