1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors. 4 * 5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net> 6 * 7 * 7-bit I2C slave address 0x23 8 * 9 * TODO: IR LED characteristics 10 */ 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/i2c.h> 15 #include <linux/err.h> 16 #include <linux/delay.h> 17 #include <linux/regmap.h> 18 #include <linux/regulator/consumer.h> 19 20 #include <linux/iio/iio.h> 21 #include <linux/iio/events.h> 22 #include <linux/iio/sysfs.h> 23 #include <linux/iio/trigger_consumer.h> 24 #include <linux/iio/buffer.h> 25 #include <linux/iio/triggered_buffer.h> 26 27 #define LTR501_DRV_NAME "ltr501" 28 29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ 30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */ 31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/ 32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ 33 #define LTR501_PART_ID 0x86 34 #define LTR501_MANUFAC_ID 0x87 35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ 36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */ 37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ 38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */ 39 #define LTR501_ALS_PS_STATUS 0x8c 40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ 41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */ 42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */ 43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */ 44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ 45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ 46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ 47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */ 48 #define LTR501_MAX_REG 0x9f 49 50 #define LTR501_ALS_CONTR_SW_RESET BIT(2) 51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) 52 #define LTR501_CONTR_PS_GAIN_SHIFT 2 53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) 54 #define LTR501_CONTR_ACTIVE BIT(1) 55 56 #define LTR501_STATUS_ALS_INTR BIT(3) 57 #define LTR501_STATUS_ALS_RDY BIT(2) 58 #define LTR501_STATUS_PS_INTR BIT(1) 59 #define LTR501_STATUS_PS_RDY BIT(0) 60 61 #define LTR501_PS_DATA_MASK 0x7ff 62 #define LTR501_PS_THRESH_MASK 0x7ff 63 #define LTR501_ALS_THRESH_MASK 0xffff 64 65 #define LTR501_ALS_DEF_PERIOD 500000 66 #define LTR501_PS_DEF_PERIOD 100000 67 68 #define LTR501_REGMAP_NAME "ltr501_regmap" 69 70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \ 71 ((vis_coeff * vis_data) - (ir_coeff * ir_data)) 72 73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; 74 75 static const struct reg_field reg_field_it = 76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4); 77 static const struct reg_field reg_field_als_intr = 78 REG_FIELD(LTR501_INTR, 1, 1); 79 static const struct reg_field reg_field_ps_intr = 80 REG_FIELD(LTR501_INTR, 0, 0); 81 static const struct reg_field reg_field_als_rate = 82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2); 83 static const struct reg_field reg_field_ps_rate = 84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3); 85 static const struct reg_field reg_field_als_prst = 86 REG_FIELD(LTR501_INTR_PRST, 0, 3); 87 static const struct reg_field reg_field_ps_prst = 88 REG_FIELD(LTR501_INTR_PRST, 4, 7); 89 90 struct ltr501_samp_table { 91 int freq_val; /* repetition frequency in micro HZ*/ 92 int time_val; /* repetition rate in micro seconds */ 93 }; 94 95 #define LTR501_RESERVED_GAIN -1 96 97 enum { 98 ltr501 = 0, 99 ltr559, 100 ltr301, 101 ltr303, 102 }; 103 104 struct ltr501_gain { 105 int scale; 106 int uscale; 107 }; 108 109 static const struct ltr501_gain ltr501_als_gain_tbl[] = { 110 {1, 0}, 111 {0, 5000}, 112 }; 113 114 static const struct ltr501_gain ltr559_als_gain_tbl[] = { 115 {1, 0}, 116 {0, 500000}, 117 {0, 250000}, 118 {0, 125000}, 119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 121 {0, 20000}, 122 {0, 10000}, 123 }; 124 125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = { 126 {1, 0}, 127 {0, 250000}, 128 {0, 125000}, 129 {0, 62500}, 130 }; 131 132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = { 133 {0, 62500}, /* x16 gain */ 134 {0, 31250}, /* x32 gain */ 135 {0, 15625}, /* bits X1 are for x64 gain */ 136 {0, 15624}, 137 }; 138 139 struct ltr501_chip_info { 140 u8 partid; 141 const struct ltr501_gain *als_gain; 142 int als_gain_tbl_size; 143 const struct ltr501_gain *ps_gain; 144 int ps_gain_tbl_size; 145 u8 als_mode_active; 146 u8 als_gain_mask; 147 u8 als_gain_shift; 148 struct iio_chan_spec const *channels; 149 const int no_channels; 150 const struct iio_info *info; 151 const struct iio_info *info_no_irq; 152 }; 153 154 struct ltr501_data { 155 struct i2c_client *client; 156 struct mutex lock_als, lock_ps; 157 const struct ltr501_chip_info *chip_info; 158 u8 als_contr, ps_contr; 159 int als_period, ps_period; /* period in micro seconds */ 160 struct regmap *regmap; 161 struct regmap_field *reg_it; 162 struct regmap_field *reg_als_intr; 163 struct regmap_field *reg_ps_intr; 164 struct regmap_field *reg_als_rate; 165 struct regmap_field *reg_ps_rate; 166 struct regmap_field *reg_als_prst; 167 struct regmap_field *reg_ps_prst; 168 uint32_t near_level; 169 }; 170 171 static const struct ltr501_samp_table ltr501_als_samp_table[] = { 172 {20000000, 50000}, {10000000, 100000}, 173 {5000000, 200000}, {2000000, 500000}, 174 {1000000, 1000000}, {500000, 2000000}, 175 {500000, 2000000}, {500000, 2000000} 176 }; 177 178 static const struct ltr501_samp_table ltr501_ps_samp_table[] = { 179 {20000000, 50000}, {14285714, 70000}, 180 {10000000, 100000}, {5000000, 200000}, 181 {2000000, 500000}, {1000000, 1000000}, 182 {500000, 2000000}, {500000, 2000000}, 183 {500000, 2000000} 184 }; 185 186 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab, 187 int len, int val, int val2) 188 { 189 int i, freq; 190 191 freq = val * 1000000 + val2; 192 193 for (i = 0; i < len; i++) { 194 if (tab[i].freq_val == freq) 195 return i; 196 } 197 198 return -EINVAL; 199 } 200 201 static int ltr501_als_read_samp_freq(const struct ltr501_data *data, 202 int *val, int *val2) 203 { 204 int ret, i; 205 206 ret = regmap_field_read(data->reg_als_rate, &i); 207 if (ret < 0) 208 return ret; 209 210 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 211 return -EINVAL; 212 213 *val = ltr501_als_samp_table[i].freq_val / 1000000; 214 *val2 = ltr501_als_samp_table[i].freq_val % 1000000; 215 216 return IIO_VAL_INT_PLUS_MICRO; 217 } 218 219 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data, 220 int *val, int *val2) 221 { 222 int ret, i; 223 224 ret = regmap_field_read(data->reg_ps_rate, &i); 225 if (ret < 0) 226 return ret; 227 228 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 229 return -EINVAL; 230 231 *val = ltr501_ps_samp_table[i].freq_val / 1000000; 232 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000; 233 234 return IIO_VAL_INT_PLUS_MICRO; 235 } 236 237 static int ltr501_als_write_samp_freq(struct ltr501_data *data, 238 int val, int val2) 239 { 240 int i, ret; 241 242 i = ltr501_match_samp_freq(ltr501_als_samp_table, 243 ARRAY_SIZE(ltr501_als_samp_table), 244 val, val2); 245 246 if (i < 0) 247 return i; 248 249 mutex_lock(&data->lock_als); 250 ret = regmap_field_write(data->reg_als_rate, i); 251 mutex_unlock(&data->lock_als); 252 253 return ret; 254 } 255 256 static int ltr501_ps_write_samp_freq(struct ltr501_data *data, 257 int val, int val2) 258 { 259 int i, ret; 260 261 i = ltr501_match_samp_freq(ltr501_ps_samp_table, 262 ARRAY_SIZE(ltr501_ps_samp_table), 263 val, val2); 264 265 if (i < 0) 266 return i; 267 268 mutex_lock(&data->lock_ps); 269 ret = regmap_field_write(data->reg_ps_rate, i); 270 mutex_unlock(&data->lock_ps); 271 272 return ret; 273 } 274 275 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val) 276 { 277 int ret, i; 278 279 ret = regmap_field_read(data->reg_als_rate, &i); 280 if (ret < 0) 281 return ret; 282 283 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 284 return -EINVAL; 285 286 *val = ltr501_als_samp_table[i].time_val; 287 288 return IIO_VAL_INT; 289 } 290 291 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val) 292 { 293 int ret, i; 294 295 ret = regmap_field_read(data->reg_ps_rate, &i); 296 if (ret < 0) 297 return ret; 298 299 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 300 return -EINVAL; 301 302 *val = ltr501_ps_samp_table[i].time_val; 303 304 return IIO_VAL_INT; 305 } 306 307 /* IR and visible spectrum coeff's are given in data sheet */ 308 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data) 309 { 310 unsigned long ratio, lux; 311 312 if (vis_data == 0) 313 return 0; 314 315 /* multiply numerator by 100 to avoid handling ratio < 1 */ 316 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data); 317 318 if (ratio < 45) 319 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data); 320 else if (ratio >= 45 && ratio < 64) 321 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data); 322 else if (ratio >= 64 && ratio < 85) 323 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data); 324 else 325 lux = 0; 326 327 return lux / 1000; 328 } 329 330 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask) 331 { 332 int tries = 100; 333 int ret, status; 334 335 while (tries--) { 336 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 337 if (ret < 0) 338 return ret; 339 if ((status & drdy_mask) == drdy_mask) 340 return 0; 341 msleep(25); 342 } 343 344 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); 345 return -EIO; 346 } 347 348 static int ltr501_set_it_time(struct ltr501_data *data, int it) 349 { 350 int ret, i, index = -1, status; 351 352 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) { 353 if (int_time_mapping[i] == it) { 354 index = i; 355 break; 356 } 357 } 358 /* Make sure integ time index is valid */ 359 if (index < 0) 360 return -EINVAL; 361 362 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 363 if (ret < 0) 364 return ret; 365 366 if (status & LTR501_CONTR_ALS_GAIN_MASK) { 367 /* 368 * 200 ms and 400 ms integ time can only be 369 * used in dynamic range 1 370 */ 371 if (index > 1) 372 return -EINVAL; 373 } else 374 /* 50 ms integ time can only be used in dynamic range 2 */ 375 if (index == 1) 376 return -EINVAL; 377 378 return regmap_field_write(data->reg_it, index); 379 } 380 381 /* read int time in micro seconds */ 382 static int ltr501_read_it_time(const struct ltr501_data *data, 383 int *val, int *val2) 384 { 385 int ret, index; 386 387 ret = regmap_field_read(data->reg_it, &index); 388 if (ret < 0) 389 return ret; 390 391 /* Make sure integ time index is valid */ 392 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping)) 393 return -EINVAL; 394 395 *val2 = int_time_mapping[index]; 396 *val = 0; 397 398 return IIO_VAL_INT_PLUS_MICRO; 399 } 400 401 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2]) 402 { 403 int ret; 404 405 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); 406 if (ret < 0) 407 return ret; 408 /* always read both ALS channels in given order */ 409 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 410 buf, 2 * sizeof(__le16)); 411 } 412 413 static int ltr501_read_ps(const struct ltr501_data *data) 414 { 415 __le16 status; 416 int ret; 417 418 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); 419 if (ret < 0) 420 return ret; 421 422 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 423 &status, sizeof(status)); 424 if (ret < 0) 425 return ret; 426 427 return le16_to_cpu(status); 428 } 429 430 static int ltr501_read_intr_prst(const struct ltr501_data *data, 431 enum iio_chan_type type, 432 int *val2) 433 { 434 int ret, samp_period, prst; 435 436 switch (type) { 437 case IIO_INTENSITY: 438 ret = regmap_field_read(data->reg_als_prst, &prst); 439 if (ret < 0) 440 return ret; 441 442 ret = ltr501_als_read_samp_period(data, &samp_period); 443 444 if (ret < 0) 445 return ret; 446 *val2 = samp_period * prst; 447 return IIO_VAL_INT_PLUS_MICRO; 448 case IIO_PROXIMITY: 449 ret = regmap_field_read(data->reg_ps_prst, &prst); 450 if (ret < 0) 451 return ret; 452 453 ret = ltr501_ps_read_samp_period(data, &samp_period); 454 455 if (ret < 0) 456 return ret; 457 458 *val2 = samp_period * prst; 459 return IIO_VAL_INT_PLUS_MICRO; 460 default: 461 return -EINVAL; 462 } 463 464 return -EINVAL; 465 } 466 467 static int ltr501_write_intr_prst(struct ltr501_data *data, 468 enum iio_chan_type type, 469 int val, int val2) 470 { 471 int ret, samp_period, new_val; 472 unsigned long period; 473 474 if (val < 0 || val2 < 0) 475 return -EINVAL; 476 477 /* period in microseconds */ 478 period = ((val * 1000000) + val2); 479 480 switch (type) { 481 case IIO_INTENSITY: 482 ret = ltr501_als_read_samp_period(data, &samp_period); 483 if (ret < 0) 484 return ret; 485 486 /* period should be atleast equal to sampling period */ 487 if (period < samp_period) 488 return -EINVAL; 489 490 new_val = DIV_ROUND_UP(period, samp_period); 491 if (new_val < 0 || new_val > 0x0f) 492 return -EINVAL; 493 494 mutex_lock(&data->lock_als); 495 ret = regmap_field_write(data->reg_als_prst, new_val); 496 mutex_unlock(&data->lock_als); 497 if (ret >= 0) 498 data->als_period = period; 499 500 return ret; 501 case IIO_PROXIMITY: 502 ret = ltr501_ps_read_samp_period(data, &samp_period); 503 if (ret < 0) 504 return ret; 505 506 /* period should be atleast equal to rate */ 507 if (period < samp_period) 508 return -EINVAL; 509 510 new_val = DIV_ROUND_UP(period, samp_period); 511 if (new_val < 0 || new_val > 0x0f) 512 return -EINVAL; 513 514 mutex_lock(&data->lock_ps); 515 ret = regmap_field_write(data->reg_ps_prst, new_val); 516 mutex_unlock(&data->lock_ps); 517 if (ret >= 0) 518 data->ps_period = period; 519 520 return ret; 521 default: 522 return -EINVAL; 523 } 524 525 return -EINVAL; 526 } 527 528 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev, 529 uintptr_t priv, 530 const struct iio_chan_spec *chan, 531 char *buf) 532 { 533 struct ltr501_data *data = iio_priv(indio_dev); 534 535 return sprintf(buf, "%u\n", data->near_level); 536 } 537 538 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = { 539 { 540 .name = "nearlevel", 541 .shared = IIO_SEPARATE, 542 .read = ltr501_read_near_level, 543 }, 544 { } 545 }; 546 547 static const struct iio_event_spec ltr501_als_event_spec[] = { 548 { 549 .type = IIO_EV_TYPE_THRESH, 550 .dir = IIO_EV_DIR_RISING, 551 .mask_separate = BIT(IIO_EV_INFO_VALUE), 552 }, { 553 .type = IIO_EV_TYPE_THRESH, 554 .dir = IIO_EV_DIR_FALLING, 555 .mask_separate = BIT(IIO_EV_INFO_VALUE), 556 }, { 557 .type = IIO_EV_TYPE_THRESH, 558 .dir = IIO_EV_DIR_EITHER, 559 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 560 BIT(IIO_EV_INFO_PERIOD), 561 }, 562 563 }; 564 565 static const struct iio_event_spec ltr501_pxs_event_spec[] = { 566 { 567 .type = IIO_EV_TYPE_THRESH, 568 .dir = IIO_EV_DIR_RISING, 569 .mask_separate = BIT(IIO_EV_INFO_VALUE), 570 }, { 571 .type = IIO_EV_TYPE_THRESH, 572 .dir = IIO_EV_DIR_FALLING, 573 .mask_separate = BIT(IIO_EV_INFO_VALUE), 574 }, { 575 .type = IIO_EV_TYPE_THRESH, 576 .dir = IIO_EV_DIR_EITHER, 577 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 578 BIT(IIO_EV_INFO_PERIOD), 579 }, 580 }; 581 582 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \ 583 _evspec, _evsize) { \ 584 .type = IIO_INTENSITY, \ 585 .modified = 1, \ 586 .address = (_addr), \ 587 .channel2 = (_mod), \ 588 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 589 .info_mask_shared_by_type = (_shared), \ 590 .scan_index = (_idx), \ 591 .scan_type = { \ 592 .sign = 'u', \ 593 .realbits = 16, \ 594 .storagebits = 16, \ 595 .endianness = IIO_CPU, \ 596 }, \ 597 .event_spec = _evspec,\ 598 .num_event_specs = _evsize,\ 599 } 600 601 #define LTR501_LIGHT_CHANNEL() { \ 602 .type = IIO_LIGHT, \ 603 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 604 .scan_index = -1, \ 605 } 606 607 static const struct iio_chan_spec ltr501_channels[] = { 608 LTR501_LIGHT_CHANNEL(), 609 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 610 ltr501_als_event_spec, 611 ARRAY_SIZE(ltr501_als_event_spec)), 612 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 613 BIT(IIO_CHAN_INFO_SCALE) | 614 BIT(IIO_CHAN_INFO_INT_TIME) | 615 BIT(IIO_CHAN_INFO_SAMP_FREQ), 616 NULL, 0), 617 { 618 .type = IIO_PROXIMITY, 619 .address = LTR501_PS_DATA, 620 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 621 BIT(IIO_CHAN_INFO_SCALE), 622 .scan_index = 2, 623 .scan_type = { 624 .sign = 'u', 625 .realbits = 11, 626 .storagebits = 16, 627 .endianness = IIO_CPU, 628 }, 629 .event_spec = ltr501_pxs_event_spec, 630 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec), 631 .ext_info = ltr501_ext_info, 632 }, 633 IIO_CHAN_SOFT_TIMESTAMP(3), 634 }; 635 636 static const struct iio_chan_spec ltr301_channels[] = { 637 LTR501_LIGHT_CHANNEL(), 638 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 639 ltr501_als_event_spec, 640 ARRAY_SIZE(ltr501_als_event_spec)), 641 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 642 BIT(IIO_CHAN_INFO_SCALE) | 643 BIT(IIO_CHAN_INFO_INT_TIME) | 644 BIT(IIO_CHAN_INFO_SAMP_FREQ), 645 NULL, 0), 646 IIO_CHAN_SOFT_TIMESTAMP(2), 647 }; 648 649 static int ltr501_read_info_raw(struct ltr501_data *data, 650 struct iio_chan_spec const *chan, 651 int *val) 652 { 653 __le16 buf[2]; 654 int ret; 655 656 switch (chan->type) { 657 case IIO_INTENSITY: 658 mutex_lock(&data->lock_als); 659 ret = ltr501_read_als(data, buf); 660 mutex_unlock(&data->lock_als); 661 if (ret < 0) 662 return ret; 663 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? 664 buf[0] : buf[1]); 665 return IIO_VAL_INT; 666 case IIO_PROXIMITY: 667 mutex_lock(&data->lock_ps); 668 ret = ltr501_read_ps(data); 669 mutex_unlock(&data->lock_ps); 670 if (ret < 0) 671 return ret; 672 *val = ret & LTR501_PS_DATA_MASK; 673 return IIO_VAL_INT; 674 default: 675 return -EINVAL; 676 } 677 } 678 679 static int ltr501_read_raw(struct iio_dev *indio_dev, 680 struct iio_chan_spec const *chan, 681 int *val, int *val2, long mask) 682 { 683 struct ltr501_data *data = iio_priv(indio_dev); 684 __le16 buf[2]; 685 int ret, i; 686 687 switch (mask) { 688 case IIO_CHAN_INFO_PROCESSED: 689 switch (chan->type) { 690 case IIO_LIGHT: 691 if (!iio_device_claim_direct(indio_dev)) 692 return -EBUSY; 693 694 mutex_lock(&data->lock_als); 695 ret = ltr501_read_als(data, buf); 696 mutex_unlock(&data->lock_als); 697 iio_device_release_direct(indio_dev); 698 if (ret < 0) 699 return ret; 700 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]), 701 le16_to_cpu(buf[0])); 702 return IIO_VAL_INT; 703 default: 704 return -EINVAL; 705 } 706 case IIO_CHAN_INFO_RAW: 707 if (!iio_device_claim_direct(indio_dev)) 708 return -EBUSY; 709 710 ret = ltr501_read_info_raw(data, chan, val); 711 712 iio_device_release_direct(indio_dev); 713 return ret; 714 715 case IIO_CHAN_INFO_SCALE: 716 switch (chan->type) { 717 case IIO_INTENSITY: 718 i = (data->als_contr & data->chip_info->als_gain_mask) 719 >> data->chip_info->als_gain_shift; 720 *val = data->chip_info->als_gain[i].scale; 721 *val2 = data->chip_info->als_gain[i].uscale; 722 return IIO_VAL_INT_PLUS_MICRO; 723 case IIO_PROXIMITY: 724 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> 725 LTR501_CONTR_PS_GAIN_SHIFT; 726 *val = data->chip_info->ps_gain[i].scale; 727 *val2 = data->chip_info->ps_gain[i].uscale; 728 return IIO_VAL_INT_PLUS_MICRO; 729 default: 730 return -EINVAL; 731 } 732 case IIO_CHAN_INFO_INT_TIME: 733 switch (chan->type) { 734 case IIO_INTENSITY: 735 return ltr501_read_it_time(data, val, val2); 736 default: 737 return -EINVAL; 738 } 739 case IIO_CHAN_INFO_SAMP_FREQ: 740 switch (chan->type) { 741 case IIO_INTENSITY: 742 return ltr501_als_read_samp_freq(data, val, val2); 743 case IIO_PROXIMITY: 744 return ltr501_ps_read_samp_freq(data, val, val2); 745 default: 746 return -EINVAL; 747 } 748 } 749 return -EINVAL; 750 } 751 752 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size, 753 int val, int val2) 754 { 755 int i; 756 757 for (i = 0; i < size; i++) 758 if (val == gain[i].scale && val2 == gain[i].uscale) 759 return i; 760 761 return -1; 762 } 763 764 static int __ltr501_write_raw(struct iio_dev *indio_dev, 765 struct iio_chan_spec const *chan, 766 int val, int val2, long mask) 767 { 768 struct ltr501_data *data = iio_priv(indio_dev); 769 int i, ret, freq_val, freq_val2; 770 const struct ltr501_chip_info *info = data->chip_info; 771 772 switch (mask) { 773 case IIO_CHAN_INFO_SCALE: 774 switch (chan->type) { 775 case IIO_INTENSITY: 776 i = ltr501_get_gain_index(info->als_gain, 777 info->als_gain_tbl_size, 778 val, val2); 779 if (i < 0) 780 return -EINVAL; 781 782 data->als_contr &= ~info->als_gain_mask; 783 data->als_contr |= i << info->als_gain_shift; 784 785 return regmap_write(data->regmap, LTR501_ALS_CONTR, 786 data->als_contr); 787 case IIO_PROXIMITY: 788 i = ltr501_get_gain_index(info->ps_gain, 789 info->ps_gain_tbl_size, 790 val, val2); 791 if (i < 0) 792 return -EINVAL; 793 794 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; 795 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; 796 797 return regmap_write(data->regmap, LTR501_PS_CONTR, 798 data->ps_contr); 799 default: 800 return -EINVAL; 801 } 802 803 case IIO_CHAN_INFO_INT_TIME: 804 switch (chan->type) { 805 case IIO_INTENSITY: 806 if (val != 0) 807 return -EINVAL; 808 809 mutex_lock(&data->lock_als); 810 ret = ltr501_set_it_time(data, val2); 811 mutex_unlock(&data->lock_als); 812 return ret; 813 default: 814 return -EINVAL; 815 } 816 817 case IIO_CHAN_INFO_SAMP_FREQ: 818 switch (chan->type) { 819 case IIO_INTENSITY: 820 ret = ltr501_als_read_samp_freq(data, &freq_val, 821 &freq_val2); 822 if (ret < 0) 823 return ret; 824 825 ret = ltr501_als_write_samp_freq(data, val, val2); 826 if (ret < 0) 827 return ret; 828 829 /* update persistence count when changing frequency */ 830 ret = ltr501_write_intr_prst(data, chan->type, 831 0, data->als_period); 832 833 if (ret < 0) 834 /* Do not ovewrite error */ 835 ltr501_als_write_samp_freq(data, freq_val, 836 freq_val2); 837 return ret; 838 case IIO_PROXIMITY: 839 ret = ltr501_ps_read_samp_freq(data, &freq_val, 840 &freq_val2); 841 if (ret < 0) 842 return ret; 843 844 ret = ltr501_ps_write_samp_freq(data, val, val2); 845 if (ret < 0) 846 return ret; 847 848 /* update persistence count when changing frequency */ 849 ret = ltr501_write_intr_prst(data, chan->type, 850 0, data->ps_period); 851 852 if (ret < 0) 853 /* Do not overwrite error */ 854 ltr501_ps_write_samp_freq(data, freq_val, 855 freq_val2); 856 return ret; 857 default: 858 return -EINVAL; 859 } 860 default: 861 return -EINVAL; 862 } 863 } 864 865 static int ltr501_write_raw(struct iio_dev *indio_dev, 866 struct iio_chan_spec const *chan, 867 int val, int val2, long mask) 868 { 869 int ret; 870 871 if (!iio_device_claim_direct(indio_dev)) 872 return -EBUSY; 873 874 ret = __ltr501_write_raw(indio_dev, chan, val, val2, mask); 875 876 iio_device_release_direct(indio_dev); 877 878 return ret; 879 } 880 881 static int ltr501_read_thresh(const struct iio_dev *indio_dev, 882 const struct iio_chan_spec *chan, 883 enum iio_event_type type, 884 enum iio_event_direction dir, 885 enum iio_event_info info, 886 int *val, int *val2) 887 { 888 const struct ltr501_data *data = iio_priv(indio_dev); 889 int ret, thresh_data; 890 891 switch (chan->type) { 892 case IIO_INTENSITY: 893 switch (dir) { 894 case IIO_EV_DIR_RISING: 895 ret = regmap_bulk_read(data->regmap, 896 LTR501_ALS_THRESH_UP, 897 &thresh_data, 2); 898 if (ret < 0) 899 return ret; 900 *val = thresh_data & LTR501_ALS_THRESH_MASK; 901 return IIO_VAL_INT; 902 case IIO_EV_DIR_FALLING: 903 ret = regmap_bulk_read(data->regmap, 904 LTR501_ALS_THRESH_LOW, 905 &thresh_data, 2); 906 if (ret < 0) 907 return ret; 908 *val = thresh_data & LTR501_ALS_THRESH_MASK; 909 return IIO_VAL_INT; 910 default: 911 return -EINVAL; 912 } 913 case IIO_PROXIMITY: 914 switch (dir) { 915 case IIO_EV_DIR_RISING: 916 ret = regmap_bulk_read(data->regmap, 917 LTR501_PS_THRESH_UP, 918 &thresh_data, 2); 919 if (ret < 0) 920 return ret; 921 *val = thresh_data & LTR501_PS_THRESH_MASK; 922 return IIO_VAL_INT; 923 case IIO_EV_DIR_FALLING: 924 ret = regmap_bulk_read(data->regmap, 925 LTR501_PS_THRESH_LOW, 926 &thresh_data, 2); 927 if (ret < 0) 928 return ret; 929 *val = thresh_data & LTR501_PS_THRESH_MASK; 930 return IIO_VAL_INT; 931 default: 932 return -EINVAL; 933 } 934 default: 935 return -EINVAL; 936 } 937 938 return -EINVAL; 939 } 940 941 static int ltr501_write_thresh(struct iio_dev *indio_dev, 942 const struct iio_chan_spec *chan, 943 enum iio_event_type type, 944 enum iio_event_direction dir, 945 enum iio_event_info info, 946 int val, int val2) 947 { 948 struct ltr501_data *data = iio_priv(indio_dev); 949 int ret; 950 951 if (val < 0) 952 return -EINVAL; 953 954 switch (chan->type) { 955 case IIO_INTENSITY: 956 if (val > LTR501_ALS_THRESH_MASK) 957 return -EINVAL; 958 switch (dir) { 959 case IIO_EV_DIR_RISING: 960 mutex_lock(&data->lock_als); 961 ret = regmap_bulk_write(data->regmap, 962 LTR501_ALS_THRESH_UP, 963 &val, 2); 964 mutex_unlock(&data->lock_als); 965 return ret; 966 case IIO_EV_DIR_FALLING: 967 mutex_lock(&data->lock_als); 968 ret = regmap_bulk_write(data->regmap, 969 LTR501_ALS_THRESH_LOW, 970 &val, 2); 971 mutex_unlock(&data->lock_als); 972 return ret; 973 default: 974 return -EINVAL; 975 } 976 case IIO_PROXIMITY: 977 if (val > LTR501_PS_THRESH_MASK) 978 return -EINVAL; 979 switch (dir) { 980 case IIO_EV_DIR_RISING: 981 mutex_lock(&data->lock_ps); 982 ret = regmap_bulk_write(data->regmap, 983 LTR501_PS_THRESH_UP, 984 &val, 2); 985 mutex_unlock(&data->lock_ps); 986 return ret; 987 case IIO_EV_DIR_FALLING: 988 mutex_lock(&data->lock_ps); 989 ret = regmap_bulk_write(data->regmap, 990 LTR501_PS_THRESH_LOW, 991 &val, 2); 992 mutex_unlock(&data->lock_ps); 993 return ret; 994 default: 995 return -EINVAL; 996 } 997 default: 998 return -EINVAL; 999 } 1000 1001 return -EINVAL; 1002 } 1003 1004 static int ltr501_read_event(struct iio_dev *indio_dev, 1005 const struct iio_chan_spec *chan, 1006 enum iio_event_type type, 1007 enum iio_event_direction dir, 1008 enum iio_event_info info, 1009 int *val, int *val2) 1010 { 1011 int ret; 1012 1013 switch (info) { 1014 case IIO_EV_INFO_VALUE: 1015 return ltr501_read_thresh(indio_dev, chan, type, dir, 1016 info, val, val2); 1017 case IIO_EV_INFO_PERIOD: 1018 ret = ltr501_read_intr_prst(iio_priv(indio_dev), 1019 chan->type, val2); 1020 *val = *val2 / 1000000; 1021 *val2 = *val2 % 1000000; 1022 return ret; 1023 default: 1024 return -EINVAL; 1025 } 1026 1027 return -EINVAL; 1028 } 1029 1030 static int ltr501_write_event(struct iio_dev *indio_dev, 1031 const struct iio_chan_spec *chan, 1032 enum iio_event_type type, 1033 enum iio_event_direction dir, 1034 enum iio_event_info info, 1035 int val, int val2) 1036 { 1037 switch (info) { 1038 case IIO_EV_INFO_VALUE: 1039 if (val2 != 0) 1040 return -EINVAL; 1041 return ltr501_write_thresh(indio_dev, chan, type, dir, 1042 info, val, val2); 1043 case IIO_EV_INFO_PERIOD: 1044 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type, 1045 val, val2); 1046 default: 1047 return -EINVAL; 1048 } 1049 1050 return -EINVAL; 1051 } 1052 1053 static int ltr501_read_event_config(struct iio_dev *indio_dev, 1054 const struct iio_chan_spec *chan, 1055 enum iio_event_type type, 1056 enum iio_event_direction dir) 1057 { 1058 struct ltr501_data *data = iio_priv(indio_dev); 1059 int ret, status; 1060 1061 switch (chan->type) { 1062 case IIO_INTENSITY: 1063 ret = regmap_field_read(data->reg_als_intr, &status); 1064 if (ret < 0) 1065 return ret; 1066 return status; 1067 case IIO_PROXIMITY: 1068 ret = regmap_field_read(data->reg_ps_intr, &status); 1069 if (ret < 0) 1070 return ret; 1071 return status; 1072 default: 1073 return -EINVAL; 1074 } 1075 1076 return -EINVAL; 1077 } 1078 1079 static int ltr501_write_event_config(struct iio_dev *indio_dev, 1080 const struct iio_chan_spec *chan, 1081 enum iio_event_type type, 1082 enum iio_event_direction dir, bool state) 1083 { 1084 struct ltr501_data *data = iio_priv(indio_dev); 1085 int ret; 1086 1087 switch (chan->type) { 1088 case IIO_INTENSITY: 1089 mutex_lock(&data->lock_als); 1090 ret = regmap_field_write(data->reg_als_intr, state); 1091 mutex_unlock(&data->lock_als); 1092 return ret; 1093 case IIO_PROXIMITY: 1094 mutex_lock(&data->lock_ps); 1095 ret = regmap_field_write(data->reg_ps_intr, state); 1096 mutex_unlock(&data->lock_ps); 1097 return ret; 1098 default: 1099 return -EINVAL; 1100 } 1101 1102 return -EINVAL; 1103 } 1104 1105 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev, 1106 struct device_attribute *attr, 1107 char *buf) 1108 { 1109 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1110 const struct ltr501_chip_info *info = data->chip_info; 1111 ssize_t len = 0; 1112 int i; 1113 1114 for (i = 0; i < info->ps_gain_tbl_size; i++) { 1115 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN) 1116 continue; 1117 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1118 info->ps_gain[i].scale, 1119 info->ps_gain[i].uscale); 1120 } 1121 1122 buf[len - 1] = '\n'; 1123 1124 return len; 1125 } 1126 1127 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev, 1128 struct device_attribute *attr, 1129 char *buf) 1130 { 1131 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1132 const struct ltr501_chip_info *info = data->chip_info; 1133 ssize_t len = 0; 1134 int i; 1135 1136 for (i = 0; i < info->als_gain_tbl_size; i++) { 1137 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN) 1138 continue; 1139 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1140 info->als_gain[i].scale, 1141 info->als_gain[i].uscale); 1142 } 1143 1144 buf[len - 1] = '\n'; 1145 1146 return len; 1147 } 1148 1149 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); 1150 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5"); 1151 1152 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO, 1153 ltr501_show_proximity_scale_avail, NULL, 0); 1154 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO, 1155 ltr501_show_intensity_scale_avail, NULL, 0); 1156 1157 static struct attribute *ltr501_attributes[] = { 1158 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr, 1159 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1160 &iio_const_attr_integration_time_available.dev_attr.attr, 1161 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1162 NULL 1163 }; 1164 1165 static struct attribute *ltr301_attributes[] = { 1166 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1167 &iio_const_attr_integration_time_available.dev_attr.attr, 1168 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1169 NULL 1170 }; 1171 1172 static const struct attribute_group ltr501_attribute_group = { 1173 .attrs = ltr501_attributes, 1174 }; 1175 1176 static const struct attribute_group ltr301_attribute_group = { 1177 .attrs = ltr301_attributes, 1178 }; 1179 1180 static const struct iio_info ltr501_info_no_irq = { 1181 .read_raw = ltr501_read_raw, 1182 .write_raw = ltr501_write_raw, 1183 .attrs = <r501_attribute_group, 1184 }; 1185 1186 static const struct iio_info ltr501_info = { 1187 .read_raw = ltr501_read_raw, 1188 .write_raw = ltr501_write_raw, 1189 .attrs = <r501_attribute_group, 1190 .read_event_value = <r501_read_event, 1191 .write_event_value = <r501_write_event, 1192 .read_event_config = <r501_read_event_config, 1193 .write_event_config = <r501_write_event_config, 1194 }; 1195 1196 static const struct iio_info ltr301_info_no_irq = { 1197 .read_raw = ltr501_read_raw, 1198 .write_raw = ltr501_write_raw, 1199 .attrs = <r301_attribute_group, 1200 }; 1201 1202 static const struct iio_info ltr301_info = { 1203 .read_raw = ltr501_read_raw, 1204 .write_raw = ltr501_write_raw, 1205 .attrs = <r301_attribute_group, 1206 .read_event_value = <r501_read_event, 1207 .write_event_value = <r501_write_event, 1208 .read_event_config = <r501_read_event_config, 1209 .write_event_config = <r501_write_event_config, 1210 }; 1211 1212 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = { 1213 [ltr501] = { 1214 .partid = 0x08, 1215 .als_gain = ltr501_als_gain_tbl, 1216 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1217 .ps_gain = ltr501_ps_gain_tbl, 1218 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl), 1219 .als_mode_active = BIT(0) | BIT(1), 1220 .als_gain_mask = BIT(3), 1221 .als_gain_shift = 3, 1222 .info = <r501_info, 1223 .info_no_irq = <r501_info_no_irq, 1224 .channels = ltr501_channels, 1225 .no_channels = ARRAY_SIZE(ltr501_channels), 1226 }, 1227 [ltr559] = { 1228 .partid = 0x09, 1229 .als_gain = ltr559_als_gain_tbl, 1230 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1231 .ps_gain = ltr559_ps_gain_tbl, 1232 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl), 1233 .als_mode_active = BIT(0), 1234 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1235 .als_gain_shift = 2, 1236 .info = <r501_info, 1237 .info_no_irq = <r501_info_no_irq, 1238 .channels = ltr501_channels, 1239 .no_channels = ARRAY_SIZE(ltr501_channels), 1240 }, 1241 [ltr301] = { 1242 .partid = 0x08, 1243 .als_gain = ltr501_als_gain_tbl, 1244 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1245 .als_mode_active = BIT(0) | BIT(1), 1246 .als_gain_mask = BIT(3), 1247 .als_gain_shift = 3, 1248 .info = <r301_info, 1249 .info_no_irq = <r301_info_no_irq, 1250 .channels = ltr301_channels, 1251 .no_channels = ARRAY_SIZE(ltr301_channels), 1252 }, 1253 [ltr303] = { 1254 .partid = 0x0A, 1255 .als_gain = ltr559_als_gain_tbl, 1256 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1257 .als_mode_active = BIT(0), 1258 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1259 .als_gain_shift = 2, 1260 .info = <r301_info, 1261 .info_no_irq = <r301_info_no_irq, 1262 .channels = ltr301_channels, 1263 .no_channels = ARRAY_SIZE(ltr301_channels), 1264 }, 1265 }; 1266 1267 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val) 1268 { 1269 int ret; 1270 1271 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val); 1272 if (ret < 0) 1273 return ret; 1274 1275 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val); 1276 } 1277 1278 static irqreturn_t ltr501_trigger_handler(int irq, void *p) 1279 { 1280 struct iio_poll_func *pf = p; 1281 struct iio_dev *indio_dev = pf->indio_dev; 1282 struct ltr501_data *data = iio_priv(indio_dev); 1283 struct { 1284 u16 channels[3]; 1285 aligned_s64 ts; 1286 } scan; 1287 __le16 als_buf[2]; 1288 u8 mask = 0; 1289 int j = 0; 1290 int ret, psdata; 1291 1292 memset(&scan, 0, sizeof(scan)); 1293 1294 /* figure out which data needs to be ready */ 1295 if (test_bit(0, indio_dev->active_scan_mask) || 1296 test_bit(1, indio_dev->active_scan_mask)) 1297 mask |= LTR501_STATUS_ALS_RDY; 1298 if (test_bit(2, indio_dev->active_scan_mask)) 1299 mask |= LTR501_STATUS_PS_RDY; 1300 1301 ret = ltr501_drdy(data, mask); 1302 if (ret < 0) 1303 goto done; 1304 1305 if (mask & LTR501_STATUS_ALS_RDY) { 1306 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 1307 als_buf, sizeof(als_buf)); 1308 if (ret < 0) 1309 goto done; 1310 if (test_bit(0, indio_dev->active_scan_mask)) 1311 scan.channels[j++] = le16_to_cpu(als_buf[1]); 1312 if (test_bit(1, indio_dev->active_scan_mask)) 1313 scan.channels[j++] = le16_to_cpu(als_buf[0]); 1314 } 1315 1316 if (mask & LTR501_STATUS_PS_RDY) { 1317 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 1318 &psdata, 2); 1319 if (ret < 0) 1320 goto done; 1321 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK; 1322 } 1323 1324 iio_push_to_buffers_with_timestamp(indio_dev, &scan, 1325 iio_get_time_ns(indio_dev)); 1326 1327 done: 1328 iio_trigger_notify_done(indio_dev->trig); 1329 1330 return IRQ_HANDLED; 1331 } 1332 1333 static irqreturn_t ltr501_interrupt_handler(int irq, void *private) 1334 { 1335 struct iio_dev *indio_dev = private; 1336 struct ltr501_data *data = iio_priv(indio_dev); 1337 int ret, status; 1338 1339 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 1340 if (ret < 0) { 1341 dev_err(&data->client->dev, 1342 "irq read int reg failed\n"); 1343 return IRQ_HANDLED; 1344 } 1345 1346 if (status & LTR501_STATUS_ALS_INTR) 1347 iio_push_event(indio_dev, 1348 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0, 1349 IIO_EV_TYPE_THRESH, 1350 IIO_EV_DIR_EITHER), 1351 iio_get_time_ns(indio_dev)); 1352 1353 if (status & LTR501_STATUS_PS_INTR) 1354 iio_push_event(indio_dev, 1355 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 1356 IIO_EV_TYPE_THRESH, 1357 IIO_EV_DIR_EITHER), 1358 iio_get_time_ns(indio_dev)); 1359 1360 return IRQ_HANDLED; 1361 } 1362 1363 static int ltr501_init(struct ltr501_data *data) 1364 { 1365 int ret, status; 1366 1367 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 1368 if (ret < 0) 1369 return ret; 1370 1371 data->als_contr = status | data->chip_info->als_mode_active; 1372 1373 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status); 1374 if (ret < 0) 1375 return ret; 1376 1377 data->ps_contr = status | LTR501_CONTR_ACTIVE; 1378 1379 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period); 1380 if (ret < 0) 1381 return ret; 1382 1383 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period); 1384 if (ret < 0) 1385 return ret; 1386 1387 return ltr501_write_contr(data, data->als_contr, data->ps_contr); 1388 } 1389 1390 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg) 1391 { 1392 switch (reg) { 1393 case LTR501_ALS_DATA1: 1394 case LTR501_ALS_DATA1_UPPER: 1395 case LTR501_ALS_DATA0: 1396 case LTR501_ALS_DATA0_UPPER: 1397 case LTR501_ALS_PS_STATUS: 1398 case LTR501_PS_DATA: 1399 case LTR501_PS_DATA_UPPER: 1400 return true; 1401 default: 1402 return false; 1403 } 1404 } 1405 1406 static const struct regmap_config ltr501_regmap_config = { 1407 .name = LTR501_REGMAP_NAME, 1408 .reg_bits = 8, 1409 .val_bits = 8, 1410 .max_register = LTR501_MAX_REG, 1411 .cache_type = REGCACHE_RBTREE, 1412 .volatile_reg = ltr501_is_volatile_reg, 1413 }; 1414 1415 static int ltr501_powerdown(struct ltr501_data *data) 1416 { 1417 return ltr501_write_contr(data, data->als_contr & 1418 ~data->chip_info->als_mode_active, 1419 data->ps_contr & ~LTR501_CONTR_ACTIVE); 1420 } 1421 1422 static int ltr501_probe(struct i2c_client *client) 1423 { 1424 const struct i2c_device_id *id = i2c_client_get_device_id(client); 1425 static const char * const regulator_names[] = { "vdd", "vddio" }; 1426 struct ltr501_data *data; 1427 struct iio_dev *indio_dev; 1428 struct regmap *regmap; 1429 const void *ddata = NULL; 1430 int partid, chip_idx; 1431 const char *name; 1432 int ret; 1433 1434 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 1435 if (!indio_dev) 1436 return -ENOMEM; 1437 1438 regmap = devm_regmap_init_i2c(client, <r501_regmap_config); 1439 if (IS_ERR(regmap)) { 1440 dev_err(&client->dev, "Regmap initialization failed.\n"); 1441 return PTR_ERR(regmap); 1442 } 1443 1444 data = iio_priv(indio_dev); 1445 i2c_set_clientdata(client, indio_dev); 1446 data->client = client; 1447 data->regmap = regmap; 1448 mutex_init(&data->lock_als); 1449 mutex_init(&data->lock_ps); 1450 1451 ret = devm_regulator_bulk_get_enable(&client->dev, 1452 ARRAY_SIZE(regulator_names), 1453 regulator_names); 1454 if (ret) 1455 return dev_err_probe(&client->dev, ret, 1456 "Failed to get regulators\n"); 1457 1458 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap, 1459 reg_field_it); 1460 if (IS_ERR(data->reg_it)) { 1461 dev_err(&client->dev, "Integ time reg field init failed.\n"); 1462 return PTR_ERR(data->reg_it); 1463 } 1464 1465 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap, 1466 reg_field_als_intr); 1467 if (IS_ERR(data->reg_als_intr)) { 1468 dev_err(&client->dev, "ALS intr mode reg field init failed\n"); 1469 return PTR_ERR(data->reg_als_intr); 1470 } 1471 1472 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap, 1473 reg_field_ps_intr); 1474 if (IS_ERR(data->reg_ps_intr)) { 1475 dev_err(&client->dev, "PS intr mode reg field init failed.\n"); 1476 return PTR_ERR(data->reg_ps_intr); 1477 } 1478 1479 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap, 1480 reg_field_als_rate); 1481 if (IS_ERR(data->reg_als_rate)) { 1482 dev_err(&client->dev, "ALS samp rate field init failed.\n"); 1483 return PTR_ERR(data->reg_als_rate); 1484 } 1485 1486 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap, 1487 reg_field_ps_rate); 1488 if (IS_ERR(data->reg_ps_rate)) { 1489 dev_err(&client->dev, "PS samp rate field init failed.\n"); 1490 return PTR_ERR(data->reg_ps_rate); 1491 } 1492 1493 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap, 1494 reg_field_als_prst); 1495 if (IS_ERR(data->reg_als_prst)) { 1496 dev_err(&client->dev, "ALS prst reg field init failed\n"); 1497 return PTR_ERR(data->reg_als_prst); 1498 } 1499 1500 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap, 1501 reg_field_ps_prst); 1502 if (IS_ERR(data->reg_ps_prst)) { 1503 dev_err(&client->dev, "PS prst reg field init failed.\n"); 1504 return PTR_ERR(data->reg_ps_prst); 1505 } 1506 1507 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); 1508 if (ret < 0) 1509 return ret; 1510 1511 if (id) { 1512 name = id->name; 1513 chip_idx = id->driver_data; 1514 } else { 1515 name = iio_get_acpi_device_name_and_data(&client->dev, &ddata); 1516 chip_idx = (intptr_t)ddata; 1517 } 1518 if (!name) 1519 return -ENODEV; 1520 1521 data->chip_info = <r501_chip_info_tbl[chip_idx]; 1522 1523 if ((partid >> 4) != data->chip_info->partid) 1524 return -ENODEV; 1525 1526 if (device_property_read_u32(&client->dev, "proximity-near-level", 1527 &data->near_level)) 1528 data->near_level = 0; 1529 1530 indio_dev->info = data->chip_info->info; 1531 indio_dev->channels = data->chip_info->channels; 1532 indio_dev->num_channels = data->chip_info->no_channels; 1533 indio_dev->name = name; 1534 indio_dev->modes = INDIO_DIRECT_MODE; 1535 1536 ret = ltr501_init(data); 1537 if (ret < 0) 1538 return ret; 1539 1540 if (client->irq > 0) { 1541 ret = devm_request_threaded_irq(&client->dev, client->irq, 1542 NULL, ltr501_interrupt_handler, 1543 IRQF_TRIGGER_FALLING | 1544 IRQF_ONESHOT, 1545 "ltr501_thresh_event", 1546 indio_dev); 1547 if (ret) { 1548 dev_err(&client->dev, "request irq (%d) failed\n", 1549 client->irq); 1550 return ret; 1551 } 1552 } else { 1553 indio_dev->info = data->chip_info->info_no_irq; 1554 } 1555 1556 ret = iio_triggered_buffer_setup(indio_dev, NULL, 1557 ltr501_trigger_handler, NULL); 1558 if (ret) 1559 goto powerdown_on_error; 1560 1561 ret = iio_device_register(indio_dev); 1562 if (ret) 1563 goto error_unreg_buffer; 1564 1565 return 0; 1566 1567 error_unreg_buffer: 1568 iio_triggered_buffer_cleanup(indio_dev); 1569 powerdown_on_error: 1570 ltr501_powerdown(data); 1571 return ret; 1572 } 1573 1574 static void ltr501_remove(struct i2c_client *client) 1575 { 1576 struct iio_dev *indio_dev = i2c_get_clientdata(client); 1577 1578 iio_device_unregister(indio_dev); 1579 iio_triggered_buffer_cleanup(indio_dev); 1580 ltr501_powerdown(iio_priv(indio_dev)); 1581 } 1582 1583 static int ltr501_suspend(struct device *dev) 1584 { 1585 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1586 to_i2c_client(dev))); 1587 return ltr501_powerdown(data); 1588 } 1589 1590 static int ltr501_resume(struct device *dev) 1591 { 1592 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1593 to_i2c_client(dev))); 1594 1595 return ltr501_write_contr(data, data->als_contr, 1596 data->ps_contr); 1597 } 1598 1599 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); 1600 1601 static const struct acpi_device_id ltr_acpi_match[] = { 1602 { "LTER0301", ltr301 }, 1603 /* https://www.catalog.update.microsoft.com/Search.aspx?q=lter0303 */ 1604 { "LTER0303", ltr303 }, 1605 { } 1606 }; 1607 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match); 1608 1609 static const struct i2c_device_id ltr501_id[] = { 1610 { "ltr501", ltr501 }, 1611 { "ltr559", ltr559 }, 1612 { "ltr301", ltr301 }, 1613 { "ltr303", ltr303 }, 1614 { } 1615 }; 1616 MODULE_DEVICE_TABLE(i2c, ltr501_id); 1617 1618 static const struct of_device_id ltr501_of_match[] = { 1619 { .compatible = "liteon,ltr501", }, 1620 { .compatible = "liteon,ltr559", }, 1621 { .compatible = "liteon,ltr301", }, 1622 { .compatible = "liteon,ltr303", }, 1623 { } 1624 }; 1625 MODULE_DEVICE_TABLE(of, ltr501_of_match); 1626 1627 static struct i2c_driver ltr501_driver = { 1628 .driver = { 1629 .name = LTR501_DRV_NAME, 1630 .of_match_table = ltr501_of_match, 1631 .pm = pm_sleep_ptr(<r501_pm_ops), 1632 .acpi_match_table = ltr_acpi_match, 1633 }, 1634 .probe = ltr501_probe, 1635 .remove = ltr501_remove, 1636 .id_table = ltr501_id, 1637 }; 1638 1639 module_i2c_driver(ltr501_driver); 1640 1641 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); 1642 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); 1643 MODULE_LICENSE("GPL"); 1644