1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/genalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqdomain.h>
20 #include <linux/list.h>
21 #include <linux/log2.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/memblock.h>
24 #include <linux/mm.h>
25 #include <linux/msi.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/of_platform.h>
31 #include <linux/percpu.h>
32 #include <linux/set_memory.h>
33 #include <linux/slab.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 #include <linux/irqchip/arm-gic-v4.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 #include <linux/irqchip/irq-msi-lib.h>
45 
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
49 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801	(1ULL << 4)
51 
52 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
53 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
54 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
55 
56 static u32 lpi_id_bits;
57 
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS		lpi_id_bits
64 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 
67 static u8 __ro_after_init lpi_prop_prio;
68 static struct its_node *find_4_1_its(void);
69 
70 /*
71  * Collection structure - just an ID, and a redistributor address to
72  * ping. We use one per CPU as a bag of interrupts assigned to this
73  * CPU.
74  */
75 struct its_collection {
76 	u64			target_address;
77 	u16			col_id;
78 };
79 
80 /*
81  * The ITS_BASER structure - contains memory information, cached
82  * value of BASER register configuration and ITS page size.
83  */
84 struct its_baser {
85 	void		*base;
86 	u64		val;
87 	u32		order;
88 	u32		psz;
89 };
90 
91 struct its_device;
92 
93 /*
94  * The ITS structure - contains most of the infrastructure, with the
95  * top-level MSI domain, the command queue, the collections, and the
96  * list of devices writing to it.
97  *
98  * dev_alloc_lock has to be taken for device allocations, while the
99  * spinlock must be taken to parse data structures such as the device
100  * list.
101  */
102 struct its_node {
103 	raw_spinlock_t		lock;
104 	struct mutex		dev_alloc_lock;
105 	struct list_head	entry;
106 	void __iomem		*base;
107 	void __iomem		*sgir_base;
108 	phys_addr_t		phys_base;
109 	struct its_cmd_block	*cmd_base;
110 	struct its_cmd_block	*cmd_write;
111 	struct its_baser	tables[GITS_BASER_NR_REGS];
112 	struct its_collection	*collections;
113 	struct fwnode_handle	*fwnode_handle;
114 	u64			(*get_msi_base)(struct its_device *its_dev);
115 	u64			typer;
116 	u64			cbaser_save;
117 	u32			ctlr_save;
118 	u32			mpidr;
119 	struct list_head	its_device_list;
120 	u64			flags;
121 	unsigned long		list_nr;
122 	int			numa_node;
123 	unsigned int		msi_domain_flags;
124 	u32			pre_its_base; /* for Socionext Synquacer */
125 	int			vlpi_redist_offset;
126 };
127 
128 static DEFINE_PER_CPU(struct its_node *, local_4_1_its);
129 
130 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
131 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
132 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
133 
134 #define ITS_ITT_ALIGN		SZ_256
135 
136 /* The maximum number of VPEID bits supported by VLPI commands */
137 #define ITS_MAX_VPEID_BITS						\
138 	({								\
139 		int nvpeid = 16;					\
140 		if (gic_rdists->has_rvpeid &&				\
141 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
142 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
143 				      GICD_TYPER2_VID);			\
144 									\
145 		nvpeid;							\
146 	})
147 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
148 
149 /* Convert page order to size in bytes */
150 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
151 
152 struct event_lpi_map {
153 	unsigned long		*lpi_map;
154 	u16			*col_map;
155 	irq_hw_number_t		lpi_base;
156 	int			nr_lpis;
157 	raw_spinlock_t		vlpi_lock;
158 	struct its_vm		*vm;
159 	struct its_vlpi_map	*vlpi_maps;
160 	int			nr_vlpis;
161 };
162 
163 /*
164  * The ITS view of a device - belongs to an ITS, owns an interrupt
165  * translation table, and a list of interrupts.  If it some of its
166  * LPIs are injected into a guest (GICv4), the event_map.vm field
167  * indicates which one.
168  */
169 struct its_device {
170 	struct list_head	entry;
171 	struct its_node		*its;
172 	struct event_lpi_map	event_map;
173 	void			*itt;
174 	u32			itt_sz;
175 	u32			nr_ites;
176 	u32			device_id;
177 	bool			shared;
178 };
179 
180 static struct {
181 	raw_spinlock_t		lock;
182 	struct its_device	*dev;
183 	struct its_vpe		**vpes;
184 	int			next_victim;
185 } vpe_proxy;
186 
187 struct cpu_lpi_count {
188 	atomic_t	managed;
189 	atomic_t	unmanaged;
190 };
191 
192 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
193 
194 static LIST_HEAD(its_nodes);
195 static DEFINE_RAW_SPINLOCK(its_lock);
196 static struct rdists *gic_rdists;
197 static struct irq_domain *its_parent;
198 
199 static unsigned long its_list_map;
200 static u16 vmovp_seq_num;
201 static DEFINE_RAW_SPINLOCK(vmovp_lock);
202 
203 static DEFINE_IDA(its_vpeid_ida);
204 
205 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
206 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
207 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
208 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
209 
210 static gfp_t gfp_flags_quirk;
211 
212 static struct page *its_alloc_pages_node(int node, gfp_t gfp,
213 					 unsigned int order)
214 {
215 	struct page *page;
216 	int ret = 0;
217 
218 	page = alloc_pages_node(node, gfp | gfp_flags_quirk, order);
219 
220 	if (!page)
221 		return NULL;
222 
223 	ret = set_memory_decrypted((unsigned long)page_address(page),
224 				   1 << order);
225 	/*
226 	 * If set_memory_decrypted() fails then we don't know what state the
227 	 * page is in, so we can't free it. Instead we leak it.
228 	 * set_memory_decrypted() will already have WARNed.
229 	 */
230 	if (ret)
231 		return NULL;
232 
233 	return page;
234 }
235 
236 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
237 {
238 	return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
239 }
240 
241 static void its_free_pages(void *addr, unsigned int order)
242 {
243 	/*
244 	 * If the memory cannot be encrypted again then we must leak the pages.
245 	 * set_memory_encrypted() will already have WARNed.
246 	 */
247 	if (set_memory_encrypted((unsigned long)addr, 1 << order))
248 		return;
249 	free_pages((unsigned long)addr, order);
250 }
251 
252 static struct gen_pool *itt_pool;
253 
254 static void *itt_alloc_pool(int node, int size)
255 {
256 	unsigned long addr;
257 	struct page *page;
258 
259 	if (size >= PAGE_SIZE) {
260 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
261 
262 		return page ? page_address(page) : NULL;
263 	}
264 
265 	do {
266 		addr = gen_pool_alloc(itt_pool, size);
267 		if (addr)
268 			break;
269 
270 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
271 		if (!page)
272 			break;
273 
274 		gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
275 	} while (!addr);
276 
277 	return (void *)addr;
278 }
279 
280 static void itt_free_pool(void *addr, int size)
281 {
282 	if (!addr)
283 		return;
284 
285 	if (size >= PAGE_SIZE) {
286 		its_free_pages(addr, get_order(size));
287 		return;
288 	}
289 
290 	gen_pool_free(itt_pool, (unsigned long)addr, size);
291 }
292 
293 /*
294  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
295  * always have vSGIs mapped.
296  */
297 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
298 {
299 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
300 }
301 
302 static bool rdists_support_shareable(void)
303 {
304 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
305 }
306 
307 static u16 get_its_list(struct its_vm *vm)
308 {
309 	struct its_node *its;
310 	unsigned long its_list = 0;
311 
312 	list_for_each_entry(its, &its_nodes, entry) {
313 		if (!is_v4(its))
314 			continue;
315 
316 		if (require_its_list_vmovp(vm, its))
317 			__set_bit(its->list_nr, &its_list);
318 	}
319 
320 	return (u16)its_list;
321 }
322 
323 static inline u32 its_get_event_id(struct irq_data *d)
324 {
325 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
326 	return d->hwirq - its_dev->event_map.lpi_base;
327 }
328 
329 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
330 					       u32 event)
331 {
332 	struct its_node *its = its_dev->its;
333 
334 	return its->collections + its_dev->event_map.col_map[event];
335 }
336 
337 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
338 					       u32 event)
339 {
340 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
341 		return NULL;
342 
343 	return &its_dev->event_map.vlpi_maps[event];
344 }
345 
346 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
347 {
348 	if (irqd_is_forwarded_to_vcpu(d)) {
349 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
350 		u32 event = its_get_event_id(d);
351 
352 		return dev_event_to_vlpi_map(its_dev, event);
353 	}
354 
355 	return NULL;
356 }
357 
358 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
359 {
360 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
361 	return vpe->col_idx;
362 }
363 
364 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
365 {
366 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
367 }
368 
369 static struct irq_chip its_vpe_irq_chip;
370 
371 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
372 {
373 	struct its_vpe *vpe = NULL;
374 	int cpu;
375 
376 	if (d->chip == &its_vpe_irq_chip) {
377 		vpe = irq_data_get_irq_chip_data(d);
378 	} else {
379 		struct its_vlpi_map *map = get_vlpi_map(d);
380 		if (map)
381 			vpe = map->vpe;
382 	}
383 
384 	if (vpe) {
385 		cpu = vpe_to_cpuid_lock(vpe, flags);
386 	} else {
387 		/* Physical LPIs are already locked via the irq_desc lock */
388 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
389 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
390 		/* Keep GCC quiet... */
391 		*flags = 0;
392 	}
393 
394 	return cpu;
395 }
396 
397 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
398 {
399 	struct its_vpe *vpe = NULL;
400 
401 	if (d->chip == &its_vpe_irq_chip) {
402 		vpe = irq_data_get_irq_chip_data(d);
403 	} else {
404 		struct its_vlpi_map *map = get_vlpi_map(d);
405 		if (map)
406 			vpe = map->vpe;
407 	}
408 
409 	if (vpe)
410 		vpe_to_cpuid_unlock(vpe, flags);
411 }
412 
413 static struct its_collection *valid_col(struct its_collection *col)
414 {
415 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
416 		return NULL;
417 
418 	return col;
419 }
420 
421 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
422 {
423 	if (valid_col(its->collections + vpe->col_idx))
424 		return vpe;
425 
426 	return NULL;
427 }
428 
429 /*
430  * ITS command descriptors - parameters to be encoded in a command
431  * block.
432  */
433 struct its_cmd_desc {
434 	union {
435 		struct {
436 			struct its_device *dev;
437 			u32 event_id;
438 		} its_inv_cmd;
439 
440 		struct {
441 			struct its_device *dev;
442 			u32 event_id;
443 		} its_clear_cmd;
444 
445 		struct {
446 			struct its_device *dev;
447 			u32 event_id;
448 		} its_int_cmd;
449 
450 		struct {
451 			struct its_device *dev;
452 			int valid;
453 		} its_mapd_cmd;
454 
455 		struct {
456 			struct its_collection *col;
457 			int valid;
458 		} its_mapc_cmd;
459 
460 		struct {
461 			struct its_device *dev;
462 			u32 phys_id;
463 			u32 event_id;
464 		} its_mapti_cmd;
465 
466 		struct {
467 			struct its_device *dev;
468 			struct its_collection *col;
469 			u32 event_id;
470 		} its_movi_cmd;
471 
472 		struct {
473 			struct its_device *dev;
474 			u32 event_id;
475 		} its_discard_cmd;
476 
477 		struct {
478 			struct its_collection *col;
479 		} its_invall_cmd;
480 
481 		struct {
482 			struct its_vpe *vpe;
483 		} its_vinvall_cmd;
484 
485 		struct {
486 			struct its_vpe *vpe;
487 			struct its_collection *col;
488 			bool valid;
489 		} its_vmapp_cmd;
490 
491 		struct {
492 			struct its_vpe *vpe;
493 			struct its_device *dev;
494 			u32 virt_id;
495 			u32 event_id;
496 			bool db_enabled;
497 		} its_vmapti_cmd;
498 
499 		struct {
500 			struct its_vpe *vpe;
501 			struct its_device *dev;
502 			u32 event_id;
503 			bool db_enabled;
504 		} its_vmovi_cmd;
505 
506 		struct {
507 			struct its_vpe *vpe;
508 			struct its_collection *col;
509 			u16 seq_num;
510 			u16 its_list;
511 		} its_vmovp_cmd;
512 
513 		struct {
514 			struct its_vpe *vpe;
515 		} its_invdb_cmd;
516 
517 		struct {
518 			struct its_vpe *vpe;
519 			u8 sgi;
520 			u8 priority;
521 			bool enable;
522 			bool group;
523 			bool clear;
524 		} its_vsgi_cmd;
525 	};
526 };
527 
528 /*
529  * The ITS command block, which is what the ITS actually parses.
530  */
531 struct its_cmd_block {
532 	union {
533 		u64	raw_cmd[4];
534 		__le64	raw_cmd_le[4];
535 	};
536 };
537 
538 #define ITS_CMD_QUEUE_SZ		SZ_64K
539 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
540 
541 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
542 						    struct its_cmd_block *,
543 						    struct its_cmd_desc *);
544 
545 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
546 					      struct its_cmd_block *,
547 					      struct its_cmd_desc *);
548 
549 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
550 {
551 	u64 mask = GENMASK_ULL(h, l);
552 	*raw_cmd &= ~mask;
553 	*raw_cmd |= (val << l) & mask;
554 }
555 
556 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
557 {
558 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
559 }
560 
561 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
562 {
563 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
564 }
565 
566 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
567 {
568 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
569 }
570 
571 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
572 {
573 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
574 }
575 
576 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
577 {
578 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
579 }
580 
581 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
582 {
583 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
584 }
585 
586 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
587 {
588 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
589 }
590 
591 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
592 {
593 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
594 }
595 
596 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
597 {
598 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
599 }
600 
601 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
602 {
603 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
604 }
605 
606 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
607 {
608 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
609 }
610 
611 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
612 {
613 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
614 }
615 
616 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
617 {
618 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
619 }
620 
621 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
622 {
623 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
624 }
625 
626 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
627 {
628 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
629 }
630 
631 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
632 {
633 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
634 }
635 
636 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
637 {
638 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
639 }
640 
641 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
642 {
643 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
644 }
645 
646 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
647 {
648 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
649 }
650 
651 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
652 {
653 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
654 }
655 
656 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
657 					u32 vpe_db_lpi)
658 {
659 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
660 }
661 
662 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
663 					u32 vpe_db_lpi)
664 {
665 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
666 }
667 
668 static void its_encode_db(struct its_cmd_block *cmd, bool db)
669 {
670 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
671 }
672 
673 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
674 {
675 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
676 }
677 
678 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
679 {
680 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
681 }
682 
683 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
684 {
685 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
686 }
687 
688 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
689 {
690 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
691 }
692 
693 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
694 {
695 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
696 }
697 
698 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
699 {
700 	/* Let's fixup BE commands */
701 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
702 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
703 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
704 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
705 }
706 
707 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
708 						 struct its_cmd_block *cmd,
709 						 struct its_cmd_desc *desc)
710 {
711 	unsigned long itt_addr;
712 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
713 
714 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
715 
716 	its_encode_cmd(cmd, GITS_CMD_MAPD);
717 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
718 	its_encode_size(cmd, size - 1);
719 	its_encode_itt(cmd, itt_addr);
720 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
721 
722 	its_fixup_cmd(cmd);
723 
724 	return NULL;
725 }
726 
727 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
728 						 struct its_cmd_block *cmd,
729 						 struct its_cmd_desc *desc)
730 {
731 	its_encode_cmd(cmd, GITS_CMD_MAPC);
732 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
733 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
734 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
735 
736 	its_fixup_cmd(cmd);
737 
738 	return desc->its_mapc_cmd.col;
739 }
740 
741 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
742 						  struct its_cmd_block *cmd,
743 						  struct its_cmd_desc *desc)
744 {
745 	struct its_collection *col;
746 
747 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
748 			       desc->its_mapti_cmd.event_id);
749 
750 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
751 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
752 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
753 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
754 	its_encode_collection(cmd, col->col_id);
755 
756 	its_fixup_cmd(cmd);
757 
758 	return valid_col(col);
759 }
760 
761 static struct its_collection *its_build_movi_cmd(struct its_node *its,
762 						 struct its_cmd_block *cmd,
763 						 struct its_cmd_desc *desc)
764 {
765 	struct its_collection *col;
766 
767 	col = dev_event_to_col(desc->its_movi_cmd.dev,
768 			       desc->its_movi_cmd.event_id);
769 
770 	its_encode_cmd(cmd, GITS_CMD_MOVI);
771 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
772 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
773 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
774 
775 	its_fixup_cmd(cmd);
776 
777 	return valid_col(col);
778 }
779 
780 static struct its_collection *its_build_discard_cmd(struct its_node *its,
781 						    struct its_cmd_block *cmd,
782 						    struct its_cmd_desc *desc)
783 {
784 	struct its_collection *col;
785 
786 	col = dev_event_to_col(desc->its_discard_cmd.dev,
787 			       desc->its_discard_cmd.event_id);
788 
789 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
790 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
791 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
792 
793 	its_fixup_cmd(cmd);
794 
795 	return valid_col(col);
796 }
797 
798 static struct its_collection *its_build_inv_cmd(struct its_node *its,
799 						struct its_cmd_block *cmd,
800 						struct its_cmd_desc *desc)
801 {
802 	struct its_collection *col;
803 
804 	col = dev_event_to_col(desc->its_inv_cmd.dev,
805 			       desc->its_inv_cmd.event_id);
806 
807 	its_encode_cmd(cmd, GITS_CMD_INV);
808 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
809 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
810 
811 	its_fixup_cmd(cmd);
812 
813 	return valid_col(col);
814 }
815 
816 static struct its_collection *its_build_int_cmd(struct its_node *its,
817 						struct its_cmd_block *cmd,
818 						struct its_cmd_desc *desc)
819 {
820 	struct its_collection *col;
821 
822 	col = dev_event_to_col(desc->its_int_cmd.dev,
823 			       desc->its_int_cmd.event_id);
824 
825 	its_encode_cmd(cmd, GITS_CMD_INT);
826 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
827 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
828 
829 	its_fixup_cmd(cmd);
830 
831 	return valid_col(col);
832 }
833 
834 static struct its_collection *its_build_clear_cmd(struct its_node *its,
835 						  struct its_cmd_block *cmd,
836 						  struct its_cmd_desc *desc)
837 {
838 	struct its_collection *col;
839 
840 	col = dev_event_to_col(desc->its_clear_cmd.dev,
841 			       desc->its_clear_cmd.event_id);
842 
843 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
844 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
845 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
846 
847 	its_fixup_cmd(cmd);
848 
849 	return valid_col(col);
850 }
851 
852 static struct its_collection *its_build_invall_cmd(struct its_node *its,
853 						   struct its_cmd_block *cmd,
854 						   struct its_cmd_desc *desc)
855 {
856 	its_encode_cmd(cmd, GITS_CMD_INVALL);
857 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
858 
859 	its_fixup_cmd(cmd);
860 
861 	return desc->its_invall_cmd.col;
862 }
863 
864 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
865 					     struct its_cmd_block *cmd,
866 					     struct its_cmd_desc *desc)
867 {
868 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
869 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
870 
871 	its_fixup_cmd(cmd);
872 
873 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
874 }
875 
876 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
877 					   struct its_cmd_block *cmd,
878 					   struct its_cmd_desc *desc)
879 {
880 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
881 	unsigned long vpt_addr, vconf_addr;
882 	u64 target;
883 	bool alloc;
884 
885 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
886 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
887 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
888 
889 	if (!desc->its_vmapp_cmd.valid) {
890 		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
891 		if (is_v4_1(its)) {
892 			its_encode_alloc(cmd, alloc);
893 			/*
894 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
895 			 * no need to issue a VSYNC.
896 			 */
897 			vpe = NULL;
898 		}
899 
900 		goto out;
901 	}
902 
903 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
904 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
905 
906 	its_encode_target(cmd, target);
907 	its_encode_vpt_addr(cmd, vpt_addr);
908 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
909 
910 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
911 
912 	if (!is_v4_1(its))
913 		goto out;
914 
915 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
916 
917 	its_encode_alloc(cmd, alloc);
918 
919 	/*
920 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
921 	 * to be unmapped first, and in this case, we may remap the vPE
922 	 * back while the VPT is not empty. So we can't assume that the
923 	 * VPT is empty on map. This is why we never advertise PTZ.
924 	 */
925 	its_encode_ptz(cmd, false);
926 	its_encode_vconf_addr(cmd, vconf_addr);
927 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
928 
929 out:
930 	its_fixup_cmd(cmd);
931 
932 	return vpe;
933 }
934 
935 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
936 					    struct its_cmd_block *cmd,
937 					    struct its_cmd_desc *desc)
938 {
939 	u32 db;
940 
941 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
942 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
943 	else
944 		db = 1023;
945 
946 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
947 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
948 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
949 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
950 	its_encode_db_phys_id(cmd, db);
951 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
952 
953 	its_fixup_cmd(cmd);
954 
955 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
956 }
957 
958 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
959 					   struct its_cmd_block *cmd,
960 					   struct its_cmd_desc *desc)
961 {
962 	u32 db;
963 
964 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
965 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
966 	else
967 		db = 1023;
968 
969 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
970 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
971 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
972 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
973 	its_encode_db_phys_id(cmd, db);
974 	its_encode_db_valid(cmd, true);
975 
976 	its_fixup_cmd(cmd);
977 
978 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
979 }
980 
981 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
982 					   struct its_cmd_block *cmd,
983 					   struct its_cmd_desc *desc)
984 {
985 	u64 target;
986 
987 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
988 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
989 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
990 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
991 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
992 	its_encode_target(cmd, target);
993 
994 	if (is_v4_1(its)) {
995 		its_encode_db(cmd, true);
996 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
997 	}
998 
999 	its_fixup_cmd(cmd);
1000 
1001 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
1002 }
1003 
1004 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1005 					  struct its_cmd_block *cmd,
1006 					  struct its_cmd_desc *desc)
1007 {
1008 	struct its_vlpi_map *map;
1009 
1010 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1011 				    desc->its_inv_cmd.event_id);
1012 
1013 	its_encode_cmd(cmd, GITS_CMD_INV);
1014 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1015 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1016 
1017 	its_fixup_cmd(cmd);
1018 
1019 	return valid_vpe(its, map->vpe);
1020 }
1021 
1022 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1023 					  struct its_cmd_block *cmd,
1024 					  struct its_cmd_desc *desc)
1025 {
1026 	struct its_vlpi_map *map;
1027 
1028 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1029 				    desc->its_int_cmd.event_id);
1030 
1031 	its_encode_cmd(cmd, GITS_CMD_INT);
1032 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1033 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1034 
1035 	its_fixup_cmd(cmd);
1036 
1037 	return valid_vpe(its, map->vpe);
1038 }
1039 
1040 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1041 					    struct its_cmd_block *cmd,
1042 					    struct its_cmd_desc *desc)
1043 {
1044 	struct its_vlpi_map *map;
1045 
1046 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1047 				    desc->its_clear_cmd.event_id);
1048 
1049 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
1050 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1051 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1052 
1053 	its_fixup_cmd(cmd);
1054 
1055 	return valid_vpe(its, map->vpe);
1056 }
1057 
1058 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1059 					   struct its_cmd_block *cmd,
1060 					   struct its_cmd_desc *desc)
1061 {
1062 	if (WARN_ON(!is_v4_1(its)))
1063 		return NULL;
1064 
1065 	its_encode_cmd(cmd, GITS_CMD_INVDB);
1066 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1067 
1068 	its_fixup_cmd(cmd);
1069 
1070 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
1071 }
1072 
1073 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1074 					  struct its_cmd_block *cmd,
1075 					  struct its_cmd_desc *desc)
1076 {
1077 	if (WARN_ON(!is_v4_1(its)))
1078 		return NULL;
1079 
1080 	its_encode_cmd(cmd, GITS_CMD_VSGI);
1081 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1082 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1083 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1084 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1085 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1086 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1087 
1088 	its_fixup_cmd(cmd);
1089 
1090 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1091 }
1092 
1093 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1094 				 struct its_cmd_block *ptr)
1095 {
1096 	return (ptr - its->cmd_base) * sizeof(*ptr);
1097 }
1098 
1099 static int its_queue_full(struct its_node *its)
1100 {
1101 	int widx;
1102 	int ridx;
1103 
1104 	widx = its->cmd_write - its->cmd_base;
1105 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1106 
1107 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1108 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1109 		return 1;
1110 
1111 	return 0;
1112 }
1113 
1114 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1115 {
1116 	struct its_cmd_block *cmd;
1117 	u32 count = 1000000;	/* 1s! */
1118 
1119 	while (its_queue_full(its)) {
1120 		count--;
1121 		if (!count) {
1122 			pr_err_ratelimited("ITS queue not draining\n");
1123 			return NULL;
1124 		}
1125 		cpu_relax();
1126 		udelay(1);
1127 	}
1128 
1129 	cmd = its->cmd_write++;
1130 
1131 	/* Handle queue wrapping */
1132 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1133 		its->cmd_write = its->cmd_base;
1134 
1135 	/* Clear command  */
1136 	cmd->raw_cmd[0] = 0;
1137 	cmd->raw_cmd[1] = 0;
1138 	cmd->raw_cmd[2] = 0;
1139 	cmd->raw_cmd[3] = 0;
1140 
1141 	return cmd;
1142 }
1143 
1144 static struct its_cmd_block *its_post_commands(struct its_node *its)
1145 {
1146 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1147 
1148 	writel_relaxed(wr, its->base + GITS_CWRITER);
1149 
1150 	return its->cmd_write;
1151 }
1152 
1153 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1154 {
1155 	/*
1156 	 * Make sure the commands written to memory are observable by
1157 	 * the ITS.
1158 	 */
1159 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1160 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1161 	else
1162 		dsb(ishst);
1163 }
1164 
1165 static int its_wait_for_range_completion(struct its_node *its,
1166 					 u64	prev_idx,
1167 					 struct its_cmd_block *to)
1168 {
1169 	u64 rd_idx, to_idx, linear_idx;
1170 	u32 count = 1000000;	/* 1s! */
1171 
1172 	/* Linearize to_idx if the command set has wrapped around */
1173 	to_idx = its_cmd_ptr_to_offset(its, to);
1174 	if (to_idx < prev_idx)
1175 		to_idx += ITS_CMD_QUEUE_SZ;
1176 
1177 	linear_idx = prev_idx;
1178 
1179 	while (1) {
1180 		s64 delta;
1181 
1182 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1183 
1184 		/*
1185 		 * Compute the read pointer progress, taking the
1186 		 * potential wrap-around into account.
1187 		 */
1188 		delta = rd_idx - prev_idx;
1189 		if (rd_idx < prev_idx)
1190 			delta += ITS_CMD_QUEUE_SZ;
1191 
1192 		linear_idx += delta;
1193 		if (linear_idx >= to_idx)
1194 			break;
1195 
1196 		count--;
1197 		if (!count) {
1198 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1199 					   to_idx, linear_idx);
1200 			return -1;
1201 		}
1202 		prev_idx = rd_idx;
1203 		cpu_relax();
1204 		udelay(1);
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 /* Warning, macro hell follows */
1211 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1212 void name(struct its_node *its,						\
1213 	  buildtype builder,						\
1214 	  struct its_cmd_desc *desc)					\
1215 {									\
1216 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1217 	synctype *sync_obj;						\
1218 	unsigned long flags;						\
1219 	u64 rd_idx;							\
1220 									\
1221 	raw_spin_lock_irqsave(&its->lock, flags);			\
1222 									\
1223 	cmd = its_allocate_entry(its);					\
1224 	if (!cmd) {		/* We're soooooo screewed... */		\
1225 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1226 		return;							\
1227 	}								\
1228 	sync_obj = builder(its, cmd, desc);				\
1229 	its_flush_cmd(its, cmd);					\
1230 									\
1231 	if (sync_obj) {							\
1232 		sync_cmd = its_allocate_entry(its);			\
1233 		if (!sync_cmd)						\
1234 			goto post;					\
1235 									\
1236 		buildfn(its, sync_cmd, sync_obj);			\
1237 		its_flush_cmd(its, sync_cmd);				\
1238 	}								\
1239 									\
1240 post:									\
1241 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1242 	next_cmd = its_post_commands(its);				\
1243 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1244 									\
1245 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1246 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1247 }
1248 
1249 static void its_build_sync_cmd(struct its_node *its,
1250 			       struct its_cmd_block *sync_cmd,
1251 			       struct its_collection *sync_col)
1252 {
1253 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1254 	its_encode_target(sync_cmd, sync_col->target_address);
1255 
1256 	its_fixup_cmd(sync_cmd);
1257 }
1258 
1259 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1260 			     struct its_collection, its_build_sync_cmd)
1261 
1262 static void its_build_vsync_cmd(struct its_node *its,
1263 				struct its_cmd_block *sync_cmd,
1264 				struct its_vpe *sync_vpe)
1265 {
1266 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1267 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1268 
1269 	its_fixup_cmd(sync_cmd);
1270 }
1271 
1272 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1273 			     struct its_vpe, its_build_vsync_cmd)
1274 
1275 static void its_send_int(struct its_device *dev, u32 event_id)
1276 {
1277 	struct its_cmd_desc desc;
1278 
1279 	desc.its_int_cmd.dev = dev;
1280 	desc.its_int_cmd.event_id = event_id;
1281 
1282 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1283 }
1284 
1285 static void its_send_clear(struct its_device *dev, u32 event_id)
1286 {
1287 	struct its_cmd_desc desc;
1288 
1289 	desc.its_clear_cmd.dev = dev;
1290 	desc.its_clear_cmd.event_id = event_id;
1291 
1292 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1293 }
1294 
1295 static void its_send_inv(struct its_device *dev, u32 event_id)
1296 {
1297 	struct its_cmd_desc desc;
1298 
1299 	desc.its_inv_cmd.dev = dev;
1300 	desc.its_inv_cmd.event_id = event_id;
1301 
1302 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1303 }
1304 
1305 static void its_send_mapd(struct its_device *dev, int valid)
1306 {
1307 	struct its_cmd_desc desc;
1308 
1309 	desc.its_mapd_cmd.dev = dev;
1310 	desc.its_mapd_cmd.valid = !!valid;
1311 
1312 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1313 }
1314 
1315 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1316 			  int valid)
1317 {
1318 	struct its_cmd_desc desc;
1319 
1320 	desc.its_mapc_cmd.col = col;
1321 	desc.its_mapc_cmd.valid = !!valid;
1322 
1323 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1324 }
1325 
1326 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1327 {
1328 	struct its_cmd_desc desc;
1329 
1330 	desc.its_mapti_cmd.dev = dev;
1331 	desc.its_mapti_cmd.phys_id = irq_id;
1332 	desc.its_mapti_cmd.event_id = id;
1333 
1334 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1335 }
1336 
1337 static void its_send_movi(struct its_device *dev,
1338 			  struct its_collection *col, u32 id)
1339 {
1340 	struct its_cmd_desc desc;
1341 
1342 	desc.its_movi_cmd.dev = dev;
1343 	desc.its_movi_cmd.col = col;
1344 	desc.its_movi_cmd.event_id = id;
1345 
1346 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1347 }
1348 
1349 static void its_send_discard(struct its_device *dev, u32 id)
1350 {
1351 	struct its_cmd_desc desc;
1352 
1353 	desc.its_discard_cmd.dev = dev;
1354 	desc.its_discard_cmd.event_id = id;
1355 
1356 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1357 }
1358 
1359 static void its_send_invall(struct its_node *its, struct its_collection *col)
1360 {
1361 	struct its_cmd_desc desc;
1362 
1363 	desc.its_invall_cmd.col = col;
1364 
1365 	its_send_single_command(its, its_build_invall_cmd, &desc);
1366 }
1367 
1368 static void its_send_vmapti(struct its_device *dev, u32 id)
1369 {
1370 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1371 	struct its_cmd_desc desc;
1372 
1373 	desc.its_vmapti_cmd.vpe = map->vpe;
1374 	desc.its_vmapti_cmd.dev = dev;
1375 	desc.its_vmapti_cmd.virt_id = map->vintid;
1376 	desc.its_vmapti_cmd.event_id = id;
1377 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1378 
1379 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1380 }
1381 
1382 static void its_send_vmovi(struct its_device *dev, u32 id)
1383 {
1384 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1385 	struct its_cmd_desc desc;
1386 
1387 	desc.its_vmovi_cmd.vpe = map->vpe;
1388 	desc.its_vmovi_cmd.dev = dev;
1389 	desc.its_vmovi_cmd.event_id = id;
1390 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1391 
1392 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1393 }
1394 
1395 static void its_send_vmapp(struct its_node *its,
1396 			   struct its_vpe *vpe, bool valid)
1397 {
1398 	struct its_cmd_desc desc;
1399 
1400 	desc.its_vmapp_cmd.vpe = vpe;
1401 	desc.its_vmapp_cmd.valid = valid;
1402 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1403 
1404 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1405 }
1406 
1407 static void its_send_vmovp(struct its_vpe *vpe)
1408 {
1409 	struct its_cmd_desc desc = {};
1410 	struct its_node *its;
1411 	int col_id = vpe->col_idx;
1412 
1413 	desc.its_vmovp_cmd.vpe = vpe;
1414 
1415 	if (!its_list_map) {
1416 		its = list_first_entry(&its_nodes, struct its_node, entry);
1417 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1418 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1419 		return;
1420 	}
1421 
1422 	/*
1423 	 * Yet another marvel of the architecture. If using the
1424 	 * its_list "feature", we need to make sure that all ITSs
1425 	 * receive all VMOVP commands in the same order. The only way
1426 	 * to guarantee this is to make vmovp a serialization point.
1427 	 *
1428 	 * Wall <-- Head.
1429 	 */
1430 	guard(raw_spinlock)(&vmovp_lock);
1431 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1432 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1433 
1434 	/* Emit VMOVPs */
1435 	list_for_each_entry(its, &its_nodes, entry) {
1436 		if (!is_v4(its))
1437 			continue;
1438 
1439 		if (!require_its_list_vmovp(vpe->its_vm, its))
1440 			continue;
1441 
1442 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1443 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1444 	}
1445 }
1446 
1447 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1448 {
1449 	struct its_cmd_desc desc;
1450 
1451 	desc.its_vinvall_cmd.vpe = vpe;
1452 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1453 }
1454 
1455 static void its_send_vinv(struct its_device *dev, u32 event_id)
1456 {
1457 	struct its_cmd_desc desc;
1458 
1459 	/*
1460 	 * There is no real VINV command. This is just a normal INV,
1461 	 * with a VSYNC instead of a SYNC.
1462 	 */
1463 	desc.its_inv_cmd.dev = dev;
1464 	desc.its_inv_cmd.event_id = event_id;
1465 
1466 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1467 }
1468 
1469 static void its_send_vint(struct its_device *dev, u32 event_id)
1470 {
1471 	struct its_cmd_desc desc;
1472 
1473 	/*
1474 	 * There is no real VINT command. This is just a normal INT,
1475 	 * with a VSYNC instead of a SYNC.
1476 	 */
1477 	desc.its_int_cmd.dev = dev;
1478 	desc.its_int_cmd.event_id = event_id;
1479 
1480 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1481 }
1482 
1483 static void its_send_vclear(struct its_device *dev, u32 event_id)
1484 {
1485 	struct its_cmd_desc desc;
1486 
1487 	/*
1488 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1489 	 * with a VSYNC instead of a SYNC.
1490 	 */
1491 	desc.its_clear_cmd.dev = dev;
1492 	desc.its_clear_cmd.event_id = event_id;
1493 
1494 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1495 }
1496 
1497 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1498 {
1499 	struct its_cmd_desc desc;
1500 
1501 	desc.its_invdb_cmd.vpe = vpe;
1502 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1503 }
1504 
1505 /*
1506  * irqchip functions - assumes MSI, mostly.
1507  */
1508 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1509 {
1510 	struct its_vlpi_map *map = get_vlpi_map(d);
1511 	irq_hw_number_t hwirq;
1512 	void *va;
1513 	u8 *cfg;
1514 
1515 	if (map) {
1516 		va = page_address(map->vm->vprop_page);
1517 		hwirq = map->vintid;
1518 
1519 		/* Remember the updated property */
1520 		map->properties &= ~clr;
1521 		map->properties |= set | LPI_PROP_GROUP1;
1522 	} else {
1523 		va = gic_rdists->prop_table_va;
1524 		hwirq = d->hwirq;
1525 	}
1526 
1527 	cfg = va + hwirq - 8192;
1528 	*cfg &= ~clr;
1529 	*cfg |= set | LPI_PROP_GROUP1;
1530 
1531 	/*
1532 	 * Make the above write visible to the redistributors.
1533 	 * And yes, we're flushing exactly: One. Single. Byte.
1534 	 * Humpf...
1535 	 */
1536 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1537 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1538 	else
1539 		dsb(ishst);
1540 }
1541 
1542 static void wait_for_syncr(void __iomem *rdbase)
1543 {
1544 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1545 		cpu_relax();
1546 }
1547 
1548 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1549 {
1550 	void __iomem *rdbase;
1551 	unsigned long flags;
1552 	int cpu;
1553 
1554 	/* Target the redistributor this LPI is currently routed to */
1555 	cpu = irq_to_cpuid_lock(d, &flags);
1556 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1557 
1558 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1559 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1560 	wait_for_syncr(rdbase);
1561 
1562 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1563 	irq_to_cpuid_unlock(d, flags);
1564 }
1565 
1566 static void direct_lpi_inv(struct irq_data *d)
1567 {
1568 	struct its_vlpi_map *map = get_vlpi_map(d);
1569 	u64 val;
1570 
1571 	if (map) {
1572 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1573 
1574 		WARN_ON(!is_v4_1(its_dev->its));
1575 
1576 		val  = GICR_INVLPIR_V;
1577 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1578 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1579 	} else {
1580 		val = d->hwirq;
1581 	}
1582 
1583 	__direct_lpi_inv(d, val);
1584 }
1585 
1586 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1587 {
1588 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1589 
1590 	lpi_write_config(d, clr, set);
1591 	if (gic_rdists->has_direct_lpi &&
1592 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1593 		direct_lpi_inv(d);
1594 	else if (!irqd_is_forwarded_to_vcpu(d))
1595 		its_send_inv(its_dev, its_get_event_id(d));
1596 	else
1597 		its_send_vinv(its_dev, its_get_event_id(d));
1598 }
1599 
1600 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1601 {
1602 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1603 	u32 event = its_get_event_id(d);
1604 	struct its_vlpi_map *map;
1605 
1606 	/*
1607 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1608 	 * here.
1609 	 */
1610 	if (is_v4_1(its_dev->its))
1611 		return;
1612 
1613 	map = dev_event_to_vlpi_map(its_dev, event);
1614 
1615 	if (map->db_enabled == enable)
1616 		return;
1617 
1618 	map->db_enabled = enable;
1619 
1620 	/*
1621 	 * More fun with the architecture:
1622 	 *
1623 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1624 	 * value or to 1023, depending on the enable bit. But that
1625 	 * would be issuing a mapping for an /existing/ DevID+EventID
1626 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1627 	 * to the /same/ vPE, using this opportunity to adjust the
1628 	 * doorbell. Mouahahahaha. We loves it, Precious.
1629 	 */
1630 	its_send_vmovi(its_dev, event);
1631 }
1632 
1633 static void its_mask_irq(struct irq_data *d)
1634 {
1635 	if (irqd_is_forwarded_to_vcpu(d))
1636 		its_vlpi_set_doorbell(d, false);
1637 
1638 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1639 }
1640 
1641 static void its_unmask_irq(struct irq_data *d)
1642 {
1643 	if (irqd_is_forwarded_to_vcpu(d))
1644 		its_vlpi_set_doorbell(d, true);
1645 
1646 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1647 }
1648 
1649 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1650 {
1651 	if (irqd_affinity_is_managed(d))
1652 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1653 
1654 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1655 }
1656 
1657 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1658 {
1659 	if (irqd_affinity_is_managed(d))
1660 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1661 	else
1662 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1663 }
1664 
1665 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1666 {
1667 	if (irqd_affinity_is_managed(d))
1668 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1669 	else
1670 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1671 }
1672 
1673 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1674 					      const struct cpumask *cpu_mask)
1675 {
1676 	unsigned int cpu = nr_cpu_ids, tmp;
1677 	int count = S32_MAX;
1678 
1679 	for_each_cpu(tmp, cpu_mask) {
1680 		int this_count = its_read_lpi_count(d, tmp);
1681 		if (this_count < count) {
1682 			cpu = tmp;
1683 		        count = this_count;
1684 		}
1685 	}
1686 
1687 	return cpu;
1688 }
1689 
1690 /*
1691  * As suggested by Thomas Gleixner in:
1692  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1693  */
1694 static int its_select_cpu(struct irq_data *d,
1695 			  const struct cpumask *aff_mask)
1696 {
1697 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1698 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1699 	static struct cpumask __tmpmask;
1700 	struct cpumask *tmpmask;
1701 	unsigned long flags;
1702 	int cpu, node;
1703 	node = its_dev->its->numa_node;
1704 	tmpmask = &__tmpmask;
1705 
1706 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1707 
1708 	if (!irqd_affinity_is_managed(d)) {
1709 		/* First try the NUMA node */
1710 		if (node != NUMA_NO_NODE) {
1711 			/*
1712 			 * Try the intersection of the affinity mask and the
1713 			 * node mask (and the online mask, just to be safe).
1714 			 */
1715 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1716 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1717 
1718 			/*
1719 			 * Ideally, we would check if the mask is empty, and
1720 			 * try again on the full node here.
1721 			 *
1722 			 * But it turns out that the way ACPI describes the
1723 			 * affinity for ITSs only deals about memory, and
1724 			 * not target CPUs, so it cannot describe a single
1725 			 * ITS placed next to two NUMA nodes.
1726 			 *
1727 			 * Instead, just fallback on the online mask. This
1728 			 * diverges from Thomas' suggestion above.
1729 			 */
1730 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1731 			if (cpu < nr_cpu_ids)
1732 				goto out;
1733 
1734 			/* If we can't cross sockets, give up */
1735 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1736 				goto out;
1737 
1738 			/* If the above failed, expand the search */
1739 		}
1740 
1741 		/* Try the intersection of the affinity and online masks */
1742 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1743 
1744 		/* If that doesn't fly, the online mask is the last resort */
1745 		if (cpumask_empty(tmpmask))
1746 			cpumask_copy(tmpmask, cpu_online_mask);
1747 
1748 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1749 	} else {
1750 		cpumask_copy(tmpmask, aff_mask);
1751 
1752 		/* If we cannot cross sockets, limit the search to that node */
1753 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1754 		    node != NUMA_NO_NODE)
1755 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1756 
1757 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1758 	}
1759 out:
1760 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1761 
1762 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1763 	return cpu;
1764 }
1765 
1766 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1767 			    bool force)
1768 {
1769 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1770 	struct its_collection *target_col;
1771 	u32 id = its_get_event_id(d);
1772 	int cpu, prev_cpu;
1773 
1774 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1775 	if (irqd_is_forwarded_to_vcpu(d))
1776 		return -EINVAL;
1777 
1778 	prev_cpu = its_dev->event_map.col_map[id];
1779 	its_dec_lpi_count(d, prev_cpu);
1780 
1781 	if (!force)
1782 		cpu = its_select_cpu(d, mask_val);
1783 	else
1784 		cpu = cpumask_pick_least_loaded(d, mask_val);
1785 
1786 	if (cpu < 0 || cpu >= nr_cpu_ids)
1787 		goto err;
1788 
1789 	/* don't set the affinity when the target cpu is same as current one */
1790 	if (cpu != prev_cpu) {
1791 		target_col = &its_dev->its->collections[cpu];
1792 		its_send_movi(its_dev, target_col, id);
1793 		its_dev->event_map.col_map[id] = cpu;
1794 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1795 	}
1796 
1797 	its_inc_lpi_count(d, cpu);
1798 
1799 	return IRQ_SET_MASK_OK_DONE;
1800 
1801 err:
1802 	its_inc_lpi_count(d, prev_cpu);
1803 	return -EINVAL;
1804 }
1805 
1806 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1807 {
1808 	struct its_node *its = its_dev->its;
1809 
1810 	return its->phys_base + GITS_TRANSLATER;
1811 }
1812 
1813 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1814 {
1815 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1816 
1817 	msg->data = its_get_event_id(d);
1818 	msi_msg_set_addr(irq_data_get_msi_desc(d), msg,
1819 			 its_dev->its->get_msi_base(its_dev));
1820 }
1821 
1822 static int its_irq_set_irqchip_state(struct irq_data *d,
1823 				     enum irqchip_irq_state which,
1824 				     bool state)
1825 {
1826 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1827 	u32 event = its_get_event_id(d);
1828 
1829 	if (which != IRQCHIP_STATE_PENDING)
1830 		return -EINVAL;
1831 
1832 	if (irqd_is_forwarded_to_vcpu(d)) {
1833 		if (state)
1834 			its_send_vint(its_dev, event);
1835 		else
1836 			its_send_vclear(its_dev, event);
1837 	} else {
1838 		if (state)
1839 			its_send_int(its_dev, event);
1840 		else
1841 			its_send_clear(its_dev, event);
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 static int its_irq_retrigger(struct irq_data *d)
1848 {
1849 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1850 }
1851 
1852 /*
1853  * Two favourable cases:
1854  *
1855  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1856  *     for vSGI delivery
1857  *
1858  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1859  *     and we're better off mapping all VPEs always
1860  *
1861  * If neither (a) nor (b) is true, then we map vPEs on demand.
1862  *
1863  */
1864 static bool gic_requires_eager_mapping(void)
1865 {
1866 	if (!its_list_map || gic_rdists->has_rvpeid)
1867 		return true;
1868 
1869 	return false;
1870 }
1871 
1872 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1873 {
1874 	if (gic_requires_eager_mapping())
1875 		return;
1876 
1877 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1878 
1879 	/*
1880 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1881 	 * them mapped now.
1882 	 */
1883 	vm->vlpi_count[its->list_nr]++;
1884 
1885 	if (vm->vlpi_count[its->list_nr] == 1) {
1886 		int i;
1887 
1888 		for (i = 0; i < vm->nr_vpes; i++) {
1889 			struct its_vpe *vpe = vm->vpes[i];
1890 
1891 			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1892 				its_send_vmapp(its, vpe, true);
1893 
1894 			its_send_vinvall(its, vpe);
1895 		}
1896 	}
1897 }
1898 
1899 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1900 {
1901 	/* Not using the ITS list? Everything is always mapped. */
1902 	if (gic_requires_eager_mapping())
1903 		return;
1904 
1905 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1906 
1907 	if (!--vm->vlpi_count[its->list_nr]) {
1908 		int i;
1909 
1910 		for (i = 0; i < vm->nr_vpes; i++) {
1911 			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1912 			its_send_vmapp(its, vm->vpes[i], false);
1913 		}
1914 	}
1915 }
1916 
1917 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1918 {
1919 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1920 	u32 event = its_get_event_id(d);
1921 
1922 	if (!info->map)
1923 		return -EINVAL;
1924 
1925 	if (!its_dev->event_map.vm) {
1926 		struct its_vlpi_map *maps;
1927 
1928 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1929 			       GFP_ATOMIC);
1930 		if (!maps)
1931 			return -ENOMEM;
1932 
1933 		its_dev->event_map.vm = info->map->vm;
1934 		its_dev->event_map.vlpi_maps = maps;
1935 	} else if (its_dev->event_map.vm != info->map->vm) {
1936 		return -EINVAL;
1937 	}
1938 
1939 	/* Get our private copy of the mapping information */
1940 	its_dev->event_map.vlpi_maps[event] = *info->map;
1941 
1942 	if (irqd_is_forwarded_to_vcpu(d)) {
1943 		/* Already mapped, move it around */
1944 		its_send_vmovi(its_dev, event);
1945 	} else {
1946 		/* Ensure all the VPEs are mapped on this ITS */
1947 		its_map_vm(its_dev->its, info->map->vm);
1948 
1949 		/*
1950 		 * Flag the interrupt as forwarded so that we can
1951 		 * start poking the virtual property table.
1952 		 */
1953 		irqd_set_forwarded_to_vcpu(d);
1954 
1955 		/* Write out the property to the prop table */
1956 		lpi_write_config(d, 0xff, info->map->properties);
1957 
1958 		/* Drop the physical mapping */
1959 		its_send_discard(its_dev, event);
1960 
1961 		/* and install the virtual one */
1962 		its_send_vmapti(its_dev, event);
1963 
1964 		/* Increment the number of VLPIs */
1965 		its_dev->event_map.nr_vlpis++;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1972 {
1973 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1974 	struct its_vlpi_map *map;
1975 
1976 	map = get_vlpi_map(d);
1977 
1978 	if (!its_dev->event_map.vm || !map)
1979 		return -EINVAL;
1980 
1981 	/* Copy our mapping information to the incoming request */
1982 	*info->map = *map;
1983 
1984 	return 0;
1985 }
1986 
1987 static int its_vlpi_unmap(struct irq_data *d)
1988 {
1989 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1990 	u32 event = its_get_event_id(d);
1991 
1992 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1993 		return -EINVAL;
1994 
1995 	/* Drop the virtual mapping */
1996 	its_send_discard(its_dev, event);
1997 
1998 	/* and restore the physical one */
1999 	irqd_clr_forwarded_to_vcpu(d);
2000 	its_send_mapti(its_dev, d->hwirq, event);
2001 	lpi_update_config(d, 0xff, (lpi_prop_prio |
2002 				    LPI_PROP_ENABLED |
2003 				    LPI_PROP_GROUP1));
2004 
2005 	/* Potentially unmap the VM from this ITS */
2006 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2007 
2008 	/*
2009 	 * Drop the refcount and make the device available again if
2010 	 * this was the last VLPI.
2011 	 */
2012 	if (!--its_dev->event_map.nr_vlpis) {
2013 		its_dev->event_map.vm = NULL;
2014 		kfree(its_dev->event_map.vlpi_maps);
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2021 {
2022 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2023 
2024 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2025 		return -EINVAL;
2026 
2027 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2028 		lpi_update_config(d, 0xff, info->config);
2029 	else
2030 		lpi_write_config(d, 0xff, info->config);
2031 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2032 
2033 	return 0;
2034 }
2035 
2036 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2037 {
2038 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2039 	struct its_cmd_info *info = vcpu_info;
2040 
2041 	/* Need a v4 ITS */
2042 	if (!is_v4(its_dev->its))
2043 		return -EINVAL;
2044 
2045 	guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
2046 
2047 	/* Unmap request? */
2048 	if (!info)
2049 		return its_vlpi_unmap(d);
2050 
2051 	switch (info->cmd_type) {
2052 	case MAP_VLPI:
2053 		return its_vlpi_map(d, info);
2054 
2055 	case GET_VLPI:
2056 		return its_vlpi_get(d, info);
2057 
2058 	case PROP_UPDATE_VLPI:
2059 	case PROP_UPDATE_AND_INV_VLPI:
2060 		return its_vlpi_prop_update(d, info);
2061 
2062 	default:
2063 		return -EINVAL;
2064 	}
2065 }
2066 
2067 static struct irq_chip its_irq_chip = {
2068 	.name			= "ITS",
2069 	.irq_mask		= its_mask_irq,
2070 	.irq_unmask		= its_unmask_irq,
2071 	.irq_eoi		= irq_chip_eoi_parent,
2072 	.irq_set_affinity	= its_set_affinity,
2073 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2074 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2075 	.irq_retrigger		= its_irq_retrigger,
2076 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2077 };
2078 
2079 
2080 /*
2081  * How we allocate LPIs:
2082  *
2083  * lpi_range_list contains ranges of LPIs that are to available to
2084  * allocate from. To allocate LPIs, just pick the first range that
2085  * fits the required allocation, and reduce it by the required
2086  * amount. Once empty, remove the range from the list.
2087  *
2088  * To free a range of LPIs, add a free range to the list, sort it and
2089  * merge the result if the new range happens to be adjacent to an
2090  * already free block.
2091  *
2092  * The consequence of the above is that allocation is cost is low, but
2093  * freeing is expensive. We assumes that freeing rarely occurs.
2094  */
2095 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2096 
2097 static DEFINE_MUTEX(lpi_range_lock);
2098 static LIST_HEAD(lpi_range_list);
2099 
2100 struct lpi_range {
2101 	struct list_head	entry;
2102 	u32			base_id;
2103 	u32			span;
2104 };
2105 
2106 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2107 {
2108 	struct lpi_range *range;
2109 
2110 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2111 	if (range) {
2112 		range->base_id = base;
2113 		range->span = span;
2114 	}
2115 
2116 	return range;
2117 }
2118 
2119 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2120 {
2121 	struct lpi_range *range, *tmp;
2122 	int err = -ENOSPC;
2123 
2124 	mutex_lock(&lpi_range_lock);
2125 
2126 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2127 		if (range->span >= nr_lpis) {
2128 			*base = range->base_id;
2129 			range->base_id += nr_lpis;
2130 			range->span -= nr_lpis;
2131 
2132 			if (range->span == 0) {
2133 				list_del(&range->entry);
2134 				kfree(range);
2135 			}
2136 
2137 			err = 0;
2138 			break;
2139 		}
2140 	}
2141 
2142 	mutex_unlock(&lpi_range_lock);
2143 
2144 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2145 	return err;
2146 }
2147 
2148 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2149 {
2150 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2151 		return;
2152 	if (a->base_id + a->span != b->base_id)
2153 		return;
2154 	b->base_id = a->base_id;
2155 	b->span += a->span;
2156 	list_del(&a->entry);
2157 	kfree(a);
2158 }
2159 
2160 static int free_lpi_range(u32 base, u32 nr_lpis)
2161 {
2162 	struct lpi_range *new, *old;
2163 
2164 	new = mk_lpi_range(base, nr_lpis);
2165 	if (!new)
2166 		return -ENOMEM;
2167 
2168 	mutex_lock(&lpi_range_lock);
2169 
2170 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2171 		if (old->base_id < base)
2172 			break;
2173 	}
2174 	/*
2175 	 * old is the last element with ->base_id smaller than base,
2176 	 * so new goes right after it. If there are no elements with
2177 	 * ->base_id smaller than base, &old->entry ends up pointing
2178 	 * at the head of the list, and inserting new it the start of
2179 	 * the list is the right thing to do in that case as well.
2180 	 */
2181 	list_add(&new->entry, &old->entry);
2182 	/*
2183 	 * Now check if we can merge with the preceding and/or
2184 	 * following ranges.
2185 	 */
2186 	merge_lpi_ranges(old, new);
2187 	merge_lpi_ranges(new, list_next_entry(new, entry));
2188 
2189 	mutex_unlock(&lpi_range_lock);
2190 	return 0;
2191 }
2192 
2193 static int __init its_lpi_init(u32 id_bits)
2194 {
2195 	u32 lpis = (1UL << id_bits) - 8192;
2196 	u32 numlpis;
2197 	int err;
2198 
2199 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2200 
2201 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2202 		lpis = numlpis;
2203 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2204 			lpis);
2205 	}
2206 
2207 	/*
2208 	 * Initializing the allocator is just the same as freeing the
2209 	 * full range of LPIs.
2210 	 */
2211 	err = free_lpi_range(8192, lpis);
2212 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2213 	return err;
2214 }
2215 
2216 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2217 {
2218 	unsigned long *bitmap = NULL;
2219 	int err = 0;
2220 
2221 	do {
2222 		err = alloc_lpi_range(nr_irqs, base);
2223 		if (!err)
2224 			break;
2225 
2226 		nr_irqs /= 2;
2227 	} while (nr_irqs > 0);
2228 
2229 	if (!nr_irqs)
2230 		err = -ENOSPC;
2231 
2232 	if (err)
2233 		goto out;
2234 
2235 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2236 	if (!bitmap)
2237 		goto out;
2238 
2239 	*nr_ids = nr_irqs;
2240 
2241 out:
2242 	if (!bitmap)
2243 		*base = *nr_ids = 0;
2244 
2245 	return bitmap;
2246 }
2247 
2248 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2249 {
2250 	WARN_ON(free_lpi_range(base, nr_ids));
2251 	bitmap_free(bitmap);
2252 }
2253 
2254 static void gic_reset_prop_table(void *va)
2255 {
2256 	/* Regular IRQ priority, Group-1, disabled */
2257 	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2258 
2259 	/* Make sure the GIC will observe the written configuration */
2260 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2261 }
2262 
2263 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2264 {
2265 	struct page *prop_page;
2266 
2267 	prop_page = its_alloc_pages(gfp_flags,
2268 				    get_order(LPI_PROPBASE_SZ));
2269 	if (!prop_page)
2270 		return NULL;
2271 
2272 	gic_reset_prop_table(page_address(prop_page));
2273 
2274 	return prop_page;
2275 }
2276 
2277 static void its_free_prop_table(struct page *prop_page)
2278 {
2279 	its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2280 }
2281 
2282 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2283 {
2284 	phys_addr_t start, end, addr_end;
2285 	u64 i;
2286 
2287 	/*
2288 	 * We don't bother checking for a kdump kernel as by
2289 	 * construction, the LPI tables are out of this kernel's
2290 	 * memory map.
2291 	 */
2292 	if (is_kdump_kernel())
2293 		return true;
2294 
2295 	addr_end = addr + size - 1;
2296 
2297 	for_each_reserved_mem_range(i, &start, &end) {
2298 		if (addr >= start && addr_end <= end)
2299 			return true;
2300 	}
2301 
2302 	/* Not found, not a good sign... */
2303 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2304 		&addr, &addr_end);
2305 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2306 	return false;
2307 }
2308 
2309 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2310 {
2311 	if (efi_enabled(EFI_CONFIG_TABLES))
2312 		return efi_mem_reserve_persistent(addr, size);
2313 
2314 	return 0;
2315 }
2316 
2317 static int __init its_setup_lpi_prop_table(void)
2318 {
2319 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2320 		u64 val;
2321 
2322 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2323 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2324 
2325 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2326 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2327 						     LPI_PROPBASE_SZ,
2328 						     MEMREMAP_WB);
2329 		gic_reset_prop_table(gic_rdists->prop_table_va);
2330 	} else {
2331 		struct page *page;
2332 
2333 		lpi_id_bits = min_t(u32,
2334 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2335 				    ITS_MAX_LPI_NRBITS);
2336 		page = its_allocate_prop_table(GFP_NOWAIT);
2337 		if (!page) {
2338 			pr_err("Failed to allocate PROPBASE\n");
2339 			return -ENOMEM;
2340 		}
2341 
2342 		gic_rdists->prop_table_pa = page_to_phys(page);
2343 		gic_rdists->prop_table_va = page_address(page);
2344 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2345 					  LPI_PROPBASE_SZ));
2346 	}
2347 
2348 	pr_info("GICv3: using LPI property table @%pa\n",
2349 		&gic_rdists->prop_table_pa);
2350 
2351 	return its_lpi_init(lpi_id_bits);
2352 }
2353 
2354 static const char *its_base_type_string[] = {
2355 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2356 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2357 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2358 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2359 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2360 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2361 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2362 };
2363 
2364 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2365 {
2366 	u32 idx = baser - its->tables;
2367 
2368 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2369 }
2370 
2371 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2372 			    u64 val)
2373 {
2374 	u32 idx = baser - its->tables;
2375 
2376 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2377 	baser->val = its_read_baser(its, baser);
2378 }
2379 
2380 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2381 			   u64 cache, u64 shr, u32 order, bool indirect)
2382 {
2383 	u64 val = its_read_baser(its, baser);
2384 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2385 	u64 type = GITS_BASER_TYPE(val);
2386 	u64 baser_phys, tmp;
2387 	u32 alloc_pages, psz;
2388 	struct page *page;
2389 	void *base;
2390 
2391 	psz = baser->psz;
2392 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2393 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2394 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2395 			&its->phys_base, its_base_type_string[type],
2396 			alloc_pages, GITS_BASER_PAGES_MAX);
2397 		alloc_pages = GITS_BASER_PAGES_MAX;
2398 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2399 	}
2400 
2401 	page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2402 	if (!page)
2403 		return -ENOMEM;
2404 
2405 	base = (void *)page_address(page);
2406 	baser_phys = virt_to_phys(base);
2407 
2408 	/* Check if the physical address of the memory is above 48bits */
2409 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2410 
2411 		/* 52bit PA is supported only when PageSize=64K */
2412 		if (psz != SZ_64K) {
2413 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2414 			its_free_pages(base, order);
2415 			return -ENXIO;
2416 		}
2417 
2418 		/* Convert 52bit PA to 48bit field */
2419 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2420 	}
2421 
2422 retry_baser:
2423 	val = (baser_phys					 |
2424 		(type << GITS_BASER_TYPE_SHIFT)			 |
2425 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2426 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2427 		cache						 |
2428 		shr						 |
2429 		GITS_BASER_VALID);
2430 
2431 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2432 
2433 	switch (psz) {
2434 	case SZ_4K:
2435 		val |= GITS_BASER_PAGE_SIZE_4K;
2436 		break;
2437 	case SZ_16K:
2438 		val |= GITS_BASER_PAGE_SIZE_16K;
2439 		break;
2440 	case SZ_64K:
2441 		val |= GITS_BASER_PAGE_SIZE_64K;
2442 		break;
2443 	}
2444 
2445 	if (!shr)
2446 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2447 
2448 	its_write_baser(its, baser, val);
2449 	tmp = baser->val;
2450 
2451 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2452 		/*
2453 		 * Shareability didn't stick. Just use
2454 		 * whatever the read reported, which is likely
2455 		 * to be the only thing this redistributor
2456 		 * supports. If that's zero, make it
2457 		 * non-cacheable as well.
2458 		 */
2459 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2460 		if (!shr)
2461 			cache = GITS_BASER_nC;
2462 
2463 		goto retry_baser;
2464 	}
2465 
2466 	if (val != tmp) {
2467 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2468 		       &its->phys_base, its_base_type_string[type],
2469 		       val, tmp);
2470 		its_free_pages(base, order);
2471 		return -ENXIO;
2472 	}
2473 
2474 	baser->order = order;
2475 	baser->base = base;
2476 	baser->psz = psz;
2477 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2478 
2479 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2480 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2481 		its_base_type_string[type],
2482 		(unsigned long)virt_to_phys(base),
2483 		indirect ? "indirect" : "flat", (int)esz,
2484 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2485 
2486 	return 0;
2487 }
2488 
2489 static bool its_parse_indirect_baser(struct its_node *its,
2490 				     struct its_baser *baser,
2491 				     u32 *order, u32 ids)
2492 {
2493 	u64 tmp = its_read_baser(its, baser);
2494 	u64 type = GITS_BASER_TYPE(tmp);
2495 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2496 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2497 	u32 new_order = *order;
2498 	u32 psz = baser->psz;
2499 	bool indirect = false;
2500 
2501 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2502 	if ((esz << ids) > (psz * 2)) {
2503 		/*
2504 		 * Find out whether hw supports a single or two-level table by
2505 		 * table by reading bit at offset '62' after writing '1' to it.
2506 		 */
2507 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2508 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2509 
2510 		if (indirect) {
2511 			/*
2512 			 * The size of the lvl2 table is equal to ITS page size
2513 			 * which is 'psz'. For computing lvl1 table size,
2514 			 * subtract ID bits that sparse lvl2 table from 'ids'
2515 			 * which is reported by ITS hardware times lvl1 table
2516 			 * entry size.
2517 			 */
2518 			ids -= ilog2(psz / (int)esz);
2519 			esz = GITS_LVL1_ENTRY_SIZE;
2520 		}
2521 	}
2522 
2523 	/*
2524 	 * Allocate as many entries as required to fit the
2525 	 * range of device IDs that the ITS can grok... The ID
2526 	 * space being incredibly sparse, this results in a
2527 	 * massive waste of memory if two-level device table
2528 	 * feature is not supported by hardware.
2529 	 */
2530 	new_order = max_t(u32, get_order(esz << ids), new_order);
2531 	if (new_order > MAX_PAGE_ORDER) {
2532 		new_order = MAX_PAGE_ORDER;
2533 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2534 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2535 			&its->phys_base, its_base_type_string[type],
2536 			device_ids(its), ids);
2537 	}
2538 
2539 	*order = new_order;
2540 
2541 	return indirect;
2542 }
2543 
2544 static u32 compute_common_aff(u64 val)
2545 {
2546 	u32 aff, clpiaff;
2547 
2548 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2549 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2550 
2551 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2552 }
2553 
2554 static u32 compute_its_aff(struct its_node *its)
2555 {
2556 	u64 val;
2557 	u32 svpet;
2558 
2559 	/*
2560 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2561 	 * the resulting affinity. We then use that to see if this match
2562 	 * our own affinity.
2563 	 */
2564 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2565 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2566 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2567 	return compute_common_aff(val);
2568 }
2569 
2570 static struct its_node *find_sibling_its(struct its_node *cur_its)
2571 {
2572 	struct its_node *its;
2573 	u32 aff;
2574 
2575 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2576 		return NULL;
2577 
2578 	aff = compute_its_aff(cur_its);
2579 
2580 	list_for_each_entry(its, &its_nodes, entry) {
2581 		u64 baser;
2582 
2583 		if (!is_v4_1(its) || its == cur_its)
2584 			continue;
2585 
2586 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2587 			continue;
2588 
2589 		if (aff != compute_its_aff(its))
2590 			continue;
2591 
2592 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2593 		baser = its->tables[2].val;
2594 		if (!(baser & GITS_BASER_VALID))
2595 			continue;
2596 
2597 		return its;
2598 	}
2599 
2600 	return NULL;
2601 }
2602 
2603 static void its_free_tables(struct its_node *its)
2604 {
2605 	int i;
2606 
2607 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2608 		if (its->tables[i].base) {
2609 			its_free_pages(its->tables[i].base, its->tables[i].order);
2610 			its->tables[i].base = NULL;
2611 		}
2612 	}
2613 }
2614 
2615 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2616 {
2617 	u64 psz = SZ_64K;
2618 
2619 	while (psz) {
2620 		u64 val, gpsz;
2621 
2622 		val = its_read_baser(its, baser);
2623 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2624 
2625 		switch (psz) {
2626 		case SZ_64K:
2627 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2628 			break;
2629 		case SZ_16K:
2630 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2631 			break;
2632 		case SZ_4K:
2633 		default:
2634 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2635 			break;
2636 		}
2637 
2638 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2639 
2640 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2641 		its_write_baser(its, baser, val);
2642 
2643 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2644 			break;
2645 
2646 		switch (psz) {
2647 		case SZ_64K:
2648 			psz = SZ_16K;
2649 			break;
2650 		case SZ_16K:
2651 			psz = SZ_4K;
2652 			break;
2653 		case SZ_4K:
2654 		default:
2655 			return -1;
2656 		}
2657 	}
2658 
2659 	baser->psz = psz;
2660 	return 0;
2661 }
2662 
2663 static int its_alloc_tables(struct its_node *its)
2664 {
2665 	u64 shr = GITS_BASER_InnerShareable;
2666 	u64 cache = GITS_BASER_RaWaWb;
2667 	int err, i;
2668 
2669 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2670 		/* erratum 24313: ignore memory access type */
2671 		cache = GITS_BASER_nCnB;
2672 
2673 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2674 		cache = GITS_BASER_nC;
2675 		shr = 0;
2676 	}
2677 
2678 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2679 		struct its_baser *baser = its->tables + i;
2680 		u64 val = its_read_baser(its, baser);
2681 		u64 type = GITS_BASER_TYPE(val);
2682 		bool indirect = false;
2683 		u32 order;
2684 
2685 		if (type == GITS_BASER_TYPE_NONE)
2686 			continue;
2687 
2688 		if (its_probe_baser_psz(its, baser)) {
2689 			its_free_tables(its);
2690 			return -ENXIO;
2691 		}
2692 
2693 		order = get_order(baser->psz);
2694 
2695 		switch (type) {
2696 		case GITS_BASER_TYPE_DEVICE:
2697 			indirect = its_parse_indirect_baser(its, baser, &order,
2698 							    device_ids(its));
2699 			break;
2700 
2701 		case GITS_BASER_TYPE_VCPU:
2702 			if (is_v4_1(its)) {
2703 				struct its_node *sibling;
2704 
2705 				WARN_ON(i != 2);
2706 				if ((sibling = find_sibling_its(its))) {
2707 					*baser = sibling->tables[2];
2708 					its_write_baser(its, baser, baser->val);
2709 					continue;
2710 				}
2711 			}
2712 
2713 			indirect = its_parse_indirect_baser(its, baser, &order,
2714 							    ITS_MAX_VPEID_BITS);
2715 			break;
2716 		}
2717 
2718 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2719 		if (err < 0) {
2720 			its_free_tables(its);
2721 			return err;
2722 		}
2723 
2724 		/* Update settings which will be used for next BASERn */
2725 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2726 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 static u64 inherit_vpe_l1_table_from_its(void)
2733 {
2734 	struct its_node *its;
2735 	u64 val;
2736 	u32 aff;
2737 
2738 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739 	aff = compute_common_aff(val);
2740 
2741 	list_for_each_entry(its, &its_nodes, entry) {
2742 		u64 baser, addr;
2743 
2744 		if (!is_v4_1(its))
2745 			continue;
2746 
2747 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2748 			continue;
2749 
2750 		if (aff != compute_its_aff(its))
2751 			continue;
2752 
2753 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2754 		baser = its->tables[2].val;
2755 		if (!(baser & GITS_BASER_VALID))
2756 			continue;
2757 
2758 		/* We have a winner! */
2759 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2760 
2761 		val  = GICR_VPROPBASER_4_1_VALID;
2762 		if (baser & GITS_BASER_INDIRECT)
2763 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2764 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2765 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2766 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2767 		case GIC_PAGE_SIZE_64K:
2768 			addr = GITS_BASER_ADDR_48_to_52(baser);
2769 			break;
2770 		default:
2771 			addr = baser & GENMASK_ULL(47, 12);
2772 			break;
2773 		}
2774 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2775 		if (rdists_support_shareable()) {
2776 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2777 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2778 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2779 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2780 		}
2781 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2782 
2783 		*this_cpu_ptr(&local_4_1_its) = its;
2784 		return val;
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2791 {
2792 	u32 aff;
2793 	u64 val;
2794 	int cpu;
2795 
2796 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2797 	aff = compute_common_aff(val);
2798 
2799 	for_each_possible_cpu(cpu) {
2800 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2801 
2802 		if (!base || cpu == smp_processor_id())
2803 			continue;
2804 
2805 		val = gic_read_typer(base + GICR_TYPER);
2806 		if (aff != compute_common_aff(val))
2807 			continue;
2808 
2809 		/*
2810 		 * At this point, we have a victim. This particular CPU
2811 		 * has already booted, and has an affinity that matches
2812 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2813 		 * Make sure we don't write the Z bit in that case.
2814 		 */
2815 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2816 		val &= ~GICR_VPROPBASER_4_1_Z;
2817 
2818 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2819 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2820 
2821 		*this_cpu_ptr(&local_4_1_its) = *per_cpu_ptr(&local_4_1_its, cpu);
2822 		return val;
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 static bool allocate_vpe_l2_table(int cpu, u32 id)
2829 {
2830 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2831 	unsigned int psz, esz, idx, npg, gpsz;
2832 	u64 val;
2833 	struct page *page;
2834 	__le64 *table;
2835 
2836 	if (!gic_rdists->has_rvpeid)
2837 		return true;
2838 
2839 	/* Skip non-present CPUs */
2840 	if (!base)
2841 		return true;
2842 
2843 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2844 
2845 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2846 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2847 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2848 
2849 	switch (gpsz) {
2850 	default:
2851 		WARN_ON(1);
2852 		fallthrough;
2853 	case GIC_PAGE_SIZE_4K:
2854 		psz = SZ_4K;
2855 		break;
2856 	case GIC_PAGE_SIZE_16K:
2857 		psz = SZ_16K;
2858 		break;
2859 	case GIC_PAGE_SIZE_64K:
2860 		psz = SZ_64K;
2861 		break;
2862 	}
2863 
2864 	/* Don't allow vpe_id that exceeds single, flat table limit */
2865 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2866 		return (id < (npg * psz / (esz * SZ_8)));
2867 
2868 	/* Compute 1st level table index & check if that exceeds table limit */
2869 	idx = id >> ilog2(psz / (esz * SZ_8));
2870 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2871 		return false;
2872 
2873 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2874 
2875 	/* Allocate memory for 2nd level table */
2876 	if (!table[idx]) {
2877 		page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2878 		if (!page)
2879 			return false;
2880 
2881 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2882 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2883 			gic_flush_dcache_to_poc(page_address(page), psz);
2884 
2885 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2886 
2887 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2888 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2889 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2890 
2891 		/* Ensure updated table contents are visible to RD hardware */
2892 		dsb(sy);
2893 	}
2894 
2895 	return true;
2896 }
2897 
2898 static int allocate_vpe_l1_table(void)
2899 {
2900 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2901 	u64 val, gpsz, npg, pa;
2902 	unsigned int psz = SZ_64K;
2903 	unsigned int np, epp, esz;
2904 	struct page *page;
2905 
2906 	if (!gic_rdists->has_rvpeid)
2907 		return 0;
2908 
2909 	/*
2910 	 * if VPENDBASER.Valid is set, disable any previously programmed
2911 	 * VPE by setting PendingLast while clearing Valid. This has the
2912 	 * effect of making sure no doorbell will be generated and we can
2913 	 * then safely clear VPROPBASER.Valid.
2914 	 */
2915 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2916 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2917 				      vlpi_base + GICR_VPENDBASER);
2918 
2919 	/*
2920 	 * If we can inherit the configuration from another RD, let's do
2921 	 * so. Otherwise, we have to go through the allocation process. We
2922 	 * assume that all RDs have the exact same requirements, as
2923 	 * nothing will work otherwise.
2924 	 */
2925 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2926 	if (val & GICR_VPROPBASER_4_1_VALID)
2927 		goto out;
2928 
2929 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2930 	if (!gic_data_rdist()->vpe_table_mask)
2931 		return -ENOMEM;
2932 
2933 	val = inherit_vpe_l1_table_from_its();
2934 	if (val & GICR_VPROPBASER_4_1_VALID)
2935 		goto out;
2936 
2937 	/* First probe the page size */
2938 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2939 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2940 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2941 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2942 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2943 
2944 	switch (gpsz) {
2945 	default:
2946 		gpsz = GIC_PAGE_SIZE_4K;
2947 		fallthrough;
2948 	case GIC_PAGE_SIZE_4K:
2949 		psz = SZ_4K;
2950 		break;
2951 	case GIC_PAGE_SIZE_16K:
2952 		psz = SZ_16K;
2953 		break;
2954 	case GIC_PAGE_SIZE_64K:
2955 		psz = SZ_64K;
2956 		break;
2957 	}
2958 
2959 	/*
2960 	 * Start populating the register from scratch, including RO fields
2961 	 * (which we want to print in debug cases...)
2962 	 */
2963 	val = 0;
2964 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2965 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2966 
2967 	/* How many entries per GIC page? */
2968 	esz++;
2969 	epp = psz / (esz * SZ_8);
2970 
2971 	/*
2972 	 * If we need more than just a single L1 page, flag the table
2973 	 * as indirect and compute the number of required L1 pages.
2974 	 */
2975 	if (epp < ITS_MAX_VPEID) {
2976 		int nl2;
2977 
2978 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2979 
2980 		/* Number of L2 pages required to cover the VPEID space */
2981 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2982 
2983 		/* Number of L1 pages to point to the L2 pages */
2984 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2985 	} else {
2986 		npg = 1;
2987 	}
2988 
2989 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2990 
2991 	/* Right, that's the number of CPU pages we need for L1 */
2992 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2993 
2994 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2995 		 np, npg, psz, epp, esz);
2996 	page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2997 	if (!page)
2998 		return -ENOMEM;
2999 
3000 	gic_data_rdist()->vpe_l1_base = page_address(page);
3001 	pa = virt_to_phys(page_address(page));
3002 	WARN_ON(!IS_ALIGNED(pa, psz));
3003 
3004 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3005 	if (rdists_support_shareable()) {
3006 		val |= GICR_VPROPBASER_RaWb;
3007 		val |= GICR_VPROPBASER_InnerShareable;
3008 	}
3009 	val |= GICR_VPROPBASER_4_1_Z;
3010 	val |= GICR_VPROPBASER_4_1_VALID;
3011 
3012 out:
3013 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3014 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3015 
3016 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3017 		 smp_processor_id(), val,
3018 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3019 
3020 	return 0;
3021 }
3022 
3023 static int its_alloc_collections(struct its_node *its)
3024 {
3025 	int i;
3026 
3027 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3028 				   GFP_KERNEL);
3029 	if (!its->collections)
3030 		return -ENOMEM;
3031 
3032 	for (i = 0; i < nr_cpu_ids; i++)
3033 		its->collections[i].target_address = ~0ULL;
3034 
3035 	return 0;
3036 }
3037 
3038 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3039 {
3040 	struct page *pend_page;
3041 
3042 	pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3043 	if (!pend_page)
3044 		return NULL;
3045 
3046 	/* Make sure the GIC will observe the zero-ed page */
3047 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3048 
3049 	return pend_page;
3050 }
3051 
3052 static void its_free_pending_table(struct page *pt)
3053 {
3054 	its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3055 }
3056 
3057 /*
3058  * Booting with kdump and LPIs enabled is generally fine. Any other
3059  * case is wrong in the absence of firmware/EFI support.
3060  */
3061 static bool enabled_lpis_allowed(void)
3062 {
3063 	phys_addr_t addr;
3064 	u64 val;
3065 
3066 	/* Check whether the property table is in a reserved region */
3067 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3068 	addr = val & GENMASK_ULL(51, 12);
3069 
3070 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3071 }
3072 
3073 static int __init allocate_lpi_tables(void)
3074 {
3075 	u64 val;
3076 	int err, cpu;
3077 
3078 	/*
3079 	 * If LPIs are enabled while we run this from the boot CPU,
3080 	 * flag the RD tables as pre-allocated if the stars do align.
3081 	 */
3082 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3083 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3084 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3085 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3086 		pr_info("GICv3: Using preallocated redistributor tables\n");
3087 	}
3088 
3089 	err = its_setup_lpi_prop_table();
3090 	if (err)
3091 		return err;
3092 
3093 	/*
3094 	 * We allocate all the pending tables anyway, as we may have a
3095 	 * mix of RDs that have had LPIs enabled, and some that
3096 	 * don't. We'll free the unused ones as each CPU comes online.
3097 	 */
3098 	for_each_possible_cpu(cpu) {
3099 		struct page *pend_page;
3100 
3101 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3102 		if (!pend_page) {
3103 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3104 			return -ENOMEM;
3105 		}
3106 
3107 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3114 {
3115 	u32 count = 1000000;	/* 1s! */
3116 	bool clean;
3117 	u64 val;
3118 
3119 	do {
3120 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3121 		clean = !(val & GICR_VPENDBASER_Dirty);
3122 		if (!clean) {
3123 			count--;
3124 			cpu_relax();
3125 			udelay(1);
3126 		}
3127 	} while (!clean && count);
3128 
3129 	if (unlikely(!clean))
3130 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3131 
3132 	return val;
3133 }
3134 
3135 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3136 {
3137 	u64 val;
3138 
3139 	/* Make sure we wait until the RD is done with the initial scan */
3140 	val = read_vpend_dirty_clear(vlpi_base);
3141 	val &= ~GICR_VPENDBASER_Valid;
3142 	val &= ~clr;
3143 	val |= set;
3144 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3145 
3146 	val = read_vpend_dirty_clear(vlpi_base);
3147 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3148 		val |= GICR_VPENDBASER_PendingLast;
3149 
3150 	return val;
3151 }
3152 
3153 static void its_cpu_init_lpis(void)
3154 {
3155 	void __iomem *rbase = gic_data_rdist_rd_base();
3156 	struct page *pend_page;
3157 	phys_addr_t paddr;
3158 	u64 val, tmp;
3159 
3160 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3161 		return;
3162 
3163 	val = readl_relaxed(rbase + GICR_CTLR);
3164 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3165 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3166 		/*
3167 		 * Check that we get the same property table on all
3168 		 * RDs. If we don't, this is hopeless.
3169 		 */
3170 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3171 		paddr &= GENMASK_ULL(51, 12);
3172 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3173 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3174 
3175 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3176 		paddr &= GENMASK_ULL(51, 16);
3177 
3178 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3179 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3180 
3181 		goto out;
3182 	}
3183 
3184 	pend_page = gic_data_rdist()->pend_page;
3185 	paddr = page_to_phys(pend_page);
3186 
3187 	/* set PROPBASE */
3188 	val = (gic_rdists->prop_table_pa |
3189 	       GICR_PROPBASER_InnerShareable |
3190 	       GICR_PROPBASER_RaWaWb |
3191 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3192 
3193 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3194 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3195 
3196 	if (!rdists_support_shareable())
3197 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3198 
3199 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3200 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3201 			/*
3202 			 * The HW reports non-shareable, we must
3203 			 * remove the cacheability attributes as
3204 			 * well.
3205 			 */
3206 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3207 				 GICR_PROPBASER_CACHEABILITY_MASK);
3208 			val |= GICR_PROPBASER_nC;
3209 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3210 		}
3211 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3212 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3213 	}
3214 
3215 	/* set PENDBASE */
3216 	val = (page_to_phys(pend_page) |
3217 	       GICR_PENDBASER_InnerShareable |
3218 	       GICR_PENDBASER_RaWaWb);
3219 
3220 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3221 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3222 
3223 	if (!rdists_support_shareable())
3224 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3225 
3226 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3227 		/*
3228 		 * The HW reports non-shareable, we must remove the
3229 		 * cacheability attributes as well.
3230 		 */
3231 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3232 			 GICR_PENDBASER_CACHEABILITY_MASK);
3233 		val |= GICR_PENDBASER_nC;
3234 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3235 	}
3236 
3237 	/* Enable LPIs */
3238 	val = readl_relaxed(rbase + GICR_CTLR);
3239 	val |= GICR_CTLR_ENABLE_LPIS;
3240 	writel_relaxed(val, rbase + GICR_CTLR);
3241 
3242 out:
3243 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3244 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3245 
3246 		/*
3247 		 * It's possible for CPU to receive VLPIs before it is
3248 		 * scheduled as a vPE, especially for the first CPU, and the
3249 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3250 		 * as out of range and dropped by GIC.
3251 		 * So we initialize IDbits to known value to avoid VLPI drop.
3252 		 */
3253 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3254 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3255 			smp_processor_id(), val);
3256 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3257 
3258 		/*
3259 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3260 		 * ancient programming gets left in and has possibility of
3261 		 * corrupting memory.
3262 		 */
3263 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3264 	}
3265 
3266 	if (allocate_vpe_l1_table()) {
3267 		/*
3268 		 * If the allocation has failed, we're in massive trouble.
3269 		 * Disable direct injection, and pray that no VM was
3270 		 * already running...
3271 		 */
3272 		gic_rdists->has_rvpeid = false;
3273 		gic_rdists->has_vlpis = false;
3274 	}
3275 
3276 	/* Make sure the GIC has seen the above */
3277 	dsb(sy);
3278 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3279 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3280 		smp_processor_id(),
3281 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3282 		"reserved" : "allocated",
3283 		&paddr);
3284 }
3285 
3286 static void its_cpu_init_collection(struct its_node *its)
3287 {
3288 	int cpu = smp_processor_id();
3289 	u64 target;
3290 
3291 	/* avoid cross node collections and its mapping */
3292 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3293 		struct device_node *cpu_node;
3294 
3295 		cpu_node = of_get_cpu_node(cpu, NULL);
3296 		if (its->numa_node != NUMA_NO_NODE &&
3297 			its->numa_node != of_node_to_nid(cpu_node))
3298 			return;
3299 	}
3300 
3301 	/*
3302 	 * We now have to bind each collection to its target
3303 	 * redistributor.
3304 	 */
3305 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3306 		/*
3307 		 * This ITS wants the physical address of the
3308 		 * redistributor.
3309 		 */
3310 		target = gic_data_rdist()->phys_base;
3311 	} else {
3312 		/* This ITS wants a linear CPU number. */
3313 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3314 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3315 	}
3316 
3317 	/* Perform collection mapping */
3318 	its->collections[cpu].target_address = target;
3319 	its->collections[cpu].col_id = cpu;
3320 
3321 	its_send_mapc(its, &its->collections[cpu], 1);
3322 	its_send_invall(its, &its->collections[cpu]);
3323 }
3324 
3325 static void its_cpu_init_collections(void)
3326 {
3327 	struct its_node *its;
3328 
3329 	raw_spin_lock(&its_lock);
3330 
3331 	list_for_each_entry(its, &its_nodes, entry)
3332 		its_cpu_init_collection(its);
3333 
3334 	raw_spin_unlock(&its_lock);
3335 }
3336 
3337 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3338 {
3339 	struct its_device *its_dev = NULL, *tmp;
3340 	unsigned long flags;
3341 
3342 	raw_spin_lock_irqsave(&its->lock, flags);
3343 
3344 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3345 		if (tmp->device_id == dev_id) {
3346 			its_dev = tmp;
3347 			break;
3348 		}
3349 	}
3350 
3351 	raw_spin_unlock_irqrestore(&its->lock, flags);
3352 
3353 	return its_dev;
3354 }
3355 
3356 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3357 {
3358 	int i;
3359 
3360 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3361 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3362 			return &its->tables[i];
3363 	}
3364 
3365 	return NULL;
3366 }
3367 
3368 static bool its_alloc_table_entry(struct its_node *its,
3369 				  struct its_baser *baser, u32 id)
3370 {
3371 	struct page *page;
3372 	u32 esz, idx;
3373 	__le64 *table;
3374 
3375 	/* Don't allow device id that exceeds single, flat table limit */
3376 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3377 	if (!(baser->val & GITS_BASER_INDIRECT))
3378 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3379 
3380 	/* Compute 1st level table index & check if that exceeds table limit */
3381 	idx = id >> ilog2(baser->psz / esz);
3382 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3383 		return false;
3384 
3385 	table = baser->base;
3386 
3387 	/* Allocate memory for 2nd level table */
3388 	if (!table[idx]) {
3389 		page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3390 					    get_order(baser->psz));
3391 		if (!page)
3392 			return false;
3393 
3394 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3395 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3396 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3397 
3398 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3399 
3400 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3401 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3402 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3403 
3404 		/* Ensure updated table contents are visible to ITS hardware */
3405 		dsb(sy);
3406 	}
3407 
3408 	return true;
3409 }
3410 
3411 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3412 {
3413 	struct its_baser *baser;
3414 
3415 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3416 
3417 	/* Don't allow device id that exceeds ITS hardware limit */
3418 	if (!baser)
3419 		return (ilog2(dev_id) < device_ids(its));
3420 
3421 	return its_alloc_table_entry(its, baser, dev_id);
3422 }
3423 
3424 static bool its_alloc_vpe_table(u32 vpe_id)
3425 {
3426 	struct its_node *its;
3427 	int cpu;
3428 
3429 	/*
3430 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3431 	 * could try and only do it on ITSs corresponding to devices
3432 	 * that have interrupts targeted at this VPE, but the
3433 	 * complexity becomes crazy (and you have tons of memory
3434 	 * anyway, right?).
3435 	 */
3436 	list_for_each_entry(its, &its_nodes, entry) {
3437 		struct its_baser *baser;
3438 
3439 		if (!is_v4(its))
3440 			continue;
3441 
3442 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3443 		if (!baser)
3444 			return false;
3445 
3446 		if (!its_alloc_table_entry(its, baser, vpe_id))
3447 			return false;
3448 	}
3449 
3450 	/* Non v4.1? No need to iterate RDs and go back early. */
3451 	if (!gic_rdists->has_rvpeid)
3452 		return true;
3453 
3454 	/*
3455 	 * Make sure the L2 tables are allocated for all copies of
3456 	 * the L1 table on *all* v4.1 RDs.
3457 	 */
3458 	for_each_possible_cpu(cpu) {
3459 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3460 			return false;
3461 	}
3462 
3463 	return true;
3464 }
3465 
3466 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3467 					    int nvecs, bool alloc_lpis)
3468 {
3469 	struct its_device *dev;
3470 	unsigned long *lpi_map = NULL;
3471 	unsigned long flags;
3472 	u16 *col_map = NULL;
3473 	void *itt;
3474 	int lpi_base;
3475 	int nr_lpis;
3476 	int nr_ites;
3477 	int sz;
3478 
3479 	if (!its_alloc_device_table(its, dev_id))
3480 		return NULL;
3481 
3482 	if (WARN_ON(!is_power_of_2(nvecs)))
3483 		nvecs = roundup_pow_of_two(nvecs);
3484 
3485 	/*
3486 	 * Even if the device wants a single LPI, the ITT must be
3487 	 * sized as a power of two (and you need at least one bit...).
3488 	 */
3489 	nr_ites = max(2, nvecs);
3490 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3491 	sz = max(sz, ITS_ITT_ALIGN);
3492 
3493 	itt = itt_alloc_pool(its->numa_node, sz);
3494 
3495 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3496 
3497 	if (alloc_lpis) {
3498 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3499 		if (lpi_map)
3500 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3501 					  GFP_KERNEL);
3502 	} else {
3503 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3504 		nr_lpis = 0;
3505 		lpi_base = 0;
3506 	}
3507 
3508 	if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3509 		kfree(dev);
3510 		itt_free_pool(itt, sz);
3511 		bitmap_free(lpi_map);
3512 		kfree(col_map);
3513 		return NULL;
3514 	}
3515 
3516 	gic_flush_dcache_to_poc(itt, sz);
3517 
3518 	dev->its = its;
3519 	dev->itt = itt;
3520 	dev->itt_sz = sz;
3521 	dev->nr_ites = nr_ites;
3522 	dev->event_map.lpi_map = lpi_map;
3523 	dev->event_map.col_map = col_map;
3524 	dev->event_map.lpi_base = lpi_base;
3525 	dev->event_map.nr_lpis = nr_lpis;
3526 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3527 	dev->device_id = dev_id;
3528 	INIT_LIST_HEAD(&dev->entry);
3529 
3530 	raw_spin_lock_irqsave(&its->lock, flags);
3531 	list_add(&dev->entry, &its->its_device_list);
3532 	raw_spin_unlock_irqrestore(&its->lock, flags);
3533 
3534 	/* Map device to its ITT */
3535 	its_send_mapd(dev, 1);
3536 
3537 	return dev;
3538 }
3539 
3540 static void its_free_device(struct its_device *its_dev)
3541 {
3542 	unsigned long flags;
3543 
3544 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3545 	list_del(&its_dev->entry);
3546 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3547 	kfree(its_dev->event_map.col_map);
3548 	itt_free_pool(its_dev->itt, its_dev->itt_sz);
3549 	kfree(its_dev);
3550 }
3551 
3552 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3553 {
3554 	int idx;
3555 
3556 	/* Find a free LPI region in lpi_map and allocate them. */
3557 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3558 				      dev->event_map.nr_lpis,
3559 				      get_count_order(nvecs));
3560 	if (idx < 0)
3561 		return -ENOSPC;
3562 
3563 	*hwirq = dev->event_map.lpi_base + idx;
3564 
3565 	return 0;
3566 }
3567 
3568 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3569 			   int nvec, msi_alloc_info_t *info)
3570 {
3571 	struct its_node *its;
3572 	struct its_device *its_dev;
3573 	struct msi_domain_info *msi_info;
3574 	u32 dev_id;
3575 	int err = 0;
3576 
3577 	/*
3578 	 * We ignore "dev" entirely, and rely on the dev_id that has
3579 	 * been passed via the scratchpad. This limits this domain's
3580 	 * usefulness to upper layers that definitely know that they
3581 	 * are built on top of the ITS.
3582 	 */
3583 	dev_id = info->scratchpad[0].ul;
3584 
3585 	msi_info = msi_get_domain_info(domain);
3586 	its = msi_info->data;
3587 
3588 	if (!gic_rdists->has_direct_lpi &&
3589 	    vpe_proxy.dev &&
3590 	    vpe_proxy.dev->its == its &&
3591 	    dev_id == vpe_proxy.dev->device_id) {
3592 		/* Bad luck. Get yourself a better implementation */
3593 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3594 			  dev_id);
3595 		return -EINVAL;
3596 	}
3597 
3598 	mutex_lock(&its->dev_alloc_lock);
3599 	its_dev = its_find_device(its, dev_id);
3600 	if (its_dev) {
3601 		/*
3602 		 * We already have seen this ID, probably through
3603 		 * another alias (PCI bridge of some sort). No need to
3604 		 * create the device.
3605 		 */
3606 		its_dev->shared = true;
3607 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3608 		goto out;
3609 	}
3610 
3611 	its_dev = its_create_device(its, dev_id, nvec, true);
3612 	if (!its_dev) {
3613 		err = -ENOMEM;
3614 		goto out;
3615 	}
3616 
3617 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3618 		its_dev->shared = true;
3619 
3620 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3621 out:
3622 	mutex_unlock(&its->dev_alloc_lock);
3623 	info->scratchpad[0].ptr = its_dev;
3624 	return err;
3625 }
3626 
3627 static void its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info)
3628 {
3629 	struct its_device *its_dev = info->scratchpad[0].ptr;
3630 
3631 	guard(mutex)(&its_dev->its->dev_alloc_lock);
3632 
3633 	/* If the device is shared, keep everything around */
3634 	if (its_dev->shared)
3635 		return;
3636 
3637 	/* LPIs should have been already unmapped at this stage */
3638 	if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map.lpi_map,
3639 				       its_dev->event_map.nr_lpis)))
3640 		return;
3641 
3642 	its_lpi_free(its_dev->event_map.lpi_map,
3643 		     its_dev->event_map.lpi_base,
3644 		     its_dev->event_map.nr_lpis);
3645 
3646 	/* Unmap device/itt, and get rid of the tracking */
3647 	its_send_mapd(its_dev, 0);
3648 	its_free_device(its_dev);
3649 }
3650 
3651 static struct msi_domain_ops its_msi_domain_ops = {
3652 	.msi_prepare	= its_msi_prepare,
3653 	.msi_teardown	= its_msi_teardown,
3654 };
3655 
3656 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3657 				    unsigned int virq,
3658 				    irq_hw_number_t hwirq)
3659 {
3660 	struct irq_fwspec fwspec;
3661 
3662 	if (irq_domain_get_of_node(domain->parent)) {
3663 		fwspec.fwnode = domain->parent->fwnode;
3664 		fwspec.param_count = 3;
3665 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3666 		fwspec.param[1] = hwirq;
3667 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3668 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3669 		fwspec.fwnode = domain->parent->fwnode;
3670 		fwspec.param_count = 2;
3671 		fwspec.param[0] = hwirq;
3672 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3673 	} else {
3674 		return -EINVAL;
3675 	}
3676 
3677 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3678 }
3679 
3680 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3681 				unsigned int nr_irqs, void *args)
3682 {
3683 	msi_alloc_info_t *info = args;
3684 	struct its_device *its_dev = info->scratchpad[0].ptr;
3685 	struct its_node *its = its_dev->its;
3686 	struct irq_data *irqd;
3687 	irq_hw_number_t hwirq;
3688 	int err;
3689 	int i;
3690 
3691 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3692 	if (err)
3693 		return err;
3694 
3695 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3696 	if (err)
3697 		return err;
3698 
3699 	for (i = 0; i < nr_irqs; i++) {
3700 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3701 		if (err)
3702 			return err;
3703 
3704 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3705 					      hwirq + i, &its_irq_chip, its_dev);
3706 		irqd = irq_get_irq_data(virq + i);
3707 		irqd_set_single_target(irqd);
3708 		irqd_set_affinity_on_activate(irqd);
3709 		irqd_set_resend_when_in_progress(irqd);
3710 		pr_debug("ID:%d pID:%d vID:%d\n",
3711 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3712 			 (int)(hwirq + i), virq + i);
3713 	}
3714 
3715 	return 0;
3716 }
3717 
3718 static int its_irq_domain_activate(struct irq_domain *domain,
3719 				   struct irq_data *d, bool reserve)
3720 {
3721 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3722 	u32 event = its_get_event_id(d);
3723 	int cpu;
3724 
3725 	cpu = its_select_cpu(d, cpu_online_mask);
3726 	if (cpu < 0 || cpu >= nr_cpu_ids)
3727 		return -EINVAL;
3728 
3729 	its_inc_lpi_count(d, cpu);
3730 	its_dev->event_map.col_map[event] = cpu;
3731 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3732 
3733 	/* Map the GIC IRQ and event to the device */
3734 	its_send_mapti(its_dev, d->hwirq, event);
3735 	return 0;
3736 }
3737 
3738 static void its_irq_domain_deactivate(struct irq_domain *domain,
3739 				      struct irq_data *d)
3740 {
3741 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3742 	u32 event = its_get_event_id(d);
3743 
3744 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3745 	/* Stop the delivery of interrupts */
3746 	its_send_discard(its_dev, event);
3747 }
3748 
3749 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3750 				unsigned int nr_irqs)
3751 {
3752 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3753 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3754 	int i;
3755 
3756 	bitmap_release_region(its_dev->event_map.lpi_map,
3757 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3758 			      get_count_order(nr_irqs));
3759 
3760 	for (i = 0; i < nr_irqs; i++) {
3761 		struct irq_data *data = irq_domain_get_irq_data(domain,
3762 								virq + i);
3763 		/* Nuke the entry in the domain */
3764 		irq_domain_reset_irq_data(data);
3765 	}
3766 
3767 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3768 }
3769 
3770 static const struct irq_domain_ops its_domain_ops = {
3771 	.select			= msi_lib_irq_domain_select,
3772 	.alloc			= its_irq_domain_alloc,
3773 	.free			= its_irq_domain_free,
3774 	.activate		= its_irq_domain_activate,
3775 	.deactivate		= its_irq_domain_deactivate,
3776 };
3777 
3778 /*
3779  * This is insane.
3780  *
3781  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3782  * likely), the only way to perform an invalidate is to use a fake
3783  * device to issue an INV command, implying that the LPI has first
3784  * been mapped to some event on that device. Since this is not exactly
3785  * cheap, we try to keep that mapping around as long as possible, and
3786  * only issue an UNMAP if we're short on available slots.
3787  *
3788  * Broken by design(tm).
3789  *
3790  * GICv4.1, on the other hand, mandates that we're able to invalidate
3791  * by writing to a MMIO register. It doesn't implement the whole of
3792  * DirectLPI, but that's good enough. And most of the time, we don't
3793  * even have to invalidate anything, as the redistributor can be told
3794  * whether to generate a doorbell or not (we thus leave it enabled,
3795  * always).
3796  */
3797 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3798 {
3799 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3800 	if (gic_rdists->has_rvpeid)
3801 		return;
3802 
3803 	/* Already unmapped? */
3804 	if (vpe->vpe_proxy_event == -1)
3805 		return;
3806 
3807 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3808 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3809 
3810 	/*
3811 	 * We don't track empty slots at all, so let's move the
3812 	 * next_victim pointer if we can quickly reuse that slot
3813 	 * instead of nuking an existing entry. Not clear that this is
3814 	 * always a win though, and this might just generate a ripple
3815 	 * effect... Let's just hope VPEs don't migrate too often.
3816 	 */
3817 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3818 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3819 
3820 	vpe->vpe_proxy_event = -1;
3821 }
3822 
3823 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3824 {
3825 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3826 	if (gic_rdists->has_rvpeid)
3827 		return;
3828 
3829 	if (!gic_rdists->has_direct_lpi) {
3830 		unsigned long flags;
3831 
3832 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3833 		its_vpe_db_proxy_unmap_locked(vpe);
3834 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3835 	}
3836 }
3837 
3838 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3839 {
3840 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3841 	if (gic_rdists->has_rvpeid)
3842 		return;
3843 
3844 	/* Already mapped? */
3845 	if (vpe->vpe_proxy_event != -1)
3846 		return;
3847 
3848 	/* This slot was already allocated. Kick the other VPE out. */
3849 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3850 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3851 
3852 	/* Map the new VPE instead */
3853 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3854 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3855 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3856 
3857 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3858 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3859 }
3860 
3861 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3862 {
3863 	unsigned long flags;
3864 	struct its_collection *target_col;
3865 
3866 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3867 	if (gic_rdists->has_rvpeid)
3868 		return;
3869 
3870 	if (gic_rdists->has_direct_lpi) {
3871 		void __iomem *rdbase;
3872 
3873 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3874 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3875 		wait_for_syncr(rdbase);
3876 
3877 		return;
3878 	}
3879 
3880 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3881 
3882 	its_vpe_db_proxy_map_locked(vpe);
3883 
3884 	target_col = &vpe_proxy.dev->its->collections[to];
3885 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3886 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3887 
3888 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3889 }
3890 
3891 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3892 {
3893 	void __iomem *rdbase;
3894 	u64 val;
3895 
3896 	val  = GICR_INVALLR_V;
3897 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3898 
3899 	guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3900 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3901 	gic_write_lpir(val, rdbase + GICR_INVALLR);
3902 	wait_for_syncr(rdbase);
3903 }
3904 
3905 static int its_vpe_set_affinity(struct irq_data *d,
3906 				const struct cpumask *mask_val,
3907 				bool force)
3908 {
3909 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3910 	unsigned int from, cpu = nr_cpu_ids;
3911 	struct cpumask *table_mask;
3912 	struct its_node *its;
3913 	unsigned long flags;
3914 
3915 	/*
3916 	 * Check if we're racing against a VPE being destroyed, for
3917 	 * which we don't want to allow a VMOVP.
3918 	 */
3919 	if (!atomic_read(&vpe->vmapp_count)) {
3920 		if (gic_requires_eager_mapping())
3921 			return -EINVAL;
3922 
3923 		/*
3924 		 * If we lazily map the VPEs, this isn't an error and
3925 		 * we can exit cleanly.
3926 		 */
3927 		cpu = cpumask_first(mask_val);
3928 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
3929 		return IRQ_SET_MASK_OK_DONE;
3930 	}
3931 
3932 	/*
3933 	 * Changing affinity is mega expensive, so let's be as lazy as
3934 	 * we can and only do it if we really have to. Also, if mapped
3935 	 * into the proxy device, we need to move the doorbell
3936 	 * interrupt to its new location.
3937 	 *
3938 	 * Another thing is that changing the affinity of a vPE affects
3939 	 * *other interrupts* such as all the vLPIs that are routed to
3940 	 * this vPE. This means that the irq_desc lock is not enough to
3941 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3942 	 * during the update, hence the lock below which must also be
3943 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3944 	 *
3945 	 * Finally, we must protect ourselves against concurrent updates of
3946 	 * the mapping state on this VM should the ITS list be in use (see
3947 	 * the shortcut in its_send_vmovp() otherewise).
3948 	 */
3949 	if (its_list_map)
3950 		raw_spin_lock(&vpe->its_vm->vmapp_lock);
3951 
3952 	from = vpe_to_cpuid_lock(vpe, &flags);
3953 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3954 
3955 	/*
3956 	 * If we are offered another CPU in the same GICv4.1 ITS
3957 	 * affinity, pick this one. Otherwise, any CPU will do.
3958 	 */
3959 	if (table_mask)
3960 		cpu = cpumask_any_and(mask_val, table_mask);
3961 	if (cpu < nr_cpu_ids) {
3962 		if (cpumask_test_cpu(from, mask_val) &&
3963 		    cpumask_test_cpu(from, table_mask))
3964 			cpu = from;
3965 	} else {
3966 		cpu = cpumask_first(mask_val);
3967 	}
3968 
3969 	if (from == cpu)
3970 		goto out;
3971 
3972 	vpe->col_idx = cpu;
3973 
3974 	its_send_vmovp(vpe);
3975 
3976 	its = find_4_1_its();
3977 	if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3978 		its_vpe_4_1_invall_locked(cpu, vpe);
3979 
3980 	its_vpe_db_proxy_move(vpe, from, cpu);
3981 
3982 out:
3983 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3984 	vpe_to_cpuid_unlock(vpe, flags);
3985 
3986 	if (its_list_map)
3987 		raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3988 
3989 	return IRQ_SET_MASK_OK_DONE;
3990 }
3991 
3992 static void its_wait_vpt_parse_complete(void)
3993 {
3994 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3995 	u64 val;
3996 
3997 	if (!gic_rdists->has_vpend_valid_dirty)
3998 		return;
3999 
4000 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
4001 						       val,
4002 						       !(val & GICR_VPENDBASER_Dirty),
4003 						       1, 500));
4004 }
4005 
4006 static void its_vpe_schedule(struct its_vpe *vpe)
4007 {
4008 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4009 	u64 val;
4010 
4011 	/* Schedule the VPE */
4012 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4013 		GENMASK_ULL(51, 12);
4014 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4015 	if (rdists_support_shareable()) {
4016 		val |= GICR_VPROPBASER_RaWb;
4017 		val |= GICR_VPROPBASER_InnerShareable;
4018 	}
4019 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4020 
4021 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
4022 		GENMASK_ULL(51, 16);
4023 	if (rdists_support_shareable()) {
4024 		val |= GICR_VPENDBASER_RaWaWb;
4025 		val |= GICR_VPENDBASER_InnerShareable;
4026 	}
4027 	/*
4028 	 * There is no good way of finding out if the pending table is
4029 	 * empty as we can race against the doorbell interrupt very
4030 	 * easily. So in the end, vpe->pending_last is only an
4031 	 * indication that the vcpu has something pending, not one
4032 	 * that the pending table is empty. A good implementation
4033 	 * would be able to read its coarse map pretty quickly anyway,
4034 	 * making this a tolerable issue.
4035 	 */
4036 	val |= GICR_VPENDBASER_PendingLast;
4037 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4038 	val |= GICR_VPENDBASER_Valid;
4039 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4040 }
4041 
4042 static void its_vpe_deschedule(struct its_vpe *vpe)
4043 {
4044 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4045 	u64 val;
4046 
4047 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
4048 
4049 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4050 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4051 }
4052 
4053 static void its_vpe_invall(struct its_vpe *vpe)
4054 {
4055 	struct its_node *its;
4056 
4057 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4058 
4059 	list_for_each_entry(its, &its_nodes, entry) {
4060 		if (!is_v4(its))
4061 			continue;
4062 
4063 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4064 			continue;
4065 
4066 		/*
4067 		 * Sending a VINVALL to a single ITS is enough, as all
4068 		 * we need is to reach the redistributors.
4069 		 */
4070 		its_send_vinvall(its, vpe);
4071 		return;
4072 	}
4073 }
4074 
4075 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4076 {
4077 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4078 	struct its_cmd_info *info = vcpu_info;
4079 
4080 	switch (info->cmd_type) {
4081 	case SCHEDULE_VPE:
4082 		its_vpe_schedule(vpe);
4083 		return 0;
4084 
4085 	case DESCHEDULE_VPE:
4086 		its_vpe_deschedule(vpe);
4087 		return 0;
4088 
4089 	case COMMIT_VPE:
4090 		its_wait_vpt_parse_complete();
4091 		return 0;
4092 
4093 	case INVALL_VPE:
4094 		its_vpe_invall(vpe);
4095 		return 0;
4096 
4097 	default:
4098 		return -EINVAL;
4099 	}
4100 }
4101 
4102 static void its_vpe_send_cmd(struct its_vpe *vpe,
4103 			     void (*cmd)(struct its_device *, u32))
4104 {
4105 	unsigned long flags;
4106 
4107 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4108 
4109 	its_vpe_db_proxy_map_locked(vpe);
4110 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4111 
4112 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4113 }
4114 
4115 static void its_vpe_send_inv(struct irq_data *d)
4116 {
4117 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4118 
4119 	if (gic_rdists->has_direct_lpi)
4120 		__direct_lpi_inv(d, d->parent_data->hwirq);
4121 	else
4122 		its_vpe_send_cmd(vpe, its_send_inv);
4123 }
4124 
4125 static void its_vpe_mask_irq(struct irq_data *d)
4126 {
4127 	/*
4128 	 * We need to unmask the LPI, which is described by the parent
4129 	 * irq_data. Instead of calling into the parent (which won't
4130 	 * exactly do the right thing, let's simply use the
4131 	 * parent_data pointer. Yes, I'm naughty.
4132 	 */
4133 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4134 	its_vpe_send_inv(d);
4135 }
4136 
4137 static void its_vpe_unmask_irq(struct irq_data *d)
4138 {
4139 	/* Same hack as above... */
4140 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4141 	its_vpe_send_inv(d);
4142 }
4143 
4144 static int its_vpe_set_irqchip_state(struct irq_data *d,
4145 				     enum irqchip_irq_state which,
4146 				     bool state)
4147 {
4148 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4149 
4150 	if (which != IRQCHIP_STATE_PENDING)
4151 		return -EINVAL;
4152 
4153 	if (gic_rdists->has_direct_lpi) {
4154 		void __iomem *rdbase;
4155 
4156 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4157 		if (state) {
4158 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4159 		} else {
4160 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4161 			wait_for_syncr(rdbase);
4162 		}
4163 	} else {
4164 		if (state)
4165 			its_vpe_send_cmd(vpe, its_send_int);
4166 		else
4167 			its_vpe_send_cmd(vpe, its_send_clear);
4168 	}
4169 
4170 	return 0;
4171 }
4172 
4173 static int its_vpe_retrigger(struct irq_data *d)
4174 {
4175 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4176 }
4177 
4178 static struct irq_chip its_vpe_irq_chip = {
4179 	.name			= "GICv4-vpe",
4180 	.irq_mask		= its_vpe_mask_irq,
4181 	.irq_unmask		= its_vpe_unmask_irq,
4182 	.irq_eoi		= irq_chip_eoi_parent,
4183 	.irq_set_affinity	= its_vpe_set_affinity,
4184 	.irq_retrigger		= its_vpe_retrigger,
4185 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4186 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4187 };
4188 
4189 static struct its_node *find_4_1_its(void)
4190 {
4191 	struct its_node *its = *this_cpu_ptr(&local_4_1_its);
4192 
4193 	if (!its) {
4194 		list_for_each_entry(its, &its_nodes, entry) {
4195 			if (is_v4_1(its))
4196 				return its;
4197 		}
4198 
4199 		/* Oops? */
4200 		its = NULL;
4201 	}
4202 
4203 	return its;
4204 }
4205 
4206 static void its_vpe_4_1_send_inv(struct irq_data *d)
4207 {
4208 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4209 	struct its_node *its;
4210 
4211 	/*
4212 	 * GICv4.1 wants doorbells to be invalidated using the
4213 	 * INVDB command in order to be broadcast to all RDs. Send
4214 	 * it to the first valid ITS, and let the HW do its magic.
4215 	 */
4216 	its = find_4_1_its();
4217 	if (its)
4218 		its_send_invdb(its, vpe);
4219 }
4220 
4221 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4222 {
4223 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4224 	its_vpe_4_1_send_inv(d);
4225 }
4226 
4227 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4228 {
4229 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4230 	its_vpe_4_1_send_inv(d);
4231 }
4232 
4233 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4234 				 struct its_cmd_info *info)
4235 {
4236 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4237 	u64 val = 0;
4238 
4239 	/* Schedule the VPE */
4240 	val |= GICR_VPENDBASER_Valid;
4241 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4242 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4243 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4244 
4245 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4246 }
4247 
4248 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4249 				   struct its_cmd_info *info)
4250 {
4251 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4252 	u64 val;
4253 
4254 	if (info->req_db) {
4255 		unsigned long flags;
4256 
4257 		/*
4258 		 * vPE is going to block: make the vPE non-resident with
4259 		 * PendingLast clear and DB set. The GIC guarantees that if
4260 		 * we read-back PendingLast clear, then a doorbell will be
4261 		 * delivered when an interrupt comes.
4262 		 *
4263 		 * Note the locking to deal with the concurrent update of
4264 		 * pending_last from the doorbell interrupt handler that can
4265 		 * run concurrently.
4266 		 */
4267 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4268 		val = its_clear_vpend_valid(vlpi_base,
4269 					    GICR_VPENDBASER_PendingLast,
4270 					    GICR_VPENDBASER_4_1_DB);
4271 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4272 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4273 	} else {
4274 		/*
4275 		 * We're not blocking, so just make the vPE non-resident
4276 		 * with PendingLast set, indicating that we'll be back.
4277 		 */
4278 		val = its_clear_vpend_valid(vlpi_base,
4279 					    0,
4280 					    GICR_VPENDBASER_PendingLast);
4281 		vpe->pending_last = true;
4282 	}
4283 }
4284 
4285 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4286 {
4287 	unsigned long flags;
4288 	int cpu;
4289 
4290 	/* Target the redistributor this vPE is currently known on */
4291 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4292 	its_vpe_4_1_invall_locked(cpu, vpe);
4293 	vpe_to_cpuid_unlock(vpe, flags);
4294 }
4295 
4296 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4297 {
4298 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4299 	struct its_cmd_info *info = vcpu_info;
4300 
4301 	switch (info->cmd_type) {
4302 	case SCHEDULE_VPE:
4303 		its_vpe_4_1_schedule(vpe, info);
4304 		return 0;
4305 
4306 	case DESCHEDULE_VPE:
4307 		its_vpe_4_1_deschedule(vpe, info);
4308 		return 0;
4309 
4310 	case COMMIT_VPE:
4311 		its_wait_vpt_parse_complete();
4312 		return 0;
4313 
4314 	case INVALL_VPE:
4315 		its_vpe_4_1_invall(vpe);
4316 		return 0;
4317 
4318 	default:
4319 		return -EINVAL;
4320 	}
4321 }
4322 
4323 static struct irq_chip its_vpe_4_1_irq_chip = {
4324 	.name			= "GICv4.1-vpe",
4325 	.irq_mask		= its_vpe_4_1_mask_irq,
4326 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4327 	.irq_eoi		= irq_chip_eoi_parent,
4328 	.irq_set_affinity	= its_vpe_set_affinity,
4329 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4330 };
4331 
4332 static void its_configure_sgi(struct irq_data *d, bool clear)
4333 {
4334 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4335 	struct its_cmd_desc desc;
4336 
4337 	desc.its_vsgi_cmd.vpe = vpe;
4338 	desc.its_vsgi_cmd.sgi = d->hwirq;
4339 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4340 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4341 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4342 	desc.its_vsgi_cmd.clear = clear;
4343 
4344 	/*
4345 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4346 	 * destination VPE is mapped there. Since we map them eagerly at
4347 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4348 	 */
4349 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4350 }
4351 
4352 static void its_sgi_mask_irq(struct irq_data *d)
4353 {
4354 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4355 
4356 	vpe->sgi_config[d->hwirq].enabled = false;
4357 	its_configure_sgi(d, false);
4358 }
4359 
4360 static void its_sgi_unmask_irq(struct irq_data *d)
4361 {
4362 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4363 
4364 	vpe->sgi_config[d->hwirq].enabled = true;
4365 	its_configure_sgi(d, false);
4366 }
4367 
4368 static int its_sgi_set_affinity(struct irq_data *d,
4369 				const struct cpumask *mask_val,
4370 				bool force)
4371 {
4372 	/*
4373 	 * There is no notion of affinity for virtual SGIs, at least
4374 	 * not on the host (since they can only be targeting a vPE).
4375 	 * Tell the kernel we've done whatever it asked for.
4376 	 */
4377 	irq_data_update_effective_affinity(d, mask_val);
4378 	return IRQ_SET_MASK_OK;
4379 }
4380 
4381 static int its_sgi_set_irqchip_state(struct irq_data *d,
4382 				     enum irqchip_irq_state which,
4383 				     bool state)
4384 {
4385 	if (which != IRQCHIP_STATE_PENDING)
4386 		return -EINVAL;
4387 
4388 	if (state) {
4389 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4390 		struct its_node *its = find_4_1_its();
4391 		u64 val;
4392 
4393 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4394 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4395 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4396 	} else {
4397 		its_configure_sgi(d, true);
4398 	}
4399 
4400 	return 0;
4401 }
4402 
4403 static int its_sgi_get_irqchip_state(struct irq_data *d,
4404 				     enum irqchip_irq_state which, bool *val)
4405 {
4406 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4407 	void __iomem *base;
4408 	unsigned long flags;
4409 	u32 count = 1000000;	/* 1s! */
4410 	u32 status;
4411 	int cpu;
4412 
4413 	if (which != IRQCHIP_STATE_PENDING)
4414 		return -EINVAL;
4415 
4416 	/*
4417 	 * Locking galore! We can race against two different events:
4418 	 *
4419 	 * - Concurrent vPE affinity change: we must make sure it cannot
4420 	 *   happen, or we'll talk to the wrong redistributor. This is
4421 	 *   identical to what happens with vLPIs.
4422 	 *
4423 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4424 	 *   MMIO registers, this must be made atomic one way or another.
4425 	 */
4426 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4427 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4428 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4429 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4430 	do {
4431 		status = readl_relaxed(base + GICR_VSGIPENDR);
4432 		if (!(status & GICR_VSGIPENDR_BUSY))
4433 			goto out;
4434 
4435 		count--;
4436 		if (!count) {
4437 			pr_err_ratelimited("Unable to get SGI status\n");
4438 			goto out;
4439 		}
4440 		cpu_relax();
4441 		udelay(1);
4442 	} while (count);
4443 
4444 out:
4445 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4446 	vpe_to_cpuid_unlock(vpe, flags);
4447 
4448 	if (!count)
4449 		return -ENXIO;
4450 
4451 	*val = !!(status & (1 << d->hwirq));
4452 
4453 	return 0;
4454 }
4455 
4456 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4457 {
4458 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4459 	struct its_cmd_info *info = vcpu_info;
4460 
4461 	switch (info->cmd_type) {
4462 	case PROP_UPDATE_VSGI:
4463 		vpe->sgi_config[d->hwirq].priority = info->priority;
4464 		vpe->sgi_config[d->hwirq].group = info->group;
4465 		its_configure_sgi(d, false);
4466 		return 0;
4467 
4468 	default:
4469 		return -EINVAL;
4470 	}
4471 }
4472 
4473 static struct irq_chip its_sgi_irq_chip = {
4474 	.name			= "GICv4.1-sgi",
4475 	.irq_mask		= its_sgi_mask_irq,
4476 	.irq_unmask		= its_sgi_unmask_irq,
4477 	.irq_set_affinity	= its_sgi_set_affinity,
4478 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4479 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4480 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4481 };
4482 
4483 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4484 				    unsigned int virq, unsigned int nr_irqs,
4485 				    void *args)
4486 {
4487 	struct its_vpe *vpe = args;
4488 	int i;
4489 
4490 	/* Yes, we do want 16 SGIs */
4491 	WARN_ON(nr_irqs != 16);
4492 
4493 	for (i = 0; i < 16; i++) {
4494 		vpe->sgi_config[i].priority = 0;
4495 		vpe->sgi_config[i].enabled = false;
4496 		vpe->sgi_config[i].group = false;
4497 
4498 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4499 					      &its_sgi_irq_chip, vpe);
4500 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4501 	}
4502 
4503 	return 0;
4504 }
4505 
4506 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4507 				    unsigned int virq,
4508 				    unsigned int nr_irqs)
4509 {
4510 	/* Nothing to do */
4511 }
4512 
4513 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4514 				       struct irq_data *d, bool reserve)
4515 {
4516 	/* Write out the initial SGI configuration */
4517 	its_configure_sgi(d, false);
4518 	return 0;
4519 }
4520 
4521 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4522 					  struct irq_data *d)
4523 {
4524 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4525 
4526 	/*
4527 	 * The VSGI command is awkward:
4528 	 *
4529 	 * - To change the configuration, CLEAR must be set to false,
4530 	 *   leaving the pending bit unchanged.
4531 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4532 	 *   the configuration unchanged.
4533 	 *
4534 	 * You just can't do both at once, hence the two commands below.
4535 	 */
4536 	vpe->sgi_config[d->hwirq].enabled = false;
4537 	its_configure_sgi(d, false);
4538 	its_configure_sgi(d, true);
4539 }
4540 
4541 static const struct irq_domain_ops its_sgi_domain_ops = {
4542 	.alloc		= its_sgi_irq_domain_alloc,
4543 	.free		= its_sgi_irq_domain_free,
4544 	.activate	= its_sgi_irq_domain_activate,
4545 	.deactivate	= its_sgi_irq_domain_deactivate,
4546 };
4547 
4548 static int its_vpe_id_alloc(void)
4549 {
4550 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4551 }
4552 
4553 static void its_vpe_id_free(u16 id)
4554 {
4555 	ida_free(&its_vpeid_ida, id);
4556 }
4557 
4558 static int its_vpe_init(struct its_vpe *vpe)
4559 {
4560 	struct page *vpt_page;
4561 	int vpe_id;
4562 
4563 	/* Allocate vpe_id */
4564 	vpe_id = its_vpe_id_alloc();
4565 	if (vpe_id < 0)
4566 		return vpe_id;
4567 
4568 	/* Allocate VPT */
4569 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4570 	if (!vpt_page) {
4571 		its_vpe_id_free(vpe_id);
4572 		return -ENOMEM;
4573 	}
4574 
4575 	if (!its_alloc_vpe_table(vpe_id)) {
4576 		its_vpe_id_free(vpe_id);
4577 		its_free_pending_table(vpt_page);
4578 		return -ENOMEM;
4579 	}
4580 
4581 	raw_spin_lock_init(&vpe->vpe_lock);
4582 	vpe->vpe_id = vpe_id;
4583 	vpe->vpt_page = vpt_page;
4584 	atomic_set(&vpe->vmapp_count, 0);
4585 	if (!gic_rdists->has_rvpeid)
4586 		vpe->vpe_proxy_event = -1;
4587 
4588 	return 0;
4589 }
4590 
4591 static void its_vpe_teardown(struct its_vpe *vpe)
4592 {
4593 	its_vpe_db_proxy_unmap(vpe);
4594 	its_vpe_id_free(vpe->vpe_id);
4595 	its_free_pending_table(vpe->vpt_page);
4596 }
4597 
4598 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4599 				    unsigned int virq,
4600 				    unsigned int nr_irqs)
4601 {
4602 	struct its_vm *vm = domain->host_data;
4603 	int i;
4604 
4605 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4606 
4607 	for (i = 0; i < nr_irqs; i++) {
4608 		struct irq_data *data = irq_domain_get_irq_data(domain,
4609 								virq + i);
4610 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4611 
4612 		BUG_ON(vm != vpe->its_vm);
4613 
4614 		clear_bit(data->hwirq, vm->db_bitmap);
4615 		its_vpe_teardown(vpe);
4616 		irq_domain_reset_irq_data(data);
4617 	}
4618 
4619 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4620 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4621 		its_free_prop_table(vm->vprop_page);
4622 	}
4623 }
4624 
4625 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4626 				    unsigned int nr_irqs, void *args)
4627 {
4628 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4629 	struct its_vm *vm = args;
4630 	unsigned long *bitmap;
4631 	struct page *vprop_page;
4632 	int base, nr_ids, i, err = 0;
4633 
4634 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4635 	if (!bitmap)
4636 		return -ENOMEM;
4637 
4638 	if (nr_ids < nr_irqs) {
4639 		its_lpi_free(bitmap, base, nr_ids);
4640 		return -ENOMEM;
4641 	}
4642 
4643 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4644 	if (!vprop_page) {
4645 		its_lpi_free(bitmap, base, nr_ids);
4646 		return -ENOMEM;
4647 	}
4648 
4649 	vm->db_bitmap = bitmap;
4650 	vm->db_lpi_base = base;
4651 	vm->nr_db_lpis = nr_ids;
4652 	vm->vprop_page = vprop_page;
4653 	raw_spin_lock_init(&vm->vmapp_lock);
4654 
4655 	if (gic_rdists->has_rvpeid)
4656 		irqchip = &its_vpe_4_1_irq_chip;
4657 
4658 	for (i = 0; i < nr_irqs; i++) {
4659 		vm->vpes[i]->vpe_db_lpi = base + i;
4660 		err = its_vpe_init(vm->vpes[i]);
4661 		if (err)
4662 			break;
4663 		err = its_irq_gic_domain_alloc(domain, virq + i,
4664 					       vm->vpes[i]->vpe_db_lpi);
4665 		if (err)
4666 			break;
4667 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4668 					      irqchip, vm->vpes[i]);
4669 		set_bit(i, bitmap);
4670 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4671 	}
4672 
4673 	if (err)
4674 		its_vpe_irq_domain_free(domain, virq, i);
4675 
4676 	return err;
4677 }
4678 
4679 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4680 				       struct irq_data *d, bool reserve)
4681 {
4682 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4683 	struct its_node *its;
4684 
4685 	/* Map the VPE to the first possible CPU */
4686 	vpe->col_idx = cpumask_first(cpu_online_mask);
4687 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4688 
4689 	/*
4690 	 * If we use the list map, we issue VMAPP on demand... Unless
4691 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4692 	 * so that VSGIs can work.
4693 	 */
4694 	if (!gic_requires_eager_mapping())
4695 		return 0;
4696 
4697 	list_for_each_entry(its, &its_nodes, entry) {
4698 		if (!is_v4(its))
4699 			continue;
4700 
4701 		its_send_vmapp(its, vpe, true);
4702 		its_send_vinvall(its, vpe);
4703 	}
4704 
4705 	return 0;
4706 }
4707 
4708 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4709 					  struct irq_data *d)
4710 {
4711 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4712 	struct its_node *its;
4713 
4714 	/*
4715 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4716 	 * VLPIs are associated with the VM.
4717 	 */
4718 	if (!gic_requires_eager_mapping())
4719 		return;
4720 
4721 	list_for_each_entry(its, &its_nodes, entry) {
4722 		if (!is_v4(its))
4723 			continue;
4724 
4725 		its_send_vmapp(its, vpe, false);
4726 	}
4727 
4728 	/*
4729 	 * There may be a direct read to the VPT after unmapping the
4730 	 * vPE, to guarantee the validity of this, we make the VPT
4731 	 * memory coherent with the CPU caches here.
4732 	 */
4733 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4734 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4735 					LPI_PENDBASE_SZ);
4736 }
4737 
4738 static const struct irq_domain_ops its_vpe_domain_ops = {
4739 	.alloc			= its_vpe_irq_domain_alloc,
4740 	.free			= its_vpe_irq_domain_free,
4741 	.activate		= its_vpe_irq_domain_activate,
4742 	.deactivate		= its_vpe_irq_domain_deactivate,
4743 };
4744 
4745 static int its_force_quiescent(void __iomem *base)
4746 {
4747 	u32 count = 1000000;	/* 1s */
4748 	u32 val;
4749 
4750 	val = readl_relaxed(base + GITS_CTLR);
4751 	/*
4752 	 * GIC architecture specification requires the ITS to be both
4753 	 * disabled and quiescent for writes to GITS_BASER<n> or
4754 	 * GITS_CBASER to not have UNPREDICTABLE results.
4755 	 */
4756 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4757 		return 0;
4758 
4759 	/* Disable the generation of all interrupts to this ITS */
4760 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4761 	writel_relaxed(val, base + GITS_CTLR);
4762 
4763 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4764 	while (1) {
4765 		val = readl_relaxed(base + GITS_CTLR);
4766 		if (val & GITS_CTLR_QUIESCENT)
4767 			return 0;
4768 
4769 		count--;
4770 		if (!count)
4771 			return -EBUSY;
4772 
4773 		cpu_relax();
4774 		udelay(1);
4775 	}
4776 }
4777 
4778 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4779 {
4780 	struct its_node *its = data;
4781 
4782 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4783 	its->typer &= ~GITS_TYPER_DEVBITS;
4784 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4785 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4786 
4787 	return true;
4788 }
4789 
4790 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4791 {
4792 	struct its_node *its = data;
4793 
4794 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4795 
4796 	return true;
4797 }
4798 
4799 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4800 {
4801 	struct its_node *its = data;
4802 
4803 	/* On QDF2400, the size of the ITE is 16Bytes */
4804 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4805 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4806 
4807 	return true;
4808 }
4809 
4810 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4811 {
4812 	struct its_node *its = its_dev->its;
4813 
4814 	/*
4815 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4816 	 * which maps 32-bit writes targeted at a separate window of
4817 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4818 	 * with device ID taken from bits [device_id_bits + 1:2] of
4819 	 * the window offset.
4820 	 */
4821 	return its->pre_its_base + (its_dev->device_id << 2);
4822 }
4823 
4824 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4825 {
4826 	struct its_node *its = data;
4827 	u32 pre_its_window[2];
4828 	u32 ids;
4829 
4830 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4831 					   "socionext,synquacer-pre-its",
4832 					   pre_its_window,
4833 					   ARRAY_SIZE(pre_its_window))) {
4834 
4835 		its->pre_its_base = pre_its_window[0];
4836 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4837 
4838 		ids = ilog2(pre_its_window[1]) - 2;
4839 		if (device_ids(its) > ids) {
4840 			its->typer &= ~GITS_TYPER_DEVBITS;
4841 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4842 		}
4843 
4844 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4845 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4846 		return true;
4847 	}
4848 	return false;
4849 }
4850 
4851 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4852 {
4853 	struct its_node *its = data;
4854 
4855 	/*
4856 	 * Hip07 insists on using the wrong address for the VLPI
4857 	 * page. Trick it into doing the right thing...
4858 	 */
4859 	its->vlpi_redist_offset = SZ_128K;
4860 	return true;
4861 }
4862 
4863 static bool __maybe_unused its_enable_rk3588001(void *data)
4864 {
4865 	struct its_node *its = data;
4866 
4867 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4868 	    !of_machine_is_compatible("rockchip,rk3588s"))
4869 		return false;
4870 
4871 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4872 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4873 
4874 	return true;
4875 }
4876 
4877 static bool its_set_non_coherent(void *data)
4878 {
4879 	struct its_node *its = data;
4880 
4881 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4882 	return true;
4883 }
4884 
4885 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4886 {
4887 	struct its_node *its = data;
4888 
4889 	its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4890 	return true;
4891 }
4892 
4893 static bool __maybe_unused its_enable_rk3568002(void *data)
4894 {
4895 	if (!of_machine_is_compatible("rockchip,rk3566") &&
4896 	    !of_machine_is_compatible("rockchip,rk3568"))
4897 		return false;
4898 
4899 	gfp_flags_quirk |= GFP_DMA32;
4900 
4901 	return true;
4902 }
4903 
4904 static const struct gic_quirk its_quirks[] = {
4905 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4906 	{
4907 		.desc	= "ITS: Cavium errata 22375, 24313",
4908 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4909 		.mask	= 0xffff0fff,
4910 		.init	= its_enable_quirk_cavium_22375,
4911 	},
4912 #endif
4913 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4914 	{
4915 		.desc	= "ITS: Cavium erratum 23144",
4916 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4917 		.mask	= 0xffff0fff,
4918 		.init	= its_enable_quirk_cavium_23144,
4919 	},
4920 #endif
4921 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4922 	{
4923 		.desc	= "ITS: QDF2400 erratum 0065",
4924 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4925 		.mask	= 0xffffffff,
4926 		.init	= its_enable_quirk_qdf2400_e0065,
4927 	},
4928 #endif
4929 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4930 	{
4931 		/*
4932 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4933 		 * implementation, but with a 'pre-ITS' added that requires
4934 		 * special handling in software.
4935 		 */
4936 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4937 		.iidr	= 0x0001143b,
4938 		.mask	= 0xffffffff,
4939 		.init	= its_enable_quirk_socionext_synquacer,
4940 	},
4941 #endif
4942 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4943 	{
4944 		.desc	= "ITS: Hip07 erratum 161600802",
4945 		.iidr	= 0x00000004,
4946 		.mask	= 0xffffffff,
4947 		.init	= its_enable_quirk_hip07_161600802,
4948 	},
4949 #endif
4950 #ifdef CONFIG_HISILICON_ERRATUM_162100801
4951 	{
4952 		.desc	= "ITS: Hip09 erratum 162100801",
4953 		.iidr	= 0x00051736,
4954 		.mask	= 0xffffffff,
4955 		.init	= its_enable_quirk_hip09_162100801,
4956 	},
4957 #endif
4958 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4959 	{
4960 		.desc   = "ITS: Rockchip erratum RK3588001",
4961 		.iidr   = 0x0201743b,
4962 		.mask   = 0xffffffff,
4963 		.init   = its_enable_rk3588001,
4964 	},
4965 #endif
4966 	{
4967 		.desc   = "ITS: non-coherent attribute",
4968 		.property = "dma-noncoherent",
4969 		.init   = its_set_non_coherent,
4970 	},
4971 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002
4972 	{
4973 		.desc   = "ITS: Rockchip erratum RK3568002",
4974 		.iidr   = 0x0201743b,
4975 		.mask   = 0xffffffff,
4976 		.init   = its_enable_rk3568002,
4977 	},
4978 #endif
4979 	{
4980 	}
4981 };
4982 
4983 static void its_enable_quirks(struct its_node *its)
4984 {
4985 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4986 
4987 	gic_enable_quirks(iidr, its_quirks, its);
4988 
4989 	if (is_of_node(its->fwnode_handle))
4990 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4991 				     its_quirks, its);
4992 }
4993 
4994 static int its_save_disable(void)
4995 {
4996 	struct its_node *its;
4997 	int err = 0;
4998 
4999 	raw_spin_lock(&its_lock);
5000 	list_for_each_entry(its, &its_nodes, entry) {
5001 		void __iomem *base;
5002 
5003 		base = its->base;
5004 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
5005 		err = its_force_quiescent(base);
5006 		if (err) {
5007 			pr_err("ITS@%pa: failed to quiesce: %d\n",
5008 			       &its->phys_base, err);
5009 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5010 			goto err;
5011 		}
5012 
5013 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
5014 	}
5015 
5016 err:
5017 	if (err) {
5018 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
5019 			void __iomem *base;
5020 
5021 			base = its->base;
5022 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5023 		}
5024 	}
5025 	raw_spin_unlock(&its_lock);
5026 
5027 	return err;
5028 }
5029 
5030 static void its_restore_enable(void)
5031 {
5032 	struct its_node *its;
5033 	int ret;
5034 
5035 	raw_spin_lock(&its_lock);
5036 	list_for_each_entry(its, &its_nodes, entry) {
5037 		void __iomem *base;
5038 		int i;
5039 
5040 		base = its->base;
5041 
5042 		/*
5043 		 * Make sure that the ITS is disabled. If it fails to quiesce,
5044 		 * don't restore it since writing to CBASER or BASER<n>
5045 		 * registers is undefined according to the GIC v3 ITS
5046 		 * Specification.
5047 		 *
5048 		 * Firmware resuming with the ITS enabled is terminally broken.
5049 		 */
5050 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5051 		ret = its_force_quiescent(base);
5052 		if (ret) {
5053 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5054 			       &its->phys_base, ret);
5055 			continue;
5056 		}
5057 
5058 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5059 
5060 		/*
5061 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
5062 		 * cmd_write line up with it.
5063 		 */
5064 		its->cmd_write = its->cmd_base;
5065 		gits_write_cwriter(0, base + GITS_CWRITER);
5066 
5067 		/* Restore GITS_BASER from the value cache. */
5068 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5069 			struct its_baser *baser = &its->tables[i];
5070 
5071 			if (!(baser->val & GITS_BASER_VALID))
5072 				continue;
5073 
5074 			its_write_baser(its, baser, baser->val);
5075 		}
5076 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5077 
5078 		/*
5079 		 * Reinit the collection if it's stored in the ITS. This is
5080 		 * indicated by the col_id being less than the HCC field.
5081 		 * CID < HCC as specified in the GIC v3 Documentation.
5082 		 */
5083 		if (its->collections[smp_processor_id()].col_id <
5084 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5085 			its_cpu_init_collection(its);
5086 	}
5087 	raw_spin_unlock(&its_lock);
5088 }
5089 
5090 static struct syscore_ops its_syscore_ops = {
5091 	.suspend = its_save_disable,
5092 	.resume = its_restore_enable,
5093 };
5094 
5095 static void __init __iomem *its_map_one(struct resource *res, int *err)
5096 {
5097 	void __iomem *its_base;
5098 	u32 val;
5099 
5100 	its_base = ioremap(res->start, SZ_64K);
5101 	if (!its_base) {
5102 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5103 		*err = -ENOMEM;
5104 		return NULL;
5105 	}
5106 
5107 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5108 	if (val != 0x30 && val != 0x40) {
5109 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5110 		*err = -ENODEV;
5111 		goto out_unmap;
5112 	}
5113 
5114 	*err = its_force_quiescent(its_base);
5115 	if (*err) {
5116 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5117 		goto out_unmap;
5118 	}
5119 
5120 	return its_base;
5121 
5122 out_unmap:
5123 	iounmap(its_base);
5124 	return NULL;
5125 }
5126 
5127 static int its_init_domain(struct its_node *its)
5128 {
5129 	struct irq_domain_info dom_info = {
5130 		.fwnode		= its->fwnode_handle,
5131 		.ops		= &its_domain_ops,
5132 		.domain_flags	= its->msi_domain_flags,
5133 		.parent		= its_parent,
5134 	};
5135 	struct msi_domain_info *info;
5136 
5137 	info = kzalloc(sizeof(*info), GFP_KERNEL);
5138 	if (!info)
5139 		return -ENOMEM;
5140 
5141 	info->ops = &its_msi_domain_ops;
5142 	info->data = its;
5143 	dom_info.host_data = info;
5144 
5145 	if (!msi_create_parent_irq_domain(&dom_info, &gic_v3_its_msi_parent_ops)) {
5146 		kfree(info);
5147 		return -ENOMEM;
5148 	}
5149 	return 0;
5150 }
5151 
5152 static int its_init_vpe_domain(void)
5153 {
5154 	struct its_node *its;
5155 	u32 devid;
5156 	int entries;
5157 
5158 	if (gic_rdists->has_direct_lpi) {
5159 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5160 		return 0;
5161 	}
5162 
5163 	/* Any ITS will do, even if not v4 */
5164 	its = list_first_entry(&its_nodes, struct its_node, entry);
5165 
5166 	entries = roundup_pow_of_two(nr_cpu_ids);
5167 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5168 				 GFP_KERNEL);
5169 	if (!vpe_proxy.vpes)
5170 		return -ENOMEM;
5171 
5172 	/* Use the last possible DevID */
5173 	devid = GENMASK(device_ids(its) - 1, 0);
5174 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5175 	if (!vpe_proxy.dev) {
5176 		kfree(vpe_proxy.vpes);
5177 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5178 		return -ENOMEM;
5179 	}
5180 
5181 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5182 
5183 	raw_spin_lock_init(&vpe_proxy.lock);
5184 	vpe_proxy.next_victim = 0;
5185 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5186 		devid, vpe_proxy.dev->nr_ites);
5187 
5188 	return 0;
5189 }
5190 
5191 static int __init its_compute_its_list_map(struct its_node *its)
5192 {
5193 	int its_number;
5194 	u32 ctlr;
5195 
5196 	/*
5197 	 * This is assumed to be done early enough that we're
5198 	 * guaranteed to be single-threaded, hence no
5199 	 * locking. Should this change, we should address
5200 	 * this.
5201 	 */
5202 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5203 	if (its_number >= GICv4_ITS_LIST_MAX) {
5204 		pr_err("ITS@%pa: No ITSList entry available!\n",
5205 		       &its->phys_base);
5206 		return -EINVAL;
5207 	}
5208 
5209 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5210 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5211 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5212 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5213 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5214 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5215 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5216 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5217 	}
5218 
5219 	if (test_and_set_bit(its_number, &its_list_map)) {
5220 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5221 		       &its->phys_base, its_number);
5222 		return -EINVAL;
5223 	}
5224 
5225 	return its_number;
5226 }
5227 
5228 static int __init its_probe_one(struct its_node *its)
5229 {
5230 	u64 baser, tmp;
5231 	struct page *page;
5232 	u32 ctlr;
5233 	int err;
5234 
5235 	its_enable_quirks(its);
5236 
5237 	if (is_v4(its)) {
5238 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5239 			err = its_compute_its_list_map(its);
5240 			if (err < 0)
5241 				goto out;
5242 
5243 			its->list_nr = err;
5244 
5245 			pr_info("ITS@%pa: Using ITS number %d\n",
5246 				&its->phys_base, err);
5247 		} else {
5248 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5249 		}
5250 
5251 		if (is_v4_1(its)) {
5252 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5253 
5254 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5255 			if (!its->sgir_base) {
5256 				err = -ENOMEM;
5257 				goto out;
5258 			}
5259 
5260 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5261 
5262 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5263 				&its->phys_base, its->mpidr, svpet);
5264 		}
5265 	}
5266 
5267 	page = its_alloc_pages_node(its->numa_node,
5268 				    GFP_KERNEL | __GFP_ZERO,
5269 				    get_order(ITS_CMD_QUEUE_SZ));
5270 	if (!page) {
5271 		err = -ENOMEM;
5272 		goto out_unmap_sgir;
5273 	}
5274 	its->cmd_base = (void *)page_address(page);
5275 	its->cmd_write = its->cmd_base;
5276 
5277 	err = its_alloc_tables(its);
5278 	if (err)
5279 		goto out_free_cmd;
5280 
5281 	err = its_alloc_collections(its);
5282 	if (err)
5283 		goto out_free_tables;
5284 
5285 	baser = (virt_to_phys(its->cmd_base)	|
5286 		 GITS_CBASER_RaWaWb		|
5287 		 GITS_CBASER_InnerShareable	|
5288 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5289 		 GITS_CBASER_VALID);
5290 
5291 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5292 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5293 
5294 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5295 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5296 
5297 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5298 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5299 			/*
5300 			 * The HW reports non-shareable, we must
5301 			 * remove the cacheability attributes as
5302 			 * well.
5303 			 */
5304 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5305 				   GITS_CBASER_CACHEABILITY_MASK);
5306 			baser |= GITS_CBASER_nC;
5307 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5308 		}
5309 		pr_info("ITS: using cache flushing for cmd queue\n");
5310 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5311 	}
5312 
5313 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5314 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5315 	ctlr |= GITS_CTLR_ENABLE;
5316 	if (is_v4(its))
5317 		ctlr |= GITS_CTLR_ImDe;
5318 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5319 
5320 	err = its_init_domain(its);
5321 	if (err)
5322 		goto out_free_tables;
5323 
5324 	raw_spin_lock(&its_lock);
5325 	list_add(&its->entry, &its_nodes);
5326 	raw_spin_unlock(&its_lock);
5327 
5328 	return 0;
5329 
5330 out_free_tables:
5331 	its_free_tables(its);
5332 out_free_cmd:
5333 	its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5334 out_unmap_sgir:
5335 	if (its->sgir_base)
5336 		iounmap(its->sgir_base);
5337 out:
5338 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5339 	return err;
5340 }
5341 
5342 static bool gic_rdists_supports_plpis(void)
5343 {
5344 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5345 }
5346 
5347 static int redist_disable_lpis(void)
5348 {
5349 	void __iomem *rbase = gic_data_rdist_rd_base();
5350 	u64 timeout = USEC_PER_SEC;
5351 	u64 val;
5352 
5353 	if (!gic_rdists_supports_plpis()) {
5354 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5355 		return -ENXIO;
5356 	}
5357 
5358 	val = readl_relaxed(rbase + GICR_CTLR);
5359 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5360 		return 0;
5361 
5362 	/*
5363 	 * If coming via a CPU hotplug event, we don't need to disable
5364 	 * LPIs before trying to re-enable them. They are already
5365 	 * configured and all is well in the world.
5366 	 *
5367 	 * If running with preallocated tables, there is nothing to do.
5368 	 */
5369 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5370 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5371 		return 0;
5372 
5373 	/*
5374 	 * From that point on, we only try to do some damage control.
5375 	 */
5376 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5377 		smp_processor_id());
5378 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5379 
5380 	/* Disable LPIs */
5381 	val &= ~GICR_CTLR_ENABLE_LPIS;
5382 	writel_relaxed(val, rbase + GICR_CTLR);
5383 
5384 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5385 	dsb(sy);
5386 
5387 	/*
5388 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5389 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5390 	 * Error out if we time out waiting for RWP to clear.
5391 	 */
5392 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5393 		if (!timeout) {
5394 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5395 			       smp_processor_id());
5396 			return -ETIMEDOUT;
5397 		}
5398 		udelay(1);
5399 		timeout--;
5400 	}
5401 
5402 	/*
5403 	 * After it has been written to 1, it is IMPLEMENTATION
5404 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5405 	 * cleared to 0. Error out if clearing the bit failed.
5406 	 */
5407 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5408 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5409 		return -EBUSY;
5410 	}
5411 
5412 	return 0;
5413 }
5414 
5415 int its_cpu_init(void)
5416 {
5417 	if (!list_empty(&its_nodes)) {
5418 		int ret;
5419 
5420 		ret = redist_disable_lpis();
5421 		if (ret)
5422 			return ret;
5423 
5424 		its_cpu_init_lpis();
5425 		its_cpu_init_collections();
5426 	}
5427 
5428 	return 0;
5429 }
5430 
5431 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5432 {
5433 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5434 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5435 }
5436 
5437 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5438 		    rdist_memreserve_cpuhp_cleanup_workfn);
5439 
5440 static int its_cpu_memreserve_lpi(unsigned int cpu)
5441 {
5442 	struct page *pend_page;
5443 	int ret = 0;
5444 
5445 	/* This gets to run exactly once per CPU */
5446 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5447 		return 0;
5448 
5449 	pend_page = gic_data_rdist()->pend_page;
5450 	if (WARN_ON(!pend_page)) {
5451 		ret = -ENOMEM;
5452 		goto out;
5453 	}
5454 	/*
5455 	 * If the pending table was pre-programmed, free the memory we
5456 	 * preemptively allocated. Otherwise, reserve that memory for
5457 	 * later kexecs.
5458 	 */
5459 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5460 		its_free_pending_table(pend_page);
5461 		gic_data_rdist()->pend_page = NULL;
5462 	} else {
5463 		phys_addr_t paddr = page_to_phys(pend_page);
5464 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5465 	}
5466 
5467 out:
5468 	/* Last CPU being brought up gets to issue the cleanup */
5469 	if (!IS_ENABLED(CONFIG_SMP) ||
5470 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5471 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5472 
5473 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5474 	return ret;
5475 }
5476 
5477 /* Mark all the BASER registers as invalid before they get reprogrammed */
5478 static int __init its_reset_one(struct resource *res)
5479 {
5480 	void __iomem *its_base;
5481 	int err, i;
5482 
5483 	its_base = its_map_one(res, &err);
5484 	if (!its_base)
5485 		return err;
5486 
5487 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5488 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5489 
5490 	iounmap(its_base);
5491 	return 0;
5492 }
5493 
5494 static const struct of_device_id its_device_id[] = {
5495 	{	.compatible	= "arm,gic-v3-its",	},
5496 	{},
5497 };
5498 
5499 static struct its_node __init *its_node_init(struct resource *res,
5500 					     struct fwnode_handle *handle, int numa_node)
5501 {
5502 	void __iomem *its_base;
5503 	struct its_node *its;
5504 	int err;
5505 
5506 	its_base = its_map_one(res, &err);
5507 	if (!its_base)
5508 		return NULL;
5509 
5510 	pr_info("ITS %pR\n", res);
5511 
5512 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5513 	if (!its)
5514 		goto out_unmap;
5515 
5516 	raw_spin_lock_init(&its->lock);
5517 	mutex_init(&its->dev_alloc_lock);
5518 	INIT_LIST_HEAD(&its->entry);
5519 	INIT_LIST_HEAD(&its->its_device_list);
5520 
5521 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5522 	its->base = its_base;
5523 	its->phys_base = res->start;
5524 	its->get_msi_base = its_irq_get_msi_base;
5525 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | IRQ_DOMAIN_FLAG_MSI_IMMUTABLE;
5526 
5527 	its->numa_node = numa_node;
5528 	its->fwnode_handle = handle;
5529 
5530 	return its;
5531 
5532 out_unmap:
5533 	iounmap(its_base);
5534 	return NULL;
5535 }
5536 
5537 static void its_node_destroy(struct its_node *its)
5538 {
5539 	iounmap(its->base);
5540 	kfree(its);
5541 }
5542 
5543 static int __init its_of_probe(struct device_node *node)
5544 {
5545 	struct device_node *np;
5546 	struct resource res;
5547 	int err;
5548 
5549 	/*
5550 	 * Make sure *all* the ITS are reset before we probe any, as
5551 	 * they may be sharing memory. If any of the ITS fails to
5552 	 * reset, don't even try to go any further, as this could
5553 	 * result in something even worse.
5554 	 */
5555 	for (np = of_find_matching_node(node, its_device_id); np;
5556 	     np = of_find_matching_node(np, its_device_id)) {
5557 		if (!of_device_is_available(np) ||
5558 		    !of_property_read_bool(np, "msi-controller") ||
5559 		    of_address_to_resource(np, 0, &res))
5560 			continue;
5561 
5562 		err = its_reset_one(&res);
5563 		if (err)
5564 			return err;
5565 	}
5566 
5567 	for (np = of_find_matching_node(node, its_device_id); np;
5568 	     np = of_find_matching_node(np, its_device_id)) {
5569 		struct its_node *its;
5570 
5571 		if (!of_device_is_available(np))
5572 			continue;
5573 		if (!of_property_read_bool(np, "msi-controller")) {
5574 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5575 				np);
5576 			continue;
5577 		}
5578 
5579 		if (of_address_to_resource(np, 0, &res)) {
5580 			pr_warn("%pOF: no regs?\n", np);
5581 			continue;
5582 		}
5583 
5584 
5585 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5586 		if (!its)
5587 			return -ENOMEM;
5588 
5589 		err = its_probe_one(its);
5590 		if (err)  {
5591 			its_node_destroy(its);
5592 			return err;
5593 		}
5594 	}
5595 	return 0;
5596 }
5597 
5598 #ifdef CONFIG_ACPI
5599 
5600 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5601 
5602 #ifdef CONFIG_ACPI_NUMA
5603 struct its_srat_map {
5604 	/* numa node id */
5605 	u32	numa_node;
5606 	/* GIC ITS ID */
5607 	u32	its_id;
5608 };
5609 
5610 static struct its_srat_map *its_srat_maps __initdata;
5611 static int its_in_srat __initdata;
5612 
5613 static int __init acpi_get_its_numa_node(u32 its_id)
5614 {
5615 	int i;
5616 
5617 	for (i = 0; i < its_in_srat; i++) {
5618 		if (its_id == its_srat_maps[i].its_id)
5619 			return its_srat_maps[i].numa_node;
5620 	}
5621 	return NUMA_NO_NODE;
5622 }
5623 
5624 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5625 					  const unsigned long end)
5626 {
5627 	return 0;
5628 }
5629 
5630 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5631 			 const unsigned long end)
5632 {
5633 	int node;
5634 	struct acpi_srat_gic_its_affinity *its_affinity;
5635 
5636 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5637 	if (!its_affinity)
5638 		return -EINVAL;
5639 
5640 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5641 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5642 			its_affinity->header.length);
5643 		return -EINVAL;
5644 	}
5645 
5646 	/*
5647 	 * Note that in theory a new proximity node could be created by this
5648 	 * entry as it is an SRAT resource allocation structure.
5649 	 * We do not currently support doing so.
5650 	 */
5651 	node = pxm_to_node(its_affinity->proximity_domain);
5652 
5653 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5654 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5655 		return 0;
5656 	}
5657 
5658 	its_srat_maps[its_in_srat].numa_node = node;
5659 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5660 	its_in_srat++;
5661 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5662 		its_affinity->proximity_domain, its_affinity->its_id, node);
5663 
5664 	return 0;
5665 }
5666 
5667 static void __init acpi_table_parse_srat_its(void)
5668 {
5669 	int count;
5670 
5671 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5672 			sizeof(struct acpi_table_srat),
5673 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5674 			gic_acpi_match_srat_its, 0);
5675 	if (count <= 0)
5676 		return;
5677 
5678 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5679 				      GFP_KERNEL);
5680 	if (!its_srat_maps)
5681 		return;
5682 
5683 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5684 			sizeof(struct acpi_table_srat),
5685 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5686 			gic_acpi_parse_srat_its, 0);
5687 }
5688 
5689 /* free the its_srat_maps after ITS probing */
5690 static void __init acpi_its_srat_maps_free(void)
5691 {
5692 	kfree(its_srat_maps);
5693 }
5694 #else
5695 static void __init acpi_table_parse_srat_its(void)	{ }
5696 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5697 static void __init acpi_its_srat_maps_free(void) { }
5698 #endif
5699 
5700 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5701 					  const unsigned long end)
5702 {
5703 	struct acpi_madt_generic_translator *its_entry;
5704 	struct fwnode_handle *dom_handle;
5705 	struct its_node *its;
5706 	struct resource res;
5707 	int err;
5708 
5709 	its_entry = (struct acpi_madt_generic_translator *)header;
5710 	memset(&res, 0, sizeof(res));
5711 	res.start = its_entry->base_address;
5712 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5713 	res.flags = IORESOURCE_MEM;
5714 
5715 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5716 	if (!dom_handle) {
5717 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5718 		       &res.start);
5719 		return -ENOMEM;
5720 	}
5721 
5722 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5723 					 dom_handle);
5724 	if (err) {
5725 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5726 		       &res.start, its_entry->translation_id);
5727 		goto dom_err;
5728 	}
5729 
5730 	its = its_node_init(&res, dom_handle,
5731 			    acpi_get_its_numa_node(its_entry->translation_id));
5732 	if (!its) {
5733 		err = -ENOMEM;
5734 		goto node_err;
5735 	}
5736 
5737 	if (acpi_get_madt_revision() >= 7 &&
5738 	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5739 		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5740 
5741 	err = its_probe_one(its);
5742 	if (!err)
5743 		return 0;
5744 
5745 node_err:
5746 	iort_deregister_domain_token(its_entry->translation_id);
5747 dom_err:
5748 	irq_domain_free_fwnode(dom_handle);
5749 	return err;
5750 }
5751 
5752 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5753 				 const unsigned long end)
5754 {
5755 	struct acpi_madt_generic_translator *its_entry;
5756 	struct resource res;
5757 
5758 	its_entry = (struct acpi_madt_generic_translator *)header;
5759 	res = (struct resource) {
5760 		.start	= its_entry->base_address,
5761 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5762 		.flags	= IORESOURCE_MEM,
5763 	};
5764 
5765 	return its_reset_one(&res);
5766 }
5767 
5768 static void __init its_acpi_probe(void)
5769 {
5770 	acpi_table_parse_srat_its();
5771 	/*
5772 	 * Make sure *all* the ITS are reset before we probe any, as
5773 	 * they may be sharing memory. If any of the ITS fails to
5774 	 * reset, don't even try to go any further, as this could
5775 	 * result in something even worse.
5776 	 */
5777 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5778 				  its_acpi_reset, 0) > 0)
5779 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5780 				      gic_acpi_parse_madt_its, 0);
5781 	acpi_its_srat_maps_free();
5782 }
5783 #else
5784 static void __init its_acpi_probe(void) { }
5785 #endif
5786 
5787 int __init its_lpi_memreserve_init(void)
5788 {
5789 	int state;
5790 
5791 	if (!efi_enabled(EFI_CONFIG_TABLES))
5792 		return 0;
5793 
5794 	if (list_empty(&its_nodes))
5795 		return 0;
5796 
5797 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5798 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5799 				  "irqchip/arm/gicv3/memreserve:online",
5800 				  its_cpu_memreserve_lpi,
5801 				  NULL);
5802 	if (state < 0)
5803 		return state;
5804 
5805 	gic_rdists->cpuhp_memreserve_state = state;
5806 
5807 	return 0;
5808 }
5809 
5810 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5811 		    struct irq_domain *parent_domain, u8 irq_prio)
5812 {
5813 	struct device_node *of_node;
5814 	struct its_node *its;
5815 	bool has_v4 = false;
5816 	bool has_v4_1 = false;
5817 	int err;
5818 
5819 	itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5820 	if (!itt_pool)
5821 		return -ENOMEM;
5822 
5823 	gic_rdists = rdists;
5824 
5825 	lpi_prop_prio = irq_prio;
5826 	its_parent = parent_domain;
5827 	of_node = to_of_node(handle);
5828 	if (of_node)
5829 		its_of_probe(of_node);
5830 	else
5831 		its_acpi_probe();
5832 
5833 	if (list_empty(&its_nodes)) {
5834 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5835 		return -ENXIO;
5836 	}
5837 
5838 	err = allocate_lpi_tables();
5839 	if (err)
5840 		return err;
5841 
5842 	list_for_each_entry(its, &its_nodes, entry) {
5843 		has_v4 |= is_v4(its);
5844 		has_v4_1 |= is_v4_1(its);
5845 	}
5846 
5847 	/* Don't bother with inconsistent systems */
5848 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5849 		rdists->has_rvpeid = false;
5850 
5851 	if (has_v4 & rdists->has_vlpis) {
5852 		const struct irq_domain_ops *sgi_ops;
5853 
5854 		if (has_v4_1)
5855 			sgi_ops = &its_sgi_domain_ops;
5856 		else
5857 			sgi_ops = NULL;
5858 
5859 		if (its_init_vpe_domain() ||
5860 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5861 			rdists->has_vlpis = false;
5862 			pr_err("ITS: Disabling GICv4 support\n");
5863 		}
5864 	}
5865 
5866 	register_syscore_ops(&its_syscore_ops);
5867 
5868 	return 0;
5869 }
5870