1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_IBOE_PACKET_LIFETIME 16 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 72 enum ib_gid_type gid_type); 73 74 static void cma_netevent_work_handler(struct work_struct *_work); 75 76 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 77 { 78 size_t index = event; 79 80 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 81 cma_events[index] : "unrecognized event"; 82 } 83 EXPORT_SYMBOL(rdma_event_msg); 84 85 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 86 int reason) 87 { 88 if (rdma_ib_or_roce(id->device, id->port_num)) 89 return ibcm_reject_msg(reason); 90 91 if (rdma_protocol_iwarp(id->device, id->port_num)) 92 return iwcm_reject_msg(reason); 93 94 WARN_ON_ONCE(1); 95 return "unrecognized transport"; 96 } 97 EXPORT_SYMBOL(rdma_reject_msg); 98 99 /** 100 * rdma_is_consumer_reject - return true if the consumer rejected the connect 101 * request. 102 * @id: Communication identifier that received the REJECT event. 103 * @reason: Value returned in the REJECT event status field. 104 */ 105 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 106 { 107 if (rdma_ib_or_roce(id->device, id->port_num)) 108 return reason == IB_CM_REJ_CONSUMER_DEFINED; 109 110 if (rdma_protocol_iwarp(id->device, id->port_num)) 111 return reason == -ECONNREFUSED; 112 113 WARN_ON_ONCE(1); 114 return false; 115 } 116 117 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 118 struct rdma_cm_event *ev, u8 *data_len) 119 { 120 const void *p; 121 122 if (rdma_is_consumer_reject(id, ev->status)) { 123 *data_len = ev->param.conn.private_data_len; 124 p = ev->param.conn.private_data; 125 } else { 126 *data_len = 0; 127 p = NULL; 128 } 129 return p; 130 } 131 EXPORT_SYMBOL(rdma_consumer_reject_data); 132 133 /** 134 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 135 * @id: Communication Identifier 136 */ 137 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 138 { 139 struct rdma_id_private *id_priv; 140 141 id_priv = container_of(id, struct rdma_id_private, id); 142 if (id->device->node_type == RDMA_NODE_RNIC) 143 return id_priv->cm_id.iw; 144 return NULL; 145 } 146 EXPORT_SYMBOL(rdma_iw_cm_id); 147 148 static int cma_add_one(struct ib_device *device); 149 static void cma_remove_one(struct ib_device *device, void *client_data); 150 151 static struct ib_client cma_client = { 152 .name = "cma", 153 .add = cma_add_one, 154 .remove = cma_remove_one 155 }; 156 157 static struct ib_sa_client sa_client; 158 static LIST_HEAD(dev_list); 159 static LIST_HEAD(listen_any_list); 160 static DEFINE_MUTEX(lock); 161 static struct rb_root id_table = RB_ROOT; 162 /* Serialize operations of id_table tree */ 163 static DEFINE_SPINLOCK(id_table_lock); 164 static struct workqueue_struct *cma_wq; 165 static unsigned int cma_pernet_id; 166 167 struct cma_pernet { 168 struct xarray tcp_ps; 169 struct xarray udp_ps; 170 struct xarray ipoib_ps; 171 struct xarray ib_ps; 172 }; 173 174 static struct cma_pernet *cma_pernet(struct net *net) 175 { 176 return net_generic(net, cma_pernet_id); 177 } 178 179 static 180 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 181 { 182 struct cma_pernet *pernet = cma_pernet(net); 183 184 switch (ps) { 185 case RDMA_PS_TCP: 186 return &pernet->tcp_ps; 187 case RDMA_PS_UDP: 188 return &pernet->udp_ps; 189 case RDMA_PS_IPOIB: 190 return &pernet->ipoib_ps; 191 case RDMA_PS_IB: 192 return &pernet->ib_ps; 193 default: 194 return NULL; 195 } 196 } 197 198 struct id_table_entry { 199 struct list_head id_list; 200 struct rb_node rb_node; 201 }; 202 203 struct cma_device { 204 struct list_head list; 205 struct ib_device *device; 206 struct completion comp; 207 refcount_t refcount; 208 struct list_head id_list; 209 enum ib_gid_type *default_gid_type; 210 u8 *default_roce_tos; 211 }; 212 213 struct rdma_bind_list { 214 enum rdma_ucm_port_space ps; 215 struct hlist_head owners; 216 unsigned short port; 217 }; 218 219 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 220 struct rdma_bind_list *bind_list, int snum) 221 { 222 struct xarray *xa = cma_pernet_xa(net, ps); 223 224 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 225 } 226 227 static struct rdma_bind_list *cma_ps_find(struct net *net, 228 enum rdma_ucm_port_space ps, int snum) 229 { 230 struct xarray *xa = cma_pernet_xa(net, ps); 231 232 return xa_load(xa, snum); 233 } 234 235 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 236 int snum) 237 { 238 struct xarray *xa = cma_pernet_xa(net, ps); 239 240 xa_erase(xa, snum); 241 } 242 243 enum { 244 CMA_OPTION_AFONLY, 245 }; 246 247 void cma_dev_get(struct cma_device *cma_dev) 248 { 249 refcount_inc(&cma_dev->refcount); 250 } 251 252 void cma_dev_put(struct cma_device *cma_dev) 253 { 254 if (refcount_dec_and_test(&cma_dev->refcount)) 255 complete(&cma_dev->comp); 256 } 257 258 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 259 void *cookie) 260 { 261 struct cma_device *cma_dev; 262 struct cma_device *found_cma_dev = NULL; 263 264 mutex_lock(&lock); 265 266 list_for_each_entry(cma_dev, &dev_list, list) 267 if (filter(cma_dev->device, cookie)) { 268 found_cma_dev = cma_dev; 269 break; 270 } 271 272 if (found_cma_dev) 273 cma_dev_get(found_cma_dev); 274 mutex_unlock(&lock); 275 return found_cma_dev; 276 } 277 278 int cma_get_default_gid_type(struct cma_device *cma_dev, 279 u32 port) 280 { 281 if (!rdma_is_port_valid(cma_dev->device, port)) 282 return -EINVAL; 283 284 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 285 } 286 287 int cma_set_default_gid_type(struct cma_device *cma_dev, 288 u32 port, 289 enum ib_gid_type default_gid_type) 290 { 291 unsigned long supported_gids; 292 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 if (default_gid_type == IB_GID_TYPE_IB && 297 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 298 default_gid_type = IB_GID_TYPE_ROCE; 299 300 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 301 302 if (!(supported_gids & 1 << default_gid_type)) 303 return -EINVAL; 304 305 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 306 default_gid_type; 307 308 return 0; 309 } 310 311 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 312 { 313 if (!rdma_is_port_valid(cma_dev->device, port)) 314 return -EINVAL; 315 316 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 317 } 318 319 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 320 u8 default_roce_tos) 321 { 322 if (!rdma_is_port_valid(cma_dev->device, port)) 323 return -EINVAL; 324 325 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 326 default_roce_tos; 327 328 return 0; 329 } 330 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 331 { 332 return cma_dev->device; 333 } 334 335 /* 336 * Device removal can occur at anytime, so we need extra handling to 337 * serialize notifying the user of device removal with other callbacks. 338 * We do this by disabling removal notification while a callback is in process, 339 * and reporting it after the callback completes. 340 */ 341 342 struct cma_multicast { 343 struct rdma_id_private *id_priv; 344 union { 345 struct ib_sa_multicast *sa_mc; 346 struct { 347 struct work_struct work; 348 struct rdma_cm_event event; 349 } iboe_join; 350 }; 351 struct list_head list; 352 void *context; 353 struct sockaddr_storage addr; 354 u8 join_state; 355 }; 356 357 struct cma_work { 358 struct work_struct work; 359 struct rdma_id_private *id; 360 enum rdma_cm_state old_state; 361 enum rdma_cm_state new_state; 362 struct rdma_cm_event event; 363 }; 364 365 union cma_ip_addr { 366 struct in6_addr ip6; 367 struct { 368 __be32 pad[3]; 369 __be32 addr; 370 } ip4; 371 }; 372 373 struct cma_hdr { 374 u8 cma_version; 375 u8 ip_version; /* IP version: 7:4 */ 376 __be16 port; 377 union cma_ip_addr src_addr; 378 union cma_ip_addr dst_addr; 379 }; 380 381 #define CMA_VERSION 0x00 382 383 struct cma_req_info { 384 struct sockaddr_storage listen_addr_storage; 385 struct sockaddr_storage src_addr_storage; 386 struct ib_device *device; 387 union ib_gid local_gid; 388 __be64 service_id; 389 int port; 390 bool has_gid; 391 u16 pkey; 392 }; 393 394 static int cma_comp_exch(struct rdma_id_private *id_priv, 395 enum rdma_cm_state comp, enum rdma_cm_state exch) 396 { 397 unsigned long flags; 398 int ret; 399 400 /* 401 * The FSM uses a funny double locking where state is protected by both 402 * the handler_mutex and the spinlock. State is not allowed to change 403 * to/from a handler_mutex protected value without also holding 404 * handler_mutex. 405 */ 406 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 407 lockdep_assert_held(&id_priv->handler_mutex); 408 409 spin_lock_irqsave(&id_priv->lock, flags); 410 if ((ret = (id_priv->state == comp))) 411 id_priv->state = exch; 412 spin_unlock_irqrestore(&id_priv->lock, flags); 413 return ret; 414 } 415 416 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 417 { 418 return hdr->ip_version >> 4; 419 } 420 421 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 422 { 423 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 424 } 425 426 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 427 { 428 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 429 } 430 431 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 432 { 433 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 434 } 435 436 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 437 { 438 struct in_device *in_dev = NULL; 439 440 if (ndev) { 441 rtnl_lock(); 442 in_dev = __in_dev_get_rtnl(ndev); 443 if (in_dev) { 444 if (join) 445 ip_mc_inc_group(in_dev, 446 *(__be32 *)(mgid->raw + 12)); 447 else 448 ip_mc_dec_group(in_dev, 449 *(__be32 *)(mgid->raw + 12)); 450 } 451 rtnl_unlock(); 452 } 453 return (in_dev) ? 0 : -ENODEV; 454 } 455 456 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 457 struct id_table_entry *entry_b) 458 { 459 struct rdma_id_private *id_priv = list_first_entry( 460 &entry_b->id_list, struct rdma_id_private, id_list_entry); 461 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 462 struct sockaddr *sb = cma_dst_addr(id_priv); 463 464 if (ifindex_a != ifindex_b) 465 return (ifindex_a > ifindex_b) ? 1 : -1; 466 467 if (sa->sa_family != sb->sa_family) 468 return sa->sa_family - sb->sa_family; 469 470 if (sa->sa_family == AF_INET && 471 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 472 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 473 &((struct sockaddr_in *)sb)->sin_addr, 474 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 475 } 476 477 if (sa->sa_family == AF_INET6 && 478 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 479 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 480 &((struct sockaddr_in6 *)sb)->sin6_addr); 481 } 482 483 return -1; 484 } 485 486 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 487 { 488 struct rb_node **new, *parent = NULL; 489 struct id_table_entry *this, *node; 490 unsigned long flags; 491 int result; 492 493 node = kzalloc(sizeof(*node), GFP_KERNEL); 494 if (!node) 495 return -ENOMEM; 496 497 spin_lock_irqsave(&id_table_lock, flags); 498 new = &id_table.rb_node; 499 while (*new) { 500 this = container_of(*new, struct id_table_entry, rb_node); 501 result = compare_netdev_and_ip( 502 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 503 cma_dst_addr(node_id_priv), this); 504 505 parent = *new; 506 if (result < 0) 507 new = &((*new)->rb_left); 508 else if (result > 0) 509 new = &((*new)->rb_right); 510 else { 511 list_add_tail(&node_id_priv->id_list_entry, 512 &this->id_list); 513 kfree(node); 514 goto unlock; 515 } 516 } 517 518 INIT_LIST_HEAD(&node->id_list); 519 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 520 521 rb_link_node(&node->rb_node, parent, new); 522 rb_insert_color(&node->rb_node, &id_table); 523 524 unlock: 525 spin_unlock_irqrestore(&id_table_lock, flags); 526 return 0; 527 } 528 529 static struct id_table_entry * 530 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 531 { 532 struct rb_node *node = root->rb_node; 533 struct id_table_entry *data; 534 int result; 535 536 while (node) { 537 data = container_of(node, struct id_table_entry, rb_node); 538 result = compare_netdev_and_ip(ifindex, sa, data); 539 if (result < 0) 540 node = node->rb_left; 541 else if (result > 0) 542 node = node->rb_right; 543 else 544 return data; 545 } 546 547 return NULL; 548 } 549 550 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 551 { 552 struct id_table_entry *data; 553 unsigned long flags; 554 555 spin_lock_irqsave(&id_table_lock, flags); 556 if (list_empty(&id_priv->id_list_entry)) 557 goto out; 558 559 data = node_from_ndev_ip(&id_table, 560 id_priv->id.route.addr.dev_addr.bound_dev_if, 561 cma_dst_addr(id_priv)); 562 if (!data) 563 goto out; 564 565 list_del_init(&id_priv->id_list_entry); 566 if (list_empty(&data->id_list)) { 567 rb_erase(&data->rb_node, &id_table); 568 kfree(data); 569 } 570 out: 571 spin_unlock_irqrestore(&id_table_lock, flags); 572 } 573 574 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 575 struct cma_device *cma_dev) 576 { 577 cma_dev_get(cma_dev); 578 id_priv->cma_dev = cma_dev; 579 id_priv->id.device = cma_dev->device; 580 id_priv->id.route.addr.dev_addr.transport = 581 rdma_node_get_transport(cma_dev->device->node_type); 582 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 583 584 trace_cm_id_attach(id_priv, cma_dev->device); 585 } 586 587 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 588 struct cma_device *cma_dev) 589 { 590 _cma_attach_to_dev(id_priv, cma_dev); 591 id_priv->gid_type = 592 cma_dev->default_gid_type[id_priv->id.port_num - 593 rdma_start_port(cma_dev->device)]; 594 } 595 596 static void cma_release_dev(struct rdma_id_private *id_priv) 597 { 598 mutex_lock(&lock); 599 list_del_init(&id_priv->device_item); 600 cma_dev_put(id_priv->cma_dev); 601 id_priv->cma_dev = NULL; 602 id_priv->id.device = NULL; 603 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 604 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 605 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 606 } 607 mutex_unlock(&lock); 608 } 609 610 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 611 { 612 return id_priv->id.route.addr.src_addr.ss_family; 613 } 614 615 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 616 { 617 struct ib_sa_mcmember_rec rec; 618 int ret = 0; 619 620 switch (id_priv->id.ps) { 621 case RDMA_PS_UDP: 622 case RDMA_PS_IB: 623 id_priv->qkey = RDMA_UDP_QKEY; 624 break; 625 case RDMA_PS_IPOIB: 626 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 627 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 628 id_priv->id.port_num, &rec.mgid, 629 &rec); 630 if (!ret) 631 id_priv->qkey = be32_to_cpu(rec.qkey); 632 break; 633 default: 634 break; 635 } 636 return ret; 637 } 638 639 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 640 { 641 if (!qkey || 642 (id_priv->qkey && (id_priv->qkey != qkey))) 643 return -EINVAL; 644 645 id_priv->qkey = qkey; 646 return 0; 647 } 648 649 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 650 { 651 dev_addr->dev_type = ARPHRD_INFINIBAND; 652 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 653 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 654 } 655 656 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 657 { 658 int ret; 659 660 if (addr->sa_family != AF_IB) { 661 ret = rdma_translate_ip(addr, dev_addr); 662 } else { 663 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 664 ret = 0; 665 } 666 667 return ret; 668 } 669 670 static const struct ib_gid_attr * 671 cma_validate_port(struct ib_device *device, u32 port, 672 enum ib_gid_type gid_type, 673 union ib_gid *gid, 674 struct rdma_id_private *id_priv) 675 { 676 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 677 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 678 int bound_if_index = dev_addr->bound_dev_if; 679 int dev_type = dev_addr->dev_type; 680 struct net_device *ndev = NULL; 681 struct net_device *pdev = NULL; 682 683 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 684 goto out; 685 686 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 687 goto out; 688 689 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 690 goto out; 691 692 /* 693 * For drivers that do not associate more than one net device with 694 * their gid tables, such as iWARP drivers, it is sufficient to 695 * return the first table entry. 696 * 697 * Other driver classes might be included in the future. 698 */ 699 if (rdma_protocol_iwarp(device, port)) { 700 sgid_attr = rdma_get_gid_attr(device, port, 0); 701 if (IS_ERR(sgid_attr)) 702 goto out; 703 704 rcu_read_lock(); 705 ndev = rcu_dereference(sgid_attr->ndev); 706 if (ndev->ifindex != bound_if_index) { 707 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index); 708 if (pdev) { 709 if (is_vlan_dev(pdev)) { 710 pdev = vlan_dev_real_dev(pdev); 711 if (ndev->ifindex == pdev->ifindex) 712 bound_if_index = pdev->ifindex; 713 } 714 if (is_vlan_dev(ndev)) { 715 pdev = vlan_dev_real_dev(ndev); 716 if (bound_if_index == pdev->ifindex) 717 bound_if_index = ndev->ifindex; 718 } 719 } 720 } 721 if (!net_eq(dev_net(ndev), dev_addr->net) || 722 ndev->ifindex != bound_if_index) { 723 rdma_put_gid_attr(sgid_attr); 724 sgid_attr = ERR_PTR(-ENODEV); 725 } 726 rcu_read_unlock(); 727 goto out; 728 } 729 730 /* 731 * For a RXE device, it should work with TUN device and normal ethernet 732 * devices. Use driver_id to check if a device is a RXE device or not. 733 * ARPHDR_NONE means a TUN device. 734 */ 735 if (device->ops.driver_id == RDMA_DRIVER_RXE) { 736 if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER) 737 && rdma_protocol_roce(device, port)) { 738 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 739 if (!ndev) 740 goto out; 741 } 742 } else { 743 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 744 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 745 if (!ndev) 746 goto out; 747 } else { 748 gid_type = IB_GID_TYPE_IB; 749 } 750 } 751 752 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 753 dev_put(ndev); 754 out: 755 return sgid_attr; 756 } 757 758 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 759 const struct ib_gid_attr *sgid_attr) 760 { 761 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 762 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 763 } 764 765 /** 766 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 767 * based on source ip address. 768 * @id_priv: cm_id which should be bound to cma device 769 * 770 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 771 * based on source IP address. It returns 0 on success or error code otherwise. 772 * It is applicable to active and passive side cm_id. 773 */ 774 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 775 { 776 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 777 const struct ib_gid_attr *sgid_attr; 778 union ib_gid gid, iboe_gid, *gidp; 779 struct cma_device *cma_dev; 780 enum ib_gid_type gid_type; 781 int ret = -ENODEV; 782 u32 port; 783 784 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 785 id_priv->id.ps == RDMA_PS_IPOIB) 786 return -EINVAL; 787 788 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 789 &iboe_gid); 790 791 memcpy(&gid, dev_addr->src_dev_addr + 792 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 793 794 mutex_lock(&lock); 795 list_for_each_entry(cma_dev, &dev_list, list) { 796 rdma_for_each_port (cma_dev->device, port) { 797 gidp = rdma_protocol_roce(cma_dev->device, port) ? 798 &iboe_gid : &gid; 799 gid_type = cma_dev->default_gid_type[port - 1]; 800 sgid_attr = cma_validate_port(cma_dev->device, port, 801 gid_type, gidp, id_priv); 802 if (!IS_ERR(sgid_attr)) { 803 id_priv->id.port_num = port; 804 cma_bind_sgid_attr(id_priv, sgid_attr); 805 cma_attach_to_dev(id_priv, cma_dev); 806 ret = 0; 807 goto out; 808 } 809 } 810 } 811 out: 812 mutex_unlock(&lock); 813 return ret; 814 } 815 816 /** 817 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 818 * @id_priv: cm id to bind to cma device 819 * @listen_id_priv: listener cm id to match against 820 * @req: Pointer to req structure containaining incoming 821 * request information 822 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 823 * rdma device matches for listen_id and incoming request. It also verifies 824 * that a GID table entry is present for the source address. 825 * Returns 0 on success, or returns error code otherwise. 826 */ 827 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 828 const struct rdma_id_private *listen_id_priv, 829 struct cma_req_info *req) 830 { 831 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 832 const struct ib_gid_attr *sgid_attr; 833 enum ib_gid_type gid_type; 834 union ib_gid gid; 835 836 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 837 id_priv->id.ps == RDMA_PS_IPOIB) 838 return -EINVAL; 839 840 if (rdma_protocol_roce(req->device, req->port)) 841 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 842 &gid); 843 else 844 memcpy(&gid, dev_addr->src_dev_addr + 845 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 846 847 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 848 sgid_attr = cma_validate_port(req->device, req->port, 849 gid_type, &gid, id_priv); 850 if (IS_ERR(sgid_attr)) 851 return PTR_ERR(sgid_attr); 852 853 id_priv->id.port_num = req->port; 854 cma_bind_sgid_attr(id_priv, sgid_attr); 855 /* Need to acquire lock to protect against reader 856 * of cma_dev->id_list such as cma_netdev_callback() and 857 * cma_process_remove(). 858 */ 859 mutex_lock(&lock); 860 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 861 mutex_unlock(&lock); 862 rdma_restrack_add(&id_priv->res); 863 return 0; 864 } 865 866 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 867 const struct rdma_id_private *listen_id_priv) 868 { 869 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 870 const struct ib_gid_attr *sgid_attr; 871 struct cma_device *cma_dev; 872 enum ib_gid_type gid_type; 873 int ret = -ENODEV; 874 union ib_gid gid; 875 u32 port; 876 877 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 878 id_priv->id.ps == RDMA_PS_IPOIB) 879 return -EINVAL; 880 881 memcpy(&gid, dev_addr->src_dev_addr + 882 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 883 884 mutex_lock(&lock); 885 886 cma_dev = listen_id_priv->cma_dev; 887 port = listen_id_priv->id.port_num; 888 gid_type = listen_id_priv->gid_type; 889 sgid_attr = cma_validate_port(cma_dev->device, port, 890 gid_type, &gid, id_priv); 891 if (!IS_ERR(sgid_attr)) { 892 id_priv->id.port_num = port; 893 cma_bind_sgid_attr(id_priv, sgid_attr); 894 ret = 0; 895 goto out; 896 } 897 898 list_for_each_entry(cma_dev, &dev_list, list) { 899 rdma_for_each_port (cma_dev->device, port) { 900 if (listen_id_priv->cma_dev == cma_dev && 901 listen_id_priv->id.port_num == port) 902 continue; 903 904 gid_type = cma_dev->default_gid_type[port - 1]; 905 sgid_attr = cma_validate_port(cma_dev->device, port, 906 gid_type, &gid, id_priv); 907 if (!IS_ERR(sgid_attr)) { 908 id_priv->id.port_num = port; 909 cma_bind_sgid_attr(id_priv, sgid_attr); 910 ret = 0; 911 goto out; 912 } 913 } 914 } 915 916 out: 917 if (!ret) { 918 cma_attach_to_dev(id_priv, cma_dev); 919 rdma_restrack_add(&id_priv->res); 920 } 921 922 mutex_unlock(&lock); 923 return ret; 924 } 925 926 /* 927 * Select the source IB device and address to reach the destination IB address. 928 */ 929 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 930 { 931 struct cma_device *cma_dev, *cur_dev; 932 struct sockaddr_ib *addr; 933 union ib_gid gid, sgid, *dgid; 934 unsigned int p; 935 u16 pkey, index; 936 enum ib_port_state port_state; 937 int ret; 938 int i; 939 940 cma_dev = NULL; 941 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 942 dgid = (union ib_gid *) &addr->sib_addr; 943 pkey = ntohs(addr->sib_pkey); 944 945 mutex_lock(&lock); 946 list_for_each_entry(cur_dev, &dev_list, list) { 947 rdma_for_each_port (cur_dev->device, p) { 948 if (!rdma_cap_af_ib(cur_dev->device, p)) 949 continue; 950 951 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 952 continue; 953 954 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 955 continue; 956 957 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 958 ++i) { 959 ret = rdma_query_gid(cur_dev->device, p, i, 960 &gid); 961 if (ret) 962 continue; 963 964 if (!memcmp(&gid, dgid, sizeof(gid))) { 965 cma_dev = cur_dev; 966 sgid = gid; 967 id_priv->id.port_num = p; 968 goto found; 969 } 970 971 if (!cma_dev && (gid.global.subnet_prefix == 972 dgid->global.subnet_prefix) && 973 port_state == IB_PORT_ACTIVE) { 974 cma_dev = cur_dev; 975 sgid = gid; 976 id_priv->id.port_num = p; 977 goto found; 978 } 979 } 980 } 981 } 982 mutex_unlock(&lock); 983 return -ENODEV; 984 985 found: 986 cma_attach_to_dev(id_priv, cma_dev); 987 rdma_restrack_add(&id_priv->res); 988 mutex_unlock(&lock); 989 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 990 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 991 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 992 return 0; 993 } 994 995 static void cma_id_get(struct rdma_id_private *id_priv) 996 { 997 refcount_inc(&id_priv->refcount); 998 } 999 1000 static void cma_id_put(struct rdma_id_private *id_priv) 1001 { 1002 if (refcount_dec_and_test(&id_priv->refcount)) 1003 complete(&id_priv->comp); 1004 } 1005 1006 static struct rdma_id_private * 1007 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 1008 void *context, enum rdma_ucm_port_space ps, 1009 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 1010 { 1011 struct rdma_id_private *id_priv; 1012 1013 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 1014 if (!id_priv) 1015 return ERR_PTR(-ENOMEM); 1016 1017 id_priv->state = RDMA_CM_IDLE; 1018 id_priv->id.context = context; 1019 id_priv->id.event_handler = event_handler; 1020 id_priv->id.ps = ps; 1021 id_priv->id.qp_type = qp_type; 1022 id_priv->tos_set = false; 1023 id_priv->timeout_set = false; 1024 id_priv->min_rnr_timer_set = false; 1025 id_priv->gid_type = IB_GID_TYPE_IB; 1026 spin_lock_init(&id_priv->lock); 1027 mutex_init(&id_priv->qp_mutex); 1028 init_completion(&id_priv->comp); 1029 refcount_set(&id_priv->refcount, 1); 1030 mutex_init(&id_priv->handler_mutex); 1031 INIT_LIST_HEAD(&id_priv->device_item); 1032 INIT_LIST_HEAD(&id_priv->id_list_entry); 1033 INIT_LIST_HEAD(&id_priv->listen_list); 1034 INIT_LIST_HEAD(&id_priv->mc_list); 1035 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1036 id_priv->id.route.addr.dev_addr.net = get_net(net); 1037 id_priv->seq_num &= 0x00ffffff; 1038 INIT_WORK(&id_priv->id.net_work, cma_netevent_work_handler); 1039 1040 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1041 if (parent) 1042 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1043 1044 return id_priv; 1045 } 1046 1047 struct rdma_cm_id * 1048 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1049 void *context, enum rdma_ucm_port_space ps, 1050 enum ib_qp_type qp_type, const char *caller) 1051 { 1052 struct rdma_id_private *ret; 1053 1054 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1055 if (IS_ERR(ret)) 1056 return ERR_CAST(ret); 1057 1058 rdma_restrack_set_name(&ret->res, caller); 1059 return &ret->id; 1060 } 1061 EXPORT_SYMBOL(__rdma_create_kernel_id); 1062 1063 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1064 void *context, 1065 enum rdma_ucm_port_space ps, 1066 enum ib_qp_type qp_type) 1067 { 1068 struct rdma_id_private *ret; 1069 1070 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1071 ps, qp_type, NULL); 1072 if (IS_ERR(ret)) 1073 return ERR_CAST(ret); 1074 1075 rdma_restrack_set_name(&ret->res, NULL); 1076 return &ret->id; 1077 } 1078 EXPORT_SYMBOL(rdma_create_user_id); 1079 1080 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1081 { 1082 struct ib_qp_attr qp_attr; 1083 int qp_attr_mask, ret; 1084 1085 qp_attr.qp_state = IB_QPS_INIT; 1086 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1087 if (ret) 1088 return ret; 1089 1090 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1091 if (ret) 1092 return ret; 1093 1094 qp_attr.qp_state = IB_QPS_RTR; 1095 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1096 if (ret) 1097 return ret; 1098 1099 qp_attr.qp_state = IB_QPS_RTS; 1100 qp_attr.sq_psn = 0; 1101 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1102 1103 return ret; 1104 } 1105 1106 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1107 { 1108 struct ib_qp_attr qp_attr; 1109 int qp_attr_mask, ret; 1110 1111 qp_attr.qp_state = IB_QPS_INIT; 1112 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1113 if (ret) 1114 return ret; 1115 1116 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1117 } 1118 1119 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1120 struct ib_qp_init_attr *qp_init_attr) 1121 { 1122 struct rdma_id_private *id_priv; 1123 struct ib_qp *qp; 1124 int ret; 1125 1126 id_priv = container_of(id, struct rdma_id_private, id); 1127 if (id->device != pd->device) { 1128 ret = -EINVAL; 1129 goto out_err; 1130 } 1131 1132 qp_init_attr->port_num = id->port_num; 1133 qp = ib_create_qp(pd, qp_init_attr); 1134 if (IS_ERR(qp)) { 1135 ret = PTR_ERR(qp); 1136 goto out_err; 1137 } 1138 1139 if (id->qp_type == IB_QPT_UD) 1140 ret = cma_init_ud_qp(id_priv, qp); 1141 else 1142 ret = cma_init_conn_qp(id_priv, qp); 1143 if (ret) 1144 goto out_destroy; 1145 1146 id->qp = qp; 1147 id_priv->qp_num = qp->qp_num; 1148 id_priv->srq = (qp->srq != NULL); 1149 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1150 return 0; 1151 out_destroy: 1152 ib_destroy_qp(qp); 1153 out_err: 1154 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1155 return ret; 1156 } 1157 EXPORT_SYMBOL(rdma_create_qp); 1158 1159 void rdma_destroy_qp(struct rdma_cm_id *id) 1160 { 1161 struct rdma_id_private *id_priv; 1162 1163 id_priv = container_of(id, struct rdma_id_private, id); 1164 trace_cm_qp_destroy(id_priv); 1165 mutex_lock(&id_priv->qp_mutex); 1166 ib_destroy_qp(id_priv->id.qp); 1167 id_priv->id.qp = NULL; 1168 mutex_unlock(&id_priv->qp_mutex); 1169 } 1170 EXPORT_SYMBOL(rdma_destroy_qp); 1171 1172 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1173 struct rdma_conn_param *conn_param) 1174 { 1175 struct ib_qp_attr qp_attr; 1176 int qp_attr_mask, ret; 1177 1178 mutex_lock(&id_priv->qp_mutex); 1179 if (!id_priv->id.qp) { 1180 ret = 0; 1181 goto out; 1182 } 1183 1184 /* Need to update QP attributes from default values. */ 1185 qp_attr.qp_state = IB_QPS_INIT; 1186 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1187 if (ret) 1188 goto out; 1189 1190 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1191 if (ret) 1192 goto out; 1193 1194 qp_attr.qp_state = IB_QPS_RTR; 1195 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1196 if (ret) 1197 goto out; 1198 1199 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1200 1201 if (conn_param) 1202 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1203 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1204 out: 1205 mutex_unlock(&id_priv->qp_mutex); 1206 return ret; 1207 } 1208 1209 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1210 struct rdma_conn_param *conn_param) 1211 { 1212 struct ib_qp_attr qp_attr; 1213 int qp_attr_mask, ret; 1214 1215 mutex_lock(&id_priv->qp_mutex); 1216 if (!id_priv->id.qp) { 1217 ret = 0; 1218 goto out; 1219 } 1220 1221 qp_attr.qp_state = IB_QPS_RTS; 1222 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1223 if (ret) 1224 goto out; 1225 1226 if (conn_param) 1227 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1228 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1229 out: 1230 mutex_unlock(&id_priv->qp_mutex); 1231 return ret; 1232 } 1233 1234 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1235 { 1236 struct ib_qp_attr qp_attr; 1237 int ret; 1238 1239 mutex_lock(&id_priv->qp_mutex); 1240 if (!id_priv->id.qp) { 1241 ret = 0; 1242 goto out; 1243 } 1244 1245 qp_attr.qp_state = IB_QPS_ERR; 1246 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1247 out: 1248 mutex_unlock(&id_priv->qp_mutex); 1249 return ret; 1250 } 1251 1252 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1253 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1254 { 1255 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1256 int ret; 1257 u16 pkey; 1258 1259 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1260 pkey = 0xffff; 1261 else 1262 pkey = ib_addr_get_pkey(dev_addr); 1263 1264 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1265 pkey, &qp_attr->pkey_index); 1266 if (ret) 1267 return ret; 1268 1269 qp_attr->port_num = id_priv->id.port_num; 1270 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1271 1272 if (id_priv->id.qp_type == IB_QPT_UD) { 1273 ret = cma_set_default_qkey(id_priv); 1274 if (ret) 1275 return ret; 1276 1277 qp_attr->qkey = id_priv->qkey; 1278 *qp_attr_mask |= IB_QP_QKEY; 1279 } else { 1280 qp_attr->qp_access_flags = 0; 1281 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1282 } 1283 return 0; 1284 } 1285 1286 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1287 int *qp_attr_mask) 1288 { 1289 struct rdma_id_private *id_priv; 1290 int ret = 0; 1291 1292 id_priv = container_of(id, struct rdma_id_private, id); 1293 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1294 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1295 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1296 else 1297 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1298 qp_attr_mask); 1299 1300 if (qp_attr->qp_state == IB_QPS_RTR) 1301 qp_attr->rq_psn = id_priv->seq_num; 1302 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1303 if (!id_priv->cm_id.iw) { 1304 qp_attr->qp_access_flags = 0; 1305 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1306 } else 1307 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1308 qp_attr_mask); 1309 qp_attr->port_num = id_priv->id.port_num; 1310 *qp_attr_mask |= IB_QP_PORT; 1311 } else { 1312 ret = -ENOSYS; 1313 } 1314 1315 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1316 qp_attr->timeout = id_priv->timeout; 1317 1318 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1319 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1320 1321 return ret; 1322 } 1323 EXPORT_SYMBOL(rdma_init_qp_attr); 1324 1325 static inline bool cma_zero_addr(const struct sockaddr *addr) 1326 { 1327 switch (addr->sa_family) { 1328 case AF_INET: 1329 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1330 case AF_INET6: 1331 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1332 case AF_IB: 1333 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1334 default: 1335 return false; 1336 } 1337 } 1338 1339 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1340 { 1341 switch (addr->sa_family) { 1342 case AF_INET: 1343 return ipv4_is_loopback( 1344 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1345 case AF_INET6: 1346 return ipv6_addr_loopback( 1347 &((struct sockaddr_in6 *)addr)->sin6_addr); 1348 case AF_IB: 1349 return ib_addr_loopback( 1350 &((struct sockaddr_ib *)addr)->sib_addr); 1351 default: 1352 return false; 1353 } 1354 } 1355 1356 static inline bool cma_any_addr(const struct sockaddr *addr) 1357 { 1358 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1359 } 1360 1361 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1362 { 1363 if (src->sa_family != dst->sa_family) 1364 return -1; 1365 1366 switch (src->sa_family) { 1367 case AF_INET: 1368 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1369 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1370 case AF_INET6: { 1371 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1372 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1373 bool link_local; 1374 1375 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1376 &dst_addr6->sin6_addr)) 1377 return 1; 1378 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1379 IPV6_ADDR_LINKLOCAL; 1380 /* Link local must match their scope_ids */ 1381 return link_local ? (src_addr6->sin6_scope_id != 1382 dst_addr6->sin6_scope_id) : 1383 0; 1384 } 1385 1386 default: 1387 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1388 &((struct sockaddr_ib *) dst)->sib_addr); 1389 } 1390 } 1391 1392 static __be16 cma_port(const struct sockaddr *addr) 1393 { 1394 struct sockaddr_ib *sib; 1395 1396 switch (addr->sa_family) { 1397 case AF_INET: 1398 return ((struct sockaddr_in *) addr)->sin_port; 1399 case AF_INET6: 1400 return ((struct sockaddr_in6 *) addr)->sin6_port; 1401 case AF_IB: 1402 sib = (struct sockaddr_ib *) addr; 1403 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1404 be64_to_cpu(sib->sib_sid_mask))); 1405 default: 1406 return 0; 1407 } 1408 } 1409 1410 static inline int cma_any_port(const struct sockaddr *addr) 1411 { 1412 return !cma_port(addr); 1413 } 1414 1415 static void cma_save_ib_info(struct sockaddr *src_addr, 1416 struct sockaddr *dst_addr, 1417 const struct rdma_cm_id *listen_id, 1418 const struct sa_path_rec *path) 1419 { 1420 struct sockaddr_ib *listen_ib, *ib; 1421 1422 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1423 if (src_addr) { 1424 ib = (struct sockaddr_ib *)src_addr; 1425 ib->sib_family = AF_IB; 1426 if (path) { 1427 ib->sib_pkey = path->pkey; 1428 ib->sib_flowinfo = path->flow_label; 1429 memcpy(&ib->sib_addr, &path->sgid, 16); 1430 ib->sib_sid = path->service_id; 1431 ib->sib_scope_id = 0; 1432 } else { 1433 ib->sib_pkey = listen_ib->sib_pkey; 1434 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1435 ib->sib_addr = listen_ib->sib_addr; 1436 ib->sib_sid = listen_ib->sib_sid; 1437 ib->sib_scope_id = listen_ib->sib_scope_id; 1438 } 1439 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1440 } 1441 if (dst_addr) { 1442 ib = (struct sockaddr_ib *)dst_addr; 1443 ib->sib_family = AF_IB; 1444 if (path) { 1445 ib->sib_pkey = path->pkey; 1446 ib->sib_flowinfo = path->flow_label; 1447 memcpy(&ib->sib_addr, &path->dgid, 16); 1448 } 1449 } 1450 } 1451 1452 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1453 struct sockaddr_in *dst_addr, 1454 struct cma_hdr *hdr, 1455 __be16 local_port) 1456 { 1457 if (src_addr) { 1458 *src_addr = (struct sockaddr_in) { 1459 .sin_family = AF_INET, 1460 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1461 .sin_port = local_port, 1462 }; 1463 } 1464 1465 if (dst_addr) { 1466 *dst_addr = (struct sockaddr_in) { 1467 .sin_family = AF_INET, 1468 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1469 .sin_port = hdr->port, 1470 }; 1471 } 1472 } 1473 1474 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1475 struct sockaddr_in6 *dst_addr, 1476 struct cma_hdr *hdr, 1477 __be16 local_port) 1478 { 1479 if (src_addr) { 1480 *src_addr = (struct sockaddr_in6) { 1481 .sin6_family = AF_INET6, 1482 .sin6_addr = hdr->dst_addr.ip6, 1483 .sin6_port = local_port, 1484 }; 1485 } 1486 1487 if (dst_addr) { 1488 *dst_addr = (struct sockaddr_in6) { 1489 .sin6_family = AF_INET6, 1490 .sin6_addr = hdr->src_addr.ip6, 1491 .sin6_port = hdr->port, 1492 }; 1493 } 1494 } 1495 1496 static u16 cma_port_from_service_id(__be64 service_id) 1497 { 1498 return (u16)be64_to_cpu(service_id); 1499 } 1500 1501 static int cma_save_ip_info(struct sockaddr *src_addr, 1502 struct sockaddr *dst_addr, 1503 const struct ib_cm_event *ib_event, 1504 __be64 service_id) 1505 { 1506 struct cma_hdr *hdr; 1507 __be16 port; 1508 1509 hdr = ib_event->private_data; 1510 if (hdr->cma_version != CMA_VERSION) 1511 return -EINVAL; 1512 1513 port = htons(cma_port_from_service_id(service_id)); 1514 1515 switch (cma_get_ip_ver(hdr)) { 1516 case 4: 1517 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1518 (struct sockaddr_in *)dst_addr, hdr, port); 1519 break; 1520 case 6: 1521 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1522 (struct sockaddr_in6 *)dst_addr, hdr, port); 1523 break; 1524 default: 1525 return -EAFNOSUPPORT; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int cma_save_net_info(struct sockaddr *src_addr, 1532 struct sockaddr *dst_addr, 1533 const struct rdma_cm_id *listen_id, 1534 const struct ib_cm_event *ib_event, 1535 sa_family_t sa_family, __be64 service_id) 1536 { 1537 if (sa_family == AF_IB) { 1538 if (ib_event->event == IB_CM_REQ_RECEIVED) 1539 cma_save_ib_info(src_addr, dst_addr, listen_id, 1540 ib_event->param.req_rcvd.primary_path); 1541 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1542 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1543 return 0; 1544 } 1545 1546 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1547 } 1548 1549 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1550 struct cma_req_info *req) 1551 { 1552 const struct ib_cm_req_event_param *req_param = 1553 &ib_event->param.req_rcvd; 1554 const struct ib_cm_sidr_req_event_param *sidr_param = 1555 &ib_event->param.sidr_req_rcvd; 1556 1557 switch (ib_event->event) { 1558 case IB_CM_REQ_RECEIVED: 1559 req->device = req_param->listen_id->device; 1560 req->port = req_param->port; 1561 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1562 sizeof(req->local_gid)); 1563 req->has_gid = true; 1564 req->service_id = req_param->primary_path->service_id; 1565 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1566 if (req->pkey != req_param->bth_pkey) 1567 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1568 "RDMA CMA: in the future this may cause the request to be dropped\n", 1569 req_param->bth_pkey, req->pkey); 1570 break; 1571 case IB_CM_SIDR_REQ_RECEIVED: 1572 req->device = sidr_param->listen_id->device; 1573 req->port = sidr_param->port; 1574 req->has_gid = false; 1575 req->service_id = sidr_param->service_id; 1576 req->pkey = sidr_param->pkey; 1577 if (req->pkey != sidr_param->bth_pkey) 1578 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1579 "RDMA CMA: in the future this may cause the request to be dropped\n", 1580 sidr_param->bth_pkey, req->pkey); 1581 break; 1582 default: 1583 return -EINVAL; 1584 } 1585 1586 return 0; 1587 } 1588 1589 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1590 const struct sockaddr_in *dst_addr, 1591 const struct sockaddr_in *src_addr) 1592 { 1593 __be32 daddr = dst_addr->sin_addr.s_addr, 1594 saddr = src_addr->sin_addr.s_addr; 1595 struct fib_result res; 1596 struct flowi4 fl4; 1597 int err; 1598 bool ret; 1599 1600 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1601 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1602 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1603 ipv4_is_loopback(saddr)) 1604 return false; 1605 1606 memset(&fl4, 0, sizeof(fl4)); 1607 fl4.flowi4_oif = net_dev->ifindex; 1608 fl4.daddr = daddr; 1609 fl4.saddr = saddr; 1610 1611 rcu_read_lock(); 1612 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1613 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1614 rcu_read_unlock(); 1615 1616 return ret; 1617 } 1618 1619 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1620 const struct sockaddr_in6 *dst_addr, 1621 const struct sockaddr_in6 *src_addr) 1622 { 1623 #if IS_ENABLED(CONFIG_IPV6) 1624 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1625 IPV6_ADDR_LINKLOCAL; 1626 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1627 &src_addr->sin6_addr, net_dev->ifindex, 1628 NULL, strict); 1629 bool ret; 1630 1631 if (!rt) 1632 return false; 1633 1634 ret = rt->rt6i_idev->dev == net_dev; 1635 ip6_rt_put(rt); 1636 1637 return ret; 1638 #else 1639 return false; 1640 #endif 1641 } 1642 1643 static bool validate_net_dev(struct net_device *net_dev, 1644 const struct sockaddr *daddr, 1645 const struct sockaddr *saddr) 1646 { 1647 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1648 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1649 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1650 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1651 1652 switch (daddr->sa_family) { 1653 case AF_INET: 1654 return saddr->sa_family == AF_INET && 1655 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1656 1657 case AF_INET6: 1658 return saddr->sa_family == AF_INET6 && 1659 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1660 1661 default: 1662 return false; 1663 } 1664 } 1665 1666 static struct net_device * 1667 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1668 { 1669 const struct ib_gid_attr *sgid_attr = NULL; 1670 struct net_device *ndev; 1671 1672 if (ib_event->event == IB_CM_REQ_RECEIVED) 1673 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1674 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1675 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1676 1677 if (!sgid_attr) 1678 return NULL; 1679 1680 rcu_read_lock(); 1681 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1682 if (IS_ERR(ndev)) 1683 ndev = NULL; 1684 else 1685 dev_hold(ndev); 1686 rcu_read_unlock(); 1687 return ndev; 1688 } 1689 1690 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1691 struct cma_req_info *req) 1692 { 1693 struct sockaddr *listen_addr = 1694 (struct sockaddr *)&req->listen_addr_storage; 1695 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1696 struct net_device *net_dev; 1697 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1698 int err; 1699 1700 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1701 req->service_id); 1702 if (err) 1703 return ERR_PTR(err); 1704 1705 if (rdma_protocol_roce(req->device, req->port)) 1706 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1707 else 1708 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1709 req->pkey, 1710 gid, listen_addr); 1711 if (!net_dev) 1712 return ERR_PTR(-ENODEV); 1713 1714 return net_dev; 1715 } 1716 1717 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1718 { 1719 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1720 } 1721 1722 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1723 const struct cma_hdr *hdr) 1724 { 1725 struct sockaddr *addr = cma_src_addr(id_priv); 1726 __be32 ip4_addr; 1727 struct in6_addr ip6_addr; 1728 1729 if (cma_any_addr(addr) && !id_priv->afonly) 1730 return true; 1731 1732 switch (addr->sa_family) { 1733 case AF_INET: 1734 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1735 if (cma_get_ip_ver(hdr) != 4) 1736 return false; 1737 if (!cma_any_addr(addr) && 1738 hdr->dst_addr.ip4.addr != ip4_addr) 1739 return false; 1740 break; 1741 case AF_INET6: 1742 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1743 if (cma_get_ip_ver(hdr) != 6) 1744 return false; 1745 if (!cma_any_addr(addr) && 1746 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1747 return false; 1748 break; 1749 case AF_IB: 1750 return true; 1751 default: 1752 return false; 1753 } 1754 1755 return true; 1756 } 1757 1758 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1759 { 1760 struct ib_device *device = id->device; 1761 const u32 port_num = id->port_num ?: rdma_start_port(device); 1762 1763 return rdma_protocol_roce(device, port_num); 1764 } 1765 1766 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1767 { 1768 const struct sockaddr *daddr = 1769 (const struct sockaddr *)&req->listen_addr_storage; 1770 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1771 1772 /* Returns true if the req is for IPv6 link local */ 1773 return (daddr->sa_family == AF_INET6 && 1774 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1775 } 1776 1777 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1778 const struct net_device *net_dev, 1779 const struct cma_req_info *req) 1780 { 1781 const struct rdma_addr *addr = &id->route.addr; 1782 1783 if (!net_dev) 1784 /* This request is an AF_IB request */ 1785 return (!id->port_num || id->port_num == req->port) && 1786 (addr->src_addr.ss_family == AF_IB); 1787 1788 /* 1789 * If the request is not for IPv6 link local, allow matching 1790 * request to any netdevice of the one or multiport rdma device. 1791 */ 1792 if (!cma_is_req_ipv6_ll(req)) 1793 return true; 1794 /* 1795 * Net namespaces must match, and if the listner is listening 1796 * on a specific netdevice than netdevice must match as well. 1797 */ 1798 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1799 (!!addr->dev_addr.bound_dev_if == 1800 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1801 return true; 1802 else 1803 return false; 1804 } 1805 1806 static struct rdma_id_private *cma_find_listener( 1807 const struct rdma_bind_list *bind_list, 1808 const struct ib_cm_id *cm_id, 1809 const struct ib_cm_event *ib_event, 1810 const struct cma_req_info *req, 1811 const struct net_device *net_dev) 1812 { 1813 struct rdma_id_private *id_priv, *id_priv_dev; 1814 1815 lockdep_assert_held(&lock); 1816 1817 if (!bind_list) 1818 return ERR_PTR(-EINVAL); 1819 1820 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1821 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1822 if (id_priv->id.device == cm_id->device && 1823 cma_match_net_dev(&id_priv->id, net_dev, req)) 1824 return id_priv; 1825 list_for_each_entry(id_priv_dev, 1826 &id_priv->listen_list, 1827 listen_item) { 1828 if (id_priv_dev->id.device == cm_id->device && 1829 cma_match_net_dev(&id_priv_dev->id, 1830 net_dev, req)) 1831 return id_priv_dev; 1832 } 1833 } 1834 } 1835 1836 return ERR_PTR(-EINVAL); 1837 } 1838 1839 static struct rdma_id_private * 1840 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1841 const struct ib_cm_event *ib_event, 1842 struct cma_req_info *req, 1843 struct net_device **net_dev) 1844 { 1845 struct rdma_bind_list *bind_list; 1846 struct rdma_id_private *id_priv; 1847 int err; 1848 1849 err = cma_save_req_info(ib_event, req); 1850 if (err) 1851 return ERR_PTR(err); 1852 1853 *net_dev = cma_get_net_dev(ib_event, req); 1854 if (IS_ERR(*net_dev)) { 1855 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1856 /* Assuming the protocol is AF_IB */ 1857 *net_dev = NULL; 1858 } else { 1859 return ERR_CAST(*net_dev); 1860 } 1861 } 1862 1863 mutex_lock(&lock); 1864 /* 1865 * Net namespace might be getting deleted while route lookup, 1866 * cm_id lookup is in progress. Therefore, perform netdevice 1867 * validation, cm_id lookup under rcu lock. 1868 * RCU lock along with netdevice state check, synchronizes with 1869 * netdevice migrating to different net namespace and also avoids 1870 * case where net namespace doesn't get deleted while lookup is in 1871 * progress. 1872 * If the device state is not IFF_UP, its properties such as ifindex 1873 * and nd_net cannot be trusted to remain valid without rcu lock. 1874 * net/core/dev.c change_net_namespace() ensures to synchronize with 1875 * ongoing operations on net device after device is closed using 1876 * synchronize_net(). 1877 */ 1878 rcu_read_lock(); 1879 if (*net_dev) { 1880 /* 1881 * If netdevice is down, it is likely that it is administratively 1882 * down or it might be migrating to different namespace. 1883 * In that case avoid further processing, as the net namespace 1884 * or ifindex may change. 1885 */ 1886 if (((*net_dev)->flags & IFF_UP) == 0) { 1887 id_priv = ERR_PTR(-EHOSTUNREACH); 1888 goto err; 1889 } 1890 1891 if (!validate_net_dev(*net_dev, 1892 (struct sockaddr *)&req->src_addr_storage, 1893 (struct sockaddr *)&req->listen_addr_storage)) { 1894 id_priv = ERR_PTR(-EHOSTUNREACH); 1895 goto err; 1896 } 1897 } 1898 1899 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1900 rdma_ps_from_service_id(req->service_id), 1901 cma_port_from_service_id(req->service_id)); 1902 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1903 err: 1904 rcu_read_unlock(); 1905 mutex_unlock(&lock); 1906 if (IS_ERR(id_priv) && *net_dev) { 1907 dev_put(*net_dev); 1908 *net_dev = NULL; 1909 } 1910 return id_priv; 1911 } 1912 1913 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1914 { 1915 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1916 } 1917 1918 static void cma_cancel_route(struct rdma_id_private *id_priv) 1919 { 1920 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1921 if (id_priv->query) 1922 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1923 } 1924 } 1925 1926 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1927 { 1928 struct rdma_id_private *dev_id_priv; 1929 1930 lockdep_assert_held(&lock); 1931 1932 /* 1933 * Remove from listen_any_list to prevent added devices from spawning 1934 * additional listen requests. 1935 */ 1936 list_del_init(&id_priv->listen_any_item); 1937 1938 while (!list_empty(&id_priv->listen_list)) { 1939 dev_id_priv = 1940 list_first_entry(&id_priv->listen_list, 1941 struct rdma_id_private, listen_item); 1942 /* sync with device removal to avoid duplicate destruction */ 1943 list_del_init(&dev_id_priv->device_item); 1944 list_del_init(&dev_id_priv->listen_item); 1945 mutex_unlock(&lock); 1946 1947 rdma_destroy_id(&dev_id_priv->id); 1948 mutex_lock(&lock); 1949 } 1950 } 1951 1952 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1953 { 1954 mutex_lock(&lock); 1955 _cma_cancel_listens(id_priv); 1956 mutex_unlock(&lock); 1957 } 1958 1959 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1960 enum rdma_cm_state state) 1961 { 1962 switch (state) { 1963 case RDMA_CM_ADDR_QUERY: 1964 /* 1965 * We can avoid doing the rdma_addr_cancel() based on state, 1966 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1967 * Notice that the addr_handler work could still be exiting 1968 * outside this state, however due to the interaction with the 1969 * handler_mutex the work is guaranteed not to touch id_priv 1970 * during exit. 1971 */ 1972 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1973 break; 1974 case RDMA_CM_ROUTE_QUERY: 1975 cma_cancel_route(id_priv); 1976 break; 1977 case RDMA_CM_LISTEN: 1978 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1979 cma_cancel_listens(id_priv); 1980 break; 1981 default: 1982 break; 1983 } 1984 } 1985 1986 static void cma_release_port(struct rdma_id_private *id_priv) 1987 { 1988 struct rdma_bind_list *bind_list = id_priv->bind_list; 1989 struct net *net = id_priv->id.route.addr.dev_addr.net; 1990 1991 if (!bind_list) 1992 return; 1993 1994 mutex_lock(&lock); 1995 hlist_del(&id_priv->node); 1996 if (hlist_empty(&bind_list->owners)) { 1997 cma_ps_remove(net, bind_list->ps, bind_list->port); 1998 kfree(bind_list); 1999 } 2000 mutex_unlock(&lock); 2001 } 2002 2003 static void destroy_mc(struct rdma_id_private *id_priv, 2004 struct cma_multicast *mc) 2005 { 2006 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 2007 2008 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 2009 ib_sa_free_multicast(mc->sa_mc); 2010 2011 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 2012 struct rdma_dev_addr *dev_addr = 2013 &id_priv->id.route.addr.dev_addr; 2014 struct net_device *ndev = NULL; 2015 2016 if (dev_addr->bound_dev_if) 2017 ndev = dev_get_by_index(dev_addr->net, 2018 dev_addr->bound_dev_if); 2019 if (ndev && !send_only) { 2020 enum ib_gid_type gid_type; 2021 union ib_gid mgid; 2022 2023 gid_type = id_priv->cma_dev->default_gid_type 2024 [id_priv->id.port_num - 2025 rdma_start_port( 2026 id_priv->cma_dev->device)]; 2027 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2028 gid_type); 2029 cma_igmp_send(ndev, &mgid, false); 2030 } 2031 dev_put(ndev); 2032 2033 cancel_work_sync(&mc->iboe_join.work); 2034 } 2035 kfree(mc); 2036 } 2037 2038 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2039 { 2040 struct cma_multicast *mc; 2041 2042 while (!list_empty(&id_priv->mc_list)) { 2043 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2044 list); 2045 list_del(&mc->list); 2046 destroy_mc(id_priv, mc); 2047 } 2048 } 2049 2050 static void _destroy_id(struct rdma_id_private *id_priv, 2051 enum rdma_cm_state state) 2052 { 2053 cma_cancel_operation(id_priv, state); 2054 2055 rdma_restrack_del(&id_priv->res); 2056 cma_remove_id_from_tree(id_priv); 2057 if (id_priv->cma_dev) { 2058 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2059 if (id_priv->cm_id.ib) 2060 ib_destroy_cm_id(id_priv->cm_id.ib); 2061 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2062 if (id_priv->cm_id.iw) 2063 iw_destroy_cm_id(id_priv->cm_id.iw); 2064 } 2065 cma_leave_mc_groups(id_priv); 2066 cma_release_dev(id_priv); 2067 } 2068 2069 cma_release_port(id_priv); 2070 cma_id_put(id_priv); 2071 wait_for_completion(&id_priv->comp); 2072 2073 if (id_priv->internal_id) 2074 cma_id_put(id_priv->id.context); 2075 2076 kfree(id_priv->id.route.path_rec); 2077 kfree(id_priv->id.route.path_rec_inbound); 2078 kfree(id_priv->id.route.path_rec_outbound); 2079 2080 put_net(id_priv->id.route.addr.dev_addr.net); 2081 kfree(id_priv); 2082 } 2083 2084 /* 2085 * destroy an ID from within the handler_mutex. This ensures that no other 2086 * handlers can start running concurrently. 2087 */ 2088 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2089 __releases(&idprv->handler_mutex) 2090 { 2091 enum rdma_cm_state state; 2092 unsigned long flags; 2093 2094 trace_cm_id_destroy(id_priv); 2095 2096 /* 2097 * Setting the state to destroyed under the handler mutex provides a 2098 * fence against calling handler callbacks. If this is invoked due to 2099 * the failure of a handler callback then it guarentees that no future 2100 * handlers will be called. 2101 */ 2102 lockdep_assert_held(&id_priv->handler_mutex); 2103 spin_lock_irqsave(&id_priv->lock, flags); 2104 state = id_priv->state; 2105 id_priv->state = RDMA_CM_DESTROYING; 2106 spin_unlock_irqrestore(&id_priv->lock, flags); 2107 mutex_unlock(&id_priv->handler_mutex); 2108 _destroy_id(id_priv, state); 2109 } 2110 2111 void rdma_destroy_id(struct rdma_cm_id *id) 2112 { 2113 struct rdma_id_private *id_priv = 2114 container_of(id, struct rdma_id_private, id); 2115 2116 mutex_lock(&id_priv->handler_mutex); 2117 destroy_id_handler_unlock(id_priv); 2118 } 2119 EXPORT_SYMBOL(rdma_destroy_id); 2120 2121 static int cma_rep_recv(struct rdma_id_private *id_priv) 2122 { 2123 int ret; 2124 2125 ret = cma_modify_qp_rtr(id_priv, NULL); 2126 if (ret) 2127 goto reject; 2128 2129 ret = cma_modify_qp_rts(id_priv, NULL); 2130 if (ret) 2131 goto reject; 2132 2133 trace_cm_send_rtu(id_priv); 2134 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2135 if (ret) 2136 goto reject; 2137 2138 return 0; 2139 reject: 2140 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2141 cma_modify_qp_err(id_priv); 2142 trace_cm_send_rej(id_priv); 2143 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2144 NULL, 0, NULL, 0); 2145 return ret; 2146 } 2147 2148 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2149 const struct ib_cm_rep_event_param *rep_data, 2150 void *private_data) 2151 { 2152 event->param.conn.private_data = private_data; 2153 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2154 event->param.conn.responder_resources = rep_data->responder_resources; 2155 event->param.conn.initiator_depth = rep_data->initiator_depth; 2156 event->param.conn.flow_control = rep_data->flow_control; 2157 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2158 event->param.conn.srq = rep_data->srq; 2159 event->param.conn.qp_num = rep_data->remote_qpn; 2160 2161 event->ece.vendor_id = rep_data->ece.vendor_id; 2162 event->ece.attr_mod = rep_data->ece.attr_mod; 2163 } 2164 2165 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2166 struct rdma_cm_event *event) 2167 { 2168 int ret; 2169 2170 lockdep_assert_held(&id_priv->handler_mutex); 2171 2172 trace_cm_event_handler(id_priv, event); 2173 ret = id_priv->id.event_handler(&id_priv->id, event); 2174 trace_cm_event_done(id_priv, event, ret); 2175 return ret; 2176 } 2177 2178 static int cma_ib_handler(struct ib_cm_id *cm_id, 2179 const struct ib_cm_event *ib_event) 2180 { 2181 struct rdma_id_private *id_priv = cm_id->context; 2182 struct rdma_cm_event event = {}; 2183 enum rdma_cm_state state; 2184 int ret; 2185 2186 mutex_lock(&id_priv->handler_mutex); 2187 state = READ_ONCE(id_priv->state); 2188 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2189 state != RDMA_CM_CONNECT) || 2190 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2191 state != RDMA_CM_DISCONNECT)) 2192 goto out; 2193 2194 switch (ib_event->event) { 2195 case IB_CM_REQ_ERROR: 2196 case IB_CM_REP_ERROR: 2197 event.event = RDMA_CM_EVENT_UNREACHABLE; 2198 event.status = -ETIMEDOUT; 2199 break; 2200 case IB_CM_REP_RECEIVED: 2201 if (state == RDMA_CM_CONNECT && 2202 (id_priv->id.qp_type != IB_QPT_UD)) { 2203 trace_cm_prepare_mra(id_priv); 2204 ib_prepare_cm_mra(cm_id); 2205 } 2206 if (id_priv->id.qp) { 2207 event.status = cma_rep_recv(id_priv); 2208 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2209 RDMA_CM_EVENT_ESTABLISHED; 2210 } else { 2211 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2212 } 2213 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2214 ib_event->private_data); 2215 break; 2216 case IB_CM_RTU_RECEIVED: 2217 case IB_CM_USER_ESTABLISHED: 2218 event.event = RDMA_CM_EVENT_ESTABLISHED; 2219 break; 2220 case IB_CM_DREQ_ERROR: 2221 event.status = -ETIMEDOUT; 2222 fallthrough; 2223 case IB_CM_DREQ_RECEIVED: 2224 case IB_CM_DREP_RECEIVED: 2225 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2226 RDMA_CM_DISCONNECT)) 2227 goto out; 2228 event.event = RDMA_CM_EVENT_DISCONNECTED; 2229 break; 2230 case IB_CM_TIMEWAIT_EXIT: 2231 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2232 break; 2233 case IB_CM_MRA_RECEIVED: 2234 /* ignore event */ 2235 goto out; 2236 case IB_CM_REJ_RECEIVED: 2237 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2238 ib_event->param.rej_rcvd.reason)); 2239 cma_modify_qp_err(id_priv); 2240 event.status = ib_event->param.rej_rcvd.reason; 2241 event.event = RDMA_CM_EVENT_REJECTED; 2242 event.param.conn.private_data = ib_event->private_data; 2243 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2244 break; 2245 default: 2246 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2247 ib_event->event); 2248 goto out; 2249 } 2250 2251 ret = cma_cm_event_handler(id_priv, &event); 2252 if (ret) { 2253 /* Destroy the CM ID by returning a non-zero value. */ 2254 id_priv->cm_id.ib = NULL; 2255 destroy_id_handler_unlock(id_priv); 2256 return ret; 2257 } 2258 out: 2259 mutex_unlock(&id_priv->handler_mutex); 2260 return 0; 2261 } 2262 2263 static struct rdma_id_private * 2264 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2265 const struct ib_cm_event *ib_event, 2266 struct net_device *net_dev) 2267 { 2268 struct rdma_id_private *listen_id_priv; 2269 struct rdma_id_private *id_priv; 2270 struct rdma_cm_id *id; 2271 struct rdma_route *rt; 2272 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2273 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2274 const __be64 service_id = 2275 ib_event->param.req_rcvd.primary_path->service_id; 2276 int ret; 2277 2278 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2279 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2280 listen_id->event_handler, listen_id->context, 2281 listen_id->ps, 2282 ib_event->param.req_rcvd.qp_type, 2283 listen_id_priv); 2284 if (IS_ERR(id_priv)) 2285 return NULL; 2286 2287 id = &id_priv->id; 2288 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2289 (struct sockaddr *)&id->route.addr.dst_addr, 2290 listen_id, ib_event, ss_family, service_id)) 2291 goto err; 2292 2293 rt = &id->route; 2294 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2295 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2296 sizeof(*rt->path_rec), GFP_KERNEL); 2297 if (!rt->path_rec) 2298 goto err; 2299 2300 rt->path_rec[0] = *path; 2301 if (rt->num_pri_alt_paths == 2) 2302 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2303 2304 if (net_dev) { 2305 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2306 } else { 2307 if (!cma_protocol_roce(listen_id) && 2308 cma_any_addr(cma_src_addr(id_priv))) { 2309 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2310 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2311 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2312 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2313 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2314 if (ret) 2315 goto err; 2316 } 2317 } 2318 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2319 2320 id_priv->state = RDMA_CM_CONNECT; 2321 return id_priv; 2322 2323 err: 2324 rdma_destroy_id(id); 2325 return NULL; 2326 } 2327 2328 static struct rdma_id_private * 2329 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2330 const struct ib_cm_event *ib_event, 2331 struct net_device *net_dev) 2332 { 2333 const struct rdma_id_private *listen_id_priv; 2334 struct rdma_id_private *id_priv; 2335 struct rdma_cm_id *id; 2336 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2337 struct net *net = listen_id->route.addr.dev_addr.net; 2338 int ret; 2339 2340 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2341 id_priv = __rdma_create_id(net, listen_id->event_handler, 2342 listen_id->context, listen_id->ps, IB_QPT_UD, 2343 listen_id_priv); 2344 if (IS_ERR(id_priv)) 2345 return NULL; 2346 2347 id = &id_priv->id; 2348 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2349 (struct sockaddr *)&id->route.addr.dst_addr, 2350 listen_id, ib_event, ss_family, 2351 ib_event->param.sidr_req_rcvd.service_id)) 2352 goto err; 2353 2354 if (net_dev) { 2355 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2356 } else { 2357 if (!cma_any_addr(cma_src_addr(id_priv))) { 2358 ret = cma_translate_addr(cma_src_addr(id_priv), 2359 &id->route.addr.dev_addr); 2360 if (ret) 2361 goto err; 2362 } 2363 } 2364 2365 id_priv->state = RDMA_CM_CONNECT; 2366 return id_priv; 2367 err: 2368 rdma_destroy_id(id); 2369 return NULL; 2370 } 2371 2372 static void cma_set_req_event_data(struct rdma_cm_event *event, 2373 const struct ib_cm_req_event_param *req_data, 2374 void *private_data, int offset) 2375 { 2376 event->param.conn.private_data = private_data + offset; 2377 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2378 event->param.conn.responder_resources = req_data->responder_resources; 2379 event->param.conn.initiator_depth = req_data->initiator_depth; 2380 event->param.conn.flow_control = req_data->flow_control; 2381 event->param.conn.retry_count = req_data->retry_count; 2382 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2383 event->param.conn.srq = req_data->srq; 2384 event->param.conn.qp_num = req_data->remote_qpn; 2385 2386 event->ece.vendor_id = req_data->ece.vendor_id; 2387 event->ece.attr_mod = req_data->ece.attr_mod; 2388 } 2389 2390 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2391 const struct ib_cm_event *ib_event) 2392 { 2393 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2394 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2395 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2396 (id->qp_type == IB_QPT_UD)) || 2397 (!id->qp_type)); 2398 } 2399 2400 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2401 const struct ib_cm_event *ib_event) 2402 { 2403 struct rdma_id_private *listen_id, *conn_id = NULL; 2404 struct rdma_cm_event event = {}; 2405 struct cma_req_info req = {}; 2406 struct net_device *net_dev; 2407 u8 offset; 2408 int ret; 2409 2410 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2411 if (IS_ERR(listen_id)) 2412 return PTR_ERR(listen_id); 2413 2414 trace_cm_req_handler(listen_id, ib_event->event); 2415 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2416 ret = -EINVAL; 2417 goto net_dev_put; 2418 } 2419 2420 mutex_lock(&listen_id->handler_mutex); 2421 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2422 ret = -ECONNABORTED; 2423 goto err_unlock; 2424 } 2425 2426 offset = cma_user_data_offset(listen_id); 2427 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2428 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2429 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2430 event.param.ud.private_data = ib_event->private_data + offset; 2431 event.param.ud.private_data_len = 2432 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2433 } else { 2434 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2435 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2436 ib_event->private_data, offset); 2437 } 2438 if (!conn_id) { 2439 ret = -ENOMEM; 2440 goto err_unlock; 2441 } 2442 2443 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2444 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2445 if (ret) { 2446 destroy_id_handler_unlock(conn_id); 2447 goto err_unlock; 2448 } 2449 2450 conn_id->cm_id.ib = cm_id; 2451 cm_id->context = conn_id; 2452 cm_id->cm_handler = cma_ib_handler; 2453 2454 ret = cma_cm_event_handler(conn_id, &event); 2455 if (ret) { 2456 /* Destroy the CM ID by returning a non-zero value. */ 2457 conn_id->cm_id.ib = NULL; 2458 mutex_unlock(&listen_id->handler_mutex); 2459 destroy_id_handler_unlock(conn_id); 2460 goto net_dev_put; 2461 } 2462 2463 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2464 conn_id->id.qp_type != IB_QPT_UD) { 2465 trace_cm_prepare_mra(cm_id->context); 2466 ib_prepare_cm_mra(cm_id); 2467 } 2468 mutex_unlock(&conn_id->handler_mutex); 2469 2470 err_unlock: 2471 mutex_unlock(&listen_id->handler_mutex); 2472 2473 net_dev_put: 2474 dev_put(net_dev); 2475 2476 return ret; 2477 } 2478 2479 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2480 { 2481 if (addr->sa_family == AF_IB) 2482 return ((struct sockaddr_ib *) addr)->sib_sid; 2483 2484 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2485 } 2486 EXPORT_SYMBOL(rdma_get_service_id); 2487 2488 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2489 union ib_gid *dgid) 2490 { 2491 struct rdma_addr *addr = &cm_id->route.addr; 2492 2493 if (!cm_id->device) { 2494 if (sgid) 2495 memset(sgid, 0, sizeof(*sgid)); 2496 if (dgid) 2497 memset(dgid, 0, sizeof(*dgid)); 2498 return; 2499 } 2500 2501 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2502 if (sgid) 2503 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2504 if (dgid) 2505 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2506 } else { 2507 if (sgid) 2508 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2509 if (dgid) 2510 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2511 } 2512 } 2513 EXPORT_SYMBOL(rdma_read_gids); 2514 2515 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2516 { 2517 struct rdma_id_private *id_priv = iw_id->context; 2518 struct rdma_cm_event event = {}; 2519 int ret = 0; 2520 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2521 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2522 2523 mutex_lock(&id_priv->handler_mutex); 2524 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2525 goto out; 2526 2527 switch (iw_event->event) { 2528 case IW_CM_EVENT_CLOSE: 2529 event.event = RDMA_CM_EVENT_DISCONNECTED; 2530 break; 2531 case IW_CM_EVENT_CONNECT_REPLY: 2532 memcpy(cma_src_addr(id_priv), laddr, 2533 rdma_addr_size(laddr)); 2534 memcpy(cma_dst_addr(id_priv), raddr, 2535 rdma_addr_size(raddr)); 2536 switch (iw_event->status) { 2537 case 0: 2538 event.event = RDMA_CM_EVENT_ESTABLISHED; 2539 event.param.conn.initiator_depth = iw_event->ird; 2540 event.param.conn.responder_resources = iw_event->ord; 2541 break; 2542 case -ECONNRESET: 2543 case -ECONNREFUSED: 2544 event.event = RDMA_CM_EVENT_REJECTED; 2545 break; 2546 case -ETIMEDOUT: 2547 event.event = RDMA_CM_EVENT_UNREACHABLE; 2548 break; 2549 default: 2550 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2551 break; 2552 } 2553 break; 2554 case IW_CM_EVENT_ESTABLISHED: 2555 event.event = RDMA_CM_EVENT_ESTABLISHED; 2556 event.param.conn.initiator_depth = iw_event->ird; 2557 event.param.conn.responder_resources = iw_event->ord; 2558 break; 2559 default: 2560 goto out; 2561 } 2562 2563 event.status = iw_event->status; 2564 event.param.conn.private_data = iw_event->private_data; 2565 event.param.conn.private_data_len = iw_event->private_data_len; 2566 ret = cma_cm_event_handler(id_priv, &event); 2567 if (ret) { 2568 /* Destroy the CM ID by returning a non-zero value. */ 2569 id_priv->cm_id.iw = NULL; 2570 destroy_id_handler_unlock(id_priv); 2571 return ret; 2572 } 2573 2574 out: 2575 mutex_unlock(&id_priv->handler_mutex); 2576 return ret; 2577 } 2578 2579 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2580 struct iw_cm_event *iw_event) 2581 { 2582 struct rdma_id_private *listen_id, *conn_id; 2583 struct rdma_cm_event event = {}; 2584 int ret = -ECONNABORTED; 2585 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2586 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2587 2588 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2589 event.param.conn.private_data = iw_event->private_data; 2590 event.param.conn.private_data_len = iw_event->private_data_len; 2591 event.param.conn.initiator_depth = iw_event->ird; 2592 event.param.conn.responder_resources = iw_event->ord; 2593 2594 listen_id = cm_id->context; 2595 2596 mutex_lock(&listen_id->handler_mutex); 2597 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2598 goto out; 2599 2600 /* Create a new RDMA id for the new IW CM ID */ 2601 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2602 listen_id->id.event_handler, 2603 listen_id->id.context, RDMA_PS_TCP, 2604 IB_QPT_RC, listen_id); 2605 if (IS_ERR(conn_id)) { 2606 ret = -ENOMEM; 2607 goto out; 2608 } 2609 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2610 conn_id->state = RDMA_CM_CONNECT; 2611 2612 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2613 if (ret) { 2614 mutex_unlock(&listen_id->handler_mutex); 2615 destroy_id_handler_unlock(conn_id); 2616 return ret; 2617 } 2618 2619 ret = cma_iw_acquire_dev(conn_id, listen_id); 2620 if (ret) { 2621 mutex_unlock(&listen_id->handler_mutex); 2622 destroy_id_handler_unlock(conn_id); 2623 return ret; 2624 } 2625 2626 conn_id->cm_id.iw = cm_id; 2627 cm_id->context = conn_id; 2628 cm_id->cm_handler = cma_iw_handler; 2629 2630 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2631 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2632 2633 ret = cma_cm_event_handler(conn_id, &event); 2634 if (ret) { 2635 /* User wants to destroy the CM ID */ 2636 conn_id->cm_id.iw = NULL; 2637 mutex_unlock(&listen_id->handler_mutex); 2638 destroy_id_handler_unlock(conn_id); 2639 return ret; 2640 } 2641 2642 mutex_unlock(&conn_id->handler_mutex); 2643 2644 out: 2645 mutex_unlock(&listen_id->handler_mutex); 2646 return ret; 2647 } 2648 2649 static int cma_ib_listen(struct rdma_id_private *id_priv) 2650 { 2651 struct sockaddr *addr; 2652 struct ib_cm_id *id; 2653 __be64 svc_id; 2654 2655 addr = cma_src_addr(id_priv); 2656 svc_id = rdma_get_service_id(&id_priv->id, addr); 2657 id = ib_cm_insert_listen(id_priv->id.device, 2658 cma_ib_req_handler, svc_id); 2659 if (IS_ERR(id)) 2660 return PTR_ERR(id); 2661 id_priv->cm_id.ib = id; 2662 2663 return 0; 2664 } 2665 2666 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2667 { 2668 int ret; 2669 struct iw_cm_id *id; 2670 2671 id = iw_create_cm_id(id_priv->id.device, 2672 iw_conn_req_handler, 2673 id_priv); 2674 if (IS_ERR(id)) 2675 return PTR_ERR(id); 2676 2677 mutex_lock(&id_priv->qp_mutex); 2678 id->tos = id_priv->tos; 2679 id->tos_set = id_priv->tos_set; 2680 mutex_unlock(&id_priv->qp_mutex); 2681 id->afonly = id_priv->afonly; 2682 id_priv->cm_id.iw = id; 2683 2684 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2685 rdma_addr_size(cma_src_addr(id_priv))); 2686 2687 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2688 2689 if (ret) { 2690 iw_destroy_cm_id(id_priv->cm_id.iw); 2691 id_priv->cm_id.iw = NULL; 2692 } 2693 2694 return ret; 2695 } 2696 2697 static int cma_listen_handler(struct rdma_cm_id *id, 2698 struct rdma_cm_event *event) 2699 { 2700 struct rdma_id_private *id_priv = id->context; 2701 2702 /* Listening IDs are always destroyed on removal */ 2703 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2704 return -1; 2705 2706 id->context = id_priv->id.context; 2707 id->event_handler = id_priv->id.event_handler; 2708 trace_cm_event_handler(id_priv, event); 2709 return id_priv->id.event_handler(id, event); 2710 } 2711 2712 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2713 struct cma_device *cma_dev, 2714 struct rdma_id_private **to_destroy) 2715 { 2716 struct rdma_id_private *dev_id_priv; 2717 struct net *net = id_priv->id.route.addr.dev_addr.net; 2718 int ret; 2719 2720 lockdep_assert_held(&lock); 2721 2722 *to_destroy = NULL; 2723 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2724 return 0; 2725 2726 dev_id_priv = 2727 __rdma_create_id(net, cma_listen_handler, id_priv, 2728 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2729 if (IS_ERR(dev_id_priv)) 2730 return PTR_ERR(dev_id_priv); 2731 2732 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2733 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2734 rdma_addr_size(cma_src_addr(id_priv))); 2735 2736 _cma_attach_to_dev(dev_id_priv, cma_dev); 2737 rdma_restrack_add(&dev_id_priv->res); 2738 cma_id_get(id_priv); 2739 dev_id_priv->internal_id = 1; 2740 dev_id_priv->afonly = id_priv->afonly; 2741 mutex_lock(&id_priv->qp_mutex); 2742 dev_id_priv->tos_set = id_priv->tos_set; 2743 dev_id_priv->tos = id_priv->tos; 2744 mutex_unlock(&id_priv->qp_mutex); 2745 2746 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2747 if (ret) 2748 goto err_listen; 2749 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2750 return 0; 2751 err_listen: 2752 /* Caller must destroy this after releasing lock */ 2753 *to_destroy = dev_id_priv; 2754 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2755 return ret; 2756 } 2757 2758 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2759 { 2760 struct rdma_id_private *to_destroy; 2761 struct cma_device *cma_dev; 2762 int ret; 2763 2764 mutex_lock(&lock); 2765 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2766 list_for_each_entry(cma_dev, &dev_list, list) { 2767 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2768 if (ret) { 2769 /* Prevent racing with cma_process_remove() */ 2770 if (to_destroy) 2771 list_del_init(&to_destroy->device_item); 2772 goto err_listen; 2773 } 2774 } 2775 mutex_unlock(&lock); 2776 return 0; 2777 2778 err_listen: 2779 _cma_cancel_listens(id_priv); 2780 mutex_unlock(&lock); 2781 if (to_destroy) 2782 rdma_destroy_id(&to_destroy->id); 2783 return ret; 2784 } 2785 2786 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2787 { 2788 struct rdma_id_private *id_priv; 2789 2790 id_priv = container_of(id, struct rdma_id_private, id); 2791 mutex_lock(&id_priv->qp_mutex); 2792 id_priv->tos = (u8) tos; 2793 id_priv->tos_set = true; 2794 mutex_unlock(&id_priv->qp_mutex); 2795 } 2796 EXPORT_SYMBOL(rdma_set_service_type); 2797 2798 /** 2799 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2800 * with a connection identifier. 2801 * @id: Communication identifier to associated with service type. 2802 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2803 * 2804 * This function should be called before rdma_connect() on active side, 2805 * and on passive side before rdma_accept(). It is applicable to primary 2806 * path only. The timeout will affect the local side of the QP, it is not 2807 * negotiated with remote side and zero disables the timer. In case it is 2808 * set before rdma_resolve_route, the value will also be used to determine 2809 * PacketLifeTime for RoCE. 2810 * 2811 * Return: 0 for success 2812 */ 2813 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2814 { 2815 struct rdma_id_private *id_priv; 2816 2817 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2818 return -EINVAL; 2819 2820 id_priv = container_of(id, struct rdma_id_private, id); 2821 mutex_lock(&id_priv->qp_mutex); 2822 id_priv->timeout = timeout; 2823 id_priv->timeout_set = true; 2824 mutex_unlock(&id_priv->qp_mutex); 2825 2826 return 0; 2827 } 2828 EXPORT_SYMBOL(rdma_set_ack_timeout); 2829 2830 /** 2831 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2832 * QP associated with a connection identifier. 2833 * @id: Communication identifier to associated with service type. 2834 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2835 * Timer Field" in the IBTA specification. 2836 * 2837 * This function should be called before rdma_connect() on active 2838 * side, and on passive side before rdma_accept(). The timer value 2839 * will be associated with the local QP. When it receives a send it is 2840 * not read to handle, typically if the receive queue is empty, an RNR 2841 * Retry NAK is returned to the requester with the min_rnr_timer 2842 * encoded. The requester will then wait at least the time specified 2843 * in the NAK before retrying. The default is zero, which translates 2844 * to a minimum RNR Timer value of 655 ms. 2845 * 2846 * Return: 0 for success 2847 */ 2848 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2849 { 2850 struct rdma_id_private *id_priv; 2851 2852 /* It is a five-bit value */ 2853 if (min_rnr_timer & 0xe0) 2854 return -EINVAL; 2855 2856 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2857 return -EINVAL; 2858 2859 id_priv = container_of(id, struct rdma_id_private, id); 2860 mutex_lock(&id_priv->qp_mutex); 2861 id_priv->min_rnr_timer = min_rnr_timer; 2862 id_priv->min_rnr_timer_set = true; 2863 mutex_unlock(&id_priv->qp_mutex); 2864 2865 return 0; 2866 } 2867 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2868 2869 static int route_set_path_rec_inbound(struct cma_work *work, 2870 struct sa_path_rec *path_rec) 2871 { 2872 struct rdma_route *route = &work->id->id.route; 2873 2874 if (!route->path_rec_inbound) { 2875 route->path_rec_inbound = 2876 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2877 if (!route->path_rec_inbound) 2878 return -ENOMEM; 2879 } 2880 2881 *route->path_rec_inbound = *path_rec; 2882 return 0; 2883 } 2884 2885 static int route_set_path_rec_outbound(struct cma_work *work, 2886 struct sa_path_rec *path_rec) 2887 { 2888 struct rdma_route *route = &work->id->id.route; 2889 2890 if (!route->path_rec_outbound) { 2891 route->path_rec_outbound = 2892 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2893 if (!route->path_rec_outbound) 2894 return -ENOMEM; 2895 } 2896 2897 *route->path_rec_outbound = *path_rec; 2898 return 0; 2899 } 2900 2901 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2902 unsigned int num_prs, void *context) 2903 { 2904 struct cma_work *work = context; 2905 struct rdma_route *route; 2906 int i; 2907 2908 route = &work->id->id.route; 2909 2910 if (status) 2911 goto fail; 2912 2913 for (i = 0; i < num_prs; i++) { 2914 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2915 *route->path_rec = path_rec[i]; 2916 else if (path_rec[i].flags & IB_PATH_INBOUND) 2917 status = route_set_path_rec_inbound(work, &path_rec[i]); 2918 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2919 status = route_set_path_rec_outbound(work, 2920 &path_rec[i]); 2921 else 2922 status = -EINVAL; 2923 2924 if (status) 2925 goto fail; 2926 } 2927 2928 route->num_pri_alt_paths = 1; 2929 queue_work(cma_wq, &work->work); 2930 return; 2931 2932 fail: 2933 work->old_state = RDMA_CM_ROUTE_QUERY; 2934 work->new_state = RDMA_CM_ADDR_RESOLVED; 2935 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2936 work->event.status = status; 2937 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2938 status); 2939 queue_work(cma_wq, &work->work); 2940 } 2941 2942 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2943 unsigned long timeout_ms, struct cma_work *work) 2944 { 2945 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2946 struct sa_path_rec path_rec; 2947 ib_sa_comp_mask comp_mask; 2948 struct sockaddr_in6 *sin6; 2949 struct sockaddr_ib *sib; 2950 2951 memset(&path_rec, 0, sizeof path_rec); 2952 2953 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2954 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2955 else 2956 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2957 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2958 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2959 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2960 path_rec.numb_path = 1; 2961 path_rec.reversible = 1; 2962 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2963 cma_dst_addr(id_priv)); 2964 2965 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2966 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2967 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2968 2969 switch (cma_family(id_priv)) { 2970 case AF_INET: 2971 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2972 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2973 break; 2974 case AF_INET6: 2975 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2976 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2977 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2978 break; 2979 case AF_IB: 2980 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2981 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2982 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2983 break; 2984 } 2985 2986 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2987 id_priv->id.port_num, &path_rec, 2988 comp_mask, timeout_ms, 2989 GFP_KERNEL, cma_query_handler, 2990 work, &id_priv->query); 2991 2992 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2993 } 2994 2995 static void cma_iboe_join_work_handler(struct work_struct *work) 2996 { 2997 struct cma_multicast *mc = 2998 container_of(work, struct cma_multicast, iboe_join.work); 2999 struct rdma_cm_event *event = &mc->iboe_join.event; 3000 struct rdma_id_private *id_priv = mc->id_priv; 3001 int ret; 3002 3003 mutex_lock(&id_priv->handler_mutex); 3004 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3005 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3006 goto out_unlock; 3007 3008 ret = cma_cm_event_handler(id_priv, event); 3009 WARN_ON(ret); 3010 3011 out_unlock: 3012 mutex_unlock(&id_priv->handler_mutex); 3013 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 3014 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 3015 } 3016 3017 static void cma_work_handler(struct work_struct *_work) 3018 { 3019 struct cma_work *work = container_of(_work, struct cma_work, work); 3020 struct rdma_id_private *id_priv = work->id; 3021 3022 mutex_lock(&id_priv->handler_mutex); 3023 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3024 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3025 goto out_unlock; 3026 if (work->old_state != 0 || work->new_state != 0) { 3027 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3028 goto out_unlock; 3029 } 3030 3031 if (cma_cm_event_handler(id_priv, &work->event)) { 3032 cma_id_put(id_priv); 3033 destroy_id_handler_unlock(id_priv); 3034 goto out_free; 3035 } 3036 3037 out_unlock: 3038 mutex_unlock(&id_priv->handler_mutex); 3039 cma_id_put(id_priv); 3040 out_free: 3041 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3042 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3043 kfree(work); 3044 } 3045 3046 static void cma_init_resolve_route_work(struct cma_work *work, 3047 struct rdma_id_private *id_priv) 3048 { 3049 work->id = id_priv; 3050 INIT_WORK(&work->work, cma_work_handler); 3051 work->old_state = RDMA_CM_ROUTE_QUERY; 3052 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3053 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3054 } 3055 3056 static void enqueue_resolve_addr_work(struct cma_work *work, 3057 struct rdma_id_private *id_priv) 3058 { 3059 /* Balances with cma_id_put() in cma_work_handler */ 3060 cma_id_get(id_priv); 3061 3062 work->id = id_priv; 3063 INIT_WORK(&work->work, cma_work_handler); 3064 work->old_state = RDMA_CM_ADDR_QUERY; 3065 work->new_state = RDMA_CM_ADDR_RESOLVED; 3066 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3067 3068 queue_work(cma_wq, &work->work); 3069 } 3070 3071 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3072 unsigned long timeout_ms) 3073 { 3074 struct rdma_route *route = &id_priv->id.route; 3075 struct cma_work *work; 3076 int ret; 3077 3078 work = kzalloc(sizeof *work, GFP_KERNEL); 3079 if (!work) 3080 return -ENOMEM; 3081 3082 cma_init_resolve_route_work(work, id_priv); 3083 3084 if (!route->path_rec) 3085 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3086 if (!route->path_rec) { 3087 ret = -ENOMEM; 3088 goto err1; 3089 } 3090 3091 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3092 if (ret) 3093 goto err2; 3094 3095 return 0; 3096 err2: 3097 kfree(route->path_rec); 3098 route->path_rec = NULL; 3099 err1: 3100 kfree(work); 3101 return ret; 3102 } 3103 3104 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3105 unsigned long supported_gids, 3106 enum ib_gid_type default_gid) 3107 { 3108 if ((network_type == RDMA_NETWORK_IPV4 || 3109 network_type == RDMA_NETWORK_IPV6) && 3110 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3111 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3112 3113 return default_gid; 3114 } 3115 3116 /* 3117 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3118 * path record type based on GID type. 3119 * It also sets up other L2 fields which includes destination mac address 3120 * netdev ifindex, of the path record. 3121 * It returns the netdev of the bound interface for this path record entry. 3122 */ 3123 static struct net_device * 3124 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3125 { 3126 struct rdma_route *route = &id_priv->id.route; 3127 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3128 struct rdma_addr *addr = &route->addr; 3129 unsigned long supported_gids; 3130 struct net_device *ndev; 3131 3132 if (!addr->dev_addr.bound_dev_if) 3133 return NULL; 3134 3135 ndev = dev_get_by_index(addr->dev_addr.net, 3136 addr->dev_addr.bound_dev_if); 3137 if (!ndev) 3138 return NULL; 3139 3140 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3141 id_priv->id.port_num); 3142 gid_type = cma_route_gid_type(addr->dev_addr.network, 3143 supported_gids, 3144 id_priv->gid_type); 3145 /* Use the hint from IP Stack to select GID Type */ 3146 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3147 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3148 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3149 3150 route->path_rec->roce.route_resolved = true; 3151 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3152 return ndev; 3153 } 3154 3155 int rdma_set_ib_path(struct rdma_cm_id *id, 3156 struct sa_path_rec *path_rec) 3157 { 3158 struct rdma_id_private *id_priv; 3159 struct net_device *ndev; 3160 int ret; 3161 3162 id_priv = container_of(id, struct rdma_id_private, id); 3163 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3164 RDMA_CM_ROUTE_RESOLVED)) 3165 return -EINVAL; 3166 3167 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3168 GFP_KERNEL); 3169 if (!id->route.path_rec) { 3170 ret = -ENOMEM; 3171 goto err; 3172 } 3173 3174 if (rdma_protocol_roce(id->device, id->port_num)) { 3175 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3176 if (!ndev) { 3177 ret = -ENODEV; 3178 goto err_free; 3179 } 3180 dev_put(ndev); 3181 } 3182 3183 id->route.num_pri_alt_paths = 1; 3184 return 0; 3185 3186 err_free: 3187 kfree(id->route.path_rec); 3188 id->route.path_rec = NULL; 3189 err: 3190 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3191 return ret; 3192 } 3193 EXPORT_SYMBOL(rdma_set_ib_path); 3194 3195 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3196 { 3197 struct cma_work *work; 3198 3199 work = kzalloc(sizeof *work, GFP_KERNEL); 3200 if (!work) 3201 return -ENOMEM; 3202 3203 cma_init_resolve_route_work(work, id_priv); 3204 queue_work(cma_wq, &work->work); 3205 return 0; 3206 } 3207 3208 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3209 { 3210 struct net_device *dev; 3211 3212 dev = vlan_dev_real_dev(vlan_ndev); 3213 if (dev->num_tc) 3214 return netdev_get_prio_tc_map(dev, prio); 3215 3216 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3217 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3218 } 3219 3220 struct iboe_prio_tc_map { 3221 int input_prio; 3222 int output_tc; 3223 bool found; 3224 }; 3225 3226 static int get_lower_vlan_dev_tc(struct net_device *dev, 3227 struct netdev_nested_priv *priv) 3228 { 3229 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3230 3231 if (is_vlan_dev(dev)) 3232 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3233 else if (dev->num_tc) 3234 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3235 else 3236 map->output_tc = 0; 3237 /* We are interested only in first level VLAN device, so always 3238 * return 1 to stop iterating over next level devices. 3239 */ 3240 map->found = true; 3241 return 1; 3242 } 3243 3244 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3245 { 3246 struct iboe_prio_tc_map prio_tc_map = {}; 3247 int prio = rt_tos2priority(tos); 3248 struct netdev_nested_priv priv; 3249 3250 /* If VLAN device, get it directly from the VLAN netdev */ 3251 if (is_vlan_dev(ndev)) 3252 return get_vlan_ndev_tc(ndev, prio); 3253 3254 prio_tc_map.input_prio = prio; 3255 priv.data = (void *)&prio_tc_map; 3256 rcu_read_lock(); 3257 netdev_walk_all_lower_dev_rcu(ndev, 3258 get_lower_vlan_dev_tc, 3259 &priv); 3260 rcu_read_unlock(); 3261 /* If map is found from lower device, use it; Otherwise 3262 * continue with the current netdevice to get priority to tc map. 3263 */ 3264 if (prio_tc_map.found) 3265 return prio_tc_map.output_tc; 3266 else if (ndev->num_tc) 3267 return netdev_get_prio_tc_map(ndev, prio); 3268 else 3269 return 0; 3270 } 3271 3272 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3273 { 3274 struct sockaddr_in6 *addr6; 3275 u16 dport, sport; 3276 u32 hash, fl; 3277 3278 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3279 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3280 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3281 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3282 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3283 hash = (u32)sport * 31 + dport; 3284 fl = hash & IB_GRH_FLOWLABEL_MASK; 3285 } 3286 3287 return cpu_to_be32(fl); 3288 } 3289 3290 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3291 { 3292 struct rdma_route *route = &id_priv->id.route; 3293 struct rdma_addr *addr = &route->addr; 3294 struct cma_work *work; 3295 int ret; 3296 struct net_device *ndev; 3297 3298 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3299 rdma_start_port(id_priv->cma_dev->device)]; 3300 u8 tos; 3301 3302 mutex_lock(&id_priv->qp_mutex); 3303 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3304 mutex_unlock(&id_priv->qp_mutex); 3305 3306 work = kzalloc(sizeof *work, GFP_KERNEL); 3307 if (!work) 3308 return -ENOMEM; 3309 3310 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3311 if (!route->path_rec) { 3312 ret = -ENOMEM; 3313 goto err1; 3314 } 3315 3316 route->num_pri_alt_paths = 1; 3317 3318 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3319 if (!ndev) { 3320 ret = -ENODEV; 3321 goto err2; 3322 } 3323 3324 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3325 &route->path_rec->sgid); 3326 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3327 &route->path_rec->dgid); 3328 3329 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3330 /* TODO: get the hoplimit from the inet/inet6 device */ 3331 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3332 else 3333 route->path_rec->hop_limit = 1; 3334 route->path_rec->reversible = 1; 3335 route->path_rec->pkey = cpu_to_be16(0xffff); 3336 route->path_rec->mtu_selector = IB_SA_EQ; 3337 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3338 route->path_rec->traffic_class = tos; 3339 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3340 route->path_rec->rate_selector = IB_SA_EQ; 3341 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3342 dev_put(ndev); 3343 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3344 /* In case ACK timeout is set, use this value to calculate 3345 * PacketLifeTime. As per IBTA 12.7.34, 3346 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3347 * Assuming a negligible local ACK delay, we can use 3348 * PacketLifeTime = local ACK timeout/2 3349 * as a reasonable approximation for RoCE networks. 3350 */ 3351 mutex_lock(&id_priv->qp_mutex); 3352 if (id_priv->timeout_set && id_priv->timeout) 3353 route->path_rec->packet_life_time = id_priv->timeout - 1; 3354 else 3355 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3356 mutex_unlock(&id_priv->qp_mutex); 3357 3358 if (!route->path_rec->mtu) { 3359 ret = -EINVAL; 3360 goto err2; 3361 } 3362 3363 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3364 id_priv->id.port_num)) 3365 route->path_rec->flow_label = 3366 cma_get_roce_udp_flow_label(id_priv); 3367 3368 cma_init_resolve_route_work(work, id_priv); 3369 queue_work(cma_wq, &work->work); 3370 3371 return 0; 3372 3373 err2: 3374 kfree(route->path_rec); 3375 route->path_rec = NULL; 3376 route->num_pri_alt_paths = 0; 3377 err1: 3378 kfree(work); 3379 return ret; 3380 } 3381 3382 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3383 { 3384 struct rdma_id_private *id_priv; 3385 int ret; 3386 3387 if (!timeout_ms) 3388 return -EINVAL; 3389 3390 id_priv = container_of(id, struct rdma_id_private, id); 3391 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3392 return -EINVAL; 3393 3394 cma_id_get(id_priv); 3395 if (rdma_cap_ib_sa(id->device, id->port_num)) 3396 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3397 else if (rdma_protocol_roce(id->device, id->port_num)) { 3398 ret = cma_resolve_iboe_route(id_priv); 3399 if (!ret) 3400 cma_add_id_to_tree(id_priv); 3401 } 3402 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3403 ret = cma_resolve_iw_route(id_priv); 3404 else 3405 ret = -ENOSYS; 3406 3407 if (ret) 3408 goto err; 3409 3410 return 0; 3411 err: 3412 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3413 cma_id_put(id_priv); 3414 return ret; 3415 } 3416 EXPORT_SYMBOL(rdma_resolve_route); 3417 3418 static void cma_set_loopback(struct sockaddr *addr) 3419 { 3420 switch (addr->sa_family) { 3421 case AF_INET: 3422 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3423 break; 3424 case AF_INET6: 3425 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3426 0, 0, 0, htonl(1)); 3427 break; 3428 default: 3429 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3430 0, 0, 0, htonl(1)); 3431 break; 3432 } 3433 } 3434 3435 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3436 { 3437 struct cma_device *cma_dev, *cur_dev; 3438 union ib_gid gid; 3439 enum ib_port_state port_state; 3440 unsigned int p; 3441 u16 pkey; 3442 int ret; 3443 3444 cma_dev = NULL; 3445 mutex_lock(&lock); 3446 list_for_each_entry(cur_dev, &dev_list, list) { 3447 if (cma_family(id_priv) == AF_IB && 3448 !rdma_cap_ib_cm(cur_dev->device, 1)) 3449 continue; 3450 3451 if (!cma_dev) 3452 cma_dev = cur_dev; 3453 3454 rdma_for_each_port (cur_dev->device, p) { 3455 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3456 port_state == IB_PORT_ACTIVE) { 3457 cma_dev = cur_dev; 3458 goto port_found; 3459 } 3460 } 3461 } 3462 3463 if (!cma_dev) { 3464 ret = -ENODEV; 3465 goto out; 3466 } 3467 3468 p = 1; 3469 3470 port_found: 3471 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3472 if (ret) 3473 goto out; 3474 3475 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3476 if (ret) 3477 goto out; 3478 3479 id_priv->id.route.addr.dev_addr.dev_type = 3480 (rdma_protocol_ib(cma_dev->device, p)) ? 3481 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3482 3483 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3484 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3485 id_priv->id.port_num = p; 3486 cma_attach_to_dev(id_priv, cma_dev); 3487 rdma_restrack_add(&id_priv->res); 3488 cma_set_loopback(cma_src_addr(id_priv)); 3489 out: 3490 mutex_unlock(&lock); 3491 return ret; 3492 } 3493 3494 static void addr_handler(int status, struct sockaddr *src_addr, 3495 struct rdma_dev_addr *dev_addr, void *context) 3496 { 3497 struct rdma_id_private *id_priv = context; 3498 struct rdma_cm_event event = {}; 3499 struct sockaddr *addr; 3500 struct sockaddr_storage old_addr; 3501 3502 mutex_lock(&id_priv->handler_mutex); 3503 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3504 RDMA_CM_ADDR_RESOLVED)) 3505 goto out; 3506 3507 /* 3508 * Store the previous src address, so that if we fail to acquire 3509 * matching rdma device, old address can be restored back, which helps 3510 * to cancel the cma listen operation correctly. 3511 */ 3512 addr = cma_src_addr(id_priv); 3513 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3514 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3515 if (!status && !id_priv->cma_dev) { 3516 status = cma_acquire_dev_by_src_ip(id_priv); 3517 if (status) 3518 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3519 status); 3520 rdma_restrack_add(&id_priv->res); 3521 } else if (status) { 3522 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3523 } 3524 3525 if (status) { 3526 memcpy(addr, &old_addr, 3527 rdma_addr_size((struct sockaddr *)&old_addr)); 3528 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3529 RDMA_CM_ADDR_BOUND)) 3530 goto out; 3531 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3532 event.status = status; 3533 } else 3534 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3535 3536 if (cma_cm_event_handler(id_priv, &event)) { 3537 destroy_id_handler_unlock(id_priv); 3538 return; 3539 } 3540 out: 3541 mutex_unlock(&id_priv->handler_mutex); 3542 } 3543 3544 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3545 { 3546 struct cma_work *work; 3547 union ib_gid gid; 3548 int ret; 3549 3550 work = kzalloc(sizeof *work, GFP_KERNEL); 3551 if (!work) 3552 return -ENOMEM; 3553 3554 if (!id_priv->cma_dev) { 3555 ret = cma_bind_loopback(id_priv); 3556 if (ret) 3557 goto err; 3558 } 3559 3560 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3561 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3562 3563 enqueue_resolve_addr_work(work, id_priv); 3564 return 0; 3565 err: 3566 kfree(work); 3567 return ret; 3568 } 3569 3570 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3571 { 3572 struct cma_work *work; 3573 int ret; 3574 3575 work = kzalloc(sizeof *work, GFP_KERNEL); 3576 if (!work) 3577 return -ENOMEM; 3578 3579 if (!id_priv->cma_dev) { 3580 ret = cma_resolve_ib_dev(id_priv); 3581 if (ret) 3582 goto err; 3583 } 3584 3585 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3586 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3587 3588 enqueue_resolve_addr_work(work, id_priv); 3589 return 0; 3590 err: 3591 kfree(work); 3592 return ret; 3593 } 3594 3595 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3596 { 3597 struct rdma_id_private *id_priv; 3598 unsigned long flags; 3599 int ret; 3600 3601 id_priv = container_of(id, struct rdma_id_private, id); 3602 spin_lock_irqsave(&id_priv->lock, flags); 3603 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3604 id_priv->state == RDMA_CM_IDLE) { 3605 id_priv->reuseaddr = reuse; 3606 ret = 0; 3607 } else { 3608 ret = -EINVAL; 3609 } 3610 spin_unlock_irqrestore(&id_priv->lock, flags); 3611 return ret; 3612 } 3613 EXPORT_SYMBOL(rdma_set_reuseaddr); 3614 3615 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3616 { 3617 struct rdma_id_private *id_priv; 3618 unsigned long flags; 3619 int ret; 3620 3621 id_priv = container_of(id, struct rdma_id_private, id); 3622 spin_lock_irqsave(&id_priv->lock, flags); 3623 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3624 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3625 id_priv->afonly = afonly; 3626 ret = 0; 3627 } else { 3628 ret = -EINVAL; 3629 } 3630 spin_unlock_irqrestore(&id_priv->lock, flags); 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(rdma_set_afonly); 3634 3635 static void cma_bind_port(struct rdma_bind_list *bind_list, 3636 struct rdma_id_private *id_priv) 3637 { 3638 struct sockaddr *addr; 3639 struct sockaddr_ib *sib; 3640 u64 sid, mask; 3641 __be16 port; 3642 3643 lockdep_assert_held(&lock); 3644 3645 addr = cma_src_addr(id_priv); 3646 port = htons(bind_list->port); 3647 3648 switch (addr->sa_family) { 3649 case AF_INET: 3650 ((struct sockaddr_in *) addr)->sin_port = port; 3651 break; 3652 case AF_INET6: 3653 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3654 break; 3655 case AF_IB: 3656 sib = (struct sockaddr_ib *) addr; 3657 sid = be64_to_cpu(sib->sib_sid); 3658 mask = be64_to_cpu(sib->sib_sid_mask); 3659 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3660 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3661 break; 3662 } 3663 id_priv->bind_list = bind_list; 3664 hlist_add_head(&id_priv->node, &bind_list->owners); 3665 } 3666 3667 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3668 struct rdma_id_private *id_priv, unsigned short snum) 3669 { 3670 struct rdma_bind_list *bind_list; 3671 int ret; 3672 3673 lockdep_assert_held(&lock); 3674 3675 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3676 if (!bind_list) 3677 return -ENOMEM; 3678 3679 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3680 snum); 3681 if (ret < 0) 3682 goto err; 3683 3684 bind_list->ps = ps; 3685 bind_list->port = snum; 3686 cma_bind_port(bind_list, id_priv); 3687 return 0; 3688 err: 3689 kfree(bind_list); 3690 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3691 } 3692 3693 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3694 struct rdma_id_private *id_priv) 3695 { 3696 struct rdma_id_private *cur_id; 3697 struct sockaddr *daddr = cma_dst_addr(id_priv); 3698 struct sockaddr *saddr = cma_src_addr(id_priv); 3699 __be16 dport = cma_port(daddr); 3700 3701 lockdep_assert_held(&lock); 3702 3703 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3704 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3705 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3706 __be16 cur_dport = cma_port(cur_daddr); 3707 3708 if (id_priv == cur_id) 3709 continue; 3710 3711 /* different dest port -> unique */ 3712 if (!cma_any_port(daddr) && 3713 !cma_any_port(cur_daddr) && 3714 (dport != cur_dport)) 3715 continue; 3716 3717 /* different src address -> unique */ 3718 if (!cma_any_addr(saddr) && 3719 !cma_any_addr(cur_saddr) && 3720 cma_addr_cmp(saddr, cur_saddr)) 3721 continue; 3722 3723 /* different dst address -> unique */ 3724 if (!cma_any_addr(daddr) && 3725 !cma_any_addr(cur_daddr) && 3726 cma_addr_cmp(daddr, cur_daddr)) 3727 continue; 3728 3729 return -EADDRNOTAVAIL; 3730 } 3731 return 0; 3732 } 3733 3734 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3735 struct rdma_id_private *id_priv) 3736 { 3737 static unsigned int last_used_port; 3738 int low, high, remaining; 3739 unsigned int rover; 3740 struct net *net = id_priv->id.route.addr.dev_addr.net; 3741 3742 lockdep_assert_held(&lock); 3743 3744 inet_get_local_port_range(net, &low, &high); 3745 remaining = (high - low) + 1; 3746 rover = get_random_u32_inclusive(low, remaining + low - 1); 3747 retry: 3748 if (last_used_port != rover) { 3749 struct rdma_bind_list *bind_list; 3750 int ret; 3751 3752 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3753 3754 if (!bind_list) { 3755 ret = cma_alloc_port(ps, id_priv, rover); 3756 } else { 3757 ret = cma_port_is_unique(bind_list, id_priv); 3758 if (!ret) 3759 cma_bind_port(bind_list, id_priv); 3760 } 3761 /* 3762 * Remember previously used port number in order to avoid 3763 * re-using same port immediately after it is closed. 3764 */ 3765 if (!ret) 3766 last_used_port = rover; 3767 if (ret != -EADDRNOTAVAIL) 3768 return ret; 3769 } 3770 if (--remaining) { 3771 rover++; 3772 if ((rover < low) || (rover > high)) 3773 rover = low; 3774 goto retry; 3775 } 3776 return -EADDRNOTAVAIL; 3777 } 3778 3779 /* 3780 * Check that the requested port is available. This is called when trying to 3781 * bind to a specific port, or when trying to listen on a bound port. In 3782 * the latter case, the provided id_priv may already be on the bind_list, but 3783 * we still need to check that it's okay to start listening. 3784 */ 3785 static int cma_check_port(struct rdma_bind_list *bind_list, 3786 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3787 { 3788 struct rdma_id_private *cur_id; 3789 struct sockaddr *addr, *cur_addr; 3790 3791 lockdep_assert_held(&lock); 3792 3793 addr = cma_src_addr(id_priv); 3794 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3795 if (id_priv == cur_id) 3796 continue; 3797 3798 if (reuseaddr && cur_id->reuseaddr) 3799 continue; 3800 3801 cur_addr = cma_src_addr(cur_id); 3802 if (id_priv->afonly && cur_id->afonly && 3803 (addr->sa_family != cur_addr->sa_family)) 3804 continue; 3805 3806 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3807 return -EADDRNOTAVAIL; 3808 3809 if (!cma_addr_cmp(addr, cur_addr)) 3810 return -EADDRINUSE; 3811 } 3812 return 0; 3813 } 3814 3815 static int cma_use_port(enum rdma_ucm_port_space ps, 3816 struct rdma_id_private *id_priv) 3817 { 3818 struct rdma_bind_list *bind_list; 3819 unsigned short snum; 3820 int ret; 3821 3822 lockdep_assert_held(&lock); 3823 3824 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3825 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3826 return -EACCES; 3827 3828 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3829 if (!bind_list) { 3830 ret = cma_alloc_port(ps, id_priv, snum); 3831 } else { 3832 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3833 if (!ret) 3834 cma_bind_port(bind_list, id_priv); 3835 } 3836 return ret; 3837 } 3838 3839 static enum rdma_ucm_port_space 3840 cma_select_inet_ps(struct rdma_id_private *id_priv) 3841 { 3842 switch (id_priv->id.ps) { 3843 case RDMA_PS_TCP: 3844 case RDMA_PS_UDP: 3845 case RDMA_PS_IPOIB: 3846 case RDMA_PS_IB: 3847 return id_priv->id.ps; 3848 default: 3849 3850 return 0; 3851 } 3852 } 3853 3854 static enum rdma_ucm_port_space 3855 cma_select_ib_ps(struct rdma_id_private *id_priv) 3856 { 3857 enum rdma_ucm_port_space ps = 0; 3858 struct sockaddr_ib *sib; 3859 u64 sid_ps, mask, sid; 3860 3861 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3862 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3863 sid = be64_to_cpu(sib->sib_sid) & mask; 3864 3865 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3866 sid_ps = RDMA_IB_IP_PS_IB; 3867 ps = RDMA_PS_IB; 3868 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3869 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3870 sid_ps = RDMA_IB_IP_PS_TCP; 3871 ps = RDMA_PS_TCP; 3872 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3873 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3874 sid_ps = RDMA_IB_IP_PS_UDP; 3875 ps = RDMA_PS_UDP; 3876 } 3877 3878 if (ps) { 3879 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3880 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3881 be64_to_cpu(sib->sib_sid_mask)); 3882 } 3883 return ps; 3884 } 3885 3886 static int cma_get_port(struct rdma_id_private *id_priv) 3887 { 3888 enum rdma_ucm_port_space ps; 3889 int ret; 3890 3891 if (cma_family(id_priv) != AF_IB) 3892 ps = cma_select_inet_ps(id_priv); 3893 else 3894 ps = cma_select_ib_ps(id_priv); 3895 if (!ps) 3896 return -EPROTONOSUPPORT; 3897 3898 mutex_lock(&lock); 3899 if (cma_any_port(cma_src_addr(id_priv))) 3900 ret = cma_alloc_any_port(ps, id_priv); 3901 else 3902 ret = cma_use_port(ps, id_priv); 3903 mutex_unlock(&lock); 3904 3905 return ret; 3906 } 3907 3908 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3909 struct sockaddr *addr) 3910 { 3911 #if IS_ENABLED(CONFIG_IPV6) 3912 struct sockaddr_in6 *sin6; 3913 3914 if (addr->sa_family != AF_INET6) 3915 return 0; 3916 3917 sin6 = (struct sockaddr_in6 *) addr; 3918 3919 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3920 return 0; 3921 3922 if (!sin6->sin6_scope_id) 3923 return -EINVAL; 3924 3925 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3926 #endif 3927 return 0; 3928 } 3929 3930 int rdma_listen(struct rdma_cm_id *id, int backlog) 3931 { 3932 struct rdma_id_private *id_priv = 3933 container_of(id, struct rdma_id_private, id); 3934 int ret; 3935 3936 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3937 struct sockaddr_in any_in = { 3938 .sin_family = AF_INET, 3939 .sin_addr.s_addr = htonl(INADDR_ANY), 3940 }; 3941 3942 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3943 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3944 if (ret) 3945 return ret; 3946 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3947 RDMA_CM_LISTEN))) 3948 return -EINVAL; 3949 } 3950 3951 /* 3952 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3953 * any more, and has to be unique in the bind list. 3954 */ 3955 if (id_priv->reuseaddr) { 3956 mutex_lock(&lock); 3957 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3958 if (!ret) 3959 id_priv->reuseaddr = 0; 3960 mutex_unlock(&lock); 3961 if (ret) 3962 goto err; 3963 } 3964 3965 id_priv->backlog = backlog; 3966 if (id_priv->cma_dev) { 3967 if (rdma_cap_ib_cm(id->device, 1)) { 3968 ret = cma_ib_listen(id_priv); 3969 if (ret) 3970 goto err; 3971 } else if (rdma_cap_iw_cm(id->device, 1)) { 3972 ret = cma_iw_listen(id_priv, backlog); 3973 if (ret) 3974 goto err; 3975 } else { 3976 ret = -ENOSYS; 3977 goto err; 3978 } 3979 } else { 3980 ret = cma_listen_on_all(id_priv); 3981 if (ret) 3982 goto err; 3983 } 3984 3985 return 0; 3986 err: 3987 id_priv->backlog = 0; 3988 /* 3989 * All the failure paths that lead here will not allow the req_handler's 3990 * to have run. 3991 */ 3992 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3993 return ret; 3994 } 3995 EXPORT_SYMBOL(rdma_listen); 3996 3997 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 3998 struct sockaddr *addr, const struct sockaddr *daddr) 3999 { 4000 struct sockaddr *id_daddr; 4001 int ret; 4002 4003 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 4004 addr->sa_family != AF_IB) 4005 return -EAFNOSUPPORT; 4006 4007 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 4008 return -EINVAL; 4009 4010 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 4011 if (ret) 4012 goto err1; 4013 4014 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 4015 if (!cma_any_addr(addr)) { 4016 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 4017 if (ret) 4018 goto err1; 4019 4020 ret = cma_acquire_dev_by_src_ip(id_priv); 4021 if (ret) 4022 goto err1; 4023 } 4024 4025 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4026 if (addr->sa_family == AF_INET) 4027 id_priv->afonly = 1; 4028 #if IS_ENABLED(CONFIG_IPV6) 4029 else if (addr->sa_family == AF_INET6) { 4030 struct net *net = id_priv->id.route.addr.dev_addr.net; 4031 4032 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4033 } 4034 #endif 4035 } 4036 id_daddr = cma_dst_addr(id_priv); 4037 if (daddr != id_daddr) 4038 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4039 id_daddr->sa_family = addr->sa_family; 4040 4041 ret = cma_get_port(id_priv); 4042 if (ret) 4043 goto err2; 4044 4045 if (!cma_any_addr(addr)) 4046 rdma_restrack_add(&id_priv->res); 4047 return 0; 4048 err2: 4049 if (id_priv->cma_dev) 4050 cma_release_dev(id_priv); 4051 err1: 4052 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4053 return ret; 4054 } 4055 4056 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4057 const struct sockaddr *dst_addr) 4058 { 4059 struct rdma_id_private *id_priv = 4060 container_of(id, struct rdma_id_private, id); 4061 struct sockaddr_storage zero_sock = {}; 4062 4063 if (src_addr && src_addr->sa_family) 4064 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4065 4066 /* 4067 * When the src_addr is not specified, automatically supply an any addr 4068 */ 4069 zero_sock.ss_family = dst_addr->sa_family; 4070 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4071 struct sockaddr_in6 *src_addr6 = 4072 (struct sockaddr_in6 *)&zero_sock; 4073 struct sockaddr_in6 *dst_addr6 = 4074 (struct sockaddr_in6 *)dst_addr; 4075 4076 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4077 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4078 id->route.addr.dev_addr.bound_dev_if = 4079 dst_addr6->sin6_scope_id; 4080 } else if (dst_addr->sa_family == AF_IB) { 4081 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4082 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4083 } 4084 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4085 } 4086 4087 /* 4088 * If required, resolve the source address for bind and leave the id_priv in 4089 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4090 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4091 * ignored. 4092 */ 4093 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4094 struct sockaddr *src_addr, 4095 const struct sockaddr *dst_addr) 4096 { 4097 int ret; 4098 4099 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4100 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4101 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4102 if (ret) 4103 return ret; 4104 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4105 RDMA_CM_ADDR_QUERY))) 4106 return -EINVAL; 4107 4108 } else { 4109 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4110 } 4111 4112 if (cma_family(id_priv) != dst_addr->sa_family) { 4113 ret = -EINVAL; 4114 goto err_state; 4115 } 4116 return 0; 4117 4118 err_state: 4119 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4120 return ret; 4121 } 4122 4123 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4124 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4125 { 4126 struct rdma_id_private *id_priv = 4127 container_of(id, struct rdma_id_private, id); 4128 int ret; 4129 4130 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4131 if (ret) 4132 return ret; 4133 4134 if (cma_any_addr(dst_addr)) { 4135 ret = cma_resolve_loopback(id_priv); 4136 } else { 4137 if (dst_addr->sa_family == AF_IB) { 4138 ret = cma_resolve_ib_addr(id_priv); 4139 } else { 4140 /* 4141 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4142 * rdma_resolve_ip() is called, eg through the error 4143 * path in addr_handler(). If this happens the existing 4144 * request must be canceled before issuing a new one. 4145 * Since canceling a request is a bit slow and this 4146 * oddball path is rare, keep track once a request has 4147 * been issued. The track turns out to be a permanent 4148 * state since this is the only cancel as it is 4149 * immediately before rdma_resolve_ip(). 4150 */ 4151 if (id_priv->used_resolve_ip) 4152 rdma_addr_cancel(&id->route.addr.dev_addr); 4153 else 4154 id_priv->used_resolve_ip = 1; 4155 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4156 &id->route.addr.dev_addr, 4157 timeout_ms, addr_handler, 4158 false, id_priv); 4159 } 4160 } 4161 if (ret) 4162 goto err; 4163 4164 return 0; 4165 err: 4166 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4167 return ret; 4168 } 4169 EXPORT_SYMBOL(rdma_resolve_addr); 4170 4171 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4172 { 4173 struct rdma_id_private *id_priv = 4174 container_of(id, struct rdma_id_private, id); 4175 4176 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4177 } 4178 EXPORT_SYMBOL(rdma_bind_addr); 4179 4180 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4181 { 4182 struct cma_hdr *cma_hdr; 4183 4184 cma_hdr = hdr; 4185 cma_hdr->cma_version = CMA_VERSION; 4186 if (cma_family(id_priv) == AF_INET) { 4187 struct sockaddr_in *src4, *dst4; 4188 4189 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4190 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4191 4192 cma_set_ip_ver(cma_hdr, 4); 4193 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4194 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4195 cma_hdr->port = src4->sin_port; 4196 } else if (cma_family(id_priv) == AF_INET6) { 4197 struct sockaddr_in6 *src6, *dst6; 4198 4199 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4200 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4201 4202 cma_set_ip_ver(cma_hdr, 6); 4203 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4204 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4205 cma_hdr->port = src6->sin6_port; 4206 } 4207 return 0; 4208 } 4209 4210 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4211 const struct ib_cm_event *ib_event) 4212 { 4213 struct rdma_id_private *id_priv = cm_id->context; 4214 struct rdma_cm_event event = {}; 4215 const struct ib_cm_sidr_rep_event_param *rep = 4216 &ib_event->param.sidr_rep_rcvd; 4217 int ret; 4218 4219 mutex_lock(&id_priv->handler_mutex); 4220 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4221 goto out; 4222 4223 switch (ib_event->event) { 4224 case IB_CM_SIDR_REQ_ERROR: 4225 event.event = RDMA_CM_EVENT_UNREACHABLE; 4226 event.status = -ETIMEDOUT; 4227 break; 4228 case IB_CM_SIDR_REP_RECEIVED: 4229 event.param.ud.private_data = ib_event->private_data; 4230 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4231 if (rep->status != IB_SIDR_SUCCESS) { 4232 event.event = RDMA_CM_EVENT_UNREACHABLE; 4233 event.status = ib_event->param.sidr_rep_rcvd.status; 4234 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4235 event.status); 4236 break; 4237 } 4238 ret = cma_set_qkey(id_priv, rep->qkey); 4239 if (ret) { 4240 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4241 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4242 event.status = ret; 4243 break; 4244 } 4245 ib_init_ah_attr_from_path(id_priv->id.device, 4246 id_priv->id.port_num, 4247 id_priv->id.route.path_rec, 4248 &event.param.ud.ah_attr, 4249 rep->sgid_attr); 4250 event.param.ud.qp_num = rep->qpn; 4251 event.param.ud.qkey = rep->qkey; 4252 event.event = RDMA_CM_EVENT_ESTABLISHED; 4253 event.status = 0; 4254 break; 4255 default: 4256 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4257 ib_event->event); 4258 goto out; 4259 } 4260 4261 ret = cma_cm_event_handler(id_priv, &event); 4262 4263 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4264 if (ret) { 4265 /* Destroy the CM ID by returning a non-zero value. */ 4266 id_priv->cm_id.ib = NULL; 4267 destroy_id_handler_unlock(id_priv); 4268 return ret; 4269 } 4270 out: 4271 mutex_unlock(&id_priv->handler_mutex); 4272 return 0; 4273 } 4274 4275 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4276 struct rdma_conn_param *conn_param) 4277 { 4278 struct ib_cm_sidr_req_param req; 4279 struct ib_cm_id *id; 4280 void *private_data; 4281 u8 offset; 4282 int ret; 4283 4284 memset(&req, 0, sizeof req); 4285 offset = cma_user_data_offset(id_priv); 4286 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4287 return -EINVAL; 4288 4289 if (req.private_data_len) { 4290 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4291 if (!private_data) 4292 return -ENOMEM; 4293 } else { 4294 private_data = NULL; 4295 } 4296 4297 if (conn_param->private_data && conn_param->private_data_len) 4298 memcpy(private_data + offset, conn_param->private_data, 4299 conn_param->private_data_len); 4300 4301 if (private_data) { 4302 ret = cma_format_hdr(private_data, id_priv); 4303 if (ret) 4304 goto out; 4305 req.private_data = private_data; 4306 } 4307 4308 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4309 id_priv); 4310 if (IS_ERR(id)) { 4311 ret = PTR_ERR(id); 4312 goto out; 4313 } 4314 id_priv->cm_id.ib = id; 4315 4316 req.path = id_priv->id.route.path_rec; 4317 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4318 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4319 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4320 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4321 4322 trace_cm_send_sidr_req(id_priv); 4323 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4324 if (ret) { 4325 ib_destroy_cm_id(id_priv->cm_id.ib); 4326 id_priv->cm_id.ib = NULL; 4327 } 4328 out: 4329 kfree(private_data); 4330 return ret; 4331 } 4332 4333 static int cma_connect_ib(struct rdma_id_private *id_priv, 4334 struct rdma_conn_param *conn_param) 4335 { 4336 struct ib_cm_req_param req; 4337 struct rdma_route *route; 4338 void *private_data; 4339 struct ib_cm_id *id; 4340 u8 offset; 4341 int ret; 4342 4343 memset(&req, 0, sizeof req); 4344 offset = cma_user_data_offset(id_priv); 4345 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4346 return -EINVAL; 4347 4348 if (req.private_data_len) { 4349 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4350 if (!private_data) 4351 return -ENOMEM; 4352 } else { 4353 private_data = NULL; 4354 } 4355 4356 if (conn_param->private_data && conn_param->private_data_len) 4357 memcpy(private_data + offset, conn_param->private_data, 4358 conn_param->private_data_len); 4359 4360 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4361 if (IS_ERR(id)) { 4362 ret = PTR_ERR(id); 4363 goto out; 4364 } 4365 id_priv->cm_id.ib = id; 4366 4367 route = &id_priv->id.route; 4368 if (private_data) { 4369 ret = cma_format_hdr(private_data, id_priv); 4370 if (ret) 4371 goto out; 4372 req.private_data = private_data; 4373 } 4374 4375 req.primary_path = &route->path_rec[0]; 4376 req.primary_path_inbound = route->path_rec_inbound; 4377 req.primary_path_outbound = route->path_rec_outbound; 4378 if (route->num_pri_alt_paths == 2) 4379 req.alternate_path = &route->path_rec[1]; 4380 4381 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4382 /* Alternate path SGID attribute currently unsupported */ 4383 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4384 req.qp_num = id_priv->qp_num; 4385 req.qp_type = id_priv->id.qp_type; 4386 req.starting_psn = id_priv->seq_num; 4387 req.responder_resources = conn_param->responder_resources; 4388 req.initiator_depth = conn_param->initiator_depth; 4389 req.flow_control = conn_param->flow_control; 4390 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4391 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4392 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4393 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4394 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4395 req.srq = id_priv->srq ? 1 : 0; 4396 req.ece.vendor_id = id_priv->ece.vendor_id; 4397 req.ece.attr_mod = id_priv->ece.attr_mod; 4398 4399 trace_cm_send_req(id_priv); 4400 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4401 out: 4402 if (ret && !IS_ERR(id)) { 4403 ib_destroy_cm_id(id); 4404 id_priv->cm_id.ib = NULL; 4405 } 4406 4407 kfree(private_data); 4408 return ret; 4409 } 4410 4411 static int cma_connect_iw(struct rdma_id_private *id_priv, 4412 struct rdma_conn_param *conn_param) 4413 { 4414 struct iw_cm_id *cm_id; 4415 int ret; 4416 struct iw_cm_conn_param iw_param; 4417 4418 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4419 if (IS_ERR(cm_id)) 4420 return PTR_ERR(cm_id); 4421 4422 mutex_lock(&id_priv->qp_mutex); 4423 cm_id->tos = id_priv->tos; 4424 cm_id->tos_set = id_priv->tos_set; 4425 mutex_unlock(&id_priv->qp_mutex); 4426 4427 id_priv->cm_id.iw = cm_id; 4428 4429 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4430 rdma_addr_size(cma_src_addr(id_priv))); 4431 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4432 rdma_addr_size(cma_dst_addr(id_priv))); 4433 4434 ret = cma_modify_qp_rtr(id_priv, conn_param); 4435 if (ret) 4436 goto out; 4437 4438 if (conn_param) { 4439 iw_param.ord = conn_param->initiator_depth; 4440 iw_param.ird = conn_param->responder_resources; 4441 iw_param.private_data = conn_param->private_data; 4442 iw_param.private_data_len = conn_param->private_data_len; 4443 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4444 } else { 4445 memset(&iw_param, 0, sizeof iw_param); 4446 iw_param.qpn = id_priv->qp_num; 4447 } 4448 ret = iw_cm_connect(cm_id, &iw_param); 4449 out: 4450 if (ret) { 4451 iw_destroy_cm_id(cm_id); 4452 id_priv->cm_id.iw = NULL; 4453 } 4454 return ret; 4455 } 4456 4457 /** 4458 * rdma_connect_locked - Initiate an active connection request. 4459 * @id: Connection identifier to connect. 4460 * @conn_param: Connection information used for connected QPs. 4461 * 4462 * Same as rdma_connect() but can only be called from the 4463 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4464 */ 4465 int rdma_connect_locked(struct rdma_cm_id *id, 4466 struct rdma_conn_param *conn_param) 4467 { 4468 struct rdma_id_private *id_priv = 4469 container_of(id, struct rdma_id_private, id); 4470 int ret; 4471 4472 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4473 return -EINVAL; 4474 4475 if (!id->qp) { 4476 id_priv->qp_num = conn_param->qp_num; 4477 id_priv->srq = conn_param->srq; 4478 } 4479 4480 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4481 if (id->qp_type == IB_QPT_UD) 4482 ret = cma_resolve_ib_udp(id_priv, conn_param); 4483 else 4484 ret = cma_connect_ib(id_priv, conn_param); 4485 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4486 ret = cma_connect_iw(id_priv, conn_param); 4487 } else { 4488 ret = -ENOSYS; 4489 } 4490 if (ret) 4491 goto err_state; 4492 return 0; 4493 err_state: 4494 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4495 return ret; 4496 } 4497 EXPORT_SYMBOL(rdma_connect_locked); 4498 4499 /** 4500 * rdma_connect - Initiate an active connection request. 4501 * @id: Connection identifier to connect. 4502 * @conn_param: Connection information used for connected QPs. 4503 * 4504 * Users must have resolved a route for the rdma_cm_id to connect with by having 4505 * called rdma_resolve_route before calling this routine. 4506 * 4507 * This call will either connect to a remote QP or obtain remote QP information 4508 * for unconnected rdma_cm_id's. The actual operation is based on the 4509 * rdma_cm_id's port space. 4510 */ 4511 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4512 { 4513 struct rdma_id_private *id_priv = 4514 container_of(id, struct rdma_id_private, id); 4515 int ret; 4516 4517 mutex_lock(&id_priv->handler_mutex); 4518 ret = rdma_connect_locked(id, conn_param); 4519 mutex_unlock(&id_priv->handler_mutex); 4520 return ret; 4521 } 4522 EXPORT_SYMBOL(rdma_connect); 4523 4524 /** 4525 * rdma_connect_ece - Initiate an active connection request with ECE data. 4526 * @id: Connection identifier to connect. 4527 * @conn_param: Connection information used for connected QPs. 4528 * @ece: ECE parameters 4529 * 4530 * See rdma_connect() explanation. 4531 */ 4532 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4533 struct rdma_ucm_ece *ece) 4534 { 4535 struct rdma_id_private *id_priv = 4536 container_of(id, struct rdma_id_private, id); 4537 4538 id_priv->ece.vendor_id = ece->vendor_id; 4539 id_priv->ece.attr_mod = ece->attr_mod; 4540 4541 return rdma_connect(id, conn_param); 4542 } 4543 EXPORT_SYMBOL(rdma_connect_ece); 4544 4545 static int cma_accept_ib(struct rdma_id_private *id_priv, 4546 struct rdma_conn_param *conn_param) 4547 { 4548 struct ib_cm_rep_param rep; 4549 int ret; 4550 4551 ret = cma_modify_qp_rtr(id_priv, conn_param); 4552 if (ret) 4553 goto out; 4554 4555 ret = cma_modify_qp_rts(id_priv, conn_param); 4556 if (ret) 4557 goto out; 4558 4559 memset(&rep, 0, sizeof rep); 4560 rep.qp_num = id_priv->qp_num; 4561 rep.starting_psn = id_priv->seq_num; 4562 rep.private_data = conn_param->private_data; 4563 rep.private_data_len = conn_param->private_data_len; 4564 rep.responder_resources = conn_param->responder_resources; 4565 rep.initiator_depth = conn_param->initiator_depth; 4566 rep.failover_accepted = 0; 4567 rep.flow_control = conn_param->flow_control; 4568 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4569 rep.srq = id_priv->srq ? 1 : 0; 4570 rep.ece.vendor_id = id_priv->ece.vendor_id; 4571 rep.ece.attr_mod = id_priv->ece.attr_mod; 4572 4573 trace_cm_send_rep(id_priv); 4574 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4575 out: 4576 return ret; 4577 } 4578 4579 static int cma_accept_iw(struct rdma_id_private *id_priv, 4580 struct rdma_conn_param *conn_param) 4581 { 4582 struct iw_cm_conn_param iw_param; 4583 int ret; 4584 4585 if (!conn_param) 4586 return -EINVAL; 4587 4588 ret = cma_modify_qp_rtr(id_priv, conn_param); 4589 if (ret) 4590 return ret; 4591 4592 iw_param.ord = conn_param->initiator_depth; 4593 iw_param.ird = conn_param->responder_resources; 4594 iw_param.private_data = conn_param->private_data; 4595 iw_param.private_data_len = conn_param->private_data_len; 4596 if (id_priv->id.qp) 4597 iw_param.qpn = id_priv->qp_num; 4598 else 4599 iw_param.qpn = conn_param->qp_num; 4600 4601 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4602 } 4603 4604 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4605 enum ib_cm_sidr_status status, u32 qkey, 4606 const void *private_data, int private_data_len) 4607 { 4608 struct ib_cm_sidr_rep_param rep; 4609 int ret; 4610 4611 memset(&rep, 0, sizeof rep); 4612 rep.status = status; 4613 if (status == IB_SIDR_SUCCESS) { 4614 if (qkey) 4615 ret = cma_set_qkey(id_priv, qkey); 4616 else 4617 ret = cma_set_default_qkey(id_priv); 4618 if (ret) 4619 return ret; 4620 rep.qp_num = id_priv->qp_num; 4621 rep.qkey = id_priv->qkey; 4622 4623 rep.ece.vendor_id = id_priv->ece.vendor_id; 4624 rep.ece.attr_mod = id_priv->ece.attr_mod; 4625 } 4626 4627 rep.private_data = private_data; 4628 rep.private_data_len = private_data_len; 4629 4630 trace_cm_send_sidr_rep(id_priv); 4631 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4632 } 4633 4634 /** 4635 * rdma_accept - Called to accept a connection request or response. 4636 * @id: Connection identifier associated with the request. 4637 * @conn_param: Information needed to establish the connection. This must be 4638 * provided if accepting a connection request. If accepting a connection 4639 * response, this parameter must be NULL. 4640 * 4641 * Typically, this routine is only called by the listener to accept a connection 4642 * request. It must also be called on the active side of a connection if the 4643 * user is performing their own QP transitions. 4644 * 4645 * In the case of error, a reject message is sent to the remote side and the 4646 * state of the qp associated with the id is modified to error, such that any 4647 * previously posted receive buffers would be flushed. 4648 * 4649 * This function is for use by kernel ULPs and must be called from under the 4650 * handler callback. 4651 */ 4652 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4653 { 4654 struct rdma_id_private *id_priv = 4655 container_of(id, struct rdma_id_private, id); 4656 int ret; 4657 4658 lockdep_assert_held(&id_priv->handler_mutex); 4659 4660 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4661 return -EINVAL; 4662 4663 if (!id->qp && conn_param) { 4664 id_priv->qp_num = conn_param->qp_num; 4665 id_priv->srq = conn_param->srq; 4666 } 4667 4668 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4669 if (id->qp_type == IB_QPT_UD) { 4670 if (conn_param) 4671 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4672 conn_param->qkey, 4673 conn_param->private_data, 4674 conn_param->private_data_len); 4675 else 4676 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4677 0, NULL, 0); 4678 } else { 4679 if (conn_param) 4680 ret = cma_accept_ib(id_priv, conn_param); 4681 else 4682 ret = cma_rep_recv(id_priv); 4683 } 4684 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4685 ret = cma_accept_iw(id_priv, conn_param); 4686 } else { 4687 ret = -ENOSYS; 4688 } 4689 if (ret) 4690 goto reject; 4691 4692 return 0; 4693 reject: 4694 cma_modify_qp_err(id_priv); 4695 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4696 return ret; 4697 } 4698 EXPORT_SYMBOL(rdma_accept); 4699 4700 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4701 struct rdma_ucm_ece *ece) 4702 { 4703 struct rdma_id_private *id_priv = 4704 container_of(id, struct rdma_id_private, id); 4705 4706 id_priv->ece.vendor_id = ece->vendor_id; 4707 id_priv->ece.attr_mod = ece->attr_mod; 4708 4709 return rdma_accept(id, conn_param); 4710 } 4711 EXPORT_SYMBOL(rdma_accept_ece); 4712 4713 void rdma_lock_handler(struct rdma_cm_id *id) 4714 { 4715 struct rdma_id_private *id_priv = 4716 container_of(id, struct rdma_id_private, id); 4717 4718 mutex_lock(&id_priv->handler_mutex); 4719 } 4720 EXPORT_SYMBOL(rdma_lock_handler); 4721 4722 void rdma_unlock_handler(struct rdma_cm_id *id) 4723 { 4724 struct rdma_id_private *id_priv = 4725 container_of(id, struct rdma_id_private, id); 4726 4727 mutex_unlock(&id_priv->handler_mutex); 4728 } 4729 EXPORT_SYMBOL(rdma_unlock_handler); 4730 4731 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4732 { 4733 struct rdma_id_private *id_priv; 4734 int ret; 4735 4736 id_priv = container_of(id, struct rdma_id_private, id); 4737 if (!id_priv->cm_id.ib) 4738 return -EINVAL; 4739 4740 switch (id->device->node_type) { 4741 case RDMA_NODE_IB_CA: 4742 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4743 break; 4744 default: 4745 ret = 0; 4746 break; 4747 } 4748 return ret; 4749 } 4750 EXPORT_SYMBOL(rdma_notify); 4751 4752 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4753 u8 private_data_len, u8 reason) 4754 { 4755 struct rdma_id_private *id_priv; 4756 int ret; 4757 4758 id_priv = container_of(id, struct rdma_id_private, id); 4759 if (!id_priv->cm_id.ib) 4760 return -EINVAL; 4761 4762 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4763 if (id->qp_type == IB_QPT_UD) { 4764 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4765 private_data, private_data_len); 4766 } else { 4767 trace_cm_send_rej(id_priv); 4768 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4769 private_data, private_data_len); 4770 } 4771 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4772 ret = iw_cm_reject(id_priv->cm_id.iw, 4773 private_data, private_data_len); 4774 } else { 4775 ret = -ENOSYS; 4776 } 4777 4778 return ret; 4779 } 4780 EXPORT_SYMBOL(rdma_reject); 4781 4782 int rdma_disconnect(struct rdma_cm_id *id) 4783 { 4784 struct rdma_id_private *id_priv; 4785 int ret; 4786 4787 id_priv = container_of(id, struct rdma_id_private, id); 4788 if (!id_priv->cm_id.ib) 4789 return -EINVAL; 4790 4791 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4792 ret = cma_modify_qp_err(id_priv); 4793 if (ret) 4794 goto out; 4795 /* Initiate or respond to a disconnect. */ 4796 trace_cm_disconnect(id_priv); 4797 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4798 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4799 trace_cm_sent_drep(id_priv); 4800 } else { 4801 trace_cm_sent_dreq(id_priv); 4802 } 4803 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4804 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4805 } else 4806 ret = -EINVAL; 4807 4808 out: 4809 return ret; 4810 } 4811 EXPORT_SYMBOL(rdma_disconnect); 4812 4813 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4814 struct ib_sa_multicast *multicast, 4815 struct rdma_cm_event *event, 4816 struct cma_multicast *mc) 4817 { 4818 struct rdma_dev_addr *dev_addr; 4819 enum ib_gid_type gid_type; 4820 struct net_device *ndev; 4821 4822 if (status) 4823 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4824 status); 4825 4826 event->status = status; 4827 event->param.ud.private_data = mc->context; 4828 if (status) { 4829 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4830 return; 4831 } 4832 4833 dev_addr = &id_priv->id.route.addr.dev_addr; 4834 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4835 gid_type = 4836 id_priv->cma_dev 4837 ->default_gid_type[id_priv->id.port_num - 4838 rdma_start_port( 4839 id_priv->cma_dev->device)]; 4840 4841 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4842 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4843 &multicast->rec, ndev, gid_type, 4844 &event->param.ud.ah_attr)) { 4845 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4846 goto out; 4847 } 4848 4849 event->param.ud.qp_num = 0xFFFFFF; 4850 event->param.ud.qkey = id_priv->qkey; 4851 4852 out: 4853 dev_put(ndev); 4854 } 4855 4856 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4857 { 4858 struct cma_multicast *mc = multicast->context; 4859 struct rdma_id_private *id_priv = mc->id_priv; 4860 struct rdma_cm_event event = {}; 4861 int ret = 0; 4862 4863 mutex_lock(&id_priv->handler_mutex); 4864 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4865 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4866 goto out; 4867 4868 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4869 if (!ret) { 4870 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4871 ret = cma_cm_event_handler(id_priv, &event); 4872 } 4873 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4874 WARN_ON(ret); 4875 4876 out: 4877 mutex_unlock(&id_priv->handler_mutex); 4878 return 0; 4879 } 4880 4881 static void cma_set_mgid(struct rdma_id_private *id_priv, 4882 struct sockaddr *addr, union ib_gid *mgid) 4883 { 4884 unsigned char mc_map[MAX_ADDR_LEN]; 4885 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4886 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4887 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4888 4889 if (cma_any_addr(addr)) { 4890 memset(mgid, 0, sizeof *mgid); 4891 } else if ((addr->sa_family == AF_INET6) && 4892 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4893 0xFF10A01B)) { 4894 /* IPv6 address is an SA assigned MGID. */ 4895 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4896 } else if (addr->sa_family == AF_IB) { 4897 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4898 } else if (addr->sa_family == AF_INET6) { 4899 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4900 if (id_priv->id.ps == RDMA_PS_UDP) 4901 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4902 *mgid = *(union ib_gid *) (mc_map + 4); 4903 } else { 4904 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4905 if (id_priv->id.ps == RDMA_PS_UDP) 4906 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4907 *mgid = *(union ib_gid *) (mc_map + 4); 4908 } 4909 } 4910 4911 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4912 struct cma_multicast *mc) 4913 { 4914 struct ib_sa_mcmember_rec rec; 4915 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4916 ib_sa_comp_mask comp_mask; 4917 int ret; 4918 4919 ib_addr_get_mgid(dev_addr, &rec.mgid); 4920 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4921 &rec.mgid, &rec); 4922 if (ret) 4923 return ret; 4924 4925 if (!id_priv->qkey) { 4926 ret = cma_set_default_qkey(id_priv); 4927 if (ret) 4928 return ret; 4929 } 4930 4931 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4932 rec.qkey = cpu_to_be32(id_priv->qkey); 4933 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4934 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4935 rec.join_state = mc->join_state; 4936 4937 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4938 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4939 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4940 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4941 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4942 4943 if (id_priv->id.ps == RDMA_PS_IPOIB) 4944 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4945 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4946 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4947 IB_SA_MCMEMBER_REC_MTU | 4948 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4949 4950 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4951 id_priv->id.port_num, &rec, comp_mask, 4952 GFP_KERNEL, cma_ib_mc_handler, mc); 4953 return PTR_ERR_OR_ZERO(mc->sa_mc); 4954 } 4955 4956 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4957 enum ib_gid_type gid_type) 4958 { 4959 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4960 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4961 4962 if (cma_any_addr(addr)) { 4963 memset(mgid, 0, sizeof *mgid); 4964 } else if (addr->sa_family == AF_INET6) { 4965 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4966 } else { 4967 mgid->raw[0] = 4968 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4969 mgid->raw[1] = 4970 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4971 mgid->raw[2] = 0; 4972 mgid->raw[3] = 0; 4973 mgid->raw[4] = 0; 4974 mgid->raw[5] = 0; 4975 mgid->raw[6] = 0; 4976 mgid->raw[7] = 0; 4977 mgid->raw[8] = 0; 4978 mgid->raw[9] = 0; 4979 mgid->raw[10] = 0xff; 4980 mgid->raw[11] = 0xff; 4981 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4982 } 4983 } 4984 4985 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4986 struct cma_multicast *mc) 4987 { 4988 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4989 int err = 0; 4990 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4991 struct net_device *ndev = NULL; 4992 struct ib_sa_multicast ib = {}; 4993 enum ib_gid_type gid_type; 4994 bool send_only; 4995 4996 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4997 4998 if (cma_zero_addr(addr)) 4999 return -EINVAL; 5000 5001 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 5002 rdma_start_port(id_priv->cma_dev->device)]; 5003 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 5004 5005 ib.rec.pkey = cpu_to_be16(0xffff); 5006 if (dev_addr->bound_dev_if) 5007 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 5008 if (!ndev) 5009 return -ENODEV; 5010 5011 ib.rec.rate = IB_RATE_PORT_CURRENT; 5012 ib.rec.hop_limit = 1; 5013 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 5014 5015 if (addr->sa_family == AF_INET) { 5016 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 5017 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 5018 if (!send_only) { 5019 err = cma_igmp_send(ndev, &ib.rec.mgid, 5020 true); 5021 } 5022 } 5023 } else { 5024 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5025 err = -ENOTSUPP; 5026 } 5027 dev_put(ndev); 5028 if (err || !ib.rec.mtu) 5029 return err ?: -EINVAL; 5030 5031 if (!id_priv->qkey) 5032 cma_set_default_qkey(id_priv); 5033 5034 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5035 &ib.rec.port_gid); 5036 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5037 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5038 queue_work(cma_wq, &mc->iboe_join.work); 5039 return 0; 5040 } 5041 5042 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5043 u8 join_state, void *context) 5044 { 5045 struct rdma_id_private *id_priv = 5046 container_of(id, struct rdma_id_private, id); 5047 struct cma_multicast *mc; 5048 int ret; 5049 5050 /* Not supported for kernel QPs */ 5051 if (WARN_ON(id->qp)) 5052 return -EINVAL; 5053 5054 /* ULP is calling this wrong. */ 5055 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5056 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5057 return -EINVAL; 5058 5059 if (id_priv->id.qp_type != IB_QPT_UD) 5060 return -EINVAL; 5061 5062 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5063 if (!mc) 5064 return -ENOMEM; 5065 5066 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5067 mc->context = context; 5068 mc->id_priv = id_priv; 5069 mc->join_state = join_state; 5070 5071 if (rdma_protocol_roce(id->device, id->port_num)) { 5072 ret = cma_iboe_join_multicast(id_priv, mc); 5073 if (ret) 5074 goto out_err; 5075 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5076 ret = cma_join_ib_multicast(id_priv, mc); 5077 if (ret) 5078 goto out_err; 5079 } else { 5080 ret = -ENOSYS; 5081 goto out_err; 5082 } 5083 5084 spin_lock(&id_priv->lock); 5085 list_add(&mc->list, &id_priv->mc_list); 5086 spin_unlock(&id_priv->lock); 5087 5088 return 0; 5089 out_err: 5090 kfree(mc); 5091 return ret; 5092 } 5093 EXPORT_SYMBOL(rdma_join_multicast); 5094 5095 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5096 { 5097 struct rdma_id_private *id_priv; 5098 struct cma_multicast *mc; 5099 5100 id_priv = container_of(id, struct rdma_id_private, id); 5101 spin_lock_irq(&id_priv->lock); 5102 list_for_each_entry(mc, &id_priv->mc_list, list) { 5103 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5104 continue; 5105 list_del(&mc->list); 5106 spin_unlock_irq(&id_priv->lock); 5107 5108 WARN_ON(id_priv->cma_dev->device != id->device); 5109 destroy_mc(id_priv, mc); 5110 return; 5111 } 5112 spin_unlock_irq(&id_priv->lock); 5113 } 5114 EXPORT_SYMBOL(rdma_leave_multicast); 5115 5116 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5117 { 5118 struct rdma_dev_addr *dev_addr; 5119 struct cma_work *work; 5120 5121 dev_addr = &id_priv->id.route.addr.dev_addr; 5122 5123 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5124 (net_eq(dev_net(ndev), dev_addr->net)) && 5125 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5126 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5127 ndev->name, &id_priv->id); 5128 work = kzalloc(sizeof *work, GFP_KERNEL); 5129 if (!work) 5130 return -ENOMEM; 5131 5132 INIT_WORK(&work->work, cma_work_handler); 5133 work->id = id_priv; 5134 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5135 cma_id_get(id_priv); 5136 queue_work(cma_wq, &work->work); 5137 } 5138 5139 return 0; 5140 } 5141 5142 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5143 void *ptr) 5144 { 5145 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5146 struct cma_device *cma_dev; 5147 struct rdma_id_private *id_priv; 5148 int ret = NOTIFY_DONE; 5149 5150 if (event != NETDEV_BONDING_FAILOVER) 5151 return NOTIFY_DONE; 5152 5153 if (!netif_is_bond_master(ndev)) 5154 return NOTIFY_DONE; 5155 5156 mutex_lock(&lock); 5157 list_for_each_entry(cma_dev, &dev_list, list) 5158 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5159 ret = cma_netdev_change(ndev, id_priv); 5160 if (ret) 5161 goto out; 5162 } 5163 5164 out: 5165 mutex_unlock(&lock); 5166 return ret; 5167 } 5168 5169 static void cma_netevent_work_handler(struct work_struct *_work) 5170 { 5171 struct rdma_id_private *id_priv = 5172 container_of(_work, struct rdma_id_private, id.net_work); 5173 struct rdma_cm_event event = {}; 5174 5175 mutex_lock(&id_priv->handler_mutex); 5176 5177 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5178 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5179 goto out_unlock; 5180 5181 event.event = RDMA_CM_EVENT_UNREACHABLE; 5182 event.status = -ETIMEDOUT; 5183 5184 if (cma_cm_event_handler(id_priv, &event)) { 5185 __acquire(&id_priv->handler_mutex); 5186 id_priv->cm_id.ib = NULL; 5187 cma_id_put(id_priv); 5188 destroy_id_handler_unlock(id_priv); 5189 return; 5190 } 5191 5192 out_unlock: 5193 mutex_unlock(&id_priv->handler_mutex); 5194 cma_id_put(id_priv); 5195 } 5196 5197 static int cma_netevent_callback(struct notifier_block *self, 5198 unsigned long event, void *ctx) 5199 { 5200 struct id_table_entry *ips_node = NULL; 5201 struct rdma_id_private *current_id; 5202 struct neighbour *neigh = ctx; 5203 unsigned long flags; 5204 5205 if (event != NETEVENT_NEIGH_UPDATE) 5206 return NOTIFY_DONE; 5207 5208 spin_lock_irqsave(&id_table_lock, flags); 5209 if (neigh->tbl->family == AF_INET6) { 5210 struct sockaddr_in6 neigh_sock_6; 5211 5212 neigh_sock_6.sin6_family = AF_INET6; 5213 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5214 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5215 (struct sockaddr *)&neigh_sock_6); 5216 } else if (neigh->tbl->family == AF_INET) { 5217 struct sockaddr_in neigh_sock_4; 5218 5219 neigh_sock_4.sin_family = AF_INET; 5220 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5221 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5222 (struct sockaddr *)&neigh_sock_4); 5223 } else 5224 goto out; 5225 5226 if (!ips_node) 5227 goto out; 5228 5229 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5230 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5231 neigh->ha, ETH_ALEN)) 5232 continue; 5233 cma_id_get(current_id); 5234 if (!queue_work(cma_wq, ¤t_id->id.net_work)) 5235 cma_id_put(current_id); 5236 } 5237 out: 5238 spin_unlock_irqrestore(&id_table_lock, flags); 5239 return NOTIFY_DONE; 5240 } 5241 5242 static struct notifier_block cma_nb = { 5243 .notifier_call = cma_netdev_callback 5244 }; 5245 5246 static struct notifier_block cma_netevent_cb = { 5247 .notifier_call = cma_netevent_callback 5248 }; 5249 5250 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5251 { 5252 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5253 enum rdma_cm_state state; 5254 unsigned long flags; 5255 5256 mutex_lock(&id_priv->handler_mutex); 5257 /* Record that we want to remove the device */ 5258 spin_lock_irqsave(&id_priv->lock, flags); 5259 state = id_priv->state; 5260 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5261 spin_unlock_irqrestore(&id_priv->lock, flags); 5262 mutex_unlock(&id_priv->handler_mutex); 5263 cma_id_put(id_priv); 5264 return; 5265 } 5266 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5267 spin_unlock_irqrestore(&id_priv->lock, flags); 5268 5269 if (cma_cm_event_handler(id_priv, &event)) { 5270 /* 5271 * At this point the ULP promises it won't call 5272 * rdma_destroy_id() concurrently 5273 */ 5274 cma_id_put(id_priv); 5275 mutex_unlock(&id_priv->handler_mutex); 5276 trace_cm_id_destroy(id_priv); 5277 _destroy_id(id_priv, state); 5278 return; 5279 } 5280 mutex_unlock(&id_priv->handler_mutex); 5281 5282 /* 5283 * If this races with destroy then the thread that first assigns state 5284 * to a destroying does the cancel. 5285 */ 5286 cma_cancel_operation(id_priv, state); 5287 cma_id_put(id_priv); 5288 } 5289 5290 static void cma_process_remove(struct cma_device *cma_dev) 5291 { 5292 mutex_lock(&lock); 5293 while (!list_empty(&cma_dev->id_list)) { 5294 struct rdma_id_private *id_priv = list_first_entry( 5295 &cma_dev->id_list, struct rdma_id_private, device_item); 5296 5297 list_del_init(&id_priv->listen_item); 5298 list_del_init(&id_priv->device_item); 5299 cma_id_get(id_priv); 5300 mutex_unlock(&lock); 5301 5302 cma_send_device_removal_put(id_priv); 5303 5304 mutex_lock(&lock); 5305 } 5306 mutex_unlock(&lock); 5307 5308 cma_dev_put(cma_dev); 5309 wait_for_completion(&cma_dev->comp); 5310 } 5311 5312 static bool cma_supported(struct ib_device *device) 5313 { 5314 u32 i; 5315 5316 rdma_for_each_port(device, i) { 5317 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5318 return true; 5319 } 5320 return false; 5321 } 5322 5323 static int cma_add_one(struct ib_device *device) 5324 { 5325 struct rdma_id_private *to_destroy; 5326 struct cma_device *cma_dev; 5327 struct rdma_id_private *id_priv; 5328 unsigned long supported_gids = 0; 5329 int ret; 5330 u32 i; 5331 5332 if (!cma_supported(device)) 5333 return -EOPNOTSUPP; 5334 5335 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5336 if (!cma_dev) 5337 return -ENOMEM; 5338 5339 cma_dev->device = device; 5340 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5341 sizeof(*cma_dev->default_gid_type), 5342 GFP_KERNEL); 5343 if (!cma_dev->default_gid_type) { 5344 ret = -ENOMEM; 5345 goto free_cma_dev; 5346 } 5347 5348 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5349 sizeof(*cma_dev->default_roce_tos), 5350 GFP_KERNEL); 5351 if (!cma_dev->default_roce_tos) { 5352 ret = -ENOMEM; 5353 goto free_gid_type; 5354 } 5355 5356 rdma_for_each_port (device, i) { 5357 supported_gids = roce_gid_type_mask_support(device, i); 5358 WARN_ON(!supported_gids); 5359 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5360 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5361 CMA_PREFERRED_ROCE_GID_TYPE; 5362 else 5363 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5364 find_first_bit(&supported_gids, BITS_PER_LONG); 5365 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5366 } 5367 5368 init_completion(&cma_dev->comp); 5369 refcount_set(&cma_dev->refcount, 1); 5370 INIT_LIST_HEAD(&cma_dev->id_list); 5371 ib_set_client_data(device, &cma_client, cma_dev); 5372 5373 mutex_lock(&lock); 5374 list_add_tail(&cma_dev->list, &dev_list); 5375 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5376 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5377 if (ret) 5378 goto free_listen; 5379 } 5380 mutex_unlock(&lock); 5381 5382 trace_cm_add_one(device); 5383 return 0; 5384 5385 free_listen: 5386 list_del(&cma_dev->list); 5387 mutex_unlock(&lock); 5388 5389 /* cma_process_remove() will delete to_destroy */ 5390 cma_process_remove(cma_dev); 5391 kfree(cma_dev->default_roce_tos); 5392 free_gid_type: 5393 kfree(cma_dev->default_gid_type); 5394 5395 free_cma_dev: 5396 kfree(cma_dev); 5397 return ret; 5398 } 5399 5400 static void cma_remove_one(struct ib_device *device, void *client_data) 5401 { 5402 struct cma_device *cma_dev = client_data; 5403 5404 trace_cm_remove_one(device); 5405 5406 mutex_lock(&lock); 5407 list_del(&cma_dev->list); 5408 mutex_unlock(&lock); 5409 5410 cma_process_remove(cma_dev); 5411 kfree(cma_dev->default_roce_tos); 5412 kfree(cma_dev->default_gid_type); 5413 kfree(cma_dev); 5414 } 5415 5416 static int cma_init_net(struct net *net) 5417 { 5418 struct cma_pernet *pernet = cma_pernet(net); 5419 5420 xa_init(&pernet->tcp_ps); 5421 xa_init(&pernet->udp_ps); 5422 xa_init(&pernet->ipoib_ps); 5423 xa_init(&pernet->ib_ps); 5424 5425 return 0; 5426 } 5427 5428 static void cma_exit_net(struct net *net) 5429 { 5430 struct cma_pernet *pernet = cma_pernet(net); 5431 5432 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5433 WARN_ON(!xa_empty(&pernet->udp_ps)); 5434 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5435 WARN_ON(!xa_empty(&pernet->ib_ps)); 5436 } 5437 5438 static struct pernet_operations cma_pernet_operations = { 5439 .init = cma_init_net, 5440 .exit = cma_exit_net, 5441 .id = &cma_pernet_id, 5442 .size = sizeof(struct cma_pernet), 5443 }; 5444 5445 static int __init cma_init(void) 5446 { 5447 int ret; 5448 5449 /* 5450 * There is a rare lock ordering dependency in cma_netdev_callback() 5451 * that only happens when bonding is enabled. Teach lockdep that rtnl 5452 * must never be nested under lock so it can find these without having 5453 * to test with bonding. 5454 */ 5455 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5456 rtnl_lock(); 5457 mutex_lock(&lock); 5458 mutex_unlock(&lock); 5459 rtnl_unlock(); 5460 } 5461 5462 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5463 if (!cma_wq) 5464 return -ENOMEM; 5465 5466 ret = register_pernet_subsys(&cma_pernet_operations); 5467 if (ret) 5468 goto err_wq; 5469 5470 ib_sa_register_client(&sa_client); 5471 register_netdevice_notifier(&cma_nb); 5472 register_netevent_notifier(&cma_netevent_cb); 5473 5474 ret = ib_register_client(&cma_client); 5475 if (ret) 5476 goto err; 5477 5478 ret = cma_configfs_init(); 5479 if (ret) 5480 goto err_ib; 5481 5482 return 0; 5483 5484 err_ib: 5485 ib_unregister_client(&cma_client); 5486 err: 5487 unregister_netevent_notifier(&cma_netevent_cb); 5488 unregister_netdevice_notifier(&cma_nb); 5489 ib_sa_unregister_client(&sa_client); 5490 unregister_pernet_subsys(&cma_pernet_operations); 5491 err_wq: 5492 destroy_workqueue(cma_wq); 5493 return ret; 5494 } 5495 5496 static void __exit cma_cleanup(void) 5497 { 5498 cma_configfs_exit(); 5499 ib_unregister_client(&cma_client); 5500 unregister_netevent_notifier(&cma_netevent_cb); 5501 unregister_netdevice_notifier(&cma_nb); 5502 ib_sa_unregister_client(&sa_client); 5503 unregister_pernet_subsys(&cma_pernet_operations); 5504 destroy_workqueue(cma_wq); 5505 } 5506 5507 module_init(cma_init); 5508 module_exit(cma_cleanup); 5509