1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/genalloc.h> 16 #include <linux/interrupt.h> 17 #include <linux/iommu.h> 18 #include <linux/iopoll.h> 19 #include <linux/irqdomain.h> 20 #include <linux/list.h> 21 #include <linux/log2.h> 22 #include <linux/mem_encrypt.h> 23 #include <linux/memblock.h> 24 #include <linux/mm.h> 25 #include <linux/msi.h> 26 #include <linux/of.h> 27 #include <linux/of_address.h> 28 #include <linux/of_irq.h> 29 #include <linux/of_pci.h> 30 #include <linux/of_platform.h> 31 #include <linux/percpu.h> 32 #include <linux/set_memory.h> 33 #include <linux/slab.h> 34 #include <linux/syscore_ops.h> 35 36 #include <linux/irqchip.h> 37 #include <linux/irqchip/arm-gic-v3.h> 38 #include <linux/irqchip/arm-gic-v4.h> 39 40 #include <asm/cputype.h> 41 #include <asm/exception.h> 42 43 #include "irq-gic-common.h" 44 #include <linux/irqchip/irq-msi-lib.h> 45 46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 49 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4) 51 52 #define RD_LOCAL_LPI_ENABLED BIT(0) 53 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 54 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 55 56 static u32 lpi_id_bits; 57 58 /* 59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 60 * deal with (one configuration byte per interrupt). PENDBASE has to 61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 62 */ 63 #define LPI_NRBITS lpi_id_bits 64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 66 67 static u8 __ro_after_init lpi_prop_prio; 68 static struct its_node *find_4_1_its(void); 69 70 /* 71 * Collection structure - just an ID, and a redistributor address to 72 * ping. We use one per CPU as a bag of interrupts assigned to this 73 * CPU. 74 */ 75 struct its_collection { 76 u64 target_address; 77 u16 col_id; 78 }; 79 80 /* 81 * The ITS_BASER structure - contains memory information, cached 82 * value of BASER register configuration and ITS page size. 83 */ 84 struct its_baser { 85 void *base; 86 u64 val; 87 u32 order; 88 u32 psz; 89 }; 90 91 struct its_device; 92 93 /* 94 * The ITS structure - contains most of the infrastructure, with the 95 * top-level MSI domain, the command queue, the collections, and the 96 * list of devices writing to it. 97 * 98 * dev_alloc_lock has to be taken for device allocations, while the 99 * spinlock must be taken to parse data structures such as the device 100 * list. 101 */ 102 struct its_node { 103 raw_spinlock_t lock; 104 struct mutex dev_alloc_lock; 105 struct list_head entry; 106 void __iomem *base; 107 void __iomem *sgir_base; 108 phys_addr_t phys_base; 109 struct its_cmd_block *cmd_base; 110 struct its_cmd_block *cmd_write; 111 struct its_baser tables[GITS_BASER_NR_REGS]; 112 struct its_collection *collections; 113 struct fwnode_handle *fwnode_handle; 114 u64 (*get_msi_base)(struct its_device *its_dev); 115 u64 typer; 116 u64 cbaser_save; 117 u32 ctlr_save; 118 u32 mpidr; 119 struct list_head its_device_list; 120 u64 flags; 121 unsigned long list_nr; 122 int numa_node; 123 unsigned int msi_domain_flags; 124 u32 pre_its_base; /* for Socionext Synquacer */ 125 int vlpi_redist_offset; 126 }; 127 128 static DEFINE_PER_CPU(struct its_node *, local_4_1_its); 129 130 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 131 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 132 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 133 134 #define ITS_ITT_ALIGN SZ_256 135 136 /* The maximum number of VPEID bits supported by VLPI commands */ 137 #define ITS_MAX_VPEID_BITS \ 138 ({ \ 139 int nvpeid = 16; \ 140 if (gic_rdists->has_rvpeid && \ 141 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 142 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 143 GICD_TYPER2_VID); \ 144 \ 145 nvpeid; \ 146 }) 147 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 148 149 /* Convert page order to size in bytes */ 150 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 151 152 struct event_lpi_map { 153 unsigned long *lpi_map; 154 u16 *col_map; 155 irq_hw_number_t lpi_base; 156 int nr_lpis; 157 raw_spinlock_t vlpi_lock; 158 struct its_vm *vm; 159 struct its_vlpi_map *vlpi_maps; 160 int nr_vlpis; 161 }; 162 163 /* 164 * The ITS view of a device - belongs to an ITS, owns an interrupt 165 * translation table, and a list of interrupts. If it some of its 166 * LPIs are injected into a guest (GICv4), the event_map.vm field 167 * indicates which one. 168 */ 169 struct its_device { 170 struct list_head entry; 171 struct its_node *its; 172 struct event_lpi_map event_map; 173 void *itt; 174 u32 itt_sz; 175 u32 nr_ites; 176 u32 device_id; 177 bool shared; 178 }; 179 180 static struct { 181 raw_spinlock_t lock; 182 struct its_device *dev; 183 struct its_vpe **vpes; 184 int next_victim; 185 } vpe_proxy; 186 187 struct cpu_lpi_count { 188 atomic_t managed; 189 atomic_t unmanaged; 190 }; 191 192 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 193 194 static LIST_HEAD(its_nodes); 195 static DEFINE_RAW_SPINLOCK(its_lock); 196 static struct rdists *gic_rdists; 197 static struct irq_domain *its_parent; 198 199 static unsigned long its_list_map; 200 static u16 vmovp_seq_num; 201 static DEFINE_RAW_SPINLOCK(vmovp_lock); 202 203 static DEFINE_IDA(its_vpeid_ida); 204 205 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 206 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 207 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 208 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 209 210 static gfp_t gfp_flags_quirk; 211 212 static struct page *its_alloc_pages_node(int node, gfp_t gfp, 213 unsigned int order) 214 { 215 struct page *page; 216 int ret = 0; 217 218 page = alloc_pages_node(node, gfp | gfp_flags_quirk, order); 219 220 if (!page) 221 return NULL; 222 223 ret = set_memory_decrypted((unsigned long)page_address(page), 224 1 << order); 225 /* 226 * If set_memory_decrypted() fails then we don't know what state the 227 * page is in, so we can't free it. Instead we leak it. 228 * set_memory_decrypted() will already have WARNed. 229 */ 230 if (ret) 231 return NULL; 232 233 return page; 234 } 235 236 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order) 237 { 238 return its_alloc_pages_node(NUMA_NO_NODE, gfp, order); 239 } 240 241 static void its_free_pages(void *addr, unsigned int order) 242 { 243 /* 244 * If the memory cannot be encrypted again then we must leak the pages. 245 * set_memory_encrypted() will already have WARNed. 246 */ 247 if (set_memory_encrypted((unsigned long)addr, 1 << order)) 248 return; 249 free_pages((unsigned long)addr, order); 250 } 251 252 static struct gen_pool *itt_pool; 253 254 static void *itt_alloc_pool(int node, int size) 255 { 256 unsigned long addr; 257 struct page *page; 258 259 if (size >= PAGE_SIZE) { 260 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size)); 261 262 return page ? page_address(page) : NULL; 263 } 264 265 do { 266 addr = gen_pool_alloc(itt_pool, size); 267 if (addr) 268 break; 269 270 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 271 if (!page) 272 break; 273 274 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node); 275 } while (!addr); 276 277 return (void *)addr; 278 } 279 280 static void itt_free_pool(void *addr, int size) 281 { 282 if (!addr) 283 return; 284 285 if (size >= PAGE_SIZE) { 286 its_free_pages(addr, get_order(size)); 287 return; 288 } 289 290 gen_pool_free(itt_pool, (unsigned long)addr, size); 291 } 292 293 /* 294 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 295 * always have vSGIs mapped. 296 */ 297 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 298 { 299 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 300 } 301 302 static bool rdists_support_shareable(void) 303 { 304 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 305 } 306 307 static u16 get_its_list(struct its_vm *vm) 308 { 309 struct its_node *its; 310 unsigned long its_list = 0; 311 312 list_for_each_entry(its, &its_nodes, entry) { 313 if (!is_v4(its)) 314 continue; 315 316 if (require_its_list_vmovp(vm, its)) 317 __set_bit(its->list_nr, &its_list); 318 } 319 320 return (u16)its_list; 321 } 322 323 static inline u32 its_get_event_id(struct irq_data *d) 324 { 325 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 326 return d->hwirq - its_dev->event_map.lpi_base; 327 } 328 329 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 330 u32 event) 331 { 332 struct its_node *its = its_dev->its; 333 334 return its->collections + its_dev->event_map.col_map[event]; 335 } 336 337 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 338 u32 event) 339 { 340 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 341 return NULL; 342 343 return &its_dev->event_map.vlpi_maps[event]; 344 } 345 346 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 347 { 348 if (irqd_is_forwarded_to_vcpu(d)) { 349 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 350 u32 event = its_get_event_id(d); 351 352 return dev_event_to_vlpi_map(its_dev, event); 353 } 354 355 return NULL; 356 } 357 358 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 359 { 360 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 361 return vpe->col_idx; 362 } 363 364 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 365 { 366 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 367 } 368 369 static struct irq_chip its_vpe_irq_chip; 370 371 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 372 { 373 struct its_vpe *vpe = NULL; 374 int cpu; 375 376 if (d->chip == &its_vpe_irq_chip) { 377 vpe = irq_data_get_irq_chip_data(d); 378 } else { 379 struct its_vlpi_map *map = get_vlpi_map(d); 380 if (map) 381 vpe = map->vpe; 382 } 383 384 if (vpe) { 385 cpu = vpe_to_cpuid_lock(vpe, flags); 386 } else { 387 /* Physical LPIs are already locked via the irq_desc lock */ 388 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 389 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 390 /* Keep GCC quiet... */ 391 *flags = 0; 392 } 393 394 return cpu; 395 } 396 397 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 398 { 399 struct its_vpe *vpe = NULL; 400 401 if (d->chip == &its_vpe_irq_chip) { 402 vpe = irq_data_get_irq_chip_data(d); 403 } else { 404 struct its_vlpi_map *map = get_vlpi_map(d); 405 if (map) 406 vpe = map->vpe; 407 } 408 409 if (vpe) 410 vpe_to_cpuid_unlock(vpe, flags); 411 } 412 413 static struct its_collection *valid_col(struct its_collection *col) 414 { 415 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 416 return NULL; 417 418 return col; 419 } 420 421 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 422 { 423 if (valid_col(its->collections + vpe->col_idx)) 424 return vpe; 425 426 return NULL; 427 } 428 429 /* 430 * ITS command descriptors - parameters to be encoded in a command 431 * block. 432 */ 433 struct its_cmd_desc { 434 union { 435 struct { 436 struct its_device *dev; 437 u32 event_id; 438 } its_inv_cmd; 439 440 struct { 441 struct its_device *dev; 442 u32 event_id; 443 } its_clear_cmd; 444 445 struct { 446 struct its_device *dev; 447 u32 event_id; 448 } its_int_cmd; 449 450 struct { 451 struct its_device *dev; 452 int valid; 453 } its_mapd_cmd; 454 455 struct { 456 struct its_collection *col; 457 int valid; 458 } its_mapc_cmd; 459 460 struct { 461 struct its_device *dev; 462 u32 phys_id; 463 u32 event_id; 464 } its_mapti_cmd; 465 466 struct { 467 struct its_device *dev; 468 struct its_collection *col; 469 u32 event_id; 470 } its_movi_cmd; 471 472 struct { 473 struct its_device *dev; 474 u32 event_id; 475 } its_discard_cmd; 476 477 struct { 478 struct its_collection *col; 479 } its_invall_cmd; 480 481 struct { 482 struct its_vpe *vpe; 483 } its_vinvall_cmd; 484 485 struct { 486 struct its_vpe *vpe; 487 struct its_collection *col; 488 bool valid; 489 } its_vmapp_cmd; 490 491 struct { 492 struct its_vpe *vpe; 493 struct its_device *dev; 494 u32 virt_id; 495 u32 event_id; 496 bool db_enabled; 497 } its_vmapti_cmd; 498 499 struct { 500 struct its_vpe *vpe; 501 struct its_device *dev; 502 u32 event_id; 503 bool db_enabled; 504 } its_vmovi_cmd; 505 506 struct { 507 struct its_vpe *vpe; 508 struct its_collection *col; 509 u16 seq_num; 510 u16 its_list; 511 } its_vmovp_cmd; 512 513 struct { 514 struct its_vpe *vpe; 515 } its_invdb_cmd; 516 517 struct { 518 struct its_vpe *vpe; 519 u8 sgi; 520 u8 priority; 521 bool enable; 522 bool group; 523 bool clear; 524 } its_vsgi_cmd; 525 }; 526 }; 527 528 /* 529 * The ITS command block, which is what the ITS actually parses. 530 */ 531 struct its_cmd_block { 532 union { 533 u64 raw_cmd[4]; 534 __le64 raw_cmd_le[4]; 535 }; 536 }; 537 538 #define ITS_CMD_QUEUE_SZ SZ_64K 539 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 540 541 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 542 struct its_cmd_block *, 543 struct its_cmd_desc *); 544 545 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 546 struct its_cmd_block *, 547 struct its_cmd_desc *); 548 549 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 550 { 551 u64 mask = GENMASK_ULL(h, l); 552 *raw_cmd &= ~mask; 553 *raw_cmd |= (val << l) & mask; 554 } 555 556 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 557 { 558 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 559 } 560 561 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 562 { 563 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 564 } 565 566 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 567 { 568 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 569 } 570 571 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 572 { 573 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 574 } 575 576 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 577 { 578 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 579 } 580 581 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 582 { 583 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 584 } 585 586 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 587 { 588 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 589 } 590 591 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 592 { 593 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 594 } 595 596 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 597 { 598 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 599 } 600 601 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 602 { 603 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 604 } 605 606 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 607 { 608 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 609 } 610 611 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 612 { 613 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 614 } 615 616 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 617 { 618 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 619 } 620 621 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 622 { 623 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 624 } 625 626 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 627 { 628 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 629 } 630 631 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 632 { 633 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 634 } 635 636 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 637 { 638 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 639 } 640 641 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 642 { 643 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 644 } 645 646 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 647 { 648 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 649 } 650 651 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 652 { 653 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 654 } 655 656 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 657 u32 vpe_db_lpi) 658 { 659 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 660 } 661 662 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 663 u32 vpe_db_lpi) 664 { 665 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 666 } 667 668 static void its_encode_db(struct its_cmd_block *cmd, bool db) 669 { 670 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 671 } 672 673 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 674 { 675 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 676 } 677 678 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 679 { 680 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 681 } 682 683 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 684 { 685 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 686 } 687 688 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 689 { 690 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 691 } 692 693 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 694 { 695 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 696 } 697 698 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 699 { 700 /* Let's fixup BE commands */ 701 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 702 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 703 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 704 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 705 } 706 707 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 708 struct its_cmd_block *cmd, 709 struct its_cmd_desc *desc) 710 { 711 unsigned long itt_addr; 712 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 713 714 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 715 716 its_encode_cmd(cmd, GITS_CMD_MAPD); 717 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 718 its_encode_size(cmd, size - 1); 719 its_encode_itt(cmd, itt_addr); 720 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 721 722 its_fixup_cmd(cmd); 723 724 return NULL; 725 } 726 727 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 728 struct its_cmd_block *cmd, 729 struct its_cmd_desc *desc) 730 { 731 its_encode_cmd(cmd, GITS_CMD_MAPC); 732 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 733 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 734 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 735 736 its_fixup_cmd(cmd); 737 738 return desc->its_mapc_cmd.col; 739 } 740 741 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 742 struct its_cmd_block *cmd, 743 struct its_cmd_desc *desc) 744 { 745 struct its_collection *col; 746 747 col = dev_event_to_col(desc->its_mapti_cmd.dev, 748 desc->its_mapti_cmd.event_id); 749 750 its_encode_cmd(cmd, GITS_CMD_MAPTI); 751 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 752 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 753 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 754 its_encode_collection(cmd, col->col_id); 755 756 its_fixup_cmd(cmd); 757 758 return valid_col(col); 759 } 760 761 static struct its_collection *its_build_movi_cmd(struct its_node *its, 762 struct its_cmd_block *cmd, 763 struct its_cmd_desc *desc) 764 { 765 struct its_collection *col; 766 767 col = dev_event_to_col(desc->its_movi_cmd.dev, 768 desc->its_movi_cmd.event_id); 769 770 its_encode_cmd(cmd, GITS_CMD_MOVI); 771 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 772 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 773 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 774 775 its_fixup_cmd(cmd); 776 777 return valid_col(col); 778 } 779 780 static struct its_collection *its_build_discard_cmd(struct its_node *its, 781 struct its_cmd_block *cmd, 782 struct its_cmd_desc *desc) 783 { 784 struct its_collection *col; 785 786 col = dev_event_to_col(desc->its_discard_cmd.dev, 787 desc->its_discard_cmd.event_id); 788 789 its_encode_cmd(cmd, GITS_CMD_DISCARD); 790 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 791 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 792 793 its_fixup_cmd(cmd); 794 795 return valid_col(col); 796 } 797 798 static struct its_collection *its_build_inv_cmd(struct its_node *its, 799 struct its_cmd_block *cmd, 800 struct its_cmd_desc *desc) 801 { 802 struct its_collection *col; 803 804 col = dev_event_to_col(desc->its_inv_cmd.dev, 805 desc->its_inv_cmd.event_id); 806 807 its_encode_cmd(cmd, GITS_CMD_INV); 808 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 809 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 810 811 its_fixup_cmd(cmd); 812 813 return valid_col(col); 814 } 815 816 static struct its_collection *its_build_int_cmd(struct its_node *its, 817 struct its_cmd_block *cmd, 818 struct its_cmd_desc *desc) 819 { 820 struct its_collection *col; 821 822 col = dev_event_to_col(desc->its_int_cmd.dev, 823 desc->its_int_cmd.event_id); 824 825 its_encode_cmd(cmd, GITS_CMD_INT); 826 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 827 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 828 829 its_fixup_cmd(cmd); 830 831 return valid_col(col); 832 } 833 834 static struct its_collection *its_build_clear_cmd(struct its_node *its, 835 struct its_cmd_block *cmd, 836 struct its_cmd_desc *desc) 837 { 838 struct its_collection *col; 839 840 col = dev_event_to_col(desc->its_clear_cmd.dev, 841 desc->its_clear_cmd.event_id); 842 843 its_encode_cmd(cmd, GITS_CMD_CLEAR); 844 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 845 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 846 847 its_fixup_cmd(cmd); 848 849 return valid_col(col); 850 } 851 852 static struct its_collection *its_build_invall_cmd(struct its_node *its, 853 struct its_cmd_block *cmd, 854 struct its_cmd_desc *desc) 855 { 856 its_encode_cmd(cmd, GITS_CMD_INVALL); 857 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 858 859 its_fixup_cmd(cmd); 860 861 return desc->its_invall_cmd.col; 862 } 863 864 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 865 struct its_cmd_block *cmd, 866 struct its_cmd_desc *desc) 867 { 868 its_encode_cmd(cmd, GITS_CMD_VINVALL); 869 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 870 871 its_fixup_cmd(cmd); 872 873 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 874 } 875 876 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 877 struct its_cmd_block *cmd, 878 struct its_cmd_desc *desc) 879 { 880 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 881 unsigned long vpt_addr, vconf_addr; 882 u64 target; 883 bool alloc; 884 885 its_encode_cmd(cmd, GITS_CMD_VMAPP); 886 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 887 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 888 889 if (!desc->its_vmapp_cmd.valid) { 890 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 891 if (is_v4_1(its)) { 892 its_encode_alloc(cmd, alloc); 893 /* 894 * Unmapping a VPE is self-synchronizing on GICv4.1, 895 * no need to issue a VSYNC. 896 */ 897 vpe = NULL; 898 } 899 900 goto out; 901 } 902 903 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 904 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 905 906 its_encode_target(cmd, target); 907 its_encode_vpt_addr(cmd, vpt_addr); 908 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 909 910 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 911 912 if (!is_v4_1(its)) 913 goto out; 914 915 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 916 917 its_encode_alloc(cmd, alloc); 918 919 /* 920 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 921 * to be unmapped first, and in this case, we may remap the vPE 922 * back while the VPT is not empty. So we can't assume that the 923 * VPT is empty on map. This is why we never advertise PTZ. 924 */ 925 its_encode_ptz(cmd, false); 926 its_encode_vconf_addr(cmd, vconf_addr); 927 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 928 929 out: 930 its_fixup_cmd(cmd); 931 932 return vpe; 933 } 934 935 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 936 struct its_cmd_block *cmd, 937 struct its_cmd_desc *desc) 938 { 939 u32 db; 940 941 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 942 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 943 else 944 db = 1023; 945 946 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 947 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 948 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 949 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 950 its_encode_db_phys_id(cmd, db); 951 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 952 953 its_fixup_cmd(cmd); 954 955 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 956 } 957 958 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 959 struct its_cmd_block *cmd, 960 struct its_cmd_desc *desc) 961 { 962 u32 db; 963 964 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 965 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 966 else 967 db = 1023; 968 969 its_encode_cmd(cmd, GITS_CMD_VMOVI); 970 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 971 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 972 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 973 its_encode_db_phys_id(cmd, db); 974 its_encode_db_valid(cmd, true); 975 976 its_fixup_cmd(cmd); 977 978 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 979 } 980 981 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 982 struct its_cmd_block *cmd, 983 struct its_cmd_desc *desc) 984 { 985 u64 target; 986 987 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 988 its_encode_cmd(cmd, GITS_CMD_VMOVP); 989 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 990 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 991 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 992 its_encode_target(cmd, target); 993 994 if (is_v4_1(its)) { 995 its_encode_db(cmd, true); 996 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 997 } 998 999 its_fixup_cmd(cmd); 1000 1001 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 1002 } 1003 1004 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 1005 struct its_cmd_block *cmd, 1006 struct its_cmd_desc *desc) 1007 { 1008 struct its_vlpi_map *map; 1009 1010 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 1011 desc->its_inv_cmd.event_id); 1012 1013 its_encode_cmd(cmd, GITS_CMD_INV); 1014 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 1015 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 1016 1017 its_fixup_cmd(cmd); 1018 1019 return valid_vpe(its, map->vpe); 1020 } 1021 1022 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 1023 struct its_cmd_block *cmd, 1024 struct its_cmd_desc *desc) 1025 { 1026 struct its_vlpi_map *map; 1027 1028 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 1029 desc->its_int_cmd.event_id); 1030 1031 its_encode_cmd(cmd, GITS_CMD_INT); 1032 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 1033 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 1034 1035 its_fixup_cmd(cmd); 1036 1037 return valid_vpe(its, map->vpe); 1038 } 1039 1040 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 1041 struct its_cmd_block *cmd, 1042 struct its_cmd_desc *desc) 1043 { 1044 struct its_vlpi_map *map; 1045 1046 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 1047 desc->its_clear_cmd.event_id); 1048 1049 its_encode_cmd(cmd, GITS_CMD_CLEAR); 1050 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 1051 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 1052 1053 its_fixup_cmd(cmd); 1054 1055 return valid_vpe(its, map->vpe); 1056 } 1057 1058 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 1059 struct its_cmd_block *cmd, 1060 struct its_cmd_desc *desc) 1061 { 1062 if (WARN_ON(!is_v4_1(its))) 1063 return NULL; 1064 1065 its_encode_cmd(cmd, GITS_CMD_INVDB); 1066 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 1067 1068 its_fixup_cmd(cmd); 1069 1070 return valid_vpe(its, desc->its_invdb_cmd.vpe); 1071 } 1072 1073 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 1074 struct its_cmd_block *cmd, 1075 struct its_cmd_desc *desc) 1076 { 1077 if (WARN_ON(!is_v4_1(its))) 1078 return NULL; 1079 1080 its_encode_cmd(cmd, GITS_CMD_VSGI); 1081 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 1082 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 1083 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 1084 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 1085 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 1086 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 1087 1088 its_fixup_cmd(cmd); 1089 1090 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1091 } 1092 1093 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1094 struct its_cmd_block *ptr) 1095 { 1096 return (ptr - its->cmd_base) * sizeof(*ptr); 1097 } 1098 1099 static int its_queue_full(struct its_node *its) 1100 { 1101 int widx; 1102 int ridx; 1103 1104 widx = its->cmd_write - its->cmd_base; 1105 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1106 1107 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1108 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1109 return 1; 1110 1111 return 0; 1112 } 1113 1114 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1115 { 1116 struct its_cmd_block *cmd; 1117 u32 count = 1000000; /* 1s! */ 1118 1119 while (its_queue_full(its)) { 1120 count--; 1121 if (!count) { 1122 pr_err_ratelimited("ITS queue not draining\n"); 1123 return NULL; 1124 } 1125 cpu_relax(); 1126 udelay(1); 1127 } 1128 1129 cmd = its->cmd_write++; 1130 1131 /* Handle queue wrapping */ 1132 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1133 its->cmd_write = its->cmd_base; 1134 1135 /* Clear command */ 1136 cmd->raw_cmd[0] = 0; 1137 cmd->raw_cmd[1] = 0; 1138 cmd->raw_cmd[2] = 0; 1139 cmd->raw_cmd[3] = 0; 1140 1141 return cmd; 1142 } 1143 1144 static struct its_cmd_block *its_post_commands(struct its_node *its) 1145 { 1146 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1147 1148 writel_relaxed(wr, its->base + GITS_CWRITER); 1149 1150 return its->cmd_write; 1151 } 1152 1153 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1154 { 1155 /* 1156 * Make sure the commands written to memory are observable by 1157 * the ITS. 1158 */ 1159 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1160 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1161 else 1162 dsb(ishst); 1163 } 1164 1165 static int its_wait_for_range_completion(struct its_node *its, 1166 u64 prev_idx, 1167 struct its_cmd_block *to) 1168 { 1169 u64 rd_idx, to_idx, linear_idx; 1170 u32 count = 1000000; /* 1s! */ 1171 1172 /* Linearize to_idx if the command set has wrapped around */ 1173 to_idx = its_cmd_ptr_to_offset(its, to); 1174 if (to_idx < prev_idx) 1175 to_idx += ITS_CMD_QUEUE_SZ; 1176 1177 linear_idx = prev_idx; 1178 1179 while (1) { 1180 s64 delta; 1181 1182 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1183 1184 /* 1185 * Compute the read pointer progress, taking the 1186 * potential wrap-around into account. 1187 */ 1188 delta = rd_idx - prev_idx; 1189 if (rd_idx < prev_idx) 1190 delta += ITS_CMD_QUEUE_SZ; 1191 1192 linear_idx += delta; 1193 if (linear_idx >= to_idx) 1194 break; 1195 1196 count--; 1197 if (!count) { 1198 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1199 to_idx, linear_idx); 1200 return -1; 1201 } 1202 prev_idx = rd_idx; 1203 cpu_relax(); 1204 udelay(1); 1205 } 1206 1207 return 0; 1208 } 1209 1210 /* Warning, macro hell follows */ 1211 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1212 void name(struct its_node *its, \ 1213 buildtype builder, \ 1214 struct its_cmd_desc *desc) \ 1215 { \ 1216 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1217 synctype *sync_obj; \ 1218 unsigned long flags; \ 1219 u64 rd_idx; \ 1220 \ 1221 raw_spin_lock_irqsave(&its->lock, flags); \ 1222 \ 1223 cmd = its_allocate_entry(its); \ 1224 if (!cmd) { /* We're soooooo screewed... */ \ 1225 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1226 return; \ 1227 } \ 1228 sync_obj = builder(its, cmd, desc); \ 1229 its_flush_cmd(its, cmd); \ 1230 \ 1231 if (sync_obj) { \ 1232 sync_cmd = its_allocate_entry(its); \ 1233 if (!sync_cmd) \ 1234 goto post; \ 1235 \ 1236 buildfn(its, sync_cmd, sync_obj); \ 1237 its_flush_cmd(its, sync_cmd); \ 1238 } \ 1239 \ 1240 post: \ 1241 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1242 next_cmd = its_post_commands(its); \ 1243 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1244 \ 1245 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1246 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1247 } 1248 1249 static void its_build_sync_cmd(struct its_node *its, 1250 struct its_cmd_block *sync_cmd, 1251 struct its_collection *sync_col) 1252 { 1253 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1254 its_encode_target(sync_cmd, sync_col->target_address); 1255 1256 its_fixup_cmd(sync_cmd); 1257 } 1258 1259 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1260 struct its_collection, its_build_sync_cmd) 1261 1262 static void its_build_vsync_cmd(struct its_node *its, 1263 struct its_cmd_block *sync_cmd, 1264 struct its_vpe *sync_vpe) 1265 { 1266 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1267 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1268 1269 its_fixup_cmd(sync_cmd); 1270 } 1271 1272 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1273 struct its_vpe, its_build_vsync_cmd) 1274 1275 static void its_send_int(struct its_device *dev, u32 event_id) 1276 { 1277 struct its_cmd_desc desc; 1278 1279 desc.its_int_cmd.dev = dev; 1280 desc.its_int_cmd.event_id = event_id; 1281 1282 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1283 } 1284 1285 static void its_send_clear(struct its_device *dev, u32 event_id) 1286 { 1287 struct its_cmd_desc desc; 1288 1289 desc.its_clear_cmd.dev = dev; 1290 desc.its_clear_cmd.event_id = event_id; 1291 1292 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1293 } 1294 1295 static void its_send_inv(struct its_device *dev, u32 event_id) 1296 { 1297 struct its_cmd_desc desc; 1298 1299 desc.its_inv_cmd.dev = dev; 1300 desc.its_inv_cmd.event_id = event_id; 1301 1302 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1303 } 1304 1305 static void its_send_mapd(struct its_device *dev, int valid) 1306 { 1307 struct its_cmd_desc desc; 1308 1309 desc.its_mapd_cmd.dev = dev; 1310 desc.its_mapd_cmd.valid = !!valid; 1311 1312 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1313 } 1314 1315 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1316 int valid) 1317 { 1318 struct its_cmd_desc desc; 1319 1320 desc.its_mapc_cmd.col = col; 1321 desc.its_mapc_cmd.valid = !!valid; 1322 1323 its_send_single_command(its, its_build_mapc_cmd, &desc); 1324 } 1325 1326 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1327 { 1328 struct its_cmd_desc desc; 1329 1330 desc.its_mapti_cmd.dev = dev; 1331 desc.its_mapti_cmd.phys_id = irq_id; 1332 desc.its_mapti_cmd.event_id = id; 1333 1334 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1335 } 1336 1337 static void its_send_movi(struct its_device *dev, 1338 struct its_collection *col, u32 id) 1339 { 1340 struct its_cmd_desc desc; 1341 1342 desc.its_movi_cmd.dev = dev; 1343 desc.its_movi_cmd.col = col; 1344 desc.its_movi_cmd.event_id = id; 1345 1346 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1347 } 1348 1349 static void its_send_discard(struct its_device *dev, u32 id) 1350 { 1351 struct its_cmd_desc desc; 1352 1353 desc.its_discard_cmd.dev = dev; 1354 desc.its_discard_cmd.event_id = id; 1355 1356 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1357 } 1358 1359 static void its_send_invall(struct its_node *its, struct its_collection *col) 1360 { 1361 struct its_cmd_desc desc; 1362 1363 desc.its_invall_cmd.col = col; 1364 1365 its_send_single_command(its, its_build_invall_cmd, &desc); 1366 } 1367 1368 static void its_send_vmapti(struct its_device *dev, u32 id) 1369 { 1370 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1371 struct its_cmd_desc desc; 1372 1373 desc.its_vmapti_cmd.vpe = map->vpe; 1374 desc.its_vmapti_cmd.dev = dev; 1375 desc.its_vmapti_cmd.virt_id = map->vintid; 1376 desc.its_vmapti_cmd.event_id = id; 1377 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1378 1379 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1380 } 1381 1382 static void its_send_vmovi(struct its_device *dev, u32 id) 1383 { 1384 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1385 struct its_cmd_desc desc; 1386 1387 desc.its_vmovi_cmd.vpe = map->vpe; 1388 desc.its_vmovi_cmd.dev = dev; 1389 desc.its_vmovi_cmd.event_id = id; 1390 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1391 1392 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1393 } 1394 1395 static void its_send_vmapp(struct its_node *its, 1396 struct its_vpe *vpe, bool valid) 1397 { 1398 struct its_cmd_desc desc; 1399 1400 desc.its_vmapp_cmd.vpe = vpe; 1401 desc.its_vmapp_cmd.valid = valid; 1402 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1403 1404 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1405 } 1406 1407 static void its_send_vmovp(struct its_vpe *vpe) 1408 { 1409 struct its_cmd_desc desc = {}; 1410 struct its_node *its; 1411 int col_id = vpe->col_idx; 1412 1413 desc.its_vmovp_cmd.vpe = vpe; 1414 1415 if (!its_list_map) { 1416 its = list_first_entry(&its_nodes, struct its_node, entry); 1417 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1418 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1419 return; 1420 } 1421 1422 /* 1423 * Yet another marvel of the architecture. If using the 1424 * its_list "feature", we need to make sure that all ITSs 1425 * receive all VMOVP commands in the same order. The only way 1426 * to guarantee this is to make vmovp a serialization point. 1427 * 1428 * Wall <-- Head. 1429 */ 1430 guard(raw_spinlock)(&vmovp_lock); 1431 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1432 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1433 1434 /* Emit VMOVPs */ 1435 list_for_each_entry(its, &its_nodes, entry) { 1436 if (!is_v4(its)) 1437 continue; 1438 1439 if (!require_its_list_vmovp(vpe->its_vm, its)) 1440 continue; 1441 1442 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1443 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1444 } 1445 } 1446 1447 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1448 { 1449 struct its_cmd_desc desc; 1450 1451 desc.its_vinvall_cmd.vpe = vpe; 1452 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1453 } 1454 1455 static void its_send_vinv(struct its_device *dev, u32 event_id) 1456 { 1457 struct its_cmd_desc desc; 1458 1459 /* 1460 * There is no real VINV command. This is just a normal INV, 1461 * with a VSYNC instead of a SYNC. 1462 */ 1463 desc.its_inv_cmd.dev = dev; 1464 desc.its_inv_cmd.event_id = event_id; 1465 1466 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1467 } 1468 1469 static void its_send_vint(struct its_device *dev, u32 event_id) 1470 { 1471 struct its_cmd_desc desc; 1472 1473 /* 1474 * There is no real VINT command. This is just a normal INT, 1475 * with a VSYNC instead of a SYNC. 1476 */ 1477 desc.its_int_cmd.dev = dev; 1478 desc.its_int_cmd.event_id = event_id; 1479 1480 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1481 } 1482 1483 static void its_send_vclear(struct its_device *dev, u32 event_id) 1484 { 1485 struct its_cmd_desc desc; 1486 1487 /* 1488 * There is no real VCLEAR command. This is just a normal CLEAR, 1489 * with a VSYNC instead of a SYNC. 1490 */ 1491 desc.its_clear_cmd.dev = dev; 1492 desc.its_clear_cmd.event_id = event_id; 1493 1494 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1495 } 1496 1497 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1498 { 1499 struct its_cmd_desc desc; 1500 1501 desc.its_invdb_cmd.vpe = vpe; 1502 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1503 } 1504 1505 /* 1506 * irqchip functions - assumes MSI, mostly. 1507 */ 1508 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1509 { 1510 struct its_vlpi_map *map = get_vlpi_map(d); 1511 irq_hw_number_t hwirq; 1512 void *va; 1513 u8 *cfg; 1514 1515 if (map) { 1516 va = page_address(map->vm->vprop_page); 1517 hwirq = map->vintid; 1518 1519 /* Remember the updated property */ 1520 map->properties &= ~clr; 1521 map->properties |= set | LPI_PROP_GROUP1; 1522 } else { 1523 va = gic_rdists->prop_table_va; 1524 hwirq = d->hwirq; 1525 } 1526 1527 cfg = va + hwirq - 8192; 1528 *cfg &= ~clr; 1529 *cfg |= set | LPI_PROP_GROUP1; 1530 1531 /* 1532 * Make the above write visible to the redistributors. 1533 * And yes, we're flushing exactly: One. Single. Byte. 1534 * Humpf... 1535 */ 1536 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1537 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1538 else 1539 dsb(ishst); 1540 } 1541 1542 static void wait_for_syncr(void __iomem *rdbase) 1543 { 1544 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1545 cpu_relax(); 1546 } 1547 1548 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1549 { 1550 void __iomem *rdbase; 1551 unsigned long flags; 1552 int cpu; 1553 1554 /* Target the redistributor this LPI is currently routed to */ 1555 cpu = irq_to_cpuid_lock(d, &flags); 1556 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1557 1558 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1559 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1560 wait_for_syncr(rdbase); 1561 1562 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1563 irq_to_cpuid_unlock(d, flags); 1564 } 1565 1566 static void direct_lpi_inv(struct irq_data *d) 1567 { 1568 struct its_vlpi_map *map = get_vlpi_map(d); 1569 u64 val; 1570 1571 if (map) { 1572 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1573 1574 WARN_ON(!is_v4_1(its_dev->its)); 1575 1576 val = GICR_INVLPIR_V; 1577 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1578 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1579 } else { 1580 val = d->hwirq; 1581 } 1582 1583 __direct_lpi_inv(d, val); 1584 } 1585 1586 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1587 { 1588 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1589 1590 lpi_write_config(d, clr, set); 1591 if (gic_rdists->has_direct_lpi && 1592 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1593 direct_lpi_inv(d); 1594 else if (!irqd_is_forwarded_to_vcpu(d)) 1595 its_send_inv(its_dev, its_get_event_id(d)); 1596 else 1597 its_send_vinv(its_dev, its_get_event_id(d)); 1598 } 1599 1600 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1601 { 1602 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1603 u32 event = its_get_event_id(d); 1604 struct its_vlpi_map *map; 1605 1606 /* 1607 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1608 * here. 1609 */ 1610 if (is_v4_1(its_dev->its)) 1611 return; 1612 1613 map = dev_event_to_vlpi_map(its_dev, event); 1614 1615 if (map->db_enabled == enable) 1616 return; 1617 1618 map->db_enabled = enable; 1619 1620 /* 1621 * More fun with the architecture: 1622 * 1623 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1624 * value or to 1023, depending on the enable bit. But that 1625 * would be issuing a mapping for an /existing/ DevID+EventID 1626 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1627 * to the /same/ vPE, using this opportunity to adjust the 1628 * doorbell. Mouahahahaha. We loves it, Precious. 1629 */ 1630 its_send_vmovi(its_dev, event); 1631 } 1632 1633 static void its_mask_irq(struct irq_data *d) 1634 { 1635 if (irqd_is_forwarded_to_vcpu(d)) 1636 its_vlpi_set_doorbell(d, false); 1637 1638 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1639 } 1640 1641 static void its_unmask_irq(struct irq_data *d) 1642 { 1643 if (irqd_is_forwarded_to_vcpu(d)) 1644 its_vlpi_set_doorbell(d, true); 1645 1646 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1647 } 1648 1649 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1650 { 1651 if (irqd_affinity_is_managed(d)) 1652 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1653 1654 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1655 } 1656 1657 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1658 { 1659 if (irqd_affinity_is_managed(d)) 1660 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1661 else 1662 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1663 } 1664 1665 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1666 { 1667 if (irqd_affinity_is_managed(d)) 1668 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1669 else 1670 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1671 } 1672 1673 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1674 const struct cpumask *cpu_mask) 1675 { 1676 unsigned int cpu = nr_cpu_ids, tmp; 1677 int count = S32_MAX; 1678 1679 for_each_cpu(tmp, cpu_mask) { 1680 int this_count = its_read_lpi_count(d, tmp); 1681 if (this_count < count) { 1682 cpu = tmp; 1683 count = this_count; 1684 } 1685 } 1686 1687 return cpu; 1688 } 1689 1690 /* 1691 * As suggested by Thomas Gleixner in: 1692 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1693 */ 1694 static int its_select_cpu(struct irq_data *d, 1695 const struct cpumask *aff_mask) 1696 { 1697 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1698 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1699 static struct cpumask __tmpmask; 1700 struct cpumask *tmpmask; 1701 unsigned long flags; 1702 int cpu, node; 1703 node = its_dev->its->numa_node; 1704 tmpmask = &__tmpmask; 1705 1706 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1707 1708 if (!irqd_affinity_is_managed(d)) { 1709 /* First try the NUMA node */ 1710 if (node != NUMA_NO_NODE) { 1711 /* 1712 * Try the intersection of the affinity mask and the 1713 * node mask (and the online mask, just to be safe). 1714 */ 1715 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1716 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1717 1718 /* 1719 * Ideally, we would check if the mask is empty, and 1720 * try again on the full node here. 1721 * 1722 * But it turns out that the way ACPI describes the 1723 * affinity for ITSs only deals about memory, and 1724 * not target CPUs, so it cannot describe a single 1725 * ITS placed next to two NUMA nodes. 1726 * 1727 * Instead, just fallback on the online mask. This 1728 * diverges from Thomas' suggestion above. 1729 */ 1730 cpu = cpumask_pick_least_loaded(d, tmpmask); 1731 if (cpu < nr_cpu_ids) 1732 goto out; 1733 1734 /* If we can't cross sockets, give up */ 1735 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1736 goto out; 1737 1738 /* If the above failed, expand the search */ 1739 } 1740 1741 /* Try the intersection of the affinity and online masks */ 1742 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1743 1744 /* If that doesn't fly, the online mask is the last resort */ 1745 if (cpumask_empty(tmpmask)) 1746 cpumask_copy(tmpmask, cpu_online_mask); 1747 1748 cpu = cpumask_pick_least_loaded(d, tmpmask); 1749 } else { 1750 cpumask_copy(tmpmask, aff_mask); 1751 1752 /* If we cannot cross sockets, limit the search to that node */ 1753 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1754 node != NUMA_NO_NODE) 1755 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1756 1757 cpu = cpumask_pick_least_loaded(d, tmpmask); 1758 } 1759 out: 1760 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1761 1762 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1763 return cpu; 1764 } 1765 1766 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1767 bool force) 1768 { 1769 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1770 struct its_collection *target_col; 1771 u32 id = its_get_event_id(d); 1772 int cpu, prev_cpu; 1773 1774 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1775 if (irqd_is_forwarded_to_vcpu(d)) 1776 return -EINVAL; 1777 1778 prev_cpu = its_dev->event_map.col_map[id]; 1779 its_dec_lpi_count(d, prev_cpu); 1780 1781 if (!force) 1782 cpu = its_select_cpu(d, mask_val); 1783 else 1784 cpu = cpumask_pick_least_loaded(d, mask_val); 1785 1786 if (cpu < 0 || cpu >= nr_cpu_ids) 1787 goto err; 1788 1789 /* don't set the affinity when the target cpu is same as current one */ 1790 if (cpu != prev_cpu) { 1791 target_col = &its_dev->its->collections[cpu]; 1792 its_send_movi(its_dev, target_col, id); 1793 its_dev->event_map.col_map[id] = cpu; 1794 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1795 } 1796 1797 its_inc_lpi_count(d, cpu); 1798 1799 return IRQ_SET_MASK_OK_DONE; 1800 1801 err: 1802 its_inc_lpi_count(d, prev_cpu); 1803 return -EINVAL; 1804 } 1805 1806 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1807 { 1808 struct its_node *its = its_dev->its; 1809 1810 return its->phys_base + GITS_TRANSLATER; 1811 } 1812 1813 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1814 { 1815 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1816 1817 msg->data = its_get_event_id(d); 1818 msi_msg_set_addr(irq_data_get_msi_desc(d), msg, 1819 its_dev->its->get_msi_base(its_dev)); 1820 } 1821 1822 static int its_irq_set_irqchip_state(struct irq_data *d, 1823 enum irqchip_irq_state which, 1824 bool state) 1825 { 1826 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1827 u32 event = its_get_event_id(d); 1828 1829 if (which != IRQCHIP_STATE_PENDING) 1830 return -EINVAL; 1831 1832 if (irqd_is_forwarded_to_vcpu(d)) { 1833 if (state) 1834 its_send_vint(its_dev, event); 1835 else 1836 its_send_vclear(its_dev, event); 1837 } else { 1838 if (state) 1839 its_send_int(its_dev, event); 1840 else 1841 its_send_clear(its_dev, event); 1842 } 1843 1844 return 0; 1845 } 1846 1847 static int its_irq_retrigger(struct irq_data *d) 1848 { 1849 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1850 } 1851 1852 /* 1853 * Two favourable cases: 1854 * 1855 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1856 * for vSGI delivery 1857 * 1858 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1859 * and we're better off mapping all VPEs always 1860 * 1861 * If neither (a) nor (b) is true, then we map vPEs on demand. 1862 * 1863 */ 1864 static bool gic_requires_eager_mapping(void) 1865 { 1866 if (!its_list_map || gic_rdists->has_rvpeid) 1867 return true; 1868 1869 return false; 1870 } 1871 1872 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1873 { 1874 if (gic_requires_eager_mapping()) 1875 return; 1876 1877 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1878 1879 /* 1880 * If the VM wasn't mapped yet, iterate over the vpes and get 1881 * them mapped now. 1882 */ 1883 vm->vlpi_count[its->list_nr]++; 1884 1885 if (vm->vlpi_count[its->list_nr] == 1) { 1886 int i; 1887 1888 for (i = 0; i < vm->nr_vpes; i++) { 1889 struct its_vpe *vpe = vm->vpes[i]; 1890 1891 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1892 its_send_vmapp(its, vpe, true); 1893 1894 its_send_vinvall(its, vpe); 1895 } 1896 } 1897 } 1898 1899 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1900 { 1901 /* Not using the ITS list? Everything is always mapped. */ 1902 if (gic_requires_eager_mapping()) 1903 return; 1904 1905 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1906 1907 if (!--vm->vlpi_count[its->list_nr]) { 1908 int i; 1909 1910 for (i = 0; i < vm->nr_vpes; i++) { 1911 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1912 its_send_vmapp(its, vm->vpes[i], false); 1913 } 1914 } 1915 } 1916 1917 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1918 { 1919 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1920 u32 event = its_get_event_id(d); 1921 1922 if (!info->map) 1923 return -EINVAL; 1924 1925 if (!its_dev->event_map.vm) { 1926 struct its_vlpi_map *maps; 1927 1928 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1929 GFP_ATOMIC); 1930 if (!maps) 1931 return -ENOMEM; 1932 1933 its_dev->event_map.vm = info->map->vm; 1934 its_dev->event_map.vlpi_maps = maps; 1935 } else if (its_dev->event_map.vm != info->map->vm) { 1936 return -EINVAL; 1937 } 1938 1939 /* Get our private copy of the mapping information */ 1940 its_dev->event_map.vlpi_maps[event] = *info->map; 1941 1942 if (irqd_is_forwarded_to_vcpu(d)) { 1943 /* Already mapped, move it around */ 1944 its_send_vmovi(its_dev, event); 1945 } else { 1946 /* Ensure all the VPEs are mapped on this ITS */ 1947 its_map_vm(its_dev->its, info->map->vm); 1948 1949 /* 1950 * Flag the interrupt as forwarded so that we can 1951 * start poking the virtual property table. 1952 */ 1953 irqd_set_forwarded_to_vcpu(d); 1954 1955 /* Write out the property to the prop table */ 1956 lpi_write_config(d, 0xff, info->map->properties); 1957 1958 /* Drop the physical mapping */ 1959 its_send_discard(its_dev, event); 1960 1961 /* and install the virtual one */ 1962 its_send_vmapti(its_dev, event); 1963 1964 /* Increment the number of VLPIs */ 1965 its_dev->event_map.nr_vlpis++; 1966 } 1967 1968 return 0; 1969 } 1970 1971 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1972 { 1973 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1974 struct its_vlpi_map *map; 1975 1976 map = get_vlpi_map(d); 1977 1978 if (!its_dev->event_map.vm || !map) 1979 return -EINVAL; 1980 1981 /* Copy our mapping information to the incoming request */ 1982 *info->map = *map; 1983 1984 return 0; 1985 } 1986 1987 static int its_vlpi_unmap(struct irq_data *d) 1988 { 1989 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1990 u32 event = its_get_event_id(d); 1991 1992 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1993 return -EINVAL; 1994 1995 /* Drop the virtual mapping */ 1996 its_send_discard(its_dev, event); 1997 1998 /* and restore the physical one */ 1999 irqd_clr_forwarded_to_vcpu(d); 2000 its_send_mapti(its_dev, d->hwirq, event); 2001 lpi_update_config(d, 0xff, (lpi_prop_prio | 2002 LPI_PROP_ENABLED | 2003 LPI_PROP_GROUP1)); 2004 2005 /* Potentially unmap the VM from this ITS */ 2006 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 2007 2008 /* 2009 * Drop the refcount and make the device available again if 2010 * this was the last VLPI. 2011 */ 2012 if (!--its_dev->event_map.nr_vlpis) { 2013 its_dev->event_map.vm = NULL; 2014 kfree(its_dev->event_map.vlpi_maps); 2015 } 2016 2017 return 0; 2018 } 2019 2020 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 2021 { 2022 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2023 2024 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 2025 return -EINVAL; 2026 2027 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 2028 lpi_update_config(d, 0xff, info->config); 2029 else 2030 lpi_write_config(d, 0xff, info->config); 2031 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 2032 2033 return 0; 2034 } 2035 2036 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2037 { 2038 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2039 struct its_cmd_info *info = vcpu_info; 2040 2041 /* Need a v4 ITS */ 2042 if (!is_v4(its_dev->its)) 2043 return -EINVAL; 2044 2045 guard(raw_spinlock)(&its_dev->event_map.vlpi_lock); 2046 2047 /* Unmap request? */ 2048 if (!info) 2049 return its_vlpi_unmap(d); 2050 2051 switch (info->cmd_type) { 2052 case MAP_VLPI: 2053 return its_vlpi_map(d, info); 2054 2055 case GET_VLPI: 2056 return its_vlpi_get(d, info); 2057 2058 case PROP_UPDATE_VLPI: 2059 case PROP_UPDATE_AND_INV_VLPI: 2060 return its_vlpi_prop_update(d, info); 2061 2062 default: 2063 return -EINVAL; 2064 } 2065 } 2066 2067 static struct irq_chip its_irq_chip = { 2068 .name = "ITS", 2069 .irq_mask = its_mask_irq, 2070 .irq_unmask = its_unmask_irq, 2071 .irq_eoi = irq_chip_eoi_parent, 2072 .irq_set_affinity = its_set_affinity, 2073 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2074 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2075 .irq_retrigger = its_irq_retrigger, 2076 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2077 }; 2078 2079 2080 /* 2081 * How we allocate LPIs: 2082 * 2083 * lpi_range_list contains ranges of LPIs that are to available to 2084 * allocate from. To allocate LPIs, just pick the first range that 2085 * fits the required allocation, and reduce it by the required 2086 * amount. Once empty, remove the range from the list. 2087 * 2088 * To free a range of LPIs, add a free range to the list, sort it and 2089 * merge the result if the new range happens to be adjacent to an 2090 * already free block. 2091 * 2092 * The consequence of the above is that allocation is cost is low, but 2093 * freeing is expensive. We assumes that freeing rarely occurs. 2094 */ 2095 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2096 2097 static DEFINE_MUTEX(lpi_range_lock); 2098 static LIST_HEAD(lpi_range_list); 2099 2100 struct lpi_range { 2101 struct list_head entry; 2102 u32 base_id; 2103 u32 span; 2104 }; 2105 2106 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2107 { 2108 struct lpi_range *range; 2109 2110 range = kmalloc(sizeof(*range), GFP_KERNEL); 2111 if (range) { 2112 range->base_id = base; 2113 range->span = span; 2114 } 2115 2116 return range; 2117 } 2118 2119 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2120 { 2121 struct lpi_range *range, *tmp; 2122 int err = -ENOSPC; 2123 2124 mutex_lock(&lpi_range_lock); 2125 2126 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2127 if (range->span >= nr_lpis) { 2128 *base = range->base_id; 2129 range->base_id += nr_lpis; 2130 range->span -= nr_lpis; 2131 2132 if (range->span == 0) { 2133 list_del(&range->entry); 2134 kfree(range); 2135 } 2136 2137 err = 0; 2138 break; 2139 } 2140 } 2141 2142 mutex_unlock(&lpi_range_lock); 2143 2144 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2145 return err; 2146 } 2147 2148 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2149 { 2150 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2151 return; 2152 if (a->base_id + a->span != b->base_id) 2153 return; 2154 b->base_id = a->base_id; 2155 b->span += a->span; 2156 list_del(&a->entry); 2157 kfree(a); 2158 } 2159 2160 static int free_lpi_range(u32 base, u32 nr_lpis) 2161 { 2162 struct lpi_range *new, *old; 2163 2164 new = mk_lpi_range(base, nr_lpis); 2165 if (!new) 2166 return -ENOMEM; 2167 2168 mutex_lock(&lpi_range_lock); 2169 2170 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2171 if (old->base_id < base) 2172 break; 2173 } 2174 /* 2175 * old is the last element with ->base_id smaller than base, 2176 * so new goes right after it. If there are no elements with 2177 * ->base_id smaller than base, &old->entry ends up pointing 2178 * at the head of the list, and inserting new it the start of 2179 * the list is the right thing to do in that case as well. 2180 */ 2181 list_add(&new->entry, &old->entry); 2182 /* 2183 * Now check if we can merge with the preceding and/or 2184 * following ranges. 2185 */ 2186 merge_lpi_ranges(old, new); 2187 merge_lpi_ranges(new, list_next_entry(new, entry)); 2188 2189 mutex_unlock(&lpi_range_lock); 2190 return 0; 2191 } 2192 2193 static int __init its_lpi_init(u32 id_bits) 2194 { 2195 u32 lpis = (1UL << id_bits) - 8192; 2196 u32 numlpis; 2197 int err; 2198 2199 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2200 2201 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2202 lpis = numlpis; 2203 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2204 lpis); 2205 } 2206 2207 /* 2208 * Initializing the allocator is just the same as freeing the 2209 * full range of LPIs. 2210 */ 2211 err = free_lpi_range(8192, lpis); 2212 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2213 return err; 2214 } 2215 2216 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2217 { 2218 unsigned long *bitmap = NULL; 2219 int err = 0; 2220 2221 do { 2222 err = alloc_lpi_range(nr_irqs, base); 2223 if (!err) 2224 break; 2225 2226 nr_irqs /= 2; 2227 } while (nr_irqs > 0); 2228 2229 if (!nr_irqs) 2230 err = -ENOSPC; 2231 2232 if (err) 2233 goto out; 2234 2235 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2236 if (!bitmap) 2237 goto out; 2238 2239 *nr_ids = nr_irqs; 2240 2241 out: 2242 if (!bitmap) 2243 *base = *nr_ids = 0; 2244 2245 return bitmap; 2246 } 2247 2248 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2249 { 2250 WARN_ON(free_lpi_range(base, nr_ids)); 2251 bitmap_free(bitmap); 2252 } 2253 2254 static void gic_reset_prop_table(void *va) 2255 { 2256 /* Regular IRQ priority, Group-1, disabled */ 2257 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2258 2259 /* Make sure the GIC will observe the written configuration */ 2260 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2261 } 2262 2263 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2264 { 2265 struct page *prop_page; 2266 2267 prop_page = its_alloc_pages(gfp_flags, 2268 get_order(LPI_PROPBASE_SZ)); 2269 if (!prop_page) 2270 return NULL; 2271 2272 gic_reset_prop_table(page_address(prop_page)); 2273 2274 return prop_page; 2275 } 2276 2277 static void its_free_prop_table(struct page *prop_page) 2278 { 2279 its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ)); 2280 } 2281 2282 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2283 { 2284 phys_addr_t start, end, addr_end; 2285 u64 i; 2286 2287 /* 2288 * We don't bother checking for a kdump kernel as by 2289 * construction, the LPI tables are out of this kernel's 2290 * memory map. 2291 */ 2292 if (is_kdump_kernel()) 2293 return true; 2294 2295 addr_end = addr + size - 1; 2296 2297 for_each_reserved_mem_range(i, &start, &end) { 2298 if (addr >= start && addr_end <= end) 2299 return true; 2300 } 2301 2302 /* Not found, not a good sign... */ 2303 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2304 &addr, &addr_end); 2305 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2306 return false; 2307 } 2308 2309 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2310 { 2311 if (efi_enabled(EFI_CONFIG_TABLES)) 2312 return efi_mem_reserve_persistent(addr, size); 2313 2314 return 0; 2315 } 2316 2317 static int __init its_setup_lpi_prop_table(void) 2318 { 2319 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2320 u64 val; 2321 2322 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2323 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2324 2325 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2326 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2327 LPI_PROPBASE_SZ, 2328 MEMREMAP_WB); 2329 gic_reset_prop_table(gic_rdists->prop_table_va); 2330 } else { 2331 struct page *page; 2332 2333 lpi_id_bits = min_t(u32, 2334 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2335 ITS_MAX_LPI_NRBITS); 2336 page = its_allocate_prop_table(GFP_NOWAIT); 2337 if (!page) { 2338 pr_err("Failed to allocate PROPBASE\n"); 2339 return -ENOMEM; 2340 } 2341 2342 gic_rdists->prop_table_pa = page_to_phys(page); 2343 gic_rdists->prop_table_va = page_address(page); 2344 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2345 LPI_PROPBASE_SZ)); 2346 } 2347 2348 pr_info("GICv3: using LPI property table @%pa\n", 2349 &gic_rdists->prop_table_pa); 2350 2351 return its_lpi_init(lpi_id_bits); 2352 } 2353 2354 static const char *its_base_type_string[] = { 2355 [GITS_BASER_TYPE_DEVICE] = "Devices", 2356 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2357 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2358 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2359 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2360 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2361 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2362 }; 2363 2364 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2365 { 2366 u32 idx = baser - its->tables; 2367 2368 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2369 } 2370 2371 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2372 u64 val) 2373 { 2374 u32 idx = baser - its->tables; 2375 2376 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2377 baser->val = its_read_baser(its, baser); 2378 } 2379 2380 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2381 u64 cache, u64 shr, u32 order, bool indirect) 2382 { 2383 u64 val = its_read_baser(its, baser); 2384 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2385 u64 type = GITS_BASER_TYPE(val); 2386 u64 baser_phys, tmp; 2387 u32 alloc_pages, psz; 2388 struct page *page; 2389 void *base; 2390 2391 psz = baser->psz; 2392 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2393 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2394 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2395 &its->phys_base, its_base_type_string[type], 2396 alloc_pages, GITS_BASER_PAGES_MAX); 2397 alloc_pages = GITS_BASER_PAGES_MAX; 2398 order = get_order(GITS_BASER_PAGES_MAX * psz); 2399 } 2400 2401 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2402 if (!page) 2403 return -ENOMEM; 2404 2405 base = (void *)page_address(page); 2406 baser_phys = virt_to_phys(base); 2407 2408 /* Check if the physical address of the memory is above 48bits */ 2409 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2410 2411 /* 52bit PA is supported only when PageSize=64K */ 2412 if (psz != SZ_64K) { 2413 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2414 its_free_pages(base, order); 2415 return -ENXIO; 2416 } 2417 2418 /* Convert 52bit PA to 48bit field */ 2419 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2420 } 2421 2422 retry_baser: 2423 val = (baser_phys | 2424 (type << GITS_BASER_TYPE_SHIFT) | 2425 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2426 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2427 cache | 2428 shr | 2429 GITS_BASER_VALID); 2430 2431 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2432 2433 switch (psz) { 2434 case SZ_4K: 2435 val |= GITS_BASER_PAGE_SIZE_4K; 2436 break; 2437 case SZ_16K: 2438 val |= GITS_BASER_PAGE_SIZE_16K; 2439 break; 2440 case SZ_64K: 2441 val |= GITS_BASER_PAGE_SIZE_64K; 2442 break; 2443 } 2444 2445 if (!shr) 2446 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2447 2448 its_write_baser(its, baser, val); 2449 tmp = baser->val; 2450 2451 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2452 /* 2453 * Shareability didn't stick. Just use 2454 * whatever the read reported, which is likely 2455 * to be the only thing this redistributor 2456 * supports. If that's zero, make it 2457 * non-cacheable as well. 2458 */ 2459 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2460 if (!shr) 2461 cache = GITS_BASER_nC; 2462 2463 goto retry_baser; 2464 } 2465 2466 if (val != tmp) { 2467 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2468 &its->phys_base, its_base_type_string[type], 2469 val, tmp); 2470 its_free_pages(base, order); 2471 return -ENXIO; 2472 } 2473 2474 baser->order = order; 2475 baser->base = base; 2476 baser->psz = psz; 2477 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2478 2479 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2480 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2481 its_base_type_string[type], 2482 (unsigned long)virt_to_phys(base), 2483 indirect ? "indirect" : "flat", (int)esz, 2484 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2485 2486 return 0; 2487 } 2488 2489 static bool its_parse_indirect_baser(struct its_node *its, 2490 struct its_baser *baser, 2491 u32 *order, u32 ids) 2492 { 2493 u64 tmp = its_read_baser(its, baser); 2494 u64 type = GITS_BASER_TYPE(tmp); 2495 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2496 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2497 u32 new_order = *order; 2498 u32 psz = baser->psz; 2499 bool indirect = false; 2500 2501 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2502 if ((esz << ids) > (psz * 2)) { 2503 /* 2504 * Find out whether hw supports a single or two-level table by 2505 * table by reading bit at offset '62' after writing '1' to it. 2506 */ 2507 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2508 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2509 2510 if (indirect) { 2511 /* 2512 * The size of the lvl2 table is equal to ITS page size 2513 * which is 'psz'. For computing lvl1 table size, 2514 * subtract ID bits that sparse lvl2 table from 'ids' 2515 * which is reported by ITS hardware times lvl1 table 2516 * entry size. 2517 */ 2518 ids -= ilog2(psz / (int)esz); 2519 esz = GITS_LVL1_ENTRY_SIZE; 2520 } 2521 } 2522 2523 /* 2524 * Allocate as many entries as required to fit the 2525 * range of device IDs that the ITS can grok... The ID 2526 * space being incredibly sparse, this results in a 2527 * massive waste of memory if two-level device table 2528 * feature is not supported by hardware. 2529 */ 2530 new_order = max_t(u32, get_order(esz << ids), new_order); 2531 if (new_order > MAX_PAGE_ORDER) { 2532 new_order = MAX_PAGE_ORDER; 2533 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2534 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2535 &its->phys_base, its_base_type_string[type], 2536 device_ids(its), ids); 2537 } 2538 2539 *order = new_order; 2540 2541 return indirect; 2542 } 2543 2544 static u32 compute_common_aff(u64 val) 2545 { 2546 u32 aff, clpiaff; 2547 2548 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2549 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2550 2551 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2552 } 2553 2554 static u32 compute_its_aff(struct its_node *its) 2555 { 2556 u64 val; 2557 u32 svpet; 2558 2559 /* 2560 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2561 * the resulting affinity. We then use that to see if this match 2562 * our own affinity. 2563 */ 2564 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2565 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2566 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2567 return compute_common_aff(val); 2568 } 2569 2570 static struct its_node *find_sibling_its(struct its_node *cur_its) 2571 { 2572 struct its_node *its; 2573 u32 aff; 2574 2575 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2576 return NULL; 2577 2578 aff = compute_its_aff(cur_its); 2579 2580 list_for_each_entry(its, &its_nodes, entry) { 2581 u64 baser; 2582 2583 if (!is_v4_1(its) || its == cur_its) 2584 continue; 2585 2586 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2587 continue; 2588 2589 if (aff != compute_its_aff(its)) 2590 continue; 2591 2592 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2593 baser = its->tables[2].val; 2594 if (!(baser & GITS_BASER_VALID)) 2595 continue; 2596 2597 return its; 2598 } 2599 2600 return NULL; 2601 } 2602 2603 static void its_free_tables(struct its_node *its) 2604 { 2605 int i; 2606 2607 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2608 if (its->tables[i].base) { 2609 its_free_pages(its->tables[i].base, its->tables[i].order); 2610 its->tables[i].base = NULL; 2611 } 2612 } 2613 } 2614 2615 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2616 { 2617 u64 psz = SZ_64K; 2618 2619 while (psz) { 2620 u64 val, gpsz; 2621 2622 val = its_read_baser(its, baser); 2623 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2624 2625 switch (psz) { 2626 case SZ_64K: 2627 gpsz = GITS_BASER_PAGE_SIZE_64K; 2628 break; 2629 case SZ_16K: 2630 gpsz = GITS_BASER_PAGE_SIZE_16K; 2631 break; 2632 case SZ_4K: 2633 default: 2634 gpsz = GITS_BASER_PAGE_SIZE_4K; 2635 break; 2636 } 2637 2638 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2639 2640 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2641 its_write_baser(its, baser, val); 2642 2643 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2644 break; 2645 2646 switch (psz) { 2647 case SZ_64K: 2648 psz = SZ_16K; 2649 break; 2650 case SZ_16K: 2651 psz = SZ_4K; 2652 break; 2653 case SZ_4K: 2654 default: 2655 return -1; 2656 } 2657 } 2658 2659 baser->psz = psz; 2660 return 0; 2661 } 2662 2663 static int its_alloc_tables(struct its_node *its) 2664 { 2665 u64 shr = GITS_BASER_InnerShareable; 2666 u64 cache = GITS_BASER_RaWaWb; 2667 int err, i; 2668 2669 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2670 /* erratum 24313: ignore memory access type */ 2671 cache = GITS_BASER_nCnB; 2672 2673 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2674 cache = GITS_BASER_nC; 2675 shr = 0; 2676 } 2677 2678 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2679 struct its_baser *baser = its->tables + i; 2680 u64 val = its_read_baser(its, baser); 2681 u64 type = GITS_BASER_TYPE(val); 2682 bool indirect = false; 2683 u32 order; 2684 2685 if (type == GITS_BASER_TYPE_NONE) 2686 continue; 2687 2688 if (its_probe_baser_psz(its, baser)) { 2689 its_free_tables(its); 2690 return -ENXIO; 2691 } 2692 2693 order = get_order(baser->psz); 2694 2695 switch (type) { 2696 case GITS_BASER_TYPE_DEVICE: 2697 indirect = its_parse_indirect_baser(its, baser, &order, 2698 device_ids(its)); 2699 break; 2700 2701 case GITS_BASER_TYPE_VCPU: 2702 if (is_v4_1(its)) { 2703 struct its_node *sibling; 2704 2705 WARN_ON(i != 2); 2706 if ((sibling = find_sibling_its(its))) { 2707 *baser = sibling->tables[2]; 2708 its_write_baser(its, baser, baser->val); 2709 continue; 2710 } 2711 } 2712 2713 indirect = its_parse_indirect_baser(its, baser, &order, 2714 ITS_MAX_VPEID_BITS); 2715 break; 2716 } 2717 2718 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2719 if (err < 0) { 2720 its_free_tables(its); 2721 return err; 2722 } 2723 2724 /* Update settings which will be used for next BASERn */ 2725 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2726 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2727 } 2728 2729 return 0; 2730 } 2731 2732 static u64 inherit_vpe_l1_table_from_its(void) 2733 { 2734 struct its_node *its; 2735 u64 val; 2736 u32 aff; 2737 2738 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2739 aff = compute_common_aff(val); 2740 2741 list_for_each_entry(its, &its_nodes, entry) { 2742 u64 baser, addr; 2743 2744 if (!is_v4_1(its)) 2745 continue; 2746 2747 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2748 continue; 2749 2750 if (aff != compute_its_aff(its)) 2751 continue; 2752 2753 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2754 baser = its->tables[2].val; 2755 if (!(baser & GITS_BASER_VALID)) 2756 continue; 2757 2758 /* We have a winner! */ 2759 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2760 2761 val = GICR_VPROPBASER_4_1_VALID; 2762 if (baser & GITS_BASER_INDIRECT) 2763 val |= GICR_VPROPBASER_4_1_INDIRECT; 2764 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2765 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2766 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2767 case GIC_PAGE_SIZE_64K: 2768 addr = GITS_BASER_ADDR_48_to_52(baser); 2769 break; 2770 default: 2771 addr = baser & GENMASK_ULL(47, 12); 2772 break; 2773 } 2774 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2775 if (rdists_support_shareable()) { 2776 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2777 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2778 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2779 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2780 } 2781 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2782 2783 *this_cpu_ptr(&local_4_1_its) = its; 2784 return val; 2785 } 2786 2787 return 0; 2788 } 2789 2790 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2791 { 2792 u32 aff; 2793 u64 val; 2794 int cpu; 2795 2796 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2797 aff = compute_common_aff(val); 2798 2799 for_each_possible_cpu(cpu) { 2800 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2801 2802 if (!base || cpu == smp_processor_id()) 2803 continue; 2804 2805 val = gic_read_typer(base + GICR_TYPER); 2806 if (aff != compute_common_aff(val)) 2807 continue; 2808 2809 /* 2810 * At this point, we have a victim. This particular CPU 2811 * has already booted, and has an affinity that matches 2812 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2813 * Make sure we don't write the Z bit in that case. 2814 */ 2815 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2816 val &= ~GICR_VPROPBASER_4_1_Z; 2817 2818 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2819 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2820 2821 *this_cpu_ptr(&local_4_1_its) = *per_cpu_ptr(&local_4_1_its, cpu); 2822 return val; 2823 } 2824 2825 return 0; 2826 } 2827 2828 static bool allocate_vpe_l2_table(int cpu, u32 id) 2829 { 2830 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2831 unsigned int psz, esz, idx, npg, gpsz; 2832 u64 val; 2833 struct page *page; 2834 __le64 *table; 2835 2836 if (!gic_rdists->has_rvpeid) 2837 return true; 2838 2839 /* Skip non-present CPUs */ 2840 if (!base) 2841 return true; 2842 2843 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2844 2845 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2846 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2847 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2848 2849 switch (gpsz) { 2850 default: 2851 WARN_ON(1); 2852 fallthrough; 2853 case GIC_PAGE_SIZE_4K: 2854 psz = SZ_4K; 2855 break; 2856 case GIC_PAGE_SIZE_16K: 2857 psz = SZ_16K; 2858 break; 2859 case GIC_PAGE_SIZE_64K: 2860 psz = SZ_64K; 2861 break; 2862 } 2863 2864 /* Don't allow vpe_id that exceeds single, flat table limit */ 2865 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2866 return (id < (npg * psz / (esz * SZ_8))); 2867 2868 /* Compute 1st level table index & check if that exceeds table limit */ 2869 idx = id >> ilog2(psz / (esz * SZ_8)); 2870 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2871 return false; 2872 2873 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2874 2875 /* Allocate memory for 2nd level table */ 2876 if (!table[idx]) { 2877 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2878 if (!page) 2879 return false; 2880 2881 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2882 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2883 gic_flush_dcache_to_poc(page_address(page), psz); 2884 2885 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2886 2887 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2888 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2889 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2890 2891 /* Ensure updated table contents are visible to RD hardware */ 2892 dsb(sy); 2893 } 2894 2895 return true; 2896 } 2897 2898 static int allocate_vpe_l1_table(void) 2899 { 2900 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2901 u64 val, gpsz, npg, pa; 2902 unsigned int psz = SZ_64K; 2903 unsigned int np, epp, esz; 2904 struct page *page; 2905 2906 if (!gic_rdists->has_rvpeid) 2907 return 0; 2908 2909 /* 2910 * if VPENDBASER.Valid is set, disable any previously programmed 2911 * VPE by setting PendingLast while clearing Valid. This has the 2912 * effect of making sure no doorbell will be generated and we can 2913 * then safely clear VPROPBASER.Valid. 2914 */ 2915 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2916 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2917 vlpi_base + GICR_VPENDBASER); 2918 2919 /* 2920 * If we can inherit the configuration from another RD, let's do 2921 * so. Otherwise, we have to go through the allocation process. We 2922 * assume that all RDs have the exact same requirements, as 2923 * nothing will work otherwise. 2924 */ 2925 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2926 if (val & GICR_VPROPBASER_4_1_VALID) 2927 goto out; 2928 2929 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2930 if (!gic_data_rdist()->vpe_table_mask) 2931 return -ENOMEM; 2932 2933 val = inherit_vpe_l1_table_from_its(); 2934 if (val & GICR_VPROPBASER_4_1_VALID) 2935 goto out; 2936 2937 /* First probe the page size */ 2938 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2939 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2940 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2941 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2942 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2943 2944 switch (gpsz) { 2945 default: 2946 gpsz = GIC_PAGE_SIZE_4K; 2947 fallthrough; 2948 case GIC_PAGE_SIZE_4K: 2949 psz = SZ_4K; 2950 break; 2951 case GIC_PAGE_SIZE_16K: 2952 psz = SZ_16K; 2953 break; 2954 case GIC_PAGE_SIZE_64K: 2955 psz = SZ_64K; 2956 break; 2957 } 2958 2959 /* 2960 * Start populating the register from scratch, including RO fields 2961 * (which we want to print in debug cases...) 2962 */ 2963 val = 0; 2964 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2965 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2966 2967 /* How many entries per GIC page? */ 2968 esz++; 2969 epp = psz / (esz * SZ_8); 2970 2971 /* 2972 * If we need more than just a single L1 page, flag the table 2973 * as indirect and compute the number of required L1 pages. 2974 */ 2975 if (epp < ITS_MAX_VPEID) { 2976 int nl2; 2977 2978 val |= GICR_VPROPBASER_4_1_INDIRECT; 2979 2980 /* Number of L2 pages required to cover the VPEID space */ 2981 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2982 2983 /* Number of L1 pages to point to the L2 pages */ 2984 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2985 } else { 2986 npg = 1; 2987 } 2988 2989 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2990 2991 /* Right, that's the number of CPU pages we need for L1 */ 2992 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2993 2994 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2995 np, npg, psz, epp, esz); 2996 page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2997 if (!page) 2998 return -ENOMEM; 2999 3000 gic_data_rdist()->vpe_l1_base = page_address(page); 3001 pa = virt_to_phys(page_address(page)); 3002 WARN_ON(!IS_ALIGNED(pa, psz)); 3003 3004 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 3005 if (rdists_support_shareable()) { 3006 val |= GICR_VPROPBASER_RaWb; 3007 val |= GICR_VPROPBASER_InnerShareable; 3008 } 3009 val |= GICR_VPROPBASER_4_1_Z; 3010 val |= GICR_VPROPBASER_4_1_VALID; 3011 3012 out: 3013 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3014 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 3015 3016 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 3017 smp_processor_id(), val, 3018 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 3019 3020 return 0; 3021 } 3022 3023 static int its_alloc_collections(struct its_node *its) 3024 { 3025 int i; 3026 3027 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 3028 GFP_KERNEL); 3029 if (!its->collections) 3030 return -ENOMEM; 3031 3032 for (i = 0; i < nr_cpu_ids; i++) 3033 its->collections[i].target_address = ~0ULL; 3034 3035 return 0; 3036 } 3037 3038 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 3039 { 3040 struct page *pend_page; 3041 3042 pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ)); 3043 if (!pend_page) 3044 return NULL; 3045 3046 /* Make sure the GIC will observe the zero-ed page */ 3047 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 3048 3049 return pend_page; 3050 } 3051 3052 static void its_free_pending_table(struct page *pt) 3053 { 3054 its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ)); 3055 } 3056 3057 /* 3058 * Booting with kdump and LPIs enabled is generally fine. Any other 3059 * case is wrong in the absence of firmware/EFI support. 3060 */ 3061 static bool enabled_lpis_allowed(void) 3062 { 3063 phys_addr_t addr; 3064 u64 val; 3065 3066 /* Check whether the property table is in a reserved region */ 3067 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3068 addr = val & GENMASK_ULL(51, 12); 3069 3070 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3071 } 3072 3073 static int __init allocate_lpi_tables(void) 3074 { 3075 u64 val; 3076 int err, cpu; 3077 3078 /* 3079 * If LPIs are enabled while we run this from the boot CPU, 3080 * flag the RD tables as pre-allocated if the stars do align. 3081 */ 3082 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3083 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3084 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3085 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3086 pr_info("GICv3: Using preallocated redistributor tables\n"); 3087 } 3088 3089 err = its_setup_lpi_prop_table(); 3090 if (err) 3091 return err; 3092 3093 /* 3094 * We allocate all the pending tables anyway, as we may have a 3095 * mix of RDs that have had LPIs enabled, and some that 3096 * don't. We'll free the unused ones as each CPU comes online. 3097 */ 3098 for_each_possible_cpu(cpu) { 3099 struct page *pend_page; 3100 3101 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3102 if (!pend_page) { 3103 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3104 return -ENOMEM; 3105 } 3106 3107 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3108 } 3109 3110 return 0; 3111 } 3112 3113 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3114 { 3115 u32 count = 1000000; /* 1s! */ 3116 bool clean; 3117 u64 val; 3118 3119 do { 3120 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3121 clean = !(val & GICR_VPENDBASER_Dirty); 3122 if (!clean) { 3123 count--; 3124 cpu_relax(); 3125 udelay(1); 3126 } 3127 } while (!clean && count); 3128 3129 if (unlikely(!clean)) 3130 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3131 3132 return val; 3133 } 3134 3135 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3136 { 3137 u64 val; 3138 3139 /* Make sure we wait until the RD is done with the initial scan */ 3140 val = read_vpend_dirty_clear(vlpi_base); 3141 val &= ~GICR_VPENDBASER_Valid; 3142 val &= ~clr; 3143 val |= set; 3144 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3145 3146 val = read_vpend_dirty_clear(vlpi_base); 3147 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3148 val |= GICR_VPENDBASER_PendingLast; 3149 3150 return val; 3151 } 3152 3153 static void its_cpu_init_lpis(void) 3154 { 3155 void __iomem *rbase = gic_data_rdist_rd_base(); 3156 struct page *pend_page; 3157 phys_addr_t paddr; 3158 u64 val, tmp; 3159 3160 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3161 return; 3162 3163 val = readl_relaxed(rbase + GICR_CTLR); 3164 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3165 (val & GICR_CTLR_ENABLE_LPIS)) { 3166 /* 3167 * Check that we get the same property table on all 3168 * RDs. If we don't, this is hopeless. 3169 */ 3170 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3171 paddr &= GENMASK_ULL(51, 12); 3172 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3173 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3174 3175 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3176 paddr &= GENMASK_ULL(51, 16); 3177 3178 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3179 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3180 3181 goto out; 3182 } 3183 3184 pend_page = gic_data_rdist()->pend_page; 3185 paddr = page_to_phys(pend_page); 3186 3187 /* set PROPBASE */ 3188 val = (gic_rdists->prop_table_pa | 3189 GICR_PROPBASER_InnerShareable | 3190 GICR_PROPBASER_RaWaWb | 3191 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3192 3193 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3194 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3195 3196 if (!rdists_support_shareable()) 3197 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3198 3199 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3200 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3201 /* 3202 * The HW reports non-shareable, we must 3203 * remove the cacheability attributes as 3204 * well. 3205 */ 3206 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3207 GICR_PROPBASER_CACHEABILITY_MASK); 3208 val |= GICR_PROPBASER_nC; 3209 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3210 } 3211 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3212 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3213 } 3214 3215 /* set PENDBASE */ 3216 val = (page_to_phys(pend_page) | 3217 GICR_PENDBASER_InnerShareable | 3218 GICR_PENDBASER_RaWaWb); 3219 3220 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3221 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3222 3223 if (!rdists_support_shareable()) 3224 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3225 3226 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3227 /* 3228 * The HW reports non-shareable, we must remove the 3229 * cacheability attributes as well. 3230 */ 3231 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3232 GICR_PENDBASER_CACHEABILITY_MASK); 3233 val |= GICR_PENDBASER_nC; 3234 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3235 } 3236 3237 /* Enable LPIs */ 3238 val = readl_relaxed(rbase + GICR_CTLR); 3239 val |= GICR_CTLR_ENABLE_LPIS; 3240 writel_relaxed(val, rbase + GICR_CTLR); 3241 3242 out: 3243 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3244 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3245 3246 /* 3247 * It's possible for CPU to receive VLPIs before it is 3248 * scheduled as a vPE, especially for the first CPU, and the 3249 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3250 * as out of range and dropped by GIC. 3251 * So we initialize IDbits to known value to avoid VLPI drop. 3252 */ 3253 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3254 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3255 smp_processor_id(), val); 3256 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3257 3258 /* 3259 * Also clear Valid bit of GICR_VPENDBASER, in case some 3260 * ancient programming gets left in and has possibility of 3261 * corrupting memory. 3262 */ 3263 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3264 } 3265 3266 if (allocate_vpe_l1_table()) { 3267 /* 3268 * If the allocation has failed, we're in massive trouble. 3269 * Disable direct injection, and pray that no VM was 3270 * already running... 3271 */ 3272 gic_rdists->has_rvpeid = false; 3273 gic_rdists->has_vlpis = false; 3274 } 3275 3276 /* Make sure the GIC has seen the above */ 3277 dsb(sy); 3278 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3279 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3280 smp_processor_id(), 3281 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3282 "reserved" : "allocated", 3283 &paddr); 3284 } 3285 3286 static void its_cpu_init_collection(struct its_node *its) 3287 { 3288 int cpu = smp_processor_id(); 3289 u64 target; 3290 3291 /* avoid cross node collections and its mapping */ 3292 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3293 struct device_node *cpu_node; 3294 3295 cpu_node = of_get_cpu_node(cpu, NULL); 3296 if (its->numa_node != NUMA_NO_NODE && 3297 its->numa_node != of_node_to_nid(cpu_node)) 3298 return; 3299 } 3300 3301 /* 3302 * We now have to bind each collection to its target 3303 * redistributor. 3304 */ 3305 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3306 /* 3307 * This ITS wants the physical address of the 3308 * redistributor. 3309 */ 3310 target = gic_data_rdist()->phys_base; 3311 } else { 3312 /* This ITS wants a linear CPU number. */ 3313 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3314 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3315 } 3316 3317 /* Perform collection mapping */ 3318 its->collections[cpu].target_address = target; 3319 its->collections[cpu].col_id = cpu; 3320 3321 its_send_mapc(its, &its->collections[cpu], 1); 3322 its_send_invall(its, &its->collections[cpu]); 3323 } 3324 3325 static void its_cpu_init_collections(void) 3326 { 3327 struct its_node *its; 3328 3329 raw_spin_lock(&its_lock); 3330 3331 list_for_each_entry(its, &its_nodes, entry) 3332 its_cpu_init_collection(its); 3333 3334 raw_spin_unlock(&its_lock); 3335 } 3336 3337 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3338 { 3339 struct its_device *its_dev = NULL, *tmp; 3340 unsigned long flags; 3341 3342 raw_spin_lock_irqsave(&its->lock, flags); 3343 3344 list_for_each_entry(tmp, &its->its_device_list, entry) { 3345 if (tmp->device_id == dev_id) { 3346 its_dev = tmp; 3347 break; 3348 } 3349 } 3350 3351 raw_spin_unlock_irqrestore(&its->lock, flags); 3352 3353 return its_dev; 3354 } 3355 3356 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3357 { 3358 int i; 3359 3360 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3361 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3362 return &its->tables[i]; 3363 } 3364 3365 return NULL; 3366 } 3367 3368 static bool its_alloc_table_entry(struct its_node *its, 3369 struct its_baser *baser, u32 id) 3370 { 3371 struct page *page; 3372 u32 esz, idx; 3373 __le64 *table; 3374 3375 /* Don't allow device id that exceeds single, flat table limit */ 3376 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3377 if (!(baser->val & GITS_BASER_INDIRECT)) 3378 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3379 3380 /* Compute 1st level table index & check if that exceeds table limit */ 3381 idx = id >> ilog2(baser->psz / esz); 3382 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3383 return false; 3384 3385 table = baser->base; 3386 3387 /* Allocate memory for 2nd level table */ 3388 if (!table[idx]) { 3389 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3390 get_order(baser->psz)); 3391 if (!page) 3392 return false; 3393 3394 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3395 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3396 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3397 3398 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3399 3400 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3401 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3402 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3403 3404 /* Ensure updated table contents are visible to ITS hardware */ 3405 dsb(sy); 3406 } 3407 3408 return true; 3409 } 3410 3411 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3412 { 3413 struct its_baser *baser; 3414 3415 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3416 3417 /* Don't allow device id that exceeds ITS hardware limit */ 3418 if (!baser) 3419 return (ilog2(dev_id) < device_ids(its)); 3420 3421 return its_alloc_table_entry(its, baser, dev_id); 3422 } 3423 3424 static bool its_alloc_vpe_table(u32 vpe_id) 3425 { 3426 struct its_node *its; 3427 int cpu; 3428 3429 /* 3430 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3431 * could try and only do it on ITSs corresponding to devices 3432 * that have interrupts targeted at this VPE, but the 3433 * complexity becomes crazy (and you have tons of memory 3434 * anyway, right?). 3435 */ 3436 list_for_each_entry(its, &its_nodes, entry) { 3437 struct its_baser *baser; 3438 3439 if (!is_v4(its)) 3440 continue; 3441 3442 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3443 if (!baser) 3444 return false; 3445 3446 if (!its_alloc_table_entry(its, baser, vpe_id)) 3447 return false; 3448 } 3449 3450 /* Non v4.1? No need to iterate RDs and go back early. */ 3451 if (!gic_rdists->has_rvpeid) 3452 return true; 3453 3454 /* 3455 * Make sure the L2 tables are allocated for all copies of 3456 * the L1 table on *all* v4.1 RDs. 3457 */ 3458 for_each_possible_cpu(cpu) { 3459 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3460 return false; 3461 } 3462 3463 return true; 3464 } 3465 3466 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3467 int nvecs, bool alloc_lpis) 3468 { 3469 struct its_device *dev; 3470 unsigned long *lpi_map = NULL; 3471 unsigned long flags; 3472 u16 *col_map = NULL; 3473 void *itt; 3474 int lpi_base; 3475 int nr_lpis; 3476 int nr_ites; 3477 int sz; 3478 3479 if (!its_alloc_device_table(its, dev_id)) 3480 return NULL; 3481 3482 if (WARN_ON(!is_power_of_2(nvecs))) 3483 nvecs = roundup_pow_of_two(nvecs); 3484 3485 /* 3486 * Even if the device wants a single LPI, the ITT must be 3487 * sized as a power of two (and you need at least one bit...). 3488 */ 3489 nr_ites = max(2, nvecs); 3490 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3491 sz = max(sz, ITS_ITT_ALIGN); 3492 3493 itt = itt_alloc_pool(its->numa_node, sz); 3494 3495 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3496 3497 if (alloc_lpis) { 3498 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3499 if (lpi_map) 3500 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3501 GFP_KERNEL); 3502 } else { 3503 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3504 nr_lpis = 0; 3505 lpi_base = 0; 3506 } 3507 3508 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3509 kfree(dev); 3510 itt_free_pool(itt, sz); 3511 bitmap_free(lpi_map); 3512 kfree(col_map); 3513 return NULL; 3514 } 3515 3516 gic_flush_dcache_to_poc(itt, sz); 3517 3518 dev->its = its; 3519 dev->itt = itt; 3520 dev->itt_sz = sz; 3521 dev->nr_ites = nr_ites; 3522 dev->event_map.lpi_map = lpi_map; 3523 dev->event_map.col_map = col_map; 3524 dev->event_map.lpi_base = lpi_base; 3525 dev->event_map.nr_lpis = nr_lpis; 3526 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3527 dev->device_id = dev_id; 3528 INIT_LIST_HEAD(&dev->entry); 3529 3530 raw_spin_lock_irqsave(&its->lock, flags); 3531 list_add(&dev->entry, &its->its_device_list); 3532 raw_spin_unlock_irqrestore(&its->lock, flags); 3533 3534 /* Map device to its ITT */ 3535 its_send_mapd(dev, 1); 3536 3537 return dev; 3538 } 3539 3540 static void its_free_device(struct its_device *its_dev) 3541 { 3542 unsigned long flags; 3543 3544 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3545 list_del(&its_dev->entry); 3546 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3547 kfree(its_dev->event_map.col_map); 3548 itt_free_pool(its_dev->itt, its_dev->itt_sz); 3549 kfree(its_dev); 3550 } 3551 3552 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3553 { 3554 int idx; 3555 3556 /* Find a free LPI region in lpi_map and allocate them. */ 3557 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3558 dev->event_map.nr_lpis, 3559 get_count_order(nvecs)); 3560 if (idx < 0) 3561 return -ENOSPC; 3562 3563 *hwirq = dev->event_map.lpi_base + idx; 3564 3565 return 0; 3566 } 3567 3568 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3569 int nvec, msi_alloc_info_t *info) 3570 { 3571 struct its_node *its; 3572 struct its_device *its_dev; 3573 struct msi_domain_info *msi_info; 3574 u32 dev_id; 3575 int err = 0; 3576 3577 /* 3578 * We ignore "dev" entirely, and rely on the dev_id that has 3579 * been passed via the scratchpad. This limits this domain's 3580 * usefulness to upper layers that definitely know that they 3581 * are built on top of the ITS. 3582 */ 3583 dev_id = info->scratchpad[0].ul; 3584 3585 msi_info = msi_get_domain_info(domain); 3586 its = msi_info->data; 3587 3588 if (!gic_rdists->has_direct_lpi && 3589 vpe_proxy.dev && 3590 vpe_proxy.dev->its == its && 3591 dev_id == vpe_proxy.dev->device_id) { 3592 /* Bad luck. Get yourself a better implementation */ 3593 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3594 dev_id); 3595 return -EINVAL; 3596 } 3597 3598 mutex_lock(&its->dev_alloc_lock); 3599 its_dev = its_find_device(its, dev_id); 3600 if (its_dev) { 3601 /* 3602 * We already have seen this ID, probably through 3603 * another alias (PCI bridge of some sort). No need to 3604 * create the device. 3605 */ 3606 its_dev->shared = true; 3607 pr_debug("Reusing ITT for devID %x\n", dev_id); 3608 goto out; 3609 } 3610 3611 its_dev = its_create_device(its, dev_id, nvec, true); 3612 if (!its_dev) { 3613 err = -ENOMEM; 3614 goto out; 3615 } 3616 3617 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3618 its_dev->shared = true; 3619 3620 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3621 out: 3622 mutex_unlock(&its->dev_alloc_lock); 3623 info->scratchpad[0].ptr = its_dev; 3624 return err; 3625 } 3626 3627 static void its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info) 3628 { 3629 struct its_device *its_dev = info->scratchpad[0].ptr; 3630 3631 guard(mutex)(&its_dev->its->dev_alloc_lock); 3632 3633 /* If the device is shared, keep everything around */ 3634 if (its_dev->shared) 3635 return; 3636 3637 /* LPIs should have been already unmapped at this stage */ 3638 if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map.lpi_map, 3639 its_dev->event_map.nr_lpis))) 3640 return; 3641 3642 its_lpi_free(its_dev->event_map.lpi_map, 3643 its_dev->event_map.lpi_base, 3644 its_dev->event_map.nr_lpis); 3645 3646 /* Unmap device/itt, and get rid of the tracking */ 3647 its_send_mapd(its_dev, 0); 3648 its_free_device(its_dev); 3649 } 3650 3651 static struct msi_domain_ops its_msi_domain_ops = { 3652 .msi_prepare = its_msi_prepare, 3653 .msi_teardown = its_msi_teardown, 3654 }; 3655 3656 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3657 unsigned int virq, 3658 irq_hw_number_t hwirq) 3659 { 3660 struct irq_fwspec fwspec; 3661 3662 if (irq_domain_get_of_node(domain->parent)) { 3663 fwspec.fwnode = domain->parent->fwnode; 3664 fwspec.param_count = 3; 3665 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3666 fwspec.param[1] = hwirq; 3667 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3668 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3669 fwspec.fwnode = domain->parent->fwnode; 3670 fwspec.param_count = 2; 3671 fwspec.param[0] = hwirq; 3672 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3673 } else { 3674 return -EINVAL; 3675 } 3676 3677 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3678 } 3679 3680 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3681 unsigned int nr_irqs, void *args) 3682 { 3683 msi_alloc_info_t *info = args; 3684 struct its_device *its_dev = info->scratchpad[0].ptr; 3685 struct its_node *its = its_dev->its; 3686 struct irq_data *irqd; 3687 irq_hw_number_t hwirq; 3688 int err; 3689 int i; 3690 3691 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3692 if (err) 3693 return err; 3694 3695 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3696 if (err) 3697 return err; 3698 3699 for (i = 0; i < nr_irqs; i++) { 3700 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3701 if (err) 3702 return err; 3703 3704 irq_domain_set_hwirq_and_chip(domain, virq + i, 3705 hwirq + i, &its_irq_chip, its_dev); 3706 irqd = irq_get_irq_data(virq + i); 3707 irqd_set_single_target(irqd); 3708 irqd_set_affinity_on_activate(irqd); 3709 irqd_set_resend_when_in_progress(irqd); 3710 pr_debug("ID:%d pID:%d vID:%d\n", 3711 (int)(hwirq + i - its_dev->event_map.lpi_base), 3712 (int)(hwirq + i), virq + i); 3713 } 3714 3715 return 0; 3716 } 3717 3718 static int its_irq_domain_activate(struct irq_domain *domain, 3719 struct irq_data *d, bool reserve) 3720 { 3721 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3722 u32 event = its_get_event_id(d); 3723 int cpu; 3724 3725 cpu = its_select_cpu(d, cpu_online_mask); 3726 if (cpu < 0 || cpu >= nr_cpu_ids) 3727 return -EINVAL; 3728 3729 its_inc_lpi_count(d, cpu); 3730 its_dev->event_map.col_map[event] = cpu; 3731 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3732 3733 /* Map the GIC IRQ and event to the device */ 3734 its_send_mapti(its_dev, d->hwirq, event); 3735 return 0; 3736 } 3737 3738 static void its_irq_domain_deactivate(struct irq_domain *domain, 3739 struct irq_data *d) 3740 { 3741 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3742 u32 event = its_get_event_id(d); 3743 3744 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3745 /* Stop the delivery of interrupts */ 3746 its_send_discard(its_dev, event); 3747 } 3748 3749 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3750 unsigned int nr_irqs) 3751 { 3752 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3753 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3754 int i; 3755 3756 bitmap_release_region(its_dev->event_map.lpi_map, 3757 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3758 get_count_order(nr_irqs)); 3759 3760 for (i = 0; i < nr_irqs; i++) { 3761 struct irq_data *data = irq_domain_get_irq_data(domain, 3762 virq + i); 3763 /* Nuke the entry in the domain */ 3764 irq_domain_reset_irq_data(data); 3765 } 3766 3767 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3768 } 3769 3770 static const struct irq_domain_ops its_domain_ops = { 3771 .select = msi_lib_irq_domain_select, 3772 .alloc = its_irq_domain_alloc, 3773 .free = its_irq_domain_free, 3774 .activate = its_irq_domain_activate, 3775 .deactivate = its_irq_domain_deactivate, 3776 }; 3777 3778 /* 3779 * This is insane. 3780 * 3781 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3782 * likely), the only way to perform an invalidate is to use a fake 3783 * device to issue an INV command, implying that the LPI has first 3784 * been mapped to some event on that device. Since this is not exactly 3785 * cheap, we try to keep that mapping around as long as possible, and 3786 * only issue an UNMAP if we're short on available slots. 3787 * 3788 * Broken by design(tm). 3789 * 3790 * GICv4.1, on the other hand, mandates that we're able to invalidate 3791 * by writing to a MMIO register. It doesn't implement the whole of 3792 * DirectLPI, but that's good enough. And most of the time, we don't 3793 * even have to invalidate anything, as the redistributor can be told 3794 * whether to generate a doorbell or not (we thus leave it enabled, 3795 * always). 3796 */ 3797 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3798 { 3799 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3800 if (gic_rdists->has_rvpeid) 3801 return; 3802 3803 /* Already unmapped? */ 3804 if (vpe->vpe_proxy_event == -1) 3805 return; 3806 3807 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3808 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3809 3810 /* 3811 * We don't track empty slots at all, so let's move the 3812 * next_victim pointer if we can quickly reuse that slot 3813 * instead of nuking an existing entry. Not clear that this is 3814 * always a win though, and this might just generate a ripple 3815 * effect... Let's just hope VPEs don't migrate too often. 3816 */ 3817 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3818 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3819 3820 vpe->vpe_proxy_event = -1; 3821 } 3822 3823 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3824 { 3825 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3826 if (gic_rdists->has_rvpeid) 3827 return; 3828 3829 if (!gic_rdists->has_direct_lpi) { 3830 unsigned long flags; 3831 3832 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3833 its_vpe_db_proxy_unmap_locked(vpe); 3834 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3835 } 3836 } 3837 3838 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3839 { 3840 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3841 if (gic_rdists->has_rvpeid) 3842 return; 3843 3844 /* Already mapped? */ 3845 if (vpe->vpe_proxy_event != -1) 3846 return; 3847 3848 /* This slot was already allocated. Kick the other VPE out. */ 3849 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3850 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3851 3852 /* Map the new VPE instead */ 3853 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3854 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3855 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3856 3857 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3858 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3859 } 3860 3861 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3862 { 3863 unsigned long flags; 3864 struct its_collection *target_col; 3865 3866 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3867 if (gic_rdists->has_rvpeid) 3868 return; 3869 3870 if (gic_rdists->has_direct_lpi) { 3871 void __iomem *rdbase; 3872 3873 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3874 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3875 wait_for_syncr(rdbase); 3876 3877 return; 3878 } 3879 3880 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3881 3882 its_vpe_db_proxy_map_locked(vpe); 3883 3884 target_col = &vpe_proxy.dev->its->collections[to]; 3885 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3886 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3887 3888 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3889 } 3890 3891 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe) 3892 { 3893 void __iomem *rdbase; 3894 u64 val; 3895 3896 val = GICR_INVALLR_V; 3897 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 3898 3899 guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock); 3900 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 3901 gic_write_lpir(val, rdbase + GICR_INVALLR); 3902 wait_for_syncr(rdbase); 3903 } 3904 3905 static int its_vpe_set_affinity(struct irq_data *d, 3906 const struct cpumask *mask_val, 3907 bool force) 3908 { 3909 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3910 unsigned int from, cpu = nr_cpu_ids; 3911 struct cpumask *table_mask; 3912 struct its_node *its; 3913 unsigned long flags; 3914 3915 /* 3916 * Check if we're racing against a VPE being destroyed, for 3917 * which we don't want to allow a VMOVP. 3918 */ 3919 if (!atomic_read(&vpe->vmapp_count)) { 3920 if (gic_requires_eager_mapping()) 3921 return -EINVAL; 3922 3923 /* 3924 * If we lazily map the VPEs, this isn't an error and 3925 * we can exit cleanly. 3926 */ 3927 cpu = cpumask_first(mask_val); 3928 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3929 return IRQ_SET_MASK_OK_DONE; 3930 } 3931 3932 /* 3933 * Changing affinity is mega expensive, so let's be as lazy as 3934 * we can and only do it if we really have to. Also, if mapped 3935 * into the proxy device, we need to move the doorbell 3936 * interrupt to its new location. 3937 * 3938 * Another thing is that changing the affinity of a vPE affects 3939 * *other interrupts* such as all the vLPIs that are routed to 3940 * this vPE. This means that the irq_desc lock is not enough to 3941 * protect us, and that we must ensure nobody samples vpe->col_idx 3942 * during the update, hence the lock below which must also be 3943 * taken on any vLPI handling path that evaluates vpe->col_idx. 3944 * 3945 * Finally, we must protect ourselves against concurrent updates of 3946 * the mapping state on this VM should the ITS list be in use (see 3947 * the shortcut in its_send_vmovp() otherewise). 3948 */ 3949 if (its_list_map) 3950 raw_spin_lock(&vpe->its_vm->vmapp_lock); 3951 3952 from = vpe_to_cpuid_lock(vpe, &flags); 3953 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3954 3955 /* 3956 * If we are offered another CPU in the same GICv4.1 ITS 3957 * affinity, pick this one. Otherwise, any CPU will do. 3958 */ 3959 if (table_mask) 3960 cpu = cpumask_any_and(mask_val, table_mask); 3961 if (cpu < nr_cpu_ids) { 3962 if (cpumask_test_cpu(from, mask_val) && 3963 cpumask_test_cpu(from, table_mask)) 3964 cpu = from; 3965 } else { 3966 cpu = cpumask_first(mask_val); 3967 } 3968 3969 if (from == cpu) 3970 goto out; 3971 3972 vpe->col_idx = cpu; 3973 3974 its_send_vmovp(vpe); 3975 3976 its = find_4_1_its(); 3977 if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801) 3978 its_vpe_4_1_invall_locked(cpu, vpe); 3979 3980 its_vpe_db_proxy_move(vpe, from, cpu); 3981 3982 out: 3983 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3984 vpe_to_cpuid_unlock(vpe, flags); 3985 3986 if (its_list_map) 3987 raw_spin_unlock(&vpe->its_vm->vmapp_lock); 3988 3989 return IRQ_SET_MASK_OK_DONE; 3990 } 3991 3992 static void its_wait_vpt_parse_complete(void) 3993 { 3994 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3995 u64 val; 3996 3997 if (!gic_rdists->has_vpend_valid_dirty) 3998 return; 3999 4000 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 4001 val, 4002 !(val & GICR_VPENDBASER_Dirty), 4003 1, 500)); 4004 } 4005 4006 static void its_vpe_schedule(struct its_vpe *vpe) 4007 { 4008 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4009 u64 val; 4010 4011 /* Schedule the VPE */ 4012 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 4013 GENMASK_ULL(51, 12); 4014 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 4015 if (rdists_support_shareable()) { 4016 val |= GICR_VPROPBASER_RaWb; 4017 val |= GICR_VPROPBASER_InnerShareable; 4018 } 4019 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 4020 4021 val = virt_to_phys(page_address(vpe->vpt_page)) & 4022 GENMASK_ULL(51, 16); 4023 if (rdists_support_shareable()) { 4024 val |= GICR_VPENDBASER_RaWaWb; 4025 val |= GICR_VPENDBASER_InnerShareable; 4026 } 4027 /* 4028 * There is no good way of finding out if the pending table is 4029 * empty as we can race against the doorbell interrupt very 4030 * easily. So in the end, vpe->pending_last is only an 4031 * indication that the vcpu has something pending, not one 4032 * that the pending table is empty. A good implementation 4033 * would be able to read its coarse map pretty quickly anyway, 4034 * making this a tolerable issue. 4035 */ 4036 val |= GICR_VPENDBASER_PendingLast; 4037 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 4038 val |= GICR_VPENDBASER_Valid; 4039 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4040 } 4041 4042 static void its_vpe_deschedule(struct its_vpe *vpe) 4043 { 4044 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4045 u64 val; 4046 4047 val = its_clear_vpend_valid(vlpi_base, 0, 0); 4048 4049 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 4050 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4051 } 4052 4053 static void its_vpe_invall(struct its_vpe *vpe) 4054 { 4055 struct its_node *its; 4056 4057 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 4058 4059 list_for_each_entry(its, &its_nodes, entry) { 4060 if (!is_v4(its)) 4061 continue; 4062 4063 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 4064 continue; 4065 4066 /* 4067 * Sending a VINVALL to a single ITS is enough, as all 4068 * we need is to reach the redistributors. 4069 */ 4070 its_send_vinvall(its, vpe); 4071 return; 4072 } 4073 } 4074 4075 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4076 { 4077 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4078 struct its_cmd_info *info = vcpu_info; 4079 4080 switch (info->cmd_type) { 4081 case SCHEDULE_VPE: 4082 its_vpe_schedule(vpe); 4083 return 0; 4084 4085 case DESCHEDULE_VPE: 4086 its_vpe_deschedule(vpe); 4087 return 0; 4088 4089 case COMMIT_VPE: 4090 its_wait_vpt_parse_complete(); 4091 return 0; 4092 4093 case INVALL_VPE: 4094 its_vpe_invall(vpe); 4095 return 0; 4096 4097 default: 4098 return -EINVAL; 4099 } 4100 } 4101 4102 static void its_vpe_send_cmd(struct its_vpe *vpe, 4103 void (*cmd)(struct its_device *, u32)) 4104 { 4105 unsigned long flags; 4106 4107 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 4108 4109 its_vpe_db_proxy_map_locked(vpe); 4110 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 4111 4112 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 4113 } 4114 4115 static void its_vpe_send_inv(struct irq_data *d) 4116 { 4117 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4118 4119 if (gic_rdists->has_direct_lpi) 4120 __direct_lpi_inv(d, d->parent_data->hwirq); 4121 else 4122 its_vpe_send_cmd(vpe, its_send_inv); 4123 } 4124 4125 static void its_vpe_mask_irq(struct irq_data *d) 4126 { 4127 /* 4128 * We need to unmask the LPI, which is described by the parent 4129 * irq_data. Instead of calling into the parent (which won't 4130 * exactly do the right thing, let's simply use the 4131 * parent_data pointer. Yes, I'm naughty. 4132 */ 4133 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4134 its_vpe_send_inv(d); 4135 } 4136 4137 static void its_vpe_unmask_irq(struct irq_data *d) 4138 { 4139 /* Same hack as above... */ 4140 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4141 its_vpe_send_inv(d); 4142 } 4143 4144 static int its_vpe_set_irqchip_state(struct irq_data *d, 4145 enum irqchip_irq_state which, 4146 bool state) 4147 { 4148 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4149 4150 if (which != IRQCHIP_STATE_PENDING) 4151 return -EINVAL; 4152 4153 if (gic_rdists->has_direct_lpi) { 4154 void __iomem *rdbase; 4155 4156 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4157 if (state) { 4158 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4159 } else { 4160 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4161 wait_for_syncr(rdbase); 4162 } 4163 } else { 4164 if (state) 4165 its_vpe_send_cmd(vpe, its_send_int); 4166 else 4167 its_vpe_send_cmd(vpe, its_send_clear); 4168 } 4169 4170 return 0; 4171 } 4172 4173 static int its_vpe_retrigger(struct irq_data *d) 4174 { 4175 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4176 } 4177 4178 static struct irq_chip its_vpe_irq_chip = { 4179 .name = "GICv4-vpe", 4180 .irq_mask = its_vpe_mask_irq, 4181 .irq_unmask = its_vpe_unmask_irq, 4182 .irq_eoi = irq_chip_eoi_parent, 4183 .irq_set_affinity = its_vpe_set_affinity, 4184 .irq_retrigger = its_vpe_retrigger, 4185 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4186 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4187 }; 4188 4189 static struct its_node *find_4_1_its(void) 4190 { 4191 struct its_node *its = *this_cpu_ptr(&local_4_1_its); 4192 4193 if (!its) { 4194 list_for_each_entry(its, &its_nodes, entry) { 4195 if (is_v4_1(its)) 4196 return its; 4197 } 4198 4199 /* Oops? */ 4200 its = NULL; 4201 } 4202 4203 return its; 4204 } 4205 4206 static void its_vpe_4_1_send_inv(struct irq_data *d) 4207 { 4208 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4209 struct its_node *its; 4210 4211 /* 4212 * GICv4.1 wants doorbells to be invalidated using the 4213 * INVDB command in order to be broadcast to all RDs. Send 4214 * it to the first valid ITS, and let the HW do its magic. 4215 */ 4216 its = find_4_1_its(); 4217 if (its) 4218 its_send_invdb(its, vpe); 4219 } 4220 4221 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4222 { 4223 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4224 its_vpe_4_1_send_inv(d); 4225 } 4226 4227 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4228 { 4229 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4230 its_vpe_4_1_send_inv(d); 4231 } 4232 4233 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4234 struct its_cmd_info *info) 4235 { 4236 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4237 u64 val = 0; 4238 4239 /* Schedule the VPE */ 4240 val |= GICR_VPENDBASER_Valid; 4241 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4242 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4243 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4244 4245 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4246 } 4247 4248 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4249 struct its_cmd_info *info) 4250 { 4251 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4252 u64 val; 4253 4254 if (info->req_db) { 4255 unsigned long flags; 4256 4257 /* 4258 * vPE is going to block: make the vPE non-resident with 4259 * PendingLast clear and DB set. The GIC guarantees that if 4260 * we read-back PendingLast clear, then a doorbell will be 4261 * delivered when an interrupt comes. 4262 * 4263 * Note the locking to deal with the concurrent update of 4264 * pending_last from the doorbell interrupt handler that can 4265 * run concurrently. 4266 */ 4267 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4268 val = its_clear_vpend_valid(vlpi_base, 4269 GICR_VPENDBASER_PendingLast, 4270 GICR_VPENDBASER_4_1_DB); 4271 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4272 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4273 } else { 4274 /* 4275 * We're not blocking, so just make the vPE non-resident 4276 * with PendingLast set, indicating that we'll be back. 4277 */ 4278 val = its_clear_vpend_valid(vlpi_base, 4279 0, 4280 GICR_VPENDBASER_PendingLast); 4281 vpe->pending_last = true; 4282 } 4283 } 4284 4285 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4286 { 4287 unsigned long flags; 4288 int cpu; 4289 4290 /* Target the redistributor this vPE is currently known on */ 4291 cpu = vpe_to_cpuid_lock(vpe, &flags); 4292 its_vpe_4_1_invall_locked(cpu, vpe); 4293 vpe_to_cpuid_unlock(vpe, flags); 4294 } 4295 4296 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4297 { 4298 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4299 struct its_cmd_info *info = vcpu_info; 4300 4301 switch (info->cmd_type) { 4302 case SCHEDULE_VPE: 4303 its_vpe_4_1_schedule(vpe, info); 4304 return 0; 4305 4306 case DESCHEDULE_VPE: 4307 its_vpe_4_1_deschedule(vpe, info); 4308 return 0; 4309 4310 case COMMIT_VPE: 4311 its_wait_vpt_parse_complete(); 4312 return 0; 4313 4314 case INVALL_VPE: 4315 its_vpe_4_1_invall(vpe); 4316 return 0; 4317 4318 default: 4319 return -EINVAL; 4320 } 4321 } 4322 4323 static struct irq_chip its_vpe_4_1_irq_chip = { 4324 .name = "GICv4.1-vpe", 4325 .irq_mask = its_vpe_4_1_mask_irq, 4326 .irq_unmask = its_vpe_4_1_unmask_irq, 4327 .irq_eoi = irq_chip_eoi_parent, 4328 .irq_set_affinity = its_vpe_set_affinity, 4329 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4330 }; 4331 4332 static void its_configure_sgi(struct irq_data *d, bool clear) 4333 { 4334 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4335 struct its_cmd_desc desc; 4336 4337 desc.its_vsgi_cmd.vpe = vpe; 4338 desc.its_vsgi_cmd.sgi = d->hwirq; 4339 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4340 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4341 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4342 desc.its_vsgi_cmd.clear = clear; 4343 4344 /* 4345 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4346 * destination VPE is mapped there. Since we map them eagerly at 4347 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4348 */ 4349 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4350 } 4351 4352 static void its_sgi_mask_irq(struct irq_data *d) 4353 { 4354 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4355 4356 vpe->sgi_config[d->hwirq].enabled = false; 4357 its_configure_sgi(d, false); 4358 } 4359 4360 static void its_sgi_unmask_irq(struct irq_data *d) 4361 { 4362 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4363 4364 vpe->sgi_config[d->hwirq].enabled = true; 4365 its_configure_sgi(d, false); 4366 } 4367 4368 static int its_sgi_set_affinity(struct irq_data *d, 4369 const struct cpumask *mask_val, 4370 bool force) 4371 { 4372 /* 4373 * There is no notion of affinity for virtual SGIs, at least 4374 * not on the host (since they can only be targeting a vPE). 4375 * Tell the kernel we've done whatever it asked for. 4376 */ 4377 irq_data_update_effective_affinity(d, mask_val); 4378 return IRQ_SET_MASK_OK; 4379 } 4380 4381 static int its_sgi_set_irqchip_state(struct irq_data *d, 4382 enum irqchip_irq_state which, 4383 bool state) 4384 { 4385 if (which != IRQCHIP_STATE_PENDING) 4386 return -EINVAL; 4387 4388 if (state) { 4389 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4390 struct its_node *its = find_4_1_its(); 4391 u64 val; 4392 4393 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4394 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4395 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4396 } else { 4397 its_configure_sgi(d, true); 4398 } 4399 4400 return 0; 4401 } 4402 4403 static int its_sgi_get_irqchip_state(struct irq_data *d, 4404 enum irqchip_irq_state which, bool *val) 4405 { 4406 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4407 void __iomem *base; 4408 unsigned long flags; 4409 u32 count = 1000000; /* 1s! */ 4410 u32 status; 4411 int cpu; 4412 4413 if (which != IRQCHIP_STATE_PENDING) 4414 return -EINVAL; 4415 4416 /* 4417 * Locking galore! We can race against two different events: 4418 * 4419 * - Concurrent vPE affinity change: we must make sure it cannot 4420 * happen, or we'll talk to the wrong redistributor. This is 4421 * identical to what happens with vLPIs. 4422 * 4423 * - Concurrent VSGIPENDR access: As it involves accessing two 4424 * MMIO registers, this must be made atomic one way or another. 4425 */ 4426 cpu = vpe_to_cpuid_lock(vpe, &flags); 4427 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4428 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4429 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4430 do { 4431 status = readl_relaxed(base + GICR_VSGIPENDR); 4432 if (!(status & GICR_VSGIPENDR_BUSY)) 4433 goto out; 4434 4435 count--; 4436 if (!count) { 4437 pr_err_ratelimited("Unable to get SGI status\n"); 4438 goto out; 4439 } 4440 cpu_relax(); 4441 udelay(1); 4442 } while (count); 4443 4444 out: 4445 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4446 vpe_to_cpuid_unlock(vpe, flags); 4447 4448 if (!count) 4449 return -ENXIO; 4450 4451 *val = !!(status & (1 << d->hwirq)); 4452 4453 return 0; 4454 } 4455 4456 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4457 { 4458 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4459 struct its_cmd_info *info = vcpu_info; 4460 4461 switch (info->cmd_type) { 4462 case PROP_UPDATE_VSGI: 4463 vpe->sgi_config[d->hwirq].priority = info->priority; 4464 vpe->sgi_config[d->hwirq].group = info->group; 4465 its_configure_sgi(d, false); 4466 return 0; 4467 4468 default: 4469 return -EINVAL; 4470 } 4471 } 4472 4473 static struct irq_chip its_sgi_irq_chip = { 4474 .name = "GICv4.1-sgi", 4475 .irq_mask = its_sgi_mask_irq, 4476 .irq_unmask = its_sgi_unmask_irq, 4477 .irq_set_affinity = its_sgi_set_affinity, 4478 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4479 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4480 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4481 }; 4482 4483 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4484 unsigned int virq, unsigned int nr_irqs, 4485 void *args) 4486 { 4487 struct its_vpe *vpe = args; 4488 int i; 4489 4490 /* Yes, we do want 16 SGIs */ 4491 WARN_ON(nr_irqs != 16); 4492 4493 for (i = 0; i < 16; i++) { 4494 vpe->sgi_config[i].priority = 0; 4495 vpe->sgi_config[i].enabled = false; 4496 vpe->sgi_config[i].group = false; 4497 4498 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4499 &its_sgi_irq_chip, vpe); 4500 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4501 } 4502 4503 return 0; 4504 } 4505 4506 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4507 unsigned int virq, 4508 unsigned int nr_irqs) 4509 { 4510 /* Nothing to do */ 4511 } 4512 4513 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4514 struct irq_data *d, bool reserve) 4515 { 4516 /* Write out the initial SGI configuration */ 4517 its_configure_sgi(d, false); 4518 return 0; 4519 } 4520 4521 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4522 struct irq_data *d) 4523 { 4524 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4525 4526 /* 4527 * The VSGI command is awkward: 4528 * 4529 * - To change the configuration, CLEAR must be set to false, 4530 * leaving the pending bit unchanged. 4531 * - To clear the pending bit, CLEAR must be set to true, leaving 4532 * the configuration unchanged. 4533 * 4534 * You just can't do both at once, hence the two commands below. 4535 */ 4536 vpe->sgi_config[d->hwirq].enabled = false; 4537 its_configure_sgi(d, false); 4538 its_configure_sgi(d, true); 4539 } 4540 4541 static const struct irq_domain_ops its_sgi_domain_ops = { 4542 .alloc = its_sgi_irq_domain_alloc, 4543 .free = its_sgi_irq_domain_free, 4544 .activate = its_sgi_irq_domain_activate, 4545 .deactivate = its_sgi_irq_domain_deactivate, 4546 }; 4547 4548 static int its_vpe_id_alloc(void) 4549 { 4550 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4551 } 4552 4553 static void its_vpe_id_free(u16 id) 4554 { 4555 ida_free(&its_vpeid_ida, id); 4556 } 4557 4558 static int its_vpe_init(struct its_vpe *vpe) 4559 { 4560 struct page *vpt_page; 4561 int vpe_id; 4562 4563 /* Allocate vpe_id */ 4564 vpe_id = its_vpe_id_alloc(); 4565 if (vpe_id < 0) 4566 return vpe_id; 4567 4568 /* Allocate VPT */ 4569 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4570 if (!vpt_page) { 4571 its_vpe_id_free(vpe_id); 4572 return -ENOMEM; 4573 } 4574 4575 if (!its_alloc_vpe_table(vpe_id)) { 4576 its_vpe_id_free(vpe_id); 4577 its_free_pending_table(vpt_page); 4578 return -ENOMEM; 4579 } 4580 4581 raw_spin_lock_init(&vpe->vpe_lock); 4582 vpe->vpe_id = vpe_id; 4583 vpe->vpt_page = vpt_page; 4584 atomic_set(&vpe->vmapp_count, 0); 4585 if (!gic_rdists->has_rvpeid) 4586 vpe->vpe_proxy_event = -1; 4587 4588 return 0; 4589 } 4590 4591 static void its_vpe_teardown(struct its_vpe *vpe) 4592 { 4593 its_vpe_db_proxy_unmap(vpe); 4594 its_vpe_id_free(vpe->vpe_id); 4595 its_free_pending_table(vpe->vpt_page); 4596 } 4597 4598 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4599 unsigned int virq, 4600 unsigned int nr_irqs) 4601 { 4602 struct its_vm *vm = domain->host_data; 4603 int i; 4604 4605 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4606 4607 for (i = 0; i < nr_irqs; i++) { 4608 struct irq_data *data = irq_domain_get_irq_data(domain, 4609 virq + i); 4610 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4611 4612 BUG_ON(vm != vpe->its_vm); 4613 4614 clear_bit(data->hwirq, vm->db_bitmap); 4615 its_vpe_teardown(vpe); 4616 irq_domain_reset_irq_data(data); 4617 } 4618 4619 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4620 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4621 its_free_prop_table(vm->vprop_page); 4622 } 4623 } 4624 4625 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4626 unsigned int nr_irqs, void *args) 4627 { 4628 struct irq_chip *irqchip = &its_vpe_irq_chip; 4629 struct its_vm *vm = args; 4630 unsigned long *bitmap; 4631 struct page *vprop_page; 4632 int base, nr_ids, i, err = 0; 4633 4634 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4635 if (!bitmap) 4636 return -ENOMEM; 4637 4638 if (nr_ids < nr_irqs) { 4639 its_lpi_free(bitmap, base, nr_ids); 4640 return -ENOMEM; 4641 } 4642 4643 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4644 if (!vprop_page) { 4645 its_lpi_free(bitmap, base, nr_ids); 4646 return -ENOMEM; 4647 } 4648 4649 vm->db_bitmap = bitmap; 4650 vm->db_lpi_base = base; 4651 vm->nr_db_lpis = nr_ids; 4652 vm->vprop_page = vprop_page; 4653 raw_spin_lock_init(&vm->vmapp_lock); 4654 4655 if (gic_rdists->has_rvpeid) 4656 irqchip = &its_vpe_4_1_irq_chip; 4657 4658 for (i = 0; i < nr_irqs; i++) { 4659 vm->vpes[i]->vpe_db_lpi = base + i; 4660 err = its_vpe_init(vm->vpes[i]); 4661 if (err) 4662 break; 4663 err = its_irq_gic_domain_alloc(domain, virq + i, 4664 vm->vpes[i]->vpe_db_lpi); 4665 if (err) 4666 break; 4667 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4668 irqchip, vm->vpes[i]); 4669 set_bit(i, bitmap); 4670 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4671 } 4672 4673 if (err) 4674 its_vpe_irq_domain_free(domain, virq, i); 4675 4676 return err; 4677 } 4678 4679 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4680 struct irq_data *d, bool reserve) 4681 { 4682 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4683 struct its_node *its; 4684 4685 /* Map the VPE to the first possible CPU */ 4686 vpe->col_idx = cpumask_first(cpu_online_mask); 4687 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4688 4689 /* 4690 * If we use the list map, we issue VMAPP on demand... Unless 4691 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4692 * so that VSGIs can work. 4693 */ 4694 if (!gic_requires_eager_mapping()) 4695 return 0; 4696 4697 list_for_each_entry(its, &its_nodes, entry) { 4698 if (!is_v4(its)) 4699 continue; 4700 4701 its_send_vmapp(its, vpe, true); 4702 its_send_vinvall(its, vpe); 4703 } 4704 4705 return 0; 4706 } 4707 4708 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4709 struct irq_data *d) 4710 { 4711 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4712 struct its_node *its; 4713 4714 /* 4715 * If we use the list map on GICv4.0, we unmap the VPE once no 4716 * VLPIs are associated with the VM. 4717 */ 4718 if (!gic_requires_eager_mapping()) 4719 return; 4720 4721 list_for_each_entry(its, &its_nodes, entry) { 4722 if (!is_v4(its)) 4723 continue; 4724 4725 its_send_vmapp(its, vpe, false); 4726 } 4727 4728 /* 4729 * There may be a direct read to the VPT after unmapping the 4730 * vPE, to guarantee the validity of this, we make the VPT 4731 * memory coherent with the CPU caches here. 4732 */ 4733 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4734 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4735 LPI_PENDBASE_SZ); 4736 } 4737 4738 static const struct irq_domain_ops its_vpe_domain_ops = { 4739 .alloc = its_vpe_irq_domain_alloc, 4740 .free = its_vpe_irq_domain_free, 4741 .activate = its_vpe_irq_domain_activate, 4742 .deactivate = its_vpe_irq_domain_deactivate, 4743 }; 4744 4745 static int its_force_quiescent(void __iomem *base) 4746 { 4747 u32 count = 1000000; /* 1s */ 4748 u32 val; 4749 4750 val = readl_relaxed(base + GITS_CTLR); 4751 /* 4752 * GIC architecture specification requires the ITS to be both 4753 * disabled and quiescent for writes to GITS_BASER<n> or 4754 * GITS_CBASER to not have UNPREDICTABLE results. 4755 */ 4756 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4757 return 0; 4758 4759 /* Disable the generation of all interrupts to this ITS */ 4760 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4761 writel_relaxed(val, base + GITS_CTLR); 4762 4763 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4764 while (1) { 4765 val = readl_relaxed(base + GITS_CTLR); 4766 if (val & GITS_CTLR_QUIESCENT) 4767 return 0; 4768 4769 count--; 4770 if (!count) 4771 return -EBUSY; 4772 4773 cpu_relax(); 4774 udelay(1); 4775 } 4776 } 4777 4778 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4779 { 4780 struct its_node *its = data; 4781 4782 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4783 its->typer &= ~GITS_TYPER_DEVBITS; 4784 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4785 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4786 4787 return true; 4788 } 4789 4790 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4791 { 4792 struct its_node *its = data; 4793 4794 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4795 4796 return true; 4797 } 4798 4799 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4800 { 4801 struct its_node *its = data; 4802 4803 /* On QDF2400, the size of the ITE is 16Bytes */ 4804 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4805 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4806 4807 return true; 4808 } 4809 4810 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4811 { 4812 struct its_node *its = its_dev->its; 4813 4814 /* 4815 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4816 * which maps 32-bit writes targeted at a separate window of 4817 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4818 * with device ID taken from bits [device_id_bits + 1:2] of 4819 * the window offset. 4820 */ 4821 return its->pre_its_base + (its_dev->device_id << 2); 4822 } 4823 4824 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4825 { 4826 struct its_node *its = data; 4827 u32 pre_its_window[2]; 4828 u32 ids; 4829 4830 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4831 "socionext,synquacer-pre-its", 4832 pre_its_window, 4833 ARRAY_SIZE(pre_its_window))) { 4834 4835 its->pre_its_base = pre_its_window[0]; 4836 its->get_msi_base = its_irq_get_msi_base_pre_its; 4837 4838 ids = ilog2(pre_its_window[1]) - 2; 4839 if (device_ids(its) > ids) { 4840 its->typer &= ~GITS_TYPER_DEVBITS; 4841 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4842 } 4843 4844 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4845 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4846 return true; 4847 } 4848 return false; 4849 } 4850 4851 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4852 { 4853 struct its_node *its = data; 4854 4855 /* 4856 * Hip07 insists on using the wrong address for the VLPI 4857 * page. Trick it into doing the right thing... 4858 */ 4859 its->vlpi_redist_offset = SZ_128K; 4860 return true; 4861 } 4862 4863 static bool __maybe_unused its_enable_rk3588001(void *data) 4864 { 4865 struct its_node *its = data; 4866 4867 if (!of_machine_is_compatible("rockchip,rk3588") && 4868 !of_machine_is_compatible("rockchip,rk3588s")) 4869 return false; 4870 4871 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4872 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4873 4874 return true; 4875 } 4876 4877 static bool its_set_non_coherent(void *data) 4878 { 4879 struct its_node *its = data; 4880 4881 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4882 return true; 4883 } 4884 4885 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data) 4886 { 4887 struct its_node *its = data; 4888 4889 its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801; 4890 return true; 4891 } 4892 4893 static bool __maybe_unused its_enable_rk3568002(void *data) 4894 { 4895 if (!of_machine_is_compatible("rockchip,rk3566") && 4896 !of_machine_is_compatible("rockchip,rk3568")) 4897 return false; 4898 4899 gfp_flags_quirk |= GFP_DMA32; 4900 4901 return true; 4902 } 4903 4904 static const struct gic_quirk its_quirks[] = { 4905 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4906 { 4907 .desc = "ITS: Cavium errata 22375, 24313", 4908 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4909 .mask = 0xffff0fff, 4910 .init = its_enable_quirk_cavium_22375, 4911 }, 4912 #endif 4913 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4914 { 4915 .desc = "ITS: Cavium erratum 23144", 4916 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4917 .mask = 0xffff0fff, 4918 .init = its_enable_quirk_cavium_23144, 4919 }, 4920 #endif 4921 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4922 { 4923 .desc = "ITS: QDF2400 erratum 0065", 4924 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4925 .mask = 0xffffffff, 4926 .init = its_enable_quirk_qdf2400_e0065, 4927 }, 4928 #endif 4929 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4930 { 4931 /* 4932 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4933 * implementation, but with a 'pre-ITS' added that requires 4934 * special handling in software. 4935 */ 4936 .desc = "ITS: Socionext Synquacer pre-ITS", 4937 .iidr = 0x0001143b, 4938 .mask = 0xffffffff, 4939 .init = its_enable_quirk_socionext_synquacer, 4940 }, 4941 #endif 4942 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4943 { 4944 .desc = "ITS: Hip07 erratum 161600802", 4945 .iidr = 0x00000004, 4946 .mask = 0xffffffff, 4947 .init = its_enable_quirk_hip07_161600802, 4948 }, 4949 #endif 4950 #ifdef CONFIG_HISILICON_ERRATUM_162100801 4951 { 4952 .desc = "ITS: Hip09 erratum 162100801", 4953 .iidr = 0x00051736, 4954 .mask = 0xffffffff, 4955 .init = its_enable_quirk_hip09_162100801, 4956 }, 4957 #endif 4958 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4959 { 4960 .desc = "ITS: Rockchip erratum RK3588001", 4961 .iidr = 0x0201743b, 4962 .mask = 0xffffffff, 4963 .init = its_enable_rk3588001, 4964 }, 4965 #endif 4966 { 4967 .desc = "ITS: non-coherent attribute", 4968 .property = "dma-noncoherent", 4969 .init = its_set_non_coherent, 4970 }, 4971 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002 4972 { 4973 .desc = "ITS: Rockchip erratum RK3568002", 4974 .iidr = 0x0201743b, 4975 .mask = 0xffffffff, 4976 .init = its_enable_rk3568002, 4977 }, 4978 #endif 4979 { 4980 } 4981 }; 4982 4983 static void its_enable_quirks(struct its_node *its) 4984 { 4985 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4986 4987 gic_enable_quirks(iidr, its_quirks, its); 4988 4989 if (is_of_node(its->fwnode_handle)) 4990 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4991 its_quirks, its); 4992 } 4993 4994 static int its_save_disable(void) 4995 { 4996 struct its_node *its; 4997 int err = 0; 4998 4999 raw_spin_lock(&its_lock); 5000 list_for_each_entry(its, &its_nodes, entry) { 5001 void __iomem *base; 5002 5003 base = its->base; 5004 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 5005 err = its_force_quiescent(base); 5006 if (err) { 5007 pr_err("ITS@%pa: failed to quiesce: %d\n", 5008 &its->phys_base, err); 5009 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5010 goto err; 5011 } 5012 5013 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 5014 } 5015 5016 err: 5017 if (err) { 5018 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 5019 void __iomem *base; 5020 5021 base = its->base; 5022 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5023 } 5024 } 5025 raw_spin_unlock(&its_lock); 5026 5027 return err; 5028 } 5029 5030 static void its_restore_enable(void) 5031 { 5032 struct its_node *its; 5033 int ret; 5034 5035 raw_spin_lock(&its_lock); 5036 list_for_each_entry(its, &its_nodes, entry) { 5037 void __iomem *base; 5038 int i; 5039 5040 base = its->base; 5041 5042 /* 5043 * Make sure that the ITS is disabled. If it fails to quiesce, 5044 * don't restore it since writing to CBASER or BASER<n> 5045 * registers is undefined according to the GIC v3 ITS 5046 * Specification. 5047 * 5048 * Firmware resuming with the ITS enabled is terminally broken. 5049 */ 5050 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 5051 ret = its_force_quiescent(base); 5052 if (ret) { 5053 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 5054 &its->phys_base, ret); 5055 continue; 5056 } 5057 5058 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 5059 5060 /* 5061 * Writing CBASER resets CREADR to 0, so make CWRITER and 5062 * cmd_write line up with it. 5063 */ 5064 its->cmd_write = its->cmd_base; 5065 gits_write_cwriter(0, base + GITS_CWRITER); 5066 5067 /* Restore GITS_BASER from the value cache. */ 5068 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 5069 struct its_baser *baser = &its->tables[i]; 5070 5071 if (!(baser->val & GITS_BASER_VALID)) 5072 continue; 5073 5074 its_write_baser(its, baser, baser->val); 5075 } 5076 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5077 5078 /* 5079 * Reinit the collection if it's stored in the ITS. This is 5080 * indicated by the col_id being less than the HCC field. 5081 * CID < HCC as specified in the GIC v3 Documentation. 5082 */ 5083 if (its->collections[smp_processor_id()].col_id < 5084 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 5085 its_cpu_init_collection(its); 5086 } 5087 raw_spin_unlock(&its_lock); 5088 } 5089 5090 static struct syscore_ops its_syscore_ops = { 5091 .suspend = its_save_disable, 5092 .resume = its_restore_enable, 5093 }; 5094 5095 static void __init __iomem *its_map_one(struct resource *res, int *err) 5096 { 5097 void __iomem *its_base; 5098 u32 val; 5099 5100 its_base = ioremap(res->start, SZ_64K); 5101 if (!its_base) { 5102 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 5103 *err = -ENOMEM; 5104 return NULL; 5105 } 5106 5107 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 5108 if (val != 0x30 && val != 0x40) { 5109 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 5110 *err = -ENODEV; 5111 goto out_unmap; 5112 } 5113 5114 *err = its_force_quiescent(its_base); 5115 if (*err) { 5116 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 5117 goto out_unmap; 5118 } 5119 5120 return its_base; 5121 5122 out_unmap: 5123 iounmap(its_base); 5124 return NULL; 5125 } 5126 5127 static int its_init_domain(struct its_node *its) 5128 { 5129 struct irq_domain_info dom_info = { 5130 .fwnode = its->fwnode_handle, 5131 .ops = &its_domain_ops, 5132 .domain_flags = its->msi_domain_flags, 5133 .parent = its_parent, 5134 }; 5135 struct msi_domain_info *info; 5136 5137 info = kzalloc(sizeof(*info), GFP_KERNEL); 5138 if (!info) 5139 return -ENOMEM; 5140 5141 info->ops = &its_msi_domain_ops; 5142 info->data = its; 5143 dom_info.host_data = info; 5144 5145 if (!msi_create_parent_irq_domain(&dom_info, &gic_v3_its_msi_parent_ops)) { 5146 kfree(info); 5147 return -ENOMEM; 5148 } 5149 return 0; 5150 } 5151 5152 static int its_init_vpe_domain(void) 5153 { 5154 struct its_node *its; 5155 u32 devid; 5156 int entries; 5157 5158 if (gic_rdists->has_direct_lpi) { 5159 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5160 return 0; 5161 } 5162 5163 /* Any ITS will do, even if not v4 */ 5164 its = list_first_entry(&its_nodes, struct its_node, entry); 5165 5166 entries = roundup_pow_of_two(nr_cpu_ids); 5167 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5168 GFP_KERNEL); 5169 if (!vpe_proxy.vpes) 5170 return -ENOMEM; 5171 5172 /* Use the last possible DevID */ 5173 devid = GENMASK(device_ids(its) - 1, 0); 5174 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5175 if (!vpe_proxy.dev) { 5176 kfree(vpe_proxy.vpes); 5177 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5178 return -ENOMEM; 5179 } 5180 5181 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5182 5183 raw_spin_lock_init(&vpe_proxy.lock); 5184 vpe_proxy.next_victim = 0; 5185 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5186 devid, vpe_proxy.dev->nr_ites); 5187 5188 return 0; 5189 } 5190 5191 static int __init its_compute_its_list_map(struct its_node *its) 5192 { 5193 int its_number; 5194 u32 ctlr; 5195 5196 /* 5197 * This is assumed to be done early enough that we're 5198 * guaranteed to be single-threaded, hence no 5199 * locking. Should this change, we should address 5200 * this. 5201 */ 5202 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5203 if (its_number >= GICv4_ITS_LIST_MAX) { 5204 pr_err("ITS@%pa: No ITSList entry available!\n", 5205 &its->phys_base); 5206 return -EINVAL; 5207 } 5208 5209 ctlr = readl_relaxed(its->base + GITS_CTLR); 5210 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5211 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5212 writel_relaxed(ctlr, its->base + GITS_CTLR); 5213 ctlr = readl_relaxed(its->base + GITS_CTLR); 5214 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5215 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5216 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5217 } 5218 5219 if (test_and_set_bit(its_number, &its_list_map)) { 5220 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5221 &its->phys_base, its_number); 5222 return -EINVAL; 5223 } 5224 5225 return its_number; 5226 } 5227 5228 static int __init its_probe_one(struct its_node *its) 5229 { 5230 u64 baser, tmp; 5231 struct page *page; 5232 u32 ctlr; 5233 int err; 5234 5235 its_enable_quirks(its); 5236 5237 if (is_v4(its)) { 5238 if (!(its->typer & GITS_TYPER_VMOVP)) { 5239 err = its_compute_its_list_map(its); 5240 if (err < 0) 5241 goto out; 5242 5243 its->list_nr = err; 5244 5245 pr_info("ITS@%pa: Using ITS number %d\n", 5246 &its->phys_base, err); 5247 } else { 5248 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5249 } 5250 5251 if (is_v4_1(its)) { 5252 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5253 5254 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5255 if (!its->sgir_base) { 5256 err = -ENOMEM; 5257 goto out; 5258 } 5259 5260 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5261 5262 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5263 &its->phys_base, its->mpidr, svpet); 5264 } 5265 } 5266 5267 page = its_alloc_pages_node(its->numa_node, 5268 GFP_KERNEL | __GFP_ZERO, 5269 get_order(ITS_CMD_QUEUE_SZ)); 5270 if (!page) { 5271 err = -ENOMEM; 5272 goto out_unmap_sgir; 5273 } 5274 its->cmd_base = (void *)page_address(page); 5275 its->cmd_write = its->cmd_base; 5276 5277 err = its_alloc_tables(its); 5278 if (err) 5279 goto out_free_cmd; 5280 5281 err = its_alloc_collections(its); 5282 if (err) 5283 goto out_free_tables; 5284 5285 baser = (virt_to_phys(its->cmd_base) | 5286 GITS_CBASER_RaWaWb | 5287 GITS_CBASER_InnerShareable | 5288 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5289 GITS_CBASER_VALID); 5290 5291 gits_write_cbaser(baser, its->base + GITS_CBASER); 5292 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5293 5294 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5295 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5296 5297 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5298 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5299 /* 5300 * The HW reports non-shareable, we must 5301 * remove the cacheability attributes as 5302 * well. 5303 */ 5304 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5305 GITS_CBASER_CACHEABILITY_MASK); 5306 baser |= GITS_CBASER_nC; 5307 gits_write_cbaser(baser, its->base + GITS_CBASER); 5308 } 5309 pr_info("ITS: using cache flushing for cmd queue\n"); 5310 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5311 } 5312 5313 gits_write_cwriter(0, its->base + GITS_CWRITER); 5314 ctlr = readl_relaxed(its->base + GITS_CTLR); 5315 ctlr |= GITS_CTLR_ENABLE; 5316 if (is_v4(its)) 5317 ctlr |= GITS_CTLR_ImDe; 5318 writel_relaxed(ctlr, its->base + GITS_CTLR); 5319 5320 err = its_init_domain(its); 5321 if (err) 5322 goto out_free_tables; 5323 5324 raw_spin_lock(&its_lock); 5325 list_add(&its->entry, &its_nodes); 5326 raw_spin_unlock(&its_lock); 5327 5328 return 0; 5329 5330 out_free_tables: 5331 its_free_tables(its); 5332 out_free_cmd: 5333 its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5334 out_unmap_sgir: 5335 if (its->sgir_base) 5336 iounmap(its->sgir_base); 5337 out: 5338 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5339 return err; 5340 } 5341 5342 static bool gic_rdists_supports_plpis(void) 5343 { 5344 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5345 } 5346 5347 static int redist_disable_lpis(void) 5348 { 5349 void __iomem *rbase = gic_data_rdist_rd_base(); 5350 u64 timeout = USEC_PER_SEC; 5351 u64 val; 5352 5353 if (!gic_rdists_supports_plpis()) { 5354 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5355 return -ENXIO; 5356 } 5357 5358 val = readl_relaxed(rbase + GICR_CTLR); 5359 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5360 return 0; 5361 5362 /* 5363 * If coming via a CPU hotplug event, we don't need to disable 5364 * LPIs before trying to re-enable them. They are already 5365 * configured and all is well in the world. 5366 * 5367 * If running with preallocated tables, there is nothing to do. 5368 */ 5369 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5370 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5371 return 0; 5372 5373 /* 5374 * From that point on, we only try to do some damage control. 5375 */ 5376 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5377 smp_processor_id()); 5378 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5379 5380 /* Disable LPIs */ 5381 val &= ~GICR_CTLR_ENABLE_LPIS; 5382 writel_relaxed(val, rbase + GICR_CTLR); 5383 5384 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5385 dsb(sy); 5386 5387 /* 5388 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5389 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5390 * Error out if we time out waiting for RWP to clear. 5391 */ 5392 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5393 if (!timeout) { 5394 pr_err("CPU%d: Timeout while disabling LPIs\n", 5395 smp_processor_id()); 5396 return -ETIMEDOUT; 5397 } 5398 udelay(1); 5399 timeout--; 5400 } 5401 5402 /* 5403 * After it has been written to 1, it is IMPLEMENTATION 5404 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5405 * cleared to 0. Error out if clearing the bit failed. 5406 */ 5407 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5408 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5409 return -EBUSY; 5410 } 5411 5412 return 0; 5413 } 5414 5415 int its_cpu_init(void) 5416 { 5417 if (!list_empty(&its_nodes)) { 5418 int ret; 5419 5420 ret = redist_disable_lpis(); 5421 if (ret) 5422 return ret; 5423 5424 its_cpu_init_lpis(); 5425 its_cpu_init_collections(); 5426 } 5427 5428 return 0; 5429 } 5430 5431 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5432 { 5433 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5434 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5435 } 5436 5437 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5438 rdist_memreserve_cpuhp_cleanup_workfn); 5439 5440 static int its_cpu_memreserve_lpi(unsigned int cpu) 5441 { 5442 struct page *pend_page; 5443 int ret = 0; 5444 5445 /* This gets to run exactly once per CPU */ 5446 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5447 return 0; 5448 5449 pend_page = gic_data_rdist()->pend_page; 5450 if (WARN_ON(!pend_page)) { 5451 ret = -ENOMEM; 5452 goto out; 5453 } 5454 /* 5455 * If the pending table was pre-programmed, free the memory we 5456 * preemptively allocated. Otherwise, reserve that memory for 5457 * later kexecs. 5458 */ 5459 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5460 its_free_pending_table(pend_page); 5461 gic_data_rdist()->pend_page = NULL; 5462 } else { 5463 phys_addr_t paddr = page_to_phys(pend_page); 5464 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5465 } 5466 5467 out: 5468 /* Last CPU being brought up gets to issue the cleanup */ 5469 if (!IS_ENABLED(CONFIG_SMP) || 5470 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5471 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5472 5473 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5474 return ret; 5475 } 5476 5477 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5478 static int __init its_reset_one(struct resource *res) 5479 { 5480 void __iomem *its_base; 5481 int err, i; 5482 5483 its_base = its_map_one(res, &err); 5484 if (!its_base) 5485 return err; 5486 5487 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5488 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5489 5490 iounmap(its_base); 5491 return 0; 5492 } 5493 5494 static const struct of_device_id its_device_id[] = { 5495 { .compatible = "arm,gic-v3-its", }, 5496 {}, 5497 }; 5498 5499 static struct its_node __init *its_node_init(struct resource *res, 5500 struct fwnode_handle *handle, int numa_node) 5501 { 5502 void __iomem *its_base; 5503 struct its_node *its; 5504 int err; 5505 5506 its_base = its_map_one(res, &err); 5507 if (!its_base) 5508 return NULL; 5509 5510 pr_info("ITS %pR\n", res); 5511 5512 its = kzalloc(sizeof(*its), GFP_KERNEL); 5513 if (!its) 5514 goto out_unmap; 5515 5516 raw_spin_lock_init(&its->lock); 5517 mutex_init(&its->dev_alloc_lock); 5518 INIT_LIST_HEAD(&its->entry); 5519 INIT_LIST_HEAD(&its->its_device_list); 5520 5521 its->typer = gic_read_typer(its_base + GITS_TYPER); 5522 its->base = its_base; 5523 its->phys_base = res->start; 5524 its->get_msi_base = its_irq_get_msi_base; 5525 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | IRQ_DOMAIN_FLAG_MSI_IMMUTABLE; 5526 5527 its->numa_node = numa_node; 5528 its->fwnode_handle = handle; 5529 5530 return its; 5531 5532 out_unmap: 5533 iounmap(its_base); 5534 return NULL; 5535 } 5536 5537 static void its_node_destroy(struct its_node *its) 5538 { 5539 iounmap(its->base); 5540 kfree(its); 5541 } 5542 5543 static int __init its_of_probe(struct device_node *node) 5544 { 5545 struct device_node *np; 5546 struct resource res; 5547 int err; 5548 5549 /* 5550 * Make sure *all* the ITS are reset before we probe any, as 5551 * they may be sharing memory. If any of the ITS fails to 5552 * reset, don't even try to go any further, as this could 5553 * result in something even worse. 5554 */ 5555 for (np = of_find_matching_node(node, its_device_id); np; 5556 np = of_find_matching_node(np, its_device_id)) { 5557 if (!of_device_is_available(np) || 5558 !of_property_read_bool(np, "msi-controller") || 5559 of_address_to_resource(np, 0, &res)) 5560 continue; 5561 5562 err = its_reset_one(&res); 5563 if (err) 5564 return err; 5565 } 5566 5567 for (np = of_find_matching_node(node, its_device_id); np; 5568 np = of_find_matching_node(np, its_device_id)) { 5569 struct its_node *its; 5570 5571 if (!of_device_is_available(np)) 5572 continue; 5573 if (!of_property_read_bool(np, "msi-controller")) { 5574 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5575 np); 5576 continue; 5577 } 5578 5579 if (of_address_to_resource(np, 0, &res)) { 5580 pr_warn("%pOF: no regs?\n", np); 5581 continue; 5582 } 5583 5584 5585 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5586 if (!its) 5587 return -ENOMEM; 5588 5589 err = its_probe_one(its); 5590 if (err) { 5591 its_node_destroy(its); 5592 return err; 5593 } 5594 } 5595 return 0; 5596 } 5597 5598 #ifdef CONFIG_ACPI 5599 5600 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5601 5602 #ifdef CONFIG_ACPI_NUMA 5603 struct its_srat_map { 5604 /* numa node id */ 5605 u32 numa_node; 5606 /* GIC ITS ID */ 5607 u32 its_id; 5608 }; 5609 5610 static struct its_srat_map *its_srat_maps __initdata; 5611 static int its_in_srat __initdata; 5612 5613 static int __init acpi_get_its_numa_node(u32 its_id) 5614 { 5615 int i; 5616 5617 for (i = 0; i < its_in_srat; i++) { 5618 if (its_id == its_srat_maps[i].its_id) 5619 return its_srat_maps[i].numa_node; 5620 } 5621 return NUMA_NO_NODE; 5622 } 5623 5624 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5625 const unsigned long end) 5626 { 5627 return 0; 5628 } 5629 5630 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5631 const unsigned long end) 5632 { 5633 int node; 5634 struct acpi_srat_gic_its_affinity *its_affinity; 5635 5636 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5637 if (!its_affinity) 5638 return -EINVAL; 5639 5640 if (its_affinity->header.length < sizeof(*its_affinity)) { 5641 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5642 its_affinity->header.length); 5643 return -EINVAL; 5644 } 5645 5646 /* 5647 * Note that in theory a new proximity node could be created by this 5648 * entry as it is an SRAT resource allocation structure. 5649 * We do not currently support doing so. 5650 */ 5651 node = pxm_to_node(its_affinity->proximity_domain); 5652 5653 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5654 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5655 return 0; 5656 } 5657 5658 its_srat_maps[its_in_srat].numa_node = node; 5659 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5660 its_in_srat++; 5661 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5662 its_affinity->proximity_domain, its_affinity->its_id, node); 5663 5664 return 0; 5665 } 5666 5667 static void __init acpi_table_parse_srat_its(void) 5668 { 5669 int count; 5670 5671 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5672 sizeof(struct acpi_table_srat), 5673 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5674 gic_acpi_match_srat_its, 0); 5675 if (count <= 0) 5676 return; 5677 5678 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5679 GFP_KERNEL); 5680 if (!its_srat_maps) 5681 return; 5682 5683 acpi_table_parse_entries(ACPI_SIG_SRAT, 5684 sizeof(struct acpi_table_srat), 5685 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5686 gic_acpi_parse_srat_its, 0); 5687 } 5688 5689 /* free the its_srat_maps after ITS probing */ 5690 static void __init acpi_its_srat_maps_free(void) 5691 { 5692 kfree(its_srat_maps); 5693 } 5694 #else 5695 static void __init acpi_table_parse_srat_its(void) { } 5696 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5697 static void __init acpi_its_srat_maps_free(void) { } 5698 #endif 5699 5700 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5701 const unsigned long end) 5702 { 5703 struct acpi_madt_generic_translator *its_entry; 5704 struct fwnode_handle *dom_handle; 5705 struct its_node *its; 5706 struct resource res; 5707 int err; 5708 5709 its_entry = (struct acpi_madt_generic_translator *)header; 5710 memset(&res, 0, sizeof(res)); 5711 res.start = its_entry->base_address; 5712 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5713 res.flags = IORESOURCE_MEM; 5714 5715 dom_handle = irq_domain_alloc_fwnode(&res.start); 5716 if (!dom_handle) { 5717 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5718 &res.start); 5719 return -ENOMEM; 5720 } 5721 5722 err = iort_register_domain_token(its_entry->translation_id, res.start, 5723 dom_handle); 5724 if (err) { 5725 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5726 &res.start, its_entry->translation_id); 5727 goto dom_err; 5728 } 5729 5730 its = its_node_init(&res, dom_handle, 5731 acpi_get_its_numa_node(its_entry->translation_id)); 5732 if (!its) { 5733 err = -ENOMEM; 5734 goto node_err; 5735 } 5736 5737 if (acpi_get_madt_revision() >= 7 && 5738 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5739 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5740 5741 err = its_probe_one(its); 5742 if (!err) 5743 return 0; 5744 5745 node_err: 5746 iort_deregister_domain_token(its_entry->translation_id); 5747 dom_err: 5748 irq_domain_free_fwnode(dom_handle); 5749 return err; 5750 } 5751 5752 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5753 const unsigned long end) 5754 { 5755 struct acpi_madt_generic_translator *its_entry; 5756 struct resource res; 5757 5758 its_entry = (struct acpi_madt_generic_translator *)header; 5759 res = (struct resource) { 5760 .start = its_entry->base_address, 5761 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5762 .flags = IORESOURCE_MEM, 5763 }; 5764 5765 return its_reset_one(&res); 5766 } 5767 5768 static void __init its_acpi_probe(void) 5769 { 5770 acpi_table_parse_srat_its(); 5771 /* 5772 * Make sure *all* the ITS are reset before we probe any, as 5773 * they may be sharing memory. If any of the ITS fails to 5774 * reset, don't even try to go any further, as this could 5775 * result in something even worse. 5776 */ 5777 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5778 its_acpi_reset, 0) > 0) 5779 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5780 gic_acpi_parse_madt_its, 0); 5781 acpi_its_srat_maps_free(); 5782 } 5783 #else 5784 static void __init its_acpi_probe(void) { } 5785 #endif 5786 5787 int __init its_lpi_memreserve_init(void) 5788 { 5789 int state; 5790 5791 if (!efi_enabled(EFI_CONFIG_TABLES)) 5792 return 0; 5793 5794 if (list_empty(&its_nodes)) 5795 return 0; 5796 5797 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5798 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5799 "irqchip/arm/gicv3/memreserve:online", 5800 its_cpu_memreserve_lpi, 5801 NULL); 5802 if (state < 0) 5803 return state; 5804 5805 gic_rdists->cpuhp_memreserve_state = state; 5806 5807 return 0; 5808 } 5809 5810 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5811 struct irq_domain *parent_domain, u8 irq_prio) 5812 { 5813 struct device_node *of_node; 5814 struct its_node *its; 5815 bool has_v4 = false; 5816 bool has_v4_1 = false; 5817 int err; 5818 5819 itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1); 5820 if (!itt_pool) 5821 return -ENOMEM; 5822 5823 gic_rdists = rdists; 5824 5825 lpi_prop_prio = irq_prio; 5826 its_parent = parent_domain; 5827 of_node = to_of_node(handle); 5828 if (of_node) 5829 its_of_probe(of_node); 5830 else 5831 its_acpi_probe(); 5832 5833 if (list_empty(&its_nodes)) { 5834 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5835 return -ENXIO; 5836 } 5837 5838 err = allocate_lpi_tables(); 5839 if (err) 5840 return err; 5841 5842 list_for_each_entry(its, &its_nodes, entry) { 5843 has_v4 |= is_v4(its); 5844 has_v4_1 |= is_v4_1(its); 5845 } 5846 5847 /* Don't bother with inconsistent systems */ 5848 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5849 rdists->has_rvpeid = false; 5850 5851 if (has_v4 & rdists->has_vlpis) { 5852 const struct irq_domain_ops *sgi_ops; 5853 5854 if (has_v4_1) 5855 sgi_ops = &its_sgi_domain_ops; 5856 else 5857 sgi_ops = NULL; 5858 5859 if (its_init_vpe_domain() || 5860 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5861 rdists->has_vlpis = false; 5862 pr_err("ITS: Disabling GICv4 support\n"); 5863 } 5864 } 5865 5866 register_syscore_ops(&its_syscore_ops); 5867 5868 return 0; 5869 } 5870