1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 static struct workqueue_struct *ib_unreg_wq; 62 63 /* 64 * Each of the three rwsem locks (devices, clients, client_data) protects the 65 * xarray of the same name. Specifically it allows the caller to assert that 66 * the MARK will/will not be changing under the lock, and for devices and 67 * clients, that the value in the xarray is still a valid pointer. Change of 68 * the MARK is linked to the object state, so holding the lock and testing the 69 * MARK also asserts that the contained object is in a certain state. 70 * 71 * This is used to build a two stage register/unregister flow where objects 72 * can continue to be in the xarray even though they are still in progress to 73 * register/unregister. 74 * 75 * The xarray itself provides additional locking, and restartable iteration, 76 * which is also relied on. 77 * 78 * Locks should not be nested, with the exception of client_data, which is 79 * allowed to nest under the read side of the other two locks. 80 * 81 * The devices_rwsem also protects the device name list, any change or 82 * assignment of device name must also hold the write side to guarantee unique 83 * names. 84 */ 85 86 /* 87 * devices contains devices that have had their names assigned. The 88 * devices may not be registered. Users that care about the registration 89 * status need to call ib_device_try_get() on the device to ensure it is 90 * registered, and keep it registered, for the required duration. 91 * 92 */ 93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 94 static DECLARE_RWSEM(devices_rwsem); 95 #define DEVICE_REGISTERED XA_MARK_1 96 97 static u32 highest_client_id; 98 #define CLIENT_REGISTERED XA_MARK_1 99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 100 static DECLARE_RWSEM(clients_rwsem); 101 102 static void ib_client_put(struct ib_client *client) 103 { 104 if (refcount_dec_and_test(&client->uses)) 105 complete(&client->uses_zero); 106 } 107 108 /* 109 * If client_data is registered then the corresponding client must also still 110 * be registered. 111 */ 112 #define CLIENT_DATA_REGISTERED XA_MARK_1 113 114 unsigned int rdma_dev_net_id; 115 116 /* 117 * A list of net namespaces is maintained in an xarray. This is necessary 118 * because we can't get the locking right using the existing net ns list. We 119 * would require a init_net callback after the list is updated. 120 */ 121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 122 /* 123 * rwsem to protect accessing the rdma_nets xarray entries. 124 */ 125 static DECLARE_RWSEM(rdma_nets_rwsem); 126 127 bool ib_devices_shared_netns = true; 128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 129 MODULE_PARM_DESC(netns_mode, 130 "Share device among net namespaces; default=1 (shared)"); 131 /** 132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 133 * from a specified net namespace or not. 134 * @dev: Pointer to rdma device which needs to be checked 135 * @net: Pointer to net namesapce for which access to be checked 136 * 137 * When the rdma device is in shared mode, it ignores the net namespace. 138 * When the rdma device is exclusive to a net namespace, rdma device net 139 * namespace is checked against the specified one. 140 */ 141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 142 { 143 return (ib_devices_shared_netns || 144 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 145 } 146 EXPORT_SYMBOL(rdma_dev_access_netns); 147 148 /* 149 * xarray has this behavior where it won't iterate over NULL values stored in 150 * allocated arrays. So we need our own iterator to see all values stored in 151 * the array. This does the same thing as xa_for_each except that it also 152 * returns NULL valued entries if the array is allocating. Simplified to only 153 * work on simple xarrays. 154 */ 155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 156 xa_mark_t filter) 157 { 158 XA_STATE(xas, xa, *indexp); 159 void *entry; 160 161 rcu_read_lock(); 162 do { 163 entry = xas_find_marked(&xas, ULONG_MAX, filter); 164 if (xa_is_zero(entry)) 165 break; 166 } while (xas_retry(&xas, entry)); 167 rcu_read_unlock(); 168 169 if (entry) { 170 *indexp = xas.xa_index; 171 if (xa_is_zero(entry)) 172 return NULL; 173 return entry; 174 } 175 return XA_ERROR(-ENOENT); 176 } 177 #define xan_for_each_marked(xa, index, entry, filter) \ 178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 179 !xa_is_err(entry); \ 180 (index)++, entry = xan_find_marked(xa, &(index), filter)) 181 182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 183 static DEFINE_SPINLOCK(ndev_hash_lock); 184 static DECLARE_HASHTABLE(ndev_hash, 5); 185 186 static void free_netdevs(struct ib_device *ib_dev); 187 static void ib_unregister_work(struct work_struct *work); 188 static void __ib_unregister_device(struct ib_device *device); 189 static int ib_security_change(struct notifier_block *nb, unsigned long event, 190 void *lsm_data); 191 static void ib_policy_change_task(struct work_struct *work); 192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 193 194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 195 struct va_format *vaf) 196 { 197 if (ibdev && ibdev->dev.parent) 198 dev_printk_emit(level[1] - '0', 199 ibdev->dev.parent, 200 "%s %s %s: %pV", 201 dev_driver_string(ibdev->dev.parent), 202 dev_name(ibdev->dev.parent), 203 dev_name(&ibdev->dev), 204 vaf); 205 else if (ibdev) 206 printk("%s%s: %pV", 207 level, dev_name(&ibdev->dev), vaf); 208 else 209 printk("%s(NULL ib_device): %pV", level, vaf); 210 } 211 212 #define define_ibdev_printk_level(func, level) \ 213 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 214 { \ 215 struct va_format vaf; \ 216 va_list args; \ 217 \ 218 va_start(args, fmt); \ 219 \ 220 vaf.fmt = fmt; \ 221 vaf.va = &args; \ 222 \ 223 __ibdev_printk(level, ibdev, &vaf); \ 224 \ 225 va_end(args); \ 226 } \ 227 EXPORT_SYMBOL(func); 228 229 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 230 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 231 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 232 define_ibdev_printk_level(ibdev_err, KERN_ERR); 233 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 234 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 235 define_ibdev_printk_level(ibdev_info, KERN_INFO); 236 237 static struct notifier_block ibdev_lsm_nb = { 238 .notifier_call = ib_security_change, 239 }; 240 241 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 242 struct net *net); 243 244 /* Pointer to the RCU head at the start of the ib_port_data array */ 245 struct ib_port_data_rcu { 246 struct rcu_head rcu_head; 247 struct ib_port_data pdata[]; 248 }; 249 250 static void ib_device_check_mandatory(struct ib_device *device) 251 { 252 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 253 static const struct { 254 size_t offset; 255 char *name; 256 } mandatory_table[] = { 257 IB_MANDATORY_FUNC(query_device), 258 IB_MANDATORY_FUNC(query_port), 259 IB_MANDATORY_FUNC(alloc_pd), 260 IB_MANDATORY_FUNC(dealloc_pd), 261 IB_MANDATORY_FUNC(create_qp), 262 IB_MANDATORY_FUNC(modify_qp), 263 IB_MANDATORY_FUNC(destroy_qp), 264 IB_MANDATORY_FUNC(post_send), 265 IB_MANDATORY_FUNC(post_recv), 266 IB_MANDATORY_FUNC(create_cq), 267 IB_MANDATORY_FUNC(destroy_cq), 268 IB_MANDATORY_FUNC(poll_cq), 269 IB_MANDATORY_FUNC(req_notify_cq), 270 IB_MANDATORY_FUNC(get_dma_mr), 271 IB_MANDATORY_FUNC(reg_user_mr), 272 IB_MANDATORY_FUNC(dereg_mr), 273 IB_MANDATORY_FUNC(get_port_immutable) 274 }; 275 int i; 276 277 device->kverbs_provider = true; 278 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 279 if (!*(void **) ((void *) &device->ops + 280 mandatory_table[i].offset)) { 281 device->kverbs_provider = false; 282 break; 283 } 284 } 285 } 286 287 /* 288 * Caller must perform ib_device_put() to return the device reference count 289 * when ib_device_get_by_index() returns valid device pointer. 290 */ 291 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 292 { 293 struct ib_device *device; 294 295 down_read(&devices_rwsem); 296 device = xa_load(&devices, index); 297 if (device) { 298 if (!rdma_dev_access_netns(device, net)) { 299 device = NULL; 300 goto out; 301 } 302 303 if (!ib_device_try_get(device)) 304 device = NULL; 305 } 306 out: 307 up_read(&devices_rwsem); 308 return device; 309 } 310 311 /** 312 * ib_device_put - Release IB device reference 313 * @device: device whose reference to be released 314 * 315 * ib_device_put() releases reference to the IB device to allow it to be 316 * unregistered and eventually free. 317 */ 318 void ib_device_put(struct ib_device *device) 319 { 320 if (refcount_dec_and_test(&device->refcount)) 321 complete(&device->unreg_completion); 322 } 323 EXPORT_SYMBOL(ib_device_put); 324 325 static struct ib_device *__ib_device_get_by_name(const char *name) 326 { 327 struct ib_device *device; 328 unsigned long index; 329 330 xa_for_each (&devices, index, device) 331 if (!strcmp(name, dev_name(&device->dev))) 332 return device; 333 334 return NULL; 335 } 336 337 /** 338 * ib_device_get_by_name - Find an IB device by name 339 * @name: The name to look for 340 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 341 * 342 * Find and hold an ib_device by its name. The caller must call 343 * ib_device_put() on the returned pointer. 344 */ 345 struct ib_device *ib_device_get_by_name(const char *name, 346 enum rdma_driver_id driver_id) 347 { 348 struct ib_device *device; 349 350 down_read(&devices_rwsem); 351 device = __ib_device_get_by_name(name); 352 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 353 device->ops.driver_id != driver_id) 354 device = NULL; 355 356 if (device) { 357 if (!ib_device_try_get(device)) 358 device = NULL; 359 } 360 up_read(&devices_rwsem); 361 return device; 362 } 363 EXPORT_SYMBOL(ib_device_get_by_name); 364 365 static int rename_compat_devs(struct ib_device *device) 366 { 367 struct ib_core_device *cdev; 368 unsigned long index; 369 int ret = 0; 370 371 mutex_lock(&device->compat_devs_mutex); 372 xa_for_each (&device->compat_devs, index, cdev) { 373 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 374 if (ret) { 375 dev_warn(&cdev->dev, 376 "Fail to rename compatdev to new name %s\n", 377 dev_name(&device->dev)); 378 break; 379 } 380 } 381 mutex_unlock(&device->compat_devs_mutex); 382 return ret; 383 } 384 385 int ib_device_rename(struct ib_device *ibdev, const char *name) 386 { 387 unsigned long index; 388 void *client_data; 389 int ret; 390 391 down_write(&devices_rwsem); 392 if (!strcmp(name, dev_name(&ibdev->dev))) { 393 up_write(&devices_rwsem); 394 return 0; 395 } 396 397 if (__ib_device_get_by_name(name)) { 398 up_write(&devices_rwsem); 399 return -EEXIST; 400 } 401 402 ret = device_rename(&ibdev->dev, name); 403 if (ret) { 404 up_write(&devices_rwsem); 405 return ret; 406 } 407 408 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 409 ret = rename_compat_devs(ibdev); 410 411 downgrade_write(&devices_rwsem); 412 down_read(&ibdev->client_data_rwsem); 413 xan_for_each_marked(&ibdev->client_data, index, client_data, 414 CLIENT_DATA_REGISTERED) { 415 struct ib_client *client = xa_load(&clients, index); 416 417 if (!client || !client->rename) 418 continue; 419 420 client->rename(ibdev, client_data); 421 } 422 up_read(&ibdev->client_data_rwsem); 423 rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT); 424 up_read(&devices_rwsem); 425 return 0; 426 } 427 428 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 429 { 430 if (use_dim > 1) 431 return -EINVAL; 432 ibdev->use_cq_dim = use_dim; 433 434 return 0; 435 } 436 437 static int alloc_name(struct ib_device *ibdev, const char *name) 438 { 439 struct ib_device *device; 440 unsigned long index; 441 struct ida inuse; 442 int rc; 443 int i; 444 445 lockdep_assert_held_write(&devices_rwsem); 446 ida_init(&inuse); 447 xa_for_each (&devices, index, device) { 448 char buf[IB_DEVICE_NAME_MAX]; 449 450 if (sscanf(dev_name(&device->dev), name, &i) != 1) 451 continue; 452 if (i < 0 || i >= INT_MAX) 453 continue; 454 snprintf(buf, sizeof buf, name, i); 455 if (strcmp(buf, dev_name(&device->dev)) != 0) 456 continue; 457 458 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 459 if (rc < 0) 460 goto out; 461 } 462 463 rc = ida_alloc(&inuse, GFP_KERNEL); 464 if (rc < 0) 465 goto out; 466 467 rc = dev_set_name(&ibdev->dev, name, rc); 468 out: 469 ida_destroy(&inuse); 470 return rc; 471 } 472 473 static void ib_device_release(struct device *device) 474 { 475 struct ib_device *dev = container_of(device, struct ib_device, dev); 476 477 free_netdevs(dev); 478 WARN_ON(refcount_read(&dev->refcount)); 479 if (dev->hw_stats_data) 480 ib_device_release_hw_stats(dev->hw_stats_data); 481 if (dev->port_data) { 482 ib_cache_release_one(dev); 483 ib_security_release_port_pkey_list(dev); 484 rdma_counter_release(dev); 485 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 486 pdata[0]), 487 rcu_head); 488 } 489 490 mutex_destroy(&dev->subdev_lock); 491 mutex_destroy(&dev->unregistration_lock); 492 mutex_destroy(&dev->compat_devs_mutex); 493 494 xa_destroy(&dev->compat_devs); 495 xa_destroy(&dev->client_data); 496 kfree_rcu(dev, rcu_head); 497 } 498 499 static int ib_device_uevent(const struct device *device, 500 struct kobj_uevent_env *env) 501 { 502 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 503 return -ENOMEM; 504 505 /* 506 * It would be nice to pass the node GUID with the event... 507 */ 508 509 return 0; 510 } 511 512 static const void *net_namespace(const struct device *d) 513 { 514 const struct ib_core_device *coredev = 515 container_of(d, struct ib_core_device, dev); 516 517 return read_pnet(&coredev->rdma_net); 518 } 519 520 static struct class ib_class = { 521 .name = "infiniband", 522 .dev_release = ib_device_release, 523 .dev_uevent = ib_device_uevent, 524 .ns_type = &net_ns_type_operations, 525 .namespace = net_namespace, 526 }; 527 528 static void rdma_init_coredev(struct ib_core_device *coredev, 529 struct ib_device *dev, struct net *net) 530 { 531 bool is_full_dev = &dev->coredev == coredev; 532 533 /* This BUILD_BUG_ON is intended to catch layout change 534 * of union of ib_core_device and device. 535 * dev must be the first element as ib_core and providers 536 * driver uses it. Adding anything in ib_core_device before 537 * device will break this assumption. 538 */ 539 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 540 offsetof(struct ib_device, dev)); 541 542 coredev->dev.class = &ib_class; 543 coredev->dev.groups = dev->groups; 544 545 /* 546 * Don't expose hw counters outside of the init namespace. 547 */ 548 if (!is_full_dev && dev->hw_stats_attr_index) 549 coredev->dev.groups[dev->hw_stats_attr_index] = NULL; 550 551 device_initialize(&coredev->dev); 552 coredev->owner = dev; 553 INIT_LIST_HEAD(&coredev->port_list); 554 write_pnet(&coredev->rdma_net, net); 555 } 556 557 /** 558 * _ib_alloc_device - allocate an IB device struct 559 * @size:size of structure to allocate 560 * 561 * Low-level drivers should use ib_alloc_device() to allocate &struct 562 * ib_device. @size is the size of the structure to be allocated, 563 * including any private data used by the low-level driver. 564 * ib_dealloc_device() must be used to free structures allocated with 565 * ib_alloc_device(). 566 */ 567 struct ib_device *_ib_alloc_device(size_t size) 568 { 569 struct ib_device *device; 570 unsigned int i; 571 572 if (WARN_ON(size < sizeof(struct ib_device))) 573 return NULL; 574 575 device = kzalloc(size, GFP_KERNEL); 576 if (!device) 577 return NULL; 578 579 if (rdma_restrack_init(device)) { 580 kfree(device); 581 return NULL; 582 } 583 584 rdma_init_coredev(&device->coredev, device, &init_net); 585 586 INIT_LIST_HEAD(&device->event_handler_list); 587 spin_lock_init(&device->qp_open_list_lock); 588 init_rwsem(&device->event_handler_rwsem); 589 mutex_init(&device->unregistration_lock); 590 /* 591 * client_data needs to be alloc because we don't want our mark to be 592 * destroyed if the user stores NULL in the client data. 593 */ 594 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 595 init_rwsem(&device->client_data_rwsem); 596 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 597 mutex_init(&device->compat_devs_mutex); 598 init_completion(&device->unreg_completion); 599 INIT_WORK(&device->unregistration_work, ib_unregister_work); 600 601 spin_lock_init(&device->cq_pools_lock); 602 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++) 603 INIT_LIST_HEAD(&device->cq_pools[i]); 604 605 rwlock_init(&device->cache_lock); 606 607 device->uverbs_cmd_mask = 608 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) | 609 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) | 610 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) | 611 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) | 612 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) | 613 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | 614 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) | 615 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) | 616 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) | 617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) | 618 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) | 619 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) | 620 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) | 621 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) | 622 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) | 623 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) | 624 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) | 625 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) | 626 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) | 627 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) | 628 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) | 629 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) | 630 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) | 631 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) | 632 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) | 633 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) | 634 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) | 635 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) | 636 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) | 637 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ); 638 639 mutex_init(&device->subdev_lock); 640 INIT_LIST_HEAD(&device->subdev_list_head); 641 INIT_LIST_HEAD(&device->subdev_list); 642 643 return device; 644 } 645 EXPORT_SYMBOL(_ib_alloc_device); 646 647 /** 648 * ib_dealloc_device - free an IB device struct 649 * @device:structure to free 650 * 651 * Free a structure allocated with ib_alloc_device(). 652 */ 653 void ib_dealloc_device(struct ib_device *device) 654 { 655 if (device->ops.dealloc_driver) 656 device->ops.dealloc_driver(device); 657 658 /* 659 * ib_unregister_driver() requires all devices to remain in the xarray 660 * while their ops are callable. The last op we call is dealloc_driver 661 * above. This is needed to create a fence on op callbacks prior to 662 * allowing the driver module to unload. 663 */ 664 down_write(&devices_rwsem); 665 if (xa_load(&devices, device->index) == device) 666 xa_erase(&devices, device->index); 667 up_write(&devices_rwsem); 668 669 /* Expedite releasing netdev references */ 670 free_netdevs(device); 671 672 WARN_ON(!xa_empty(&device->compat_devs)); 673 WARN_ON(!xa_empty(&device->client_data)); 674 WARN_ON(refcount_read(&device->refcount)); 675 rdma_restrack_clean(device); 676 /* Balances with device_initialize */ 677 put_device(&device->dev); 678 } 679 EXPORT_SYMBOL(ib_dealloc_device); 680 681 /* 682 * add_client_context() and remove_client_context() must be safe against 683 * parallel calls on the same device - registration/unregistration of both the 684 * device and client can be occurring in parallel. 685 * 686 * The routines need to be a fence, any caller must not return until the add 687 * or remove is fully completed. 688 */ 689 static int add_client_context(struct ib_device *device, 690 struct ib_client *client) 691 { 692 int ret = 0; 693 694 if (!device->kverbs_provider && !client->no_kverbs_req) 695 return 0; 696 697 down_write(&device->client_data_rwsem); 698 /* 699 * So long as the client is registered hold both the client and device 700 * unregistration locks. 701 */ 702 if (!refcount_inc_not_zero(&client->uses)) 703 goto out_unlock; 704 refcount_inc(&device->refcount); 705 706 /* 707 * Another caller to add_client_context got here first and has already 708 * completely initialized context. 709 */ 710 if (xa_get_mark(&device->client_data, client->client_id, 711 CLIENT_DATA_REGISTERED)) 712 goto out; 713 714 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 715 GFP_KERNEL)); 716 if (ret) 717 goto out; 718 downgrade_write(&device->client_data_rwsem); 719 if (client->add) { 720 if (client->add(device)) { 721 /* 722 * If a client fails to add then the error code is 723 * ignored, but we won't call any more ops on this 724 * client. 725 */ 726 xa_erase(&device->client_data, client->client_id); 727 up_read(&device->client_data_rwsem); 728 ib_device_put(device); 729 ib_client_put(client); 730 return 0; 731 } 732 } 733 734 /* Readers shall not see a client until add has been completed */ 735 xa_set_mark(&device->client_data, client->client_id, 736 CLIENT_DATA_REGISTERED); 737 up_read(&device->client_data_rwsem); 738 return 0; 739 740 out: 741 ib_device_put(device); 742 ib_client_put(client); 743 out_unlock: 744 up_write(&device->client_data_rwsem); 745 return ret; 746 } 747 748 static void remove_client_context(struct ib_device *device, 749 unsigned int client_id) 750 { 751 struct ib_client *client; 752 void *client_data; 753 754 down_write(&device->client_data_rwsem); 755 if (!xa_get_mark(&device->client_data, client_id, 756 CLIENT_DATA_REGISTERED)) { 757 up_write(&device->client_data_rwsem); 758 return; 759 } 760 client_data = xa_load(&device->client_data, client_id); 761 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 762 client = xa_load(&clients, client_id); 763 up_write(&device->client_data_rwsem); 764 765 /* 766 * Notice we cannot be holding any exclusive locks when calling the 767 * remove callback as the remove callback can recurse back into any 768 * public functions in this module and thus try for any locks those 769 * functions take. 770 * 771 * For this reason clients and drivers should not call the 772 * unregistration functions will holdling any locks. 773 */ 774 if (client->remove) 775 client->remove(device, client_data); 776 777 xa_erase(&device->client_data, client_id); 778 ib_device_put(device); 779 ib_client_put(client); 780 } 781 782 static int alloc_port_data(struct ib_device *device) 783 { 784 struct ib_port_data_rcu *pdata_rcu; 785 u32 port; 786 787 if (device->port_data) 788 return 0; 789 790 /* This can only be called once the physical port range is defined */ 791 if (WARN_ON(!device->phys_port_cnt)) 792 return -EINVAL; 793 794 /* Reserve U32_MAX so the logic to go over all the ports is sane */ 795 if (WARN_ON(device->phys_port_cnt == U32_MAX)) 796 return -EINVAL; 797 798 /* 799 * device->port_data is indexed directly by the port number to make 800 * access to this data as efficient as possible. 801 * 802 * Therefore port_data is declared as a 1 based array with potential 803 * empty slots at the beginning. 804 */ 805 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 806 size_add(rdma_end_port(device), 1)), 807 GFP_KERNEL); 808 if (!pdata_rcu) 809 return -ENOMEM; 810 /* 811 * The rcu_head is put in front of the port data array and the stored 812 * pointer is adjusted since we never need to see that member until 813 * kfree_rcu. 814 */ 815 device->port_data = pdata_rcu->pdata; 816 817 rdma_for_each_port (device, port) { 818 struct ib_port_data *pdata = &device->port_data[port]; 819 820 pdata->ib_dev = device; 821 spin_lock_init(&pdata->pkey_list_lock); 822 INIT_LIST_HEAD(&pdata->pkey_list); 823 spin_lock_init(&pdata->netdev_lock); 824 INIT_HLIST_NODE(&pdata->ndev_hash_link); 825 } 826 return 0; 827 } 828 829 static int verify_immutable(const struct ib_device *dev, u32 port) 830 { 831 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 832 rdma_max_mad_size(dev, port) != 0); 833 } 834 835 static int setup_port_data(struct ib_device *device) 836 { 837 u32 port; 838 int ret; 839 840 ret = alloc_port_data(device); 841 if (ret) 842 return ret; 843 844 rdma_for_each_port (device, port) { 845 struct ib_port_data *pdata = &device->port_data[port]; 846 847 ret = device->ops.get_port_immutable(device, port, 848 &pdata->immutable); 849 if (ret) 850 return ret; 851 852 if (verify_immutable(device, port)) 853 return -EINVAL; 854 } 855 return 0; 856 } 857 858 /** 859 * ib_port_immutable_read() - Read rdma port's immutable data 860 * @dev: IB device 861 * @port: port number whose immutable data to read. It starts with index 1 and 862 * valid upto including rdma_end_port(). 863 */ 864 const struct ib_port_immutable* 865 ib_port_immutable_read(struct ib_device *dev, unsigned int port) 866 { 867 WARN_ON(!rdma_is_port_valid(dev, port)); 868 return &dev->port_data[port].immutable; 869 } 870 EXPORT_SYMBOL(ib_port_immutable_read); 871 872 void ib_get_device_fw_str(struct ib_device *dev, char *str) 873 { 874 if (dev->ops.get_dev_fw_str) 875 dev->ops.get_dev_fw_str(dev, str); 876 else 877 str[0] = '\0'; 878 } 879 EXPORT_SYMBOL(ib_get_device_fw_str); 880 881 static void ib_policy_change_task(struct work_struct *work) 882 { 883 struct ib_device *dev; 884 unsigned long index; 885 886 down_read(&devices_rwsem); 887 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 888 unsigned int i; 889 890 rdma_for_each_port (dev, i) { 891 u64 sp; 892 ib_get_cached_subnet_prefix(dev, i, &sp); 893 ib_security_cache_change(dev, i, sp); 894 } 895 } 896 up_read(&devices_rwsem); 897 } 898 899 static int ib_security_change(struct notifier_block *nb, unsigned long event, 900 void *lsm_data) 901 { 902 if (event != LSM_POLICY_CHANGE) 903 return NOTIFY_DONE; 904 905 schedule_work(&ib_policy_change_work); 906 ib_mad_agent_security_change(); 907 908 return NOTIFY_OK; 909 } 910 911 static void compatdev_release(struct device *dev) 912 { 913 struct ib_core_device *cdev = 914 container_of(dev, struct ib_core_device, dev); 915 916 kfree(cdev); 917 } 918 919 static int add_one_compat_dev(struct ib_device *device, 920 struct rdma_dev_net *rnet) 921 { 922 struct ib_core_device *cdev; 923 int ret; 924 925 lockdep_assert_held(&rdma_nets_rwsem); 926 if (!ib_devices_shared_netns) 927 return 0; 928 929 /* 930 * Create and add compat device in all namespaces other than where it 931 * is currently bound to. 932 */ 933 if (net_eq(read_pnet(&rnet->net), 934 read_pnet(&device->coredev.rdma_net))) 935 return 0; 936 937 /* 938 * The first of init_net() or ib_register_device() to take the 939 * compat_devs_mutex wins and gets to add the device. Others will wait 940 * for completion here. 941 */ 942 mutex_lock(&device->compat_devs_mutex); 943 cdev = xa_load(&device->compat_devs, rnet->id); 944 if (cdev) { 945 ret = 0; 946 goto done; 947 } 948 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 949 if (ret) 950 goto done; 951 952 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 953 if (!cdev) { 954 ret = -ENOMEM; 955 goto cdev_err; 956 } 957 958 cdev->dev.parent = device->dev.parent; 959 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 960 cdev->dev.release = compatdev_release; 961 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 962 if (ret) 963 goto add_err; 964 965 ret = device_add(&cdev->dev); 966 if (ret) 967 goto add_err; 968 ret = ib_setup_port_attrs(cdev); 969 if (ret) 970 goto port_err; 971 972 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 973 cdev, GFP_KERNEL)); 974 if (ret) 975 goto insert_err; 976 977 mutex_unlock(&device->compat_devs_mutex); 978 return 0; 979 980 insert_err: 981 ib_free_port_attrs(cdev); 982 port_err: 983 device_del(&cdev->dev); 984 add_err: 985 put_device(&cdev->dev); 986 cdev_err: 987 xa_release(&device->compat_devs, rnet->id); 988 done: 989 mutex_unlock(&device->compat_devs_mutex); 990 return ret; 991 } 992 993 static void remove_one_compat_dev(struct ib_device *device, u32 id) 994 { 995 struct ib_core_device *cdev; 996 997 mutex_lock(&device->compat_devs_mutex); 998 cdev = xa_erase(&device->compat_devs, id); 999 mutex_unlock(&device->compat_devs_mutex); 1000 if (cdev) { 1001 ib_free_port_attrs(cdev); 1002 device_del(&cdev->dev); 1003 put_device(&cdev->dev); 1004 } 1005 } 1006 1007 static void remove_compat_devs(struct ib_device *device) 1008 { 1009 struct ib_core_device *cdev; 1010 unsigned long index; 1011 1012 xa_for_each (&device->compat_devs, index, cdev) 1013 remove_one_compat_dev(device, index); 1014 } 1015 1016 static int add_compat_devs(struct ib_device *device) 1017 { 1018 struct rdma_dev_net *rnet; 1019 unsigned long index; 1020 int ret = 0; 1021 1022 lockdep_assert_held(&devices_rwsem); 1023 1024 down_read(&rdma_nets_rwsem); 1025 xa_for_each (&rdma_nets, index, rnet) { 1026 ret = add_one_compat_dev(device, rnet); 1027 if (ret) 1028 break; 1029 } 1030 up_read(&rdma_nets_rwsem); 1031 return ret; 1032 } 1033 1034 static void remove_all_compat_devs(void) 1035 { 1036 struct ib_compat_device *cdev; 1037 struct ib_device *dev; 1038 unsigned long index; 1039 1040 down_read(&devices_rwsem); 1041 xa_for_each (&devices, index, dev) { 1042 unsigned long c_index = 0; 1043 1044 /* Hold nets_rwsem so that any other thread modifying this 1045 * system param can sync with this thread. 1046 */ 1047 down_read(&rdma_nets_rwsem); 1048 xa_for_each (&dev->compat_devs, c_index, cdev) 1049 remove_one_compat_dev(dev, c_index); 1050 up_read(&rdma_nets_rwsem); 1051 } 1052 up_read(&devices_rwsem); 1053 } 1054 1055 static int add_all_compat_devs(void) 1056 { 1057 struct rdma_dev_net *rnet; 1058 struct ib_device *dev; 1059 unsigned long index; 1060 int ret = 0; 1061 1062 down_read(&devices_rwsem); 1063 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1064 unsigned long net_index = 0; 1065 1066 /* Hold nets_rwsem so that any other thread modifying this 1067 * system param can sync with this thread. 1068 */ 1069 down_read(&rdma_nets_rwsem); 1070 xa_for_each (&rdma_nets, net_index, rnet) { 1071 ret = add_one_compat_dev(dev, rnet); 1072 if (ret) 1073 break; 1074 } 1075 up_read(&rdma_nets_rwsem); 1076 } 1077 up_read(&devices_rwsem); 1078 if (ret) 1079 remove_all_compat_devs(); 1080 return ret; 1081 } 1082 1083 int rdma_compatdev_set(u8 enable) 1084 { 1085 struct rdma_dev_net *rnet; 1086 unsigned long index; 1087 int ret = 0; 1088 1089 down_write(&rdma_nets_rwsem); 1090 if (ib_devices_shared_netns == enable) { 1091 up_write(&rdma_nets_rwsem); 1092 return 0; 1093 } 1094 1095 /* enable/disable of compat devices is not supported 1096 * when more than default init_net exists. 1097 */ 1098 xa_for_each (&rdma_nets, index, rnet) { 1099 ret++; 1100 break; 1101 } 1102 if (!ret) 1103 ib_devices_shared_netns = enable; 1104 up_write(&rdma_nets_rwsem); 1105 if (ret) 1106 return -EBUSY; 1107 1108 if (enable) 1109 ret = add_all_compat_devs(); 1110 else 1111 remove_all_compat_devs(); 1112 return ret; 1113 } 1114 1115 static void rdma_dev_exit_net(struct net *net) 1116 { 1117 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1118 struct ib_device *dev; 1119 unsigned long index; 1120 int ret; 1121 1122 down_write(&rdma_nets_rwsem); 1123 /* 1124 * Prevent the ID from being re-used and hide the id from xa_for_each. 1125 */ 1126 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1127 WARN_ON(ret); 1128 up_write(&rdma_nets_rwsem); 1129 1130 down_read(&devices_rwsem); 1131 xa_for_each (&devices, index, dev) { 1132 get_device(&dev->dev); 1133 /* 1134 * Release the devices_rwsem so that pontentially blocking 1135 * device_del, doesn't hold the devices_rwsem for too long. 1136 */ 1137 up_read(&devices_rwsem); 1138 1139 remove_one_compat_dev(dev, rnet->id); 1140 1141 /* 1142 * If the real device is in the NS then move it back to init. 1143 */ 1144 rdma_dev_change_netns(dev, net, &init_net); 1145 1146 put_device(&dev->dev); 1147 down_read(&devices_rwsem); 1148 } 1149 up_read(&devices_rwsem); 1150 1151 rdma_nl_net_exit(rnet); 1152 xa_erase(&rdma_nets, rnet->id); 1153 } 1154 1155 static __net_init int rdma_dev_init_net(struct net *net) 1156 { 1157 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1158 unsigned long index; 1159 struct ib_device *dev; 1160 int ret; 1161 1162 write_pnet(&rnet->net, net); 1163 1164 ret = rdma_nl_net_init(rnet); 1165 if (ret) 1166 return ret; 1167 1168 /* No need to create any compat devices in default init_net. */ 1169 if (net_eq(net, &init_net)) 1170 return 0; 1171 1172 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1173 if (ret) { 1174 rdma_nl_net_exit(rnet); 1175 return ret; 1176 } 1177 1178 down_read(&devices_rwsem); 1179 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1180 /* Hold nets_rwsem so that netlink command cannot change 1181 * system configuration for device sharing mode. 1182 */ 1183 down_read(&rdma_nets_rwsem); 1184 ret = add_one_compat_dev(dev, rnet); 1185 up_read(&rdma_nets_rwsem); 1186 if (ret) 1187 break; 1188 } 1189 up_read(&devices_rwsem); 1190 1191 if (ret) 1192 rdma_dev_exit_net(net); 1193 1194 return ret; 1195 } 1196 1197 /* 1198 * Assign the unique string device name and the unique device index. This is 1199 * undone by ib_dealloc_device. 1200 */ 1201 static int assign_name(struct ib_device *device, const char *name) 1202 { 1203 static u32 last_id; 1204 int ret; 1205 1206 down_write(&devices_rwsem); 1207 /* Assign a unique name to the device */ 1208 if (strchr(name, '%')) 1209 ret = alloc_name(device, name); 1210 else 1211 ret = dev_set_name(&device->dev, name); 1212 if (ret) 1213 goto out; 1214 1215 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1216 ret = -ENFILE; 1217 goto out; 1218 } 1219 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1220 1221 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1222 &last_id, GFP_KERNEL); 1223 if (ret > 0) 1224 ret = 0; 1225 1226 out: 1227 up_write(&devices_rwsem); 1228 return ret; 1229 } 1230 1231 /* 1232 * setup_device() allocates memory and sets up data that requires calling the 1233 * device ops, this is the only reason these actions are not done during 1234 * ib_alloc_device. It is undone by ib_dealloc_device(). 1235 */ 1236 static int setup_device(struct ib_device *device) 1237 { 1238 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1239 int ret; 1240 1241 ib_device_check_mandatory(device); 1242 1243 ret = setup_port_data(device); 1244 if (ret) { 1245 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1246 return ret; 1247 } 1248 1249 memset(&device->attrs, 0, sizeof(device->attrs)); 1250 ret = device->ops.query_device(device, &device->attrs, &uhw); 1251 if (ret) { 1252 dev_warn(&device->dev, 1253 "Couldn't query the device attributes\n"); 1254 return ret; 1255 } 1256 1257 return 0; 1258 } 1259 1260 static void disable_device(struct ib_device *device) 1261 { 1262 u32 cid; 1263 1264 WARN_ON(!refcount_read(&device->refcount)); 1265 1266 down_write(&devices_rwsem); 1267 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1268 up_write(&devices_rwsem); 1269 1270 /* 1271 * Remove clients in LIFO order, see assign_client_id. This could be 1272 * more efficient if xarray learns to reverse iterate. Since no new 1273 * clients can be added to this ib_device past this point we only need 1274 * the maximum possible client_id value here. 1275 */ 1276 down_read(&clients_rwsem); 1277 cid = highest_client_id; 1278 up_read(&clients_rwsem); 1279 while (cid) { 1280 cid--; 1281 remove_client_context(device, cid); 1282 } 1283 1284 ib_cq_pool_cleanup(device); 1285 1286 /* Pairs with refcount_set in enable_device */ 1287 ib_device_put(device); 1288 wait_for_completion(&device->unreg_completion); 1289 1290 /* 1291 * compat devices must be removed after device refcount drops to zero. 1292 * Otherwise init_net() may add more compatdevs after removing compat 1293 * devices and before device is disabled. 1294 */ 1295 remove_compat_devs(device); 1296 } 1297 1298 /* 1299 * An enabled device is visible to all clients and to all the public facing 1300 * APIs that return a device pointer. This always returns with a new get, even 1301 * if it fails. 1302 */ 1303 static int enable_device_and_get(struct ib_device *device) 1304 { 1305 struct ib_client *client; 1306 unsigned long index; 1307 int ret = 0; 1308 1309 /* 1310 * One ref belongs to the xa and the other belongs to this 1311 * thread. This is needed to guard against parallel unregistration. 1312 */ 1313 refcount_set(&device->refcount, 2); 1314 down_write(&devices_rwsem); 1315 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1316 1317 /* 1318 * By using downgrade_write() we ensure that no other thread can clear 1319 * DEVICE_REGISTERED while we are completing the client setup. 1320 */ 1321 downgrade_write(&devices_rwsem); 1322 1323 if (device->ops.enable_driver) { 1324 ret = device->ops.enable_driver(device); 1325 if (ret) 1326 goto out; 1327 } 1328 1329 down_read(&clients_rwsem); 1330 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1331 ret = add_client_context(device, client); 1332 if (ret) 1333 break; 1334 } 1335 up_read(&clients_rwsem); 1336 if (!ret) 1337 ret = add_compat_devs(device); 1338 out: 1339 up_read(&devices_rwsem); 1340 return ret; 1341 } 1342 1343 static void prevent_dealloc_device(struct ib_device *ib_dev) 1344 { 1345 } 1346 1347 static void ib_device_notify_register(struct ib_device *device) 1348 { 1349 struct net_device *netdev; 1350 u32 port; 1351 int ret; 1352 1353 down_read(&devices_rwsem); 1354 1355 /* Mark for userspace that device is ready */ 1356 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1357 1358 ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT); 1359 if (ret) 1360 goto out; 1361 1362 rdma_for_each_port(device, port) { 1363 netdev = ib_device_get_netdev(device, port); 1364 if (!netdev) 1365 continue; 1366 1367 ret = rdma_nl_notify_event(device, port, 1368 RDMA_NETDEV_ATTACH_EVENT); 1369 dev_put(netdev); 1370 if (ret) 1371 goto out; 1372 } 1373 1374 out: 1375 up_read(&devices_rwsem); 1376 } 1377 1378 /** 1379 * ib_register_device - Register an IB device with IB core 1380 * @device: Device to register 1381 * @name: unique string device name. This may include a '%' which will 1382 * cause a unique index to be added to the passed device name. 1383 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB 1384 * device will be used. In this case the caller should fully 1385 * setup the ibdev for DMA. This usually means using dma_virt_ops. 1386 * 1387 * Low-level drivers use ib_register_device() to register their 1388 * devices with the IB core. All registered clients will receive a 1389 * callback for each device that is added. @device must be allocated 1390 * with ib_alloc_device(). 1391 * 1392 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1393 * asynchronously then the device pointer may become freed as soon as this 1394 * function returns. 1395 */ 1396 int ib_register_device(struct ib_device *device, const char *name, 1397 struct device *dma_device) 1398 { 1399 int ret; 1400 1401 ret = assign_name(device, name); 1402 if (ret) 1403 return ret; 1404 1405 /* 1406 * If the caller does not provide a DMA capable device then the IB core 1407 * will set up ib_sge and scatterlist structures that stash the kernel 1408 * virtual address into the address field. 1409 */ 1410 WARN_ON(dma_device && !dma_device->dma_parms); 1411 device->dma_device = dma_device; 1412 1413 ret = setup_device(device); 1414 if (ret) 1415 return ret; 1416 1417 ret = ib_cache_setup_one(device); 1418 if (ret) { 1419 dev_warn(&device->dev, 1420 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1421 return ret; 1422 } 1423 1424 device->groups[0] = &ib_dev_attr_group; 1425 device->groups[1] = device->ops.device_group; 1426 ret = ib_setup_device_attrs(device); 1427 if (ret) 1428 goto cache_cleanup; 1429 1430 ib_device_register_rdmacg(device); 1431 1432 rdma_counter_init(device); 1433 1434 /* 1435 * Ensure that ADD uevent is not fired because it 1436 * is too early amd device is not initialized yet. 1437 */ 1438 dev_set_uevent_suppress(&device->dev, true); 1439 ret = device_add(&device->dev); 1440 if (ret) 1441 goto cg_cleanup; 1442 1443 ret = ib_setup_port_attrs(&device->coredev); 1444 if (ret) { 1445 dev_warn(&device->dev, 1446 "Couldn't register device with driver model\n"); 1447 goto dev_cleanup; 1448 } 1449 1450 ret = enable_device_and_get(device); 1451 if (ret) { 1452 void (*dealloc_fn)(struct ib_device *); 1453 1454 /* 1455 * If we hit this error flow then we don't want to 1456 * automatically dealloc the device since the caller is 1457 * expected to call ib_dealloc_device() after 1458 * ib_register_device() fails. This is tricky due to the 1459 * possibility for a parallel unregistration along with this 1460 * error flow. Since we have a refcount here we know any 1461 * parallel flow is stopped in disable_device and will see the 1462 * special dealloc_driver pointer, causing the responsibility to 1463 * ib_dealloc_device() to revert back to this thread. 1464 */ 1465 dealloc_fn = device->ops.dealloc_driver; 1466 device->ops.dealloc_driver = prevent_dealloc_device; 1467 ib_device_put(device); 1468 __ib_unregister_device(device); 1469 device->ops.dealloc_driver = dealloc_fn; 1470 dev_set_uevent_suppress(&device->dev, false); 1471 return ret; 1472 } 1473 dev_set_uevent_suppress(&device->dev, false); 1474 1475 ib_device_notify_register(device); 1476 1477 ib_device_put(device); 1478 1479 return 0; 1480 1481 dev_cleanup: 1482 device_del(&device->dev); 1483 cg_cleanup: 1484 dev_set_uevent_suppress(&device->dev, false); 1485 ib_device_unregister_rdmacg(device); 1486 cache_cleanup: 1487 ib_cache_cleanup_one(device); 1488 return ret; 1489 } 1490 EXPORT_SYMBOL(ib_register_device); 1491 1492 /* Callers must hold a get on the device. */ 1493 static void __ib_unregister_device(struct ib_device *ib_dev) 1494 { 1495 struct ib_device *sub, *tmp; 1496 1497 mutex_lock(&ib_dev->subdev_lock); 1498 list_for_each_entry_safe_reverse(sub, tmp, 1499 &ib_dev->subdev_list_head, 1500 subdev_list) { 1501 list_del(&sub->subdev_list); 1502 ib_dev->ops.del_sub_dev(sub); 1503 ib_device_put(ib_dev); 1504 } 1505 mutex_unlock(&ib_dev->subdev_lock); 1506 1507 /* 1508 * We have a registration lock so that all the calls to unregister are 1509 * fully fenced, once any unregister returns the device is truely 1510 * unregistered even if multiple callers are unregistering it at the 1511 * same time. This also interacts with the registration flow and 1512 * provides sane semantics if register and unregister are racing. 1513 */ 1514 mutex_lock(&ib_dev->unregistration_lock); 1515 if (!refcount_read(&ib_dev->refcount)) 1516 goto out; 1517 1518 disable_device(ib_dev); 1519 rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT); 1520 1521 /* Expedite removing unregistered pointers from the hash table */ 1522 free_netdevs(ib_dev); 1523 1524 ib_free_port_attrs(&ib_dev->coredev); 1525 device_del(&ib_dev->dev); 1526 ib_device_unregister_rdmacg(ib_dev); 1527 ib_cache_cleanup_one(ib_dev); 1528 1529 /* 1530 * Drivers using the new flow may not call ib_dealloc_device except 1531 * in error unwind prior to registration success. 1532 */ 1533 if (ib_dev->ops.dealloc_driver && 1534 ib_dev->ops.dealloc_driver != prevent_dealloc_device) { 1535 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1536 ib_dealloc_device(ib_dev); 1537 } 1538 out: 1539 mutex_unlock(&ib_dev->unregistration_lock); 1540 } 1541 1542 /** 1543 * ib_unregister_device - Unregister an IB device 1544 * @ib_dev: The device to unregister 1545 * 1546 * Unregister an IB device. All clients will receive a remove callback. 1547 * 1548 * Callers should call this routine only once, and protect against races with 1549 * registration. Typically it should only be called as part of a remove 1550 * callback in an implementation of driver core's struct device_driver and 1551 * related. 1552 * 1553 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1554 * this function. 1555 */ 1556 void ib_unregister_device(struct ib_device *ib_dev) 1557 { 1558 get_device(&ib_dev->dev); 1559 __ib_unregister_device(ib_dev); 1560 put_device(&ib_dev->dev); 1561 } 1562 EXPORT_SYMBOL(ib_unregister_device); 1563 1564 /** 1565 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1566 * @ib_dev: The device to unregister 1567 * 1568 * This is the same as ib_unregister_device(), except it includes an internal 1569 * ib_device_put() that should match a 'get' obtained by the caller. 1570 * 1571 * It is safe to call this routine concurrently from multiple threads while 1572 * holding the 'get'. When the function returns the device is fully 1573 * unregistered. 1574 * 1575 * Drivers using this flow MUST use the driver_unregister callback to clean up 1576 * their resources associated with the device and dealloc it. 1577 */ 1578 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1579 { 1580 WARN_ON(!ib_dev->ops.dealloc_driver); 1581 get_device(&ib_dev->dev); 1582 ib_device_put(ib_dev); 1583 __ib_unregister_device(ib_dev); 1584 put_device(&ib_dev->dev); 1585 } 1586 EXPORT_SYMBOL(ib_unregister_device_and_put); 1587 1588 /** 1589 * ib_unregister_driver - Unregister all IB devices for a driver 1590 * @driver_id: The driver to unregister 1591 * 1592 * This implements a fence for device unregistration. It only returns once all 1593 * devices associated with the driver_id have fully completed their 1594 * unregistration and returned from ib_unregister_device*(). 1595 * 1596 * If device's are not yet unregistered it goes ahead and starts unregistering 1597 * them. 1598 * 1599 * This does not block creation of new devices with the given driver_id, that 1600 * is the responsibility of the caller. 1601 */ 1602 void ib_unregister_driver(enum rdma_driver_id driver_id) 1603 { 1604 struct ib_device *ib_dev; 1605 unsigned long index; 1606 1607 down_read(&devices_rwsem); 1608 xa_for_each (&devices, index, ib_dev) { 1609 if (ib_dev->ops.driver_id != driver_id) 1610 continue; 1611 1612 get_device(&ib_dev->dev); 1613 up_read(&devices_rwsem); 1614 1615 WARN_ON(!ib_dev->ops.dealloc_driver); 1616 __ib_unregister_device(ib_dev); 1617 1618 put_device(&ib_dev->dev); 1619 down_read(&devices_rwsem); 1620 } 1621 up_read(&devices_rwsem); 1622 } 1623 EXPORT_SYMBOL(ib_unregister_driver); 1624 1625 static void ib_unregister_work(struct work_struct *work) 1626 { 1627 struct ib_device *ib_dev = 1628 container_of(work, struct ib_device, unregistration_work); 1629 1630 __ib_unregister_device(ib_dev); 1631 put_device(&ib_dev->dev); 1632 } 1633 1634 /** 1635 * ib_unregister_device_queued - Unregister a device using a work queue 1636 * @ib_dev: The device to unregister 1637 * 1638 * This schedules an asynchronous unregistration using a WQ for the device. A 1639 * driver should use this to avoid holding locks while doing unregistration, 1640 * such as holding the RTNL lock. 1641 * 1642 * Drivers using this API must use ib_unregister_driver before module unload 1643 * to ensure that all scheduled unregistrations have completed. 1644 */ 1645 void ib_unregister_device_queued(struct ib_device *ib_dev) 1646 { 1647 WARN_ON(!refcount_read(&ib_dev->refcount)); 1648 WARN_ON(!ib_dev->ops.dealloc_driver); 1649 get_device(&ib_dev->dev); 1650 if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work)) 1651 put_device(&ib_dev->dev); 1652 } 1653 EXPORT_SYMBOL(ib_unregister_device_queued); 1654 1655 /* 1656 * The caller must pass in a device that has the kref held and the refcount 1657 * released. If the device is in cur_net and still registered then it is moved 1658 * into net. 1659 */ 1660 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1661 struct net *net) 1662 { 1663 int ret2 = -EINVAL; 1664 int ret; 1665 1666 mutex_lock(&device->unregistration_lock); 1667 1668 /* 1669 * If a device not under ib_device_get() or if the unregistration_lock 1670 * is not held, the namespace can be changed, or it can be unregistered. 1671 * Check again under the lock. 1672 */ 1673 if (refcount_read(&device->refcount) == 0 || 1674 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1675 ret = -ENODEV; 1676 goto out; 1677 } 1678 1679 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1680 disable_device(device); 1681 1682 /* 1683 * At this point no one can be using the device, so it is safe to 1684 * change the namespace. 1685 */ 1686 write_pnet(&device->coredev.rdma_net, net); 1687 1688 down_read(&devices_rwsem); 1689 /* 1690 * Currently rdma devices are system wide unique. So the device name 1691 * is guaranteed free in the new namespace. Publish the new namespace 1692 * at the sysfs level. 1693 */ 1694 ret = device_rename(&device->dev, dev_name(&device->dev)); 1695 up_read(&devices_rwsem); 1696 if (ret) { 1697 dev_warn(&device->dev, 1698 "%s: Couldn't rename device after namespace change\n", 1699 __func__); 1700 /* Try and put things back and re-enable the device */ 1701 write_pnet(&device->coredev.rdma_net, cur_net); 1702 } 1703 1704 ret2 = enable_device_and_get(device); 1705 if (ret2) { 1706 /* 1707 * This shouldn't really happen, but if it does, let the user 1708 * retry at later point. So don't disable the device. 1709 */ 1710 dev_warn(&device->dev, 1711 "%s: Couldn't re-enable device after namespace change\n", 1712 __func__); 1713 } 1714 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1715 1716 ib_device_put(device); 1717 out: 1718 mutex_unlock(&device->unregistration_lock); 1719 if (ret) 1720 return ret; 1721 return ret2; 1722 } 1723 1724 int ib_device_set_netns_put(struct sk_buff *skb, 1725 struct ib_device *dev, u32 ns_fd) 1726 { 1727 struct net *net; 1728 int ret; 1729 1730 net = get_net_ns_by_fd(ns_fd); 1731 if (IS_ERR(net)) { 1732 ret = PTR_ERR(net); 1733 goto net_err; 1734 } 1735 1736 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1737 ret = -EPERM; 1738 goto ns_err; 1739 } 1740 1741 /* 1742 * All the ib_clients, including uverbs, are reset when the namespace is 1743 * changed and this cannot be blocked waiting for userspace to do 1744 * something, so disassociation is mandatory. 1745 */ 1746 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) { 1747 ret = -EOPNOTSUPP; 1748 goto ns_err; 1749 } 1750 1751 get_device(&dev->dev); 1752 ib_device_put(dev); 1753 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1754 put_device(&dev->dev); 1755 1756 put_net(net); 1757 return ret; 1758 1759 ns_err: 1760 put_net(net); 1761 net_err: 1762 ib_device_put(dev); 1763 return ret; 1764 } 1765 1766 static struct pernet_operations rdma_dev_net_ops = { 1767 .init = rdma_dev_init_net, 1768 .exit = rdma_dev_exit_net, 1769 .id = &rdma_dev_net_id, 1770 .size = sizeof(struct rdma_dev_net), 1771 }; 1772 1773 static int assign_client_id(struct ib_client *client) 1774 { 1775 int ret; 1776 1777 lockdep_assert_held(&clients_rwsem); 1778 /* 1779 * The add/remove callbacks must be called in FIFO/LIFO order. To 1780 * achieve this we assign client_ids so they are sorted in 1781 * registration order. 1782 */ 1783 client->client_id = highest_client_id; 1784 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1785 if (ret) 1786 return ret; 1787 1788 highest_client_id++; 1789 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1790 return 0; 1791 } 1792 1793 static void remove_client_id(struct ib_client *client) 1794 { 1795 down_write(&clients_rwsem); 1796 xa_erase(&clients, client->client_id); 1797 for (; highest_client_id; highest_client_id--) 1798 if (xa_load(&clients, highest_client_id - 1)) 1799 break; 1800 up_write(&clients_rwsem); 1801 } 1802 1803 /** 1804 * ib_register_client - Register an IB client 1805 * @client:Client to register 1806 * 1807 * Upper level users of the IB drivers can use ib_register_client() to 1808 * register callbacks for IB device addition and removal. When an IB 1809 * device is added, each registered client's add method will be called 1810 * (in the order the clients were registered), and when a device is 1811 * removed, each client's remove method will be called (in the reverse 1812 * order that clients were registered). In addition, when 1813 * ib_register_client() is called, the client will receive an add 1814 * callback for all devices already registered. 1815 */ 1816 int ib_register_client(struct ib_client *client) 1817 { 1818 struct ib_device *device; 1819 unsigned long index; 1820 bool need_unreg = false; 1821 int ret; 1822 1823 refcount_set(&client->uses, 1); 1824 init_completion(&client->uses_zero); 1825 1826 /* 1827 * The devices_rwsem is held in write mode to ensure that a racing 1828 * ib_register_device() sees a consisent view of clients and devices. 1829 */ 1830 down_write(&devices_rwsem); 1831 down_write(&clients_rwsem); 1832 ret = assign_client_id(client); 1833 if (ret) 1834 goto out; 1835 1836 need_unreg = true; 1837 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1838 ret = add_client_context(device, client); 1839 if (ret) 1840 goto out; 1841 } 1842 ret = 0; 1843 out: 1844 up_write(&clients_rwsem); 1845 up_write(&devices_rwsem); 1846 if (need_unreg && ret) 1847 ib_unregister_client(client); 1848 return ret; 1849 } 1850 EXPORT_SYMBOL(ib_register_client); 1851 1852 /** 1853 * ib_unregister_client - Unregister an IB client 1854 * @client:Client to unregister 1855 * 1856 * Upper level users use ib_unregister_client() to remove their client 1857 * registration. When ib_unregister_client() is called, the client 1858 * will receive a remove callback for each IB device still registered. 1859 * 1860 * This is a full fence, once it returns no client callbacks will be called, 1861 * or are running in another thread. 1862 */ 1863 void ib_unregister_client(struct ib_client *client) 1864 { 1865 struct ib_device *device; 1866 unsigned long index; 1867 1868 down_write(&clients_rwsem); 1869 ib_client_put(client); 1870 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1871 up_write(&clients_rwsem); 1872 1873 /* We do not want to have locks while calling client->remove() */ 1874 rcu_read_lock(); 1875 xa_for_each (&devices, index, device) { 1876 if (!ib_device_try_get(device)) 1877 continue; 1878 rcu_read_unlock(); 1879 1880 remove_client_context(device, client->client_id); 1881 1882 ib_device_put(device); 1883 rcu_read_lock(); 1884 } 1885 rcu_read_unlock(); 1886 1887 /* 1888 * remove_client_context() is not a fence, it can return even though a 1889 * removal is ongoing. Wait until all removals are completed. 1890 */ 1891 wait_for_completion(&client->uses_zero); 1892 remove_client_id(client); 1893 } 1894 EXPORT_SYMBOL(ib_unregister_client); 1895 1896 static int __ib_get_global_client_nl_info(const char *client_name, 1897 struct ib_client_nl_info *res) 1898 { 1899 struct ib_client *client; 1900 unsigned long index; 1901 int ret = -ENOENT; 1902 1903 down_read(&clients_rwsem); 1904 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1905 if (strcmp(client->name, client_name) != 0) 1906 continue; 1907 if (!client->get_global_nl_info) { 1908 ret = -EOPNOTSUPP; 1909 break; 1910 } 1911 ret = client->get_global_nl_info(res); 1912 if (WARN_ON(ret == -ENOENT)) 1913 ret = -EINVAL; 1914 if (!ret && res->cdev) 1915 get_device(res->cdev); 1916 break; 1917 } 1918 up_read(&clients_rwsem); 1919 return ret; 1920 } 1921 1922 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1923 const char *client_name, 1924 struct ib_client_nl_info *res) 1925 { 1926 unsigned long index; 1927 void *client_data; 1928 int ret = -ENOENT; 1929 1930 down_read(&ibdev->client_data_rwsem); 1931 xan_for_each_marked (&ibdev->client_data, index, client_data, 1932 CLIENT_DATA_REGISTERED) { 1933 struct ib_client *client = xa_load(&clients, index); 1934 1935 if (!client || strcmp(client->name, client_name) != 0) 1936 continue; 1937 if (!client->get_nl_info) { 1938 ret = -EOPNOTSUPP; 1939 break; 1940 } 1941 ret = client->get_nl_info(ibdev, client_data, res); 1942 if (WARN_ON(ret == -ENOENT)) 1943 ret = -EINVAL; 1944 1945 /* 1946 * The cdev is guaranteed valid as long as we are inside the 1947 * client_data_rwsem as remove_one can't be called. Keep it 1948 * valid for the caller. 1949 */ 1950 if (!ret && res->cdev) 1951 get_device(res->cdev); 1952 break; 1953 } 1954 up_read(&ibdev->client_data_rwsem); 1955 1956 return ret; 1957 } 1958 1959 /** 1960 * ib_get_client_nl_info - Fetch the nl_info from a client 1961 * @ibdev: IB device 1962 * @client_name: Name of the client 1963 * @res: Result of the query 1964 */ 1965 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1966 struct ib_client_nl_info *res) 1967 { 1968 int ret; 1969 1970 if (ibdev) 1971 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1972 else 1973 ret = __ib_get_global_client_nl_info(client_name, res); 1974 #ifdef CONFIG_MODULES 1975 if (ret == -ENOENT) { 1976 request_module("rdma-client-%s", client_name); 1977 if (ibdev) 1978 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1979 else 1980 ret = __ib_get_global_client_nl_info(client_name, res); 1981 } 1982 #endif 1983 if (ret) { 1984 if (ret == -ENOENT) 1985 return -EOPNOTSUPP; 1986 return ret; 1987 } 1988 1989 if (WARN_ON(!res->cdev)) 1990 return -EINVAL; 1991 return 0; 1992 } 1993 1994 /** 1995 * ib_set_client_data - Set IB client context 1996 * @device:Device to set context for 1997 * @client:Client to set context for 1998 * @data:Context to set 1999 * 2000 * ib_set_client_data() sets client context data that can be retrieved with 2001 * ib_get_client_data(). This can only be called while the client is 2002 * registered to the device, once the ib_client remove() callback returns this 2003 * cannot be called. 2004 */ 2005 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2006 void *data) 2007 { 2008 void *rc; 2009 2010 if (WARN_ON(IS_ERR(data))) 2011 data = NULL; 2012 2013 rc = xa_store(&device->client_data, client->client_id, data, 2014 GFP_KERNEL); 2015 WARN_ON(xa_is_err(rc)); 2016 } 2017 EXPORT_SYMBOL(ib_set_client_data); 2018 2019 /** 2020 * ib_register_event_handler - Register an IB event handler 2021 * @event_handler:Handler to register 2022 * 2023 * ib_register_event_handler() registers an event handler that will be 2024 * called back when asynchronous IB events occur (as defined in 2025 * chapter 11 of the InfiniBand Architecture Specification). This 2026 * callback occurs in workqueue context. 2027 */ 2028 void ib_register_event_handler(struct ib_event_handler *event_handler) 2029 { 2030 down_write(&event_handler->device->event_handler_rwsem); 2031 list_add_tail(&event_handler->list, 2032 &event_handler->device->event_handler_list); 2033 up_write(&event_handler->device->event_handler_rwsem); 2034 } 2035 EXPORT_SYMBOL(ib_register_event_handler); 2036 2037 /** 2038 * ib_unregister_event_handler - Unregister an event handler 2039 * @event_handler:Handler to unregister 2040 * 2041 * Unregister an event handler registered with 2042 * ib_register_event_handler(). 2043 */ 2044 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 2045 { 2046 down_write(&event_handler->device->event_handler_rwsem); 2047 list_del(&event_handler->list); 2048 up_write(&event_handler->device->event_handler_rwsem); 2049 } 2050 EXPORT_SYMBOL(ib_unregister_event_handler); 2051 2052 void ib_dispatch_event_clients(struct ib_event *event) 2053 { 2054 struct ib_event_handler *handler; 2055 2056 down_read(&event->device->event_handler_rwsem); 2057 2058 list_for_each_entry(handler, &event->device->event_handler_list, list) 2059 handler->handler(handler, event); 2060 2061 up_read(&event->device->event_handler_rwsem); 2062 } 2063 2064 static int iw_query_port(struct ib_device *device, 2065 u32 port_num, 2066 struct ib_port_attr *port_attr) 2067 { 2068 struct in_device *inetdev; 2069 struct net_device *netdev; 2070 2071 memset(port_attr, 0, sizeof(*port_attr)); 2072 2073 netdev = ib_device_get_netdev(device, port_num); 2074 if (!netdev) 2075 return -ENODEV; 2076 2077 port_attr->max_mtu = IB_MTU_4096; 2078 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 2079 2080 if (!netif_carrier_ok(netdev)) { 2081 port_attr->state = IB_PORT_DOWN; 2082 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 2083 } else { 2084 rcu_read_lock(); 2085 inetdev = __in_dev_get_rcu(netdev); 2086 2087 if (inetdev && inetdev->ifa_list) { 2088 port_attr->state = IB_PORT_ACTIVE; 2089 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2090 } else { 2091 port_attr->state = IB_PORT_INIT; 2092 port_attr->phys_state = 2093 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2094 } 2095 2096 rcu_read_unlock(); 2097 } 2098 2099 dev_put(netdev); 2100 return device->ops.query_port(device, port_num, port_attr); 2101 } 2102 2103 static int __ib_query_port(struct ib_device *device, 2104 u32 port_num, 2105 struct ib_port_attr *port_attr) 2106 { 2107 int err; 2108 2109 memset(port_attr, 0, sizeof(*port_attr)); 2110 2111 err = device->ops.query_port(device, port_num, port_attr); 2112 if (err || port_attr->subnet_prefix) 2113 return err; 2114 2115 if (rdma_port_get_link_layer(device, port_num) != 2116 IB_LINK_LAYER_INFINIBAND) 2117 return 0; 2118 2119 ib_get_cached_subnet_prefix(device, port_num, 2120 &port_attr->subnet_prefix); 2121 return 0; 2122 } 2123 2124 /** 2125 * ib_query_port - Query IB port attributes 2126 * @device:Device to query 2127 * @port_num:Port number to query 2128 * @port_attr:Port attributes 2129 * 2130 * ib_query_port() returns the attributes of a port through the 2131 * @port_attr pointer. 2132 */ 2133 int ib_query_port(struct ib_device *device, 2134 u32 port_num, 2135 struct ib_port_attr *port_attr) 2136 { 2137 if (!rdma_is_port_valid(device, port_num)) 2138 return -EINVAL; 2139 2140 if (rdma_protocol_iwarp(device, port_num)) 2141 return iw_query_port(device, port_num, port_attr); 2142 else 2143 return __ib_query_port(device, port_num, port_attr); 2144 } 2145 EXPORT_SYMBOL(ib_query_port); 2146 2147 static void add_ndev_hash(struct ib_port_data *pdata) 2148 { 2149 unsigned long flags; 2150 2151 might_sleep(); 2152 2153 spin_lock_irqsave(&ndev_hash_lock, flags); 2154 if (hash_hashed(&pdata->ndev_hash_link)) { 2155 hash_del_rcu(&pdata->ndev_hash_link); 2156 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2157 /* 2158 * We cannot do hash_add_rcu after a hash_del_rcu until the 2159 * grace period 2160 */ 2161 synchronize_rcu(); 2162 spin_lock_irqsave(&ndev_hash_lock, flags); 2163 } 2164 if (pdata->netdev) 2165 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2166 (uintptr_t)pdata->netdev); 2167 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2168 } 2169 2170 /** 2171 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2172 * @ib_dev: Device to modify 2173 * @ndev: net_device to affiliate, may be NULL 2174 * @port: IB port the net_device is connected to 2175 * 2176 * Drivers should use this to link the ib_device to a netdev so the netdev 2177 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2178 * affiliated with any port. 2179 * 2180 * The caller must ensure that the given ndev is not unregistered or 2181 * unregistering, and that either the ib_device is unregistered or 2182 * ib_device_set_netdev() is called with NULL when the ndev sends a 2183 * NETDEV_UNREGISTER event. 2184 */ 2185 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2186 u32 port) 2187 { 2188 enum rdma_nl_notify_event_type etype; 2189 struct net_device *old_ndev; 2190 struct ib_port_data *pdata; 2191 unsigned long flags; 2192 int ret; 2193 2194 if (!rdma_is_port_valid(ib_dev, port)) 2195 return -EINVAL; 2196 2197 /* 2198 * Drivers wish to call this before ib_register_driver, so we have to 2199 * setup the port data early. 2200 */ 2201 ret = alloc_port_data(ib_dev); 2202 if (ret) 2203 return ret; 2204 2205 pdata = &ib_dev->port_data[port]; 2206 spin_lock_irqsave(&pdata->netdev_lock, flags); 2207 old_ndev = rcu_dereference_protected( 2208 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2209 if (old_ndev == ndev) { 2210 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2211 return 0; 2212 } 2213 2214 rcu_assign_pointer(pdata->netdev, ndev); 2215 netdev_put(old_ndev, &pdata->netdev_tracker); 2216 netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC); 2217 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2218 2219 add_ndev_hash(pdata); 2220 2221 /* Make sure that the device is registered before we send events */ 2222 if (xa_load(&devices, ib_dev->index) != ib_dev) 2223 return 0; 2224 2225 etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT; 2226 rdma_nl_notify_event(ib_dev, port, etype); 2227 2228 return 0; 2229 } 2230 EXPORT_SYMBOL(ib_device_set_netdev); 2231 2232 static void free_netdevs(struct ib_device *ib_dev) 2233 { 2234 unsigned long flags; 2235 u32 port; 2236 2237 if (!ib_dev->port_data) 2238 return; 2239 2240 rdma_for_each_port (ib_dev, port) { 2241 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2242 struct net_device *ndev; 2243 2244 spin_lock_irqsave(&pdata->netdev_lock, flags); 2245 ndev = rcu_dereference_protected( 2246 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2247 if (ndev) { 2248 spin_lock(&ndev_hash_lock); 2249 hash_del_rcu(&pdata->ndev_hash_link); 2250 spin_unlock(&ndev_hash_lock); 2251 2252 /* 2253 * If this is the last dev_put there is still a 2254 * synchronize_rcu before the netdev is kfreed, so we 2255 * can continue to rely on unlocked pointer 2256 * comparisons after the put 2257 */ 2258 rcu_assign_pointer(pdata->netdev, NULL); 2259 netdev_put(ndev, &pdata->netdev_tracker); 2260 } 2261 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2262 } 2263 } 2264 2265 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2266 u32 port) 2267 { 2268 struct ib_port_data *pdata; 2269 struct net_device *res; 2270 2271 if (!rdma_is_port_valid(ib_dev, port)) 2272 return NULL; 2273 2274 if (!ib_dev->port_data) 2275 return NULL; 2276 2277 pdata = &ib_dev->port_data[port]; 2278 2279 /* 2280 * New drivers should use ib_device_set_netdev() not the legacy 2281 * get_netdev(). 2282 */ 2283 if (ib_dev->ops.get_netdev) 2284 res = ib_dev->ops.get_netdev(ib_dev, port); 2285 else { 2286 spin_lock(&pdata->netdev_lock); 2287 res = rcu_dereference_protected( 2288 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2289 dev_hold(res); 2290 spin_unlock(&pdata->netdev_lock); 2291 } 2292 2293 return res; 2294 } 2295 EXPORT_SYMBOL(ib_device_get_netdev); 2296 2297 /** 2298 * ib_query_netdev_port - Query the port number of a net_device 2299 * associated with an ibdev 2300 * @ibdev: IB device 2301 * @ndev: Network device 2302 * @port: IB port the net_device is connected to 2303 */ 2304 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev, 2305 u32 *port) 2306 { 2307 struct net_device *ib_ndev; 2308 u32 port_num; 2309 2310 rdma_for_each_port(ibdev, port_num) { 2311 ib_ndev = ib_device_get_netdev(ibdev, port_num); 2312 if (ndev == ib_ndev) { 2313 *port = port_num; 2314 dev_put(ib_ndev); 2315 return 0; 2316 } 2317 dev_put(ib_ndev); 2318 } 2319 2320 return -ENOENT; 2321 } 2322 EXPORT_SYMBOL(ib_query_netdev_port); 2323 2324 /** 2325 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2326 * @ndev: netdev to locate 2327 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2328 * 2329 * Find and hold an ib_device that is associated with a netdev via 2330 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2331 * returned pointer. 2332 */ 2333 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2334 enum rdma_driver_id driver_id) 2335 { 2336 struct ib_device *res = NULL; 2337 struct ib_port_data *cur; 2338 2339 rcu_read_lock(); 2340 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2341 (uintptr_t)ndev) { 2342 if (rcu_access_pointer(cur->netdev) == ndev && 2343 (driver_id == RDMA_DRIVER_UNKNOWN || 2344 cur->ib_dev->ops.driver_id == driver_id) && 2345 ib_device_try_get(cur->ib_dev)) { 2346 res = cur->ib_dev; 2347 break; 2348 } 2349 } 2350 rcu_read_unlock(); 2351 2352 return res; 2353 } 2354 EXPORT_SYMBOL(ib_device_get_by_netdev); 2355 2356 /** 2357 * ib_enum_roce_netdev - enumerate all RoCE ports 2358 * @ib_dev : IB device we want to query 2359 * @filter: Should we call the callback? 2360 * @filter_cookie: Cookie passed to filter 2361 * @cb: Callback to call for each found RoCE ports 2362 * @cookie: Cookie passed back to the callback 2363 * 2364 * Enumerates all of the physical RoCE ports of ib_dev 2365 * which are related to netdevice and calls callback() on each 2366 * device for which filter() function returns non zero. 2367 */ 2368 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2369 roce_netdev_filter filter, 2370 void *filter_cookie, 2371 roce_netdev_callback cb, 2372 void *cookie) 2373 { 2374 u32 port; 2375 2376 rdma_for_each_port (ib_dev, port) 2377 if (rdma_protocol_roce(ib_dev, port)) { 2378 struct net_device *idev = 2379 ib_device_get_netdev(ib_dev, port); 2380 2381 if (filter(ib_dev, port, idev, filter_cookie)) 2382 cb(ib_dev, port, idev, cookie); 2383 dev_put(idev); 2384 } 2385 } 2386 2387 /** 2388 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2389 * @filter: Should we call the callback? 2390 * @filter_cookie: Cookie passed to filter 2391 * @cb: Callback to call for each found RoCE ports 2392 * @cookie: Cookie passed back to the callback 2393 * 2394 * Enumerates all RoCE devices' physical ports which are related 2395 * to netdevices and calls callback() on each device for which 2396 * filter() function returns non zero. 2397 */ 2398 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2399 void *filter_cookie, 2400 roce_netdev_callback cb, 2401 void *cookie) 2402 { 2403 struct ib_device *dev; 2404 unsigned long index; 2405 2406 down_read(&devices_rwsem); 2407 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2408 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2409 up_read(&devices_rwsem); 2410 } 2411 2412 /* 2413 * ib_enum_all_devs - enumerate all ib_devices 2414 * @cb: Callback to call for each found ib_device 2415 * 2416 * Enumerates all ib_devices and calls callback() on each device. 2417 */ 2418 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2419 struct netlink_callback *cb) 2420 { 2421 unsigned long index; 2422 struct ib_device *dev; 2423 unsigned int idx = 0; 2424 int ret = 0; 2425 2426 down_read(&devices_rwsem); 2427 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2428 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2429 continue; 2430 2431 ret = nldev_cb(dev, skb, cb, idx); 2432 if (ret) 2433 break; 2434 idx++; 2435 } 2436 up_read(&devices_rwsem); 2437 return ret; 2438 } 2439 2440 /** 2441 * ib_query_pkey - Get P_Key table entry 2442 * @device:Device to query 2443 * @port_num:Port number to query 2444 * @index:P_Key table index to query 2445 * @pkey:Returned P_Key 2446 * 2447 * ib_query_pkey() fetches the specified P_Key table entry. 2448 */ 2449 int ib_query_pkey(struct ib_device *device, 2450 u32 port_num, u16 index, u16 *pkey) 2451 { 2452 if (!rdma_is_port_valid(device, port_num)) 2453 return -EINVAL; 2454 2455 if (!device->ops.query_pkey) 2456 return -EOPNOTSUPP; 2457 2458 return device->ops.query_pkey(device, port_num, index, pkey); 2459 } 2460 EXPORT_SYMBOL(ib_query_pkey); 2461 2462 /** 2463 * ib_modify_device - Change IB device attributes 2464 * @device:Device to modify 2465 * @device_modify_mask:Mask of attributes to change 2466 * @device_modify:New attribute values 2467 * 2468 * ib_modify_device() changes a device's attributes as specified by 2469 * the @device_modify_mask and @device_modify structure. 2470 */ 2471 int ib_modify_device(struct ib_device *device, 2472 int device_modify_mask, 2473 struct ib_device_modify *device_modify) 2474 { 2475 if (!device->ops.modify_device) 2476 return -EOPNOTSUPP; 2477 2478 return device->ops.modify_device(device, device_modify_mask, 2479 device_modify); 2480 } 2481 EXPORT_SYMBOL(ib_modify_device); 2482 2483 /** 2484 * ib_modify_port - Modifies the attributes for the specified port. 2485 * @device: The device to modify. 2486 * @port_num: The number of the port to modify. 2487 * @port_modify_mask: Mask used to specify which attributes of the port 2488 * to change. 2489 * @port_modify: New attribute values for the port. 2490 * 2491 * ib_modify_port() changes a port's attributes as specified by the 2492 * @port_modify_mask and @port_modify structure. 2493 */ 2494 int ib_modify_port(struct ib_device *device, 2495 u32 port_num, int port_modify_mask, 2496 struct ib_port_modify *port_modify) 2497 { 2498 int rc; 2499 2500 if (!rdma_is_port_valid(device, port_num)) 2501 return -EINVAL; 2502 2503 if (device->ops.modify_port) 2504 rc = device->ops.modify_port(device, port_num, 2505 port_modify_mask, 2506 port_modify); 2507 else if (rdma_protocol_roce(device, port_num) && 2508 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2509 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2510 rc = 0; 2511 else 2512 rc = -EOPNOTSUPP; 2513 return rc; 2514 } 2515 EXPORT_SYMBOL(ib_modify_port); 2516 2517 /** 2518 * ib_find_gid - Returns the port number and GID table index where 2519 * a specified GID value occurs. Its searches only for IB link layer. 2520 * @device: The device to query. 2521 * @gid: The GID value to search for. 2522 * @port_num: The port number of the device where the GID value was found. 2523 * @index: The index into the GID table where the GID was found. This 2524 * parameter may be NULL. 2525 */ 2526 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2527 u32 *port_num, u16 *index) 2528 { 2529 union ib_gid tmp_gid; 2530 u32 port; 2531 int ret, i; 2532 2533 rdma_for_each_port (device, port) { 2534 if (!rdma_protocol_ib(device, port)) 2535 continue; 2536 2537 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2538 ++i) { 2539 ret = rdma_query_gid(device, port, i, &tmp_gid); 2540 if (ret) 2541 continue; 2542 2543 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2544 *port_num = port; 2545 if (index) 2546 *index = i; 2547 return 0; 2548 } 2549 } 2550 } 2551 2552 return -ENOENT; 2553 } 2554 EXPORT_SYMBOL(ib_find_gid); 2555 2556 /** 2557 * ib_find_pkey - Returns the PKey table index where a specified 2558 * PKey value occurs. 2559 * @device: The device to query. 2560 * @port_num: The port number of the device to search for the PKey. 2561 * @pkey: The PKey value to search for. 2562 * @index: The index into the PKey table where the PKey was found. 2563 */ 2564 int ib_find_pkey(struct ib_device *device, 2565 u32 port_num, u16 pkey, u16 *index) 2566 { 2567 int ret, i; 2568 u16 tmp_pkey; 2569 int partial_ix = -1; 2570 2571 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2572 ++i) { 2573 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2574 if (ret) 2575 return ret; 2576 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2577 /* if there is full-member pkey take it.*/ 2578 if (tmp_pkey & 0x8000) { 2579 *index = i; 2580 return 0; 2581 } 2582 if (partial_ix < 0) 2583 partial_ix = i; 2584 } 2585 } 2586 2587 /*no full-member, if exists take the limited*/ 2588 if (partial_ix >= 0) { 2589 *index = partial_ix; 2590 return 0; 2591 } 2592 return -ENOENT; 2593 } 2594 EXPORT_SYMBOL(ib_find_pkey); 2595 2596 /** 2597 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2598 * for a received CM request 2599 * @dev: An RDMA device on which the request has been received. 2600 * @port: Port number on the RDMA device. 2601 * @pkey: The Pkey the request came on. 2602 * @gid: A GID that the net_dev uses to communicate. 2603 * @addr: Contains the IP address that the request specified as its 2604 * destination. 2605 * 2606 */ 2607 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2608 u32 port, 2609 u16 pkey, 2610 const union ib_gid *gid, 2611 const struct sockaddr *addr) 2612 { 2613 struct net_device *net_dev = NULL; 2614 unsigned long index; 2615 void *client_data; 2616 2617 if (!rdma_protocol_ib(dev, port)) 2618 return NULL; 2619 2620 /* 2621 * Holding the read side guarantees that the client will not become 2622 * unregistered while we are calling get_net_dev_by_params() 2623 */ 2624 down_read(&dev->client_data_rwsem); 2625 xan_for_each_marked (&dev->client_data, index, client_data, 2626 CLIENT_DATA_REGISTERED) { 2627 struct ib_client *client = xa_load(&clients, index); 2628 2629 if (!client || !client->get_net_dev_by_params) 2630 continue; 2631 2632 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2633 addr, client_data); 2634 if (net_dev) 2635 break; 2636 } 2637 up_read(&dev->client_data_rwsem); 2638 2639 return net_dev; 2640 } 2641 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2642 2643 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2644 { 2645 struct ib_device_ops *dev_ops = &dev->ops; 2646 #define SET_DEVICE_OP(ptr, name) \ 2647 do { \ 2648 if (ops->name) \ 2649 if (!((ptr)->name)) \ 2650 (ptr)->name = ops->name; \ 2651 } while (0) 2652 2653 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2654 2655 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2656 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2657 dev_ops->driver_id != ops->driver_id); 2658 dev_ops->driver_id = ops->driver_id; 2659 } 2660 if (ops->owner) { 2661 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2662 dev_ops->owner = ops->owner; 2663 } 2664 if (ops->uverbs_abi_ver) 2665 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2666 2667 dev_ops->uverbs_no_driver_id_binding |= 2668 ops->uverbs_no_driver_id_binding; 2669 2670 SET_DEVICE_OP(dev_ops, add_gid); 2671 SET_DEVICE_OP(dev_ops, add_sub_dev); 2672 SET_DEVICE_OP(dev_ops, advise_mr); 2673 SET_DEVICE_OP(dev_ops, alloc_dm); 2674 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats); 2675 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats); 2676 SET_DEVICE_OP(dev_ops, alloc_mr); 2677 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2678 SET_DEVICE_OP(dev_ops, alloc_mw); 2679 SET_DEVICE_OP(dev_ops, alloc_pd); 2680 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2681 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2682 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2683 SET_DEVICE_OP(dev_ops, attach_mcast); 2684 SET_DEVICE_OP(dev_ops, check_mr_status); 2685 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2686 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2687 SET_DEVICE_OP(dev_ops, counter_dealloc); 2688 SET_DEVICE_OP(dev_ops, counter_init); 2689 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2690 SET_DEVICE_OP(dev_ops, counter_update_stats); 2691 SET_DEVICE_OP(dev_ops, create_ah); 2692 SET_DEVICE_OP(dev_ops, create_counters); 2693 SET_DEVICE_OP(dev_ops, create_cq); 2694 SET_DEVICE_OP(dev_ops, create_flow); 2695 SET_DEVICE_OP(dev_ops, create_qp); 2696 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2697 SET_DEVICE_OP(dev_ops, create_srq); 2698 SET_DEVICE_OP(dev_ops, create_user_ah); 2699 SET_DEVICE_OP(dev_ops, create_wq); 2700 SET_DEVICE_OP(dev_ops, dealloc_dm); 2701 SET_DEVICE_OP(dev_ops, dealloc_driver); 2702 SET_DEVICE_OP(dev_ops, dealloc_mw); 2703 SET_DEVICE_OP(dev_ops, dealloc_pd); 2704 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2705 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2706 SET_DEVICE_OP(dev_ops, del_gid); 2707 SET_DEVICE_OP(dev_ops, del_sub_dev); 2708 SET_DEVICE_OP(dev_ops, dereg_mr); 2709 SET_DEVICE_OP(dev_ops, destroy_ah); 2710 SET_DEVICE_OP(dev_ops, destroy_counters); 2711 SET_DEVICE_OP(dev_ops, destroy_cq); 2712 SET_DEVICE_OP(dev_ops, destroy_flow); 2713 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2714 SET_DEVICE_OP(dev_ops, destroy_qp); 2715 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2716 SET_DEVICE_OP(dev_ops, destroy_srq); 2717 SET_DEVICE_OP(dev_ops, destroy_wq); 2718 SET_DEVICE_OP(dev_ops, device_group); 2719 SET_DEVICE_OP(dev_ops, detach_mcast); 2720 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2721 SET_DEVICE_OP(dev_ops, drain_rq); 2722 SET_DEVICE_OP(dev_ops, drain_sq); 2723 SET_DEVICE_OP(dev_ops, enable_driver); 2724 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry); 2725 SET_DEVICE_OP(dev_ops, fill_res_cq_entry); 2726 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw); 2727 SET_DEVICE_OP(dev_ops, fill_res_mr_entry); 2728 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw); 2729 SET_DEVICE_OP(dev_ops, fill_res_qp_entry); 2730 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw); 2731 SET_DEVICE_OP(dev_ops, fill_res_srq_entry); 2732 SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw); 2733 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry); 2734 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2735 SET_DEVICE_OP(dev_ops, get_dma_mr); 2736 SET_DEVICE_OP(dev_ops, get_hw_stats); 2737 SET_DEVICE_OP(dev_ops, get_link_layer); 2738 SET_DEVICE_OP(dev_ops, get_netdev); 2739 SET_DEVICE_OP(dev_ops, get_numa_node); 2740 SET_DEVICE_OP(dev_ops, get_port_immutable); 2741 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2742 SET_DEVICE_OP(dev_ops, get_vf_config); 2743 SET_DEVICE_OP(dev_ops, get_vf_guid); 2744 SET_DEVICE_OP(dev_ops, get_vf_stats); 2745 SET_DEVICE_OP(dev_ops, iw_accept); 2746 SET_DEVICE_OP(dev_ops, iw_add_ref); 2747 SET_DEVICE_OP(dev_ops, iw_connect); 2748 SET_DEVICE_OP(dev_ops, iw_create_listen); 2749 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2750 SET_DEVICE_OP(dev_ops, iw_get_qp); 2751 SET_DEVICE_OP(dev_ops, iw_reject); 2752 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2753 SET_DEVICE_OP(dev_ops, map_mr_sg); 2754 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2755 SET_DEVICE_OP(dev_ops, mmap); 2756 SET_DEVICE_OP(dev_ops, mmap_free); 2757 SET_DEVICE_OP(dev_ops, modify_ah); 2758 SET_DEVICE_OP(dev_ops, modify_cq); 2759 SET_DEVICE_OP(dev_ops, modify_device); 2760 SET_DEVICE_OP(dev_ops, modify_hw_stat); 2761 SET_DEVICE_OP(dev_ops, modify_port); 2762 SET_DEVICE_OP(dev_ops, modify_qp); 2763 SET_DEVICE_OP(dev_ops, modify_srq); 2764 SET_DEVICE_OP(dev_ops, modify_wq); 2765 SET_DEVICE_OP(dev_ops, peek_cq); 2766 SET_DEVICE_OP(dev_ops, poll_cq); 2767 SET_DEVICE_OP(dev_ops, port_groups); 2768 SET_DEVICE_OP(dev_ops, post_recv); 2769 SET_DEVICE_OP(dev_ops, post_send); 2770 SET_DEVICE_OP(dev_ops, post_srq_recv); 2771 SET_DEVICE_OP(dev_ops, process_mad); 2772 SET_DEVICE_OP(dev_ops, query_ah); 2773 SET_DEVICE_OP(dev_ops, query_device); 2774 SET_DEVICE_OP(dev_ops, query_gid); 2775 SET_DEVICE_OP(dev_ops, query_pkey); 2776 SET_DEVICE_OP(dev_ops, query_port); 2777 SET_DEVICE_OP(dev_ops, query_qp); 2778 SET_DEVICE_OP(dev_ops, query_srq); 2779 SET_DEVICE_OP(dev_ops, query_ucontext); 2780 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2781 SET_DEVICE_OP(dev_ops, read_counters); 2782 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2783 SET_DEVICE_OP(dev_ops, reg_user_mr); 2784 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf); 2785 SET_DEVICE_OP(dev_ops, req_notify_cq); 2786 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2787 SET_DEVICE_OP(dev_ops, resize_cq); 2788 SET_DEVICE_OP(dev_ops, set_vf_guid); 2789 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2790 SET_DEVICE_OP(dev_ops, ufile_hw_cleanup); 2791 SET_DEVICE_OP(dev_ops, report_port_event); 2792 2793 SET_OBJ_SIZE(dev_ops, ib_ah); 2794 SET_OBJ_SIZE(dev_ops, ib_counters); 2795 SET_OBJ_SIZE(dev_ops, ib_cq); 2796 SET_OBJ_SIZE(dev_ops, ib_mw); 2797 SET_OBJ_SIZE(dev_ops, ib_pd); 2798 SET_OBJ_SIZE(dev_ops, ib_qp); 2799 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table); 2800 SET_OBJ_SIZE(dev_ops, ib_srq); 2801 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2802 SET_OBJ_SIZE(dev_ops, ib_xrcd); 2803 SET_OBJ_SIZE(dev_ops, rdma_counter); 2804 } 2805 EXPORT_SYMBOL(ib_set_device_ops); 2806 2807 int ib_add_sub_device(struct ib_device *parent, 2808 enum rdma_nl_dev_type type, 2809 const char *name) 2810 { 2811 struct ib_device *sub; 2812 int ret = 0; 2813 2814 if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev) 2815 return -EOPNOTSUPP; 2816 2817 if (!ib_device_try_get(parent)) 2818 return -EINVAL; 2819 2820 sub = parent->ops.add_sub_dev(parent, type, name); 2821 if (IS_ERR(sub)) { 2822 ib_device_put(parent); 2823 return PTR_ERR(sub); 2824 } 2825 2826 sub->type = type; 2827 sub->parent = parent; 2828 2829 mutex_lock(&parent->subdev_lock); 2830 list_add_tail(&parent->subdev_list_head, &sub->subdev_list); 2831 mutex_unlock(&parent->subdev_lock); 2832 2833 return ret; 2834 } 2835 EXPORT_SYMBOL(ib_add_sub_device); 2836 2837 int ib_del_sub_device_and_put(struct ib_device *sub) 2838 { 2839 struct ib_device *parent = sub->parent; 2840 2841 if (!parent) 2842 return -EOPNOTSUPP; 2843 2844 mutex_lock(&parent->subdev_lock); 2845 list_del(&sub->subdev_list); 2846 mutex_unlock(&parent->subdev_lock); 2847 2848 ib_device_put(sub); 2849 parent->ops.del_sub_dev(sub); 2850 ib_device_put(parent); 2851 2852 return 0; 2853 } 2854 EXPORT_SYMBOL(ib_del_sub_device_and_put); 2855 2856 #ifdef CONFIG_INFINIBAND_VIRT_DMA 2857 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents) 2858 { 2859 struct scatterlist *s; 2860 int i; 2861 2862 for_each_sg(sg, s, nents, i) { 2863 sg_dma_address(s) = (uintptr_t)sg_virt(s); 2864 sg_dma_len(s) = s->length; 2865 } 2866 return nents; 2867 } 2868 EXPORT_SYMBOL(ib_dma_virt_map_sg); 2869 #endif /* CONFIG_INFINIBAND_VIRT_DMA */ 2870 2871 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2872 [RDMA_NL_LS_OP_RESOLVE] = { 2873 .doit = ib_nl_handle_resolve_resp, 2874 .flags = RDMA_NL_ADMIN_PERM, 2875 }, 2876 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2877 .doit = ib_nl_handle_set_timeout, 2878 .flags = RDMA_NL_ADMIN_PERM, 2879 }, 2880 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2881 .doit = ib_nl_handle_ip_res_resp, 2882 .flags = RDMA_NL_ADMIN_PERM, 2883 }, 2884 }; 2885 2886 void ib_dispatch_port_state_event(struct ib_device *ibdev, struct net_device *ndev) 2887 { 2888 enum ib_port_state curr_state; 2889 struct ib_event ibevent = {}; 2890 u32 port; 2891 2892 if (ib_query_netdev_port(ibdev, ndev, &port)) 2893 return; 2894 2895 curr_state = ib_get_curr_port_state(ndev); 2896 2897 write_lock_irq(&ibdev->cache_lock); 2898 if (ibdev->port_data[port].cache.last_port_state == curr_state) { 2899 write_unlock_irq(&ibdev->cache_lock); 2900 return; 2901 } 2902 ibdev->port_data[port].cache.last_port_state = curr_state; 2903 write_unlock_irq(&ibdev->cache_lock); 2904 2905 ibevent.event = (curr_state == IB_PORT_DOWN) ? 2906 IB_EVENT_PORT_ERR : IB_EVENT_PORT_ACTIVE; 2907 ibevent.device = ibdev; 2908 ibevent.element.port_num = port; 2909 ib_dispatch_event(&ibevent); 2910 } 2911 EXPORT_SYMBOL(ib_dispatch_port_state_event); 2912 2913 static void handle_port_event(struct net_device *ndev, unsigned long event) 2914 { 2915 struct ib_device *ibdev; 2916 2917 /* Currently, link events in bonding scenarios are still 2918 * reported by drivers that support bonding. 2919 */ 2920 if (netif_is_lag_master(ndev) || netif_is_lag_port(ndev)) 2921 return; 2922 2923 ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN); 2924 if (!ibdev) 2925 return; 2926 2927 if (ibdev->ops.report_port_event) { 2928 ibdev->ops.report_port_event(ibdev, ndev, event); 2929 goto put_ibdev; 2930 } 2931 2932 ib_dispatch_port_state_event(ibdev, ndev); 2933 2934 put_ibdev: 2935 ib_device_put(ibdev); 2936 }; 2937 2938 static int ib_netdevice_event(struct notifier_block *this, 2939 unsigned long event, void *ptr) 2940 { 2941 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 2942 struct ib_device *ibdev; 2943 u32 port; 2944 2945 switch (event) { 2946 case NETDEV_CHANGENAME: 2947 ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN); 2948 if (!ibdev) 2949 return NOTIFY_DONE; 2950 2951 if (ib_query_netdev_port(ibdev, ndev, &port)) { 2952 ib_device_put(ibdev); 2953 break; 2954 } 2955 2956 rdma_nl_notify_event(ibdev, port, RDMA_NETDEV_RENAME_EVENT); 2957 ib_device_put(ibdev); 2958 break; 2959 2960 case NETDEV_UP: 2961 case NETDEV_CHANGE: 2962 case NETDEV_DOWN: 2963 handle_port_event(ndev, event); 2964 break; 2965 2966 default: 2967 break; 2968 } 2969 2970 return NOTIFY_DONE; 2971 } 2972 2973 static struct notifier_block nb_netdevice = { 2974 .notifier_call = ib_netdevice_event, 2975 }; 2976 2977 static int __init ib_core_init(void) 2978 { 2979 int ret = -ENOMEM; 2980 2981 ib_wq = alloc_workqueue("infiniband", 0, 0); 2982 if (!ib_wq) 2983 return -ENOMEM; 2984 2985 ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND, 2986 WQ_UNBOUND_MAX_ACTIVE); 2987 if (!ib_unreg_wq) 2988 goto err; 2989 2990 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2991 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2992 if (!ib_comp_wq) 2993 goto err_unbound; 2994 2995 ib_comp_unbound_wq = 2996 alloc_workqueue("ib-comp-unb-wq", 2997 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2998 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2999 if (!ib_comp_unbound_wq) 3000 goto err_comp; 3001 3002 ret = class_register(&ib_class); 3003 if (ret) { 3004 pr_warn("Couldn't create InfiniBand device class\n"); 3005 goto err_comp_unbound; 3006 } 3007 3008 rdma_nl_init(); 3009 3010 ret = addr_init(); 3011 if (ret) { 3012 pr_warn("Couldn't init IB address resolution\n"); 3013 goto err_ibnl; 3014 } 3015 3016 ret = ib_mad_init(); 3017 if (ret) { 3018 pr_warn("Couldn't init IB MAD\n"); 3019 goto err_addr; 3020 } 3021 3022 ret = ib_sa_init(); 3023 if (ret) { 3024 pr_warn("Couldn't init SA\n"); 3025 goto err_mad; 3026 } 3027 3028 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 3029 if (ret) { 3030 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 3031 goto err_sa; 3032 } 3033 3034 ret = register_pernet_device(&rdma_dev_net_ops); 3035 if (ret) { 3036 pr_warn("Couldn't init compat dev. ret %d\n", ret); 3037 goto err_compat; 3038 } 3039 3040 nldev_init(); 3041 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 3042 ret = roce_gid_mgmt_init(); 3043 if (ret) { 3044 pr_warn("Couldn't init RoCE GID management\n"); 3045 goto err_parent; 3046 } 3047 3048 register_netdevice_notifier(&nb_netdevice); 3049 3050 return 0; 3051 3052 err_parent: 3053 rdma_nl_unregister(RDMA_NL_LS); 3054 nldev_exit(); 3055 unregister_pernet_device(&rdma_dev_net_ops); 3056 err_compat: 3057 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 3058 err_sa: 3059 ib_sa_cleanup(); 3060 err_mad: 3061 ib_mad_cleanup(); 3062 err_addr: 3063 addr_cleanup(); 3064 err_ibnl: 3065 class_unregister(&ib_class); 3066 err_comp_unbound: 3067 destroy_workqueue(ib_comp_unbound_wq); 3068 err_comp: 3069 destroy_workqueue(ib_comp_wq); 3070 err_unbound: 3071 destroy_workqueue(ib_unreg_wq); 3072 err: 3073 destroy_workqueue(ib_wq); 3074 return ret; 3075 } 3076 3077 static void __exit ib_core_cleanup(void) 3078 { 3079 unregister_netdevice_notifier(&nb_netdevice); 3080 roce_gid_mgmt_cleanup(); 3081 rdma_nl_unregister(RDMA_NL_LS); 3082 nldev_exit(); 3083 unregister_pernet_device(&rdma_dev_net_ops); 3084 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 3085 ib_sa_cleanup(); 3086 ib_mad_cleanup(); 3087 addr_cleanup(); 3088 rdma_nl_exit(); 3089 class_unregister(&ib_class); 3090 destroy_workqueue(ib_comp_unbound_wq); 3091 destroy_workqueue(ib_comp_wq); 3092 /* Make sure that any pending umem accounting work is done. */ 3093 destroy_workqueue(ib_wq); 3094 destroy_workqueue(ib_unreg_wq); 3095 WARN_ON(!xa_empty(&clients)); 3096 WARN_ON(!xa_empty(&devices)); 3097 } 3098 3099 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 3100 3101 /* ib core relies on netdev stack to first register net_ns_type_operations 3102 * ns kobject type before ib_core initialization. 3103 */ 3104 fs_initcall(ib_core_init); 3105 module_exit(ib_core_cleanup); 3106