1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments TSC2046 SPI ADC driver
4  *
5  * Copyright (c) 2021 Oleksij Rempel <kernel@pengutronix.de>, Pengutronix
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/cleanup.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/spi/spi.h>
14 #include <linux/units.h>
15 
16 #include <linux/unaligned.h>
17 
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/iio/trigger.h>
22 
23 /*
24  * The PENIRQ of TSC2046 controller is implemented as level shifter attached to
25  * the X+ line. If voltage of the X+ line reaches a specific level the IRQ will
26  * be activated or deactivated.
27  * To make this kind of IRQ reusable as trigger following additions were
28  * implemented:
29  * - rate limiting:
30  *   For typical touchscreen use case, we need to trigger about each 10ms.
31  * - hrtimer:
32  *   Continue triggering at least once after the IRQ was deactivated. Then
33  *   deactivate this trigger to stop sampling in order to reduce power
34  *   consumption.
35  */
36 
37 #define TI_TSC2046_NAME				"tsc2046"
38 
39 /* This driver doesn't aim at the peak continuous sample rate */
40 #define	TI_TSC2046_MAX_SAMPLE_RATE		125000
41 #define	TI_TSC2046_SAMPLE_BITS \
42 	BITS_PER_TYPE(struct tsc2046_adc_atom)
43 #define	TI_TSC2046_MAX_CLK_FREQ \
44 	(TI_TSC2046_MAX_SAMPLE_RATE * TI_TSC2046_SAMPLE_BITS)
45 
46 #define TI_TSC2046_SAMPLE_INTERVAL_US		10000
47 
48 #define TI_TSC2046_START			BIT(7)
49 #define TI_TSC2046_ADDR				GENMASK(6, 4)
50 #define TI_TSC2046_ADDR_TEMP1			7
51 #define TI_TSC2046_ADDR_AUX			6
52 #define TI_TSC2046_ADDR_X			5
53 #define TI_TSC2046_ADDR_Z2			4
54 #define TI_TSC2046_ADDR_Z1			3
55 #define TI_TSC2046_ADDR_VBAT			2
56 #define TI_TSC2046_ADDR_Y			1
57 #define TI_TSC2046_ADDR_TEMP0			0
58 
59 /*
60  * The mode bit sets the resolution of the ADC. With this bit low, the next
61  * conversion has 12-bit resolution, whereas with this bit high, the next
62  * conversion has 8-bit resolution. This driver is optimized for 12-bit mode.
63  * So, for this driver, this bit should stay zero.
64  */
65 #define TI_TSC2046_8BIT_MODE			BIT(3)
66 
67 /*
68  * SER/DFR - The SER/DFR bit controls the reference mode, either single-ended
69  * (high) or differential (low).
70  */
71 #define TI_TSC2046_SER				BIT(2)
72 
73 /*
74  * If VREF_ON and ADC_ON are both zero, then the chip operates in
75  * auto-wake/suspend mode. In most case this bits should stay zero.
76  */
77 #define TI_TSC2046_PD1_VREF_ON			BIT(1)
78 #define TI_TSC2046_PD0_ADC_ON			BIT(0)
79 
80 /*
81  * All supported devices can do 8 or 12bit resolution. This driver
82  * supports only 12bit mode, here we have a 16bit data transfer, where
83  * the MSB and the 3 LSB are 0.
84  */
85 #define TI_TSC2046_DATA_12BIT			GENMASK(14, 3)
86 
87 #define TI_TSC2046_MAX_CHAN			8
88 #define TI_TSC2046_MIN_POLL_CNT			3
89 #define TI_TSC2046_EXT_POLL_CNT			3
90 #define TI_TSC2046_POLL_CNT \
91 	(TI_TSC2046_MIN_POLL_CNT + TI_TSC2046_EXT_POLL_CNT)
92 #define TI_TSC2046_INT_VREF			2500
93 
94 /* Represents a HW sample */
95 struct tsc2046_adc_atom {
96 	/*
97 	 * Command transmitted to the controller. This field is empty on the RX
98 	 * buffer.
99 	 */
100 	u8 cmd;
101 	/*
102 	 * Data received from the controller. This field is empty for the TX
103 	 * buffer
104 	 */
105 	__be16 data;
106 } __packed;
107 
108 /* Layout of atomic buffers within big buffer */
109 struct tsc2046_adc_group_layout {
110 	/* Group offset within the SPI RX buffer */
111 	unsigned int offset;
112 	/*
113 	 * Amount of tsc2046_adc_atom structs within the same command gathered
114 	 * within same group.
115 	 */
116 	unsigned int count;
117 	/*
118 	 * Settling samples (tsc2046_adc_atom structs) which should be skipped
119 	 * before good samples will start.
120 	 */
121 	unsigned int skip;
122 };
123 
124 struct tsc2046_adc_dcfg {
125 	const struct iio_chan_spec *channels;
126 	unsigned int num_channels;
127 };
128 
129 struct tsc2046_adc_ch_cfg {
130 	unsigned int settling_time_us;
131 	unsigned int oversampling_ratio;
132 };
133 
134 enum tsc2046_state {
135 	TSC2046_STATE_SHUTDOWN,
136 	TSC2046_STATE_STANDBY,
137 	TSC2046_STATE_POLL,
138 	TSC2046_STATE_POLL_IRQ_DISABLE,
139 	TSC2046_STATE_ENABLE_IRQ,
140 };
141 
142 struct tsc2046_adc_priv {
143 	struct spi_device *spi;
144 	const struct tsc2046_adc_dcfg *dcfg;
145 	bool internal_vref;
146 
147 	struct iio_trigger *trig;
148 	struct hrtimer trig_timer;
149 	enum tsc2046_state state;
150 	int poll_cnt;
151 	spinlock_t state_lock;
152 
153 	struct spi_transfer xfer;
154 	struct spi_message msg;
155 
156 	struct {
157 		/* Scan data for each channel */
158 		u16 data[TI_TSC2046_MAX_CHAN];
159 		/* Timestamp */
160 		aligned_s64 ts;
161 	} scan_buf;
162 
163 	/*
164 	 * Lock to protect the layout and the SPI transfer buffer.
165 	 * tsc2046_adc_group_layout can be changed within update_scan_mode(),
166 	 * in this case the l[] and tx/rx buffer will be out of sync to each
167 	 * other.
168 	 */
169 	struct mutex slock;
170 	struct tsc2046_adc_group_layout l[TI_TSC2046_MAX_CHAN];
171 	struct tsc2046_adc_atom *rx;
172 	struct tsc2046_adc_atom *tx;
173 
174 	unsigned int count;
175 	unsigned int groups;
176 	u32 effective_speed_hz;
177 	u32 scan_interval_us;
178 	u32 time_per_scan_us;
179 	u32 time_per_bit_ns;
180 	unsigned int vref_mv;
181 
182 	struct tsc2046_adc_ch_cfg ch_cfg[TI_TSC2046_MAX_CHAN];
183 };
184 
185 #define TI_TSC2046_V_CHAN(index, bits, name)			\
186 {								\
187 	.type = IIO_VOLTAGE,					\
188 	.indexed = 1,						\
189 	.channel = index,					\
190 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
191 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
192 	.datasheet_name = "#name",				\
193 	.scan_index = index,					\
194 	.scan_type = {						\
195 		.sign = 'u',					\
196 		.realbits = bits,				\
197 		.storagebits = 16,				\
198 		.endianness = IIO_CPU,				\
199 	},							\
200 }
201 
202 #define DECLARE_TI_TSC2046_8_CHANNELS(name, bits) \
203 const struct iio_chan_spec name ## _channels[] = { \
204 	TI_TSC2046_V_CHAN(0, bits, TEMP0), \
205 	TI_TSC2046_V_CHAN(1, bits, Y), \
206 	TI_TSC2046_V_CHAN(2, bits, VBAT), \
207 	TI_TSC2046_V_CHAN(3, bits, Z1), \
208 	TI_TSC2046_V_CHAN(4, bits, Z2), \
209 	TI_TSC2046_V_CHAN(5, bits, X), \
210 	TI_TSC2046_V_CHAN(6, bits, AUX), \
211 	TI_TSC2046_V_CHAN(7, bits, TEMP1), \
212 	IIO_CHAN_SOFT_TIMESTAMP(8), \
213 }
214 
215 static DECLARE_TI_TSC2046_8_CHANNELS(tsc2046_adc, 12);
216 
217 static const struct tsc2046_adc_dcfg tsc2046_adc_dcfg_tsc2046e = {
218 	.channels = tsc2046_adc_channels,
219 	.num_channels = ARRAY_SIZE(tsc2046_adc_channels),
220 };
221 
222 /*
223  * Convert time to a number of samples which can be transferred within this
224  * time.
225  */
226 static unsigned int tsc2046_adc_time_to_count(struct tsc2046_adc_priv *priv,
227 					      unsigned long time)
228 {
229 	unsigned int bit_count, sample_count;
230 
231 	bit_count = DIV_ROUND_UP(time * NSEC_PER_USEC, priv->time_per_bit_ns);
232 	sample_count = DIV_ROUND_UP(bit_count, TI_TSC2046_SAMPLE_BITS);
233 
234 	dev_dbg(&priv->spi->dev, "Effective speed %u, time per bit: %u, count bits: %u, count samples: %u\n",
235 		priv->effective_speed_hz, priv->time_per_bit_ns,
236 		bit_count, sample_count);
237 
238 	return sample_count;
239 }
240 
241 static u8 tsc2046_adc_get_cmd(struct tsc2046_adc_priv *priv, int ch_idx,
242 			      bool keep_power)
243 {
244 	u32 pd;
245 
246 	/*
247 	 * if PD bits are 0, controller will automatically disable ADC, VREF and
248 	 * enable IRQ.
249 	 */
250 	if (keep_power)
251 		pd = TI_TSC2046_PD0_ADC_ON;
252 	else
253 		pd = 0;
254 
255 	switch (ch_idx) {
256 	case TI_TSC2046_ADDR_TEMP1:
257 	case TI_TSC2046_ADDR_AUX:
258 	case TI_TSC2046_ADDR_VBAT:
259 	case TI_TSC2046_ADDR_TEMP0:
260 		pd |= TI_TSC2046_SER;
261 		if (priv->internal_vref)
262 			pd |= TI_TSC2046_PD1_VREF_ON;
263 	}
264 
265 	return TI_TSC2046_START | FIELD_PREP(TI_TSC2046_ADDR, ch_idx) | pd;
266 }
267 
268 static u16 tsc2046_adc_get_value(struct tsc2046_adc_atom *buf)
269 {
270 	return FIELD_GET(TI_TSC2046_DATA_12BIT, get_unaligned_be16(&buf->data));
271 }
272 
273 static int tsc2046_adc_read_one(struct tsc2046_adc_priv *priv, int ch_idx,
274 				u32 *effective_speed_hz)
275 {
276 	struct tsc2046_adc_ch_cfg *ch = &priv->ch_cfg[ch_idx];
277 	unsigned int val, val_normalized = 0;
278 	int ret, i, count_skip = 0, max_count;
279 	struct spi_transfer xfer;
280 	struct spi_message msg;
281 	u8 cmd;
282 
283 	if (!effective_speed_hz) {
284 		count_skip = tsc2046_adc_time_to_count(priv, ch->settling_time_us);
285 		max_count = count_skip + ch->oversampling_ratio;
286 	} else {
287 		max_count = 1;
288 	}
289 
290 	if (sizeof(struct tsc2046_adc_atom) * max_count > PAGE_SIZE)
291 		return -ENOSPC;
292 
293 	struct tsc2046_adc_atom *tx_buf __free(kfree) = kcalloc(max_count,
294 								sizeof(*tx_buf),
295 								GFP_KERNEL);
296 	if (!tx_buf)
297 		return -ENOMEM;
298 
299 	struct tsc2046_adc_atom *rx_buf __free(kfree) = kcalloc(max_count,
300 								sizeof(*rx_buf),
301 								GFP_KERNEL);
302 	if (!rx_buf)
303 		return -ENOMEM;
304 
305 	/*
306 	 * Do not enable automatic power down on working samples. Otherwise the
307 	 * plates will never be completely charged.
308 	 */
309 	cmd = tsc2046_adc_get_cmd(priv, ch_idx, true);
310 
311 	for (i = 0; i < max_count - 1; i++)
312 		tx_buf[i].cmd = cmd;
313 
314 	/* automatically power down on last sample */
315 	tx_buf[i].cmd = tsc2046_adc_get_cmd(priv, ch_idx, false);
316 
317 	memset(&xfer, 0, sizeof(xfer));
318 	xfer.tx_buf = tx_buf;
319 	xfer.rx_buf = rx_buf;
320 	xfer.len = sizeof(*tx_buf) * max_count;
321 	spi_message_init_with_transfers(&msg, &xfer, 1);
322 
323 	/*
324 	 * We aren't using spi_write_then_read() because we need to be able
325 	 * to get hold of the effective_speed_hz from the xfer
326 	 */
327 	ret = spi_sync(priv->spi, &msg);
328 	if (ret) {
329 		dev_err_ratelimited(&priv->spi->dev, "SPI transfer failed %pe\n",
330 				    ERR_PTR(ret));
331 		return ret;
332 	}
333 
334 	if (effective_speed_hz)
335 		*effective_speed_hz = xfer.effective_speed_hz;
336 
337 	for (i = 0; i < max_count - count_skip; i++) {
338 		val = tsc2046_adc_get_value(&rx_buf[count_skip + i]);
339 		val_normalized += val;
340 	}
341 
342 	return DIV_ROUND_UP(val_normalized, max_count - count_skip);
343 }
344 
345 static size_t tsc2046_adc_group_set_layout(struct tsc2046_adc_priv *priv,
346 					   unsigned int group,
347 					   unsigned int ch_idx)
348 {
349 	struct tsc2046_adc_ch_cfg *ch = &priv->ch_cfg[ch_idx];
350 	struct tsc2046_adc_group_layout *cur;
351 	unsigned int max_count, count_skip;
352 	unsigned int offset = 0;
353 
354 	if (group)
355 		offset = priv->l[group - 1].offset + priv->l[group - 1].count;
356 
357 	count_skip = tsc2046_adc_time_to_count(priv, ch->settling_time_us);
358 	max_count = count_skip + ch->oversampling_ratio;
359 
360 	cur = &priv->l[group];
361 	cur->offset = offset;
362 	cur->count = max_count;
363 	cur->skip = count_skip;
364 
365 	return sizeof(*priv->tx) * max_count;
366 }
367 
368 static void tsc2046_adc_group_set_cmd(struct tsc2046_adc_priv *priv,
369 				      unsigned int group, int ch_idx)
370 {
371 	struct tsc2046_adc_group_layout *l = &priv->l[group];
372 	unsigned int i;
373 	u8 cmd;
374 
375 	/*
376 	 * Do not enable automatic power down on working samples. Otherwise the
377 	 * plates will never be completely charged.
378 	 */
379 	cmd = tsc2046_adc_get_cmd(priv, ch_idx, true);
380 
381 	for (i = 0; i < l->count - 1; i++)
382 		priv->tx[l->offset + i].cmd = cmd;
383 
384 	/* automatically power down on last sample */
385 	priv->tx[l->offset + i].cmd = tsc2046_adc_get_cmd(priv, ch_idx, false);
386 }
387 
388 static u16 tsc2046_adc_get_val(struct tsc2046_adc_priv *priv, int group)
389 {
390 	struct tsc2046_adc_group_layout *l;
391 	unsigned int val, val_normalized = 0;
392 	int valid_count, i;
393 
394 	l = &priv->l[group];
395 	valid_count = l->count - l->skip;
396 
397 	for (i = 0; i < valid_count; i++) {
398 		val = tsc2046_adc_get_value(&priv->rx[l->offset + l->skip + i]);
399 		val_normalized += val;
400 	}
401 
402 	return DIV_ROUND_UP(val_normalized, valid_count);
403 }
404 
405 static int tsc2046_adc_scan(struct iio_dev *indio_dev)
406 {
407 	struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
408 	struct device *dev = &priv->spi->dev;
409 	int group;
410 	int ret;
411 
412 	ret = spi_sync(priv->spi, &priv->msg);
413 	if (ret < 0) {
414 		dev_err_ratelimited(dev, "SPI transfer failed: %pe\n", ERR_PTR(ret));
415 		return ret;
416 	}
417 
418 	for (group = 0; group < priv->groups; group++)
419 		priv->scan_buf.data[group] = tsc2046_adc_get_val(priv, group);
420 
421 	ret = iio_push_to_buffers_with_ts(indio_dev, &priv->scan_buf,
422 					  sizeof(priv->scan_buf),
423 					  iio_get_time_ns(indio_dev));
424 	/* If the consumer is kfifo, we may get a EBUSY here - ignore it. */
425 	if (ret < 0 && ret != -EBUSY) {
426 		dev_err_ratelimited(dev, "Failed to push scan buffer %pe\n",
427 				    ERR_PTR(ret));
428 
429 		return ret;
430 	}
431 
432 	return 0;
433 }
434 
435 static irqreturn_t tsc2046_adc_trigger_handler(int irq, void *p)
436 {
437 	struct iio_poll_func *pf = p;
438 	struct iio_dev *indio_dev = pf->indio_dev;
439 	struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
440 
441 	mutex_lock(&priv->slock);
442 	tsc2046_adc_scan(indio_dev);
443 	mutex_unlock(&priv->slock);
444 
445 	iio_trigger_notify_done(indio_dev->trig);
446 
447 	return IRQ_HANDLED;
448 }
449 
450 static int tsc2046_adc_read_raw(struct iio_dev *indio_dev,
451 				struct iio_chan_spec const *chan,
452 				int *val, int *val2, long m)
453 {
454 	struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
455 	int ret;
456 
457 	switch (m) {
458 	case IIO_CHAN_INFO_RAW:
459 		ret = tsc2046_adc_read_one(priv, chan->channel, NULL);
460 		if (ret < 0)
461 			return ret;
462 
463 		*val = ret;
464 
465 		return IIO_VAL_INT;
466 	case IIO_CHAN_INFO_SCALE:
467 		/*
468 		 * Note: the TSC2046 has internal voltage divider on the VBAT
469 		 * line. This divider can be influenced by external divider.
470 		 * So, it is better to use external voltage-divider driver
471 		 * instead, which is calculating complete chain.
472 		 */
473 		*val = priv->vref_mv;
474 		*val2 = chan->scan_type.realbits;
475 		return IIO_VAL_FRACTIONAL_LOG2;
476 	}
477 
478 	return -EINVAL;
479 }
480 
481 static int tsc2046_adc_update_scan_mode(struct iio_dev *indio_dev,
482 					const unsigned long *active_scan_mask)
483 {
484 	struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
485 	unsigned int ch_idx, group = 0;
486 	size_t size;
487 
488 	mutex_lock(&priv->slock);
489 
490 	size = 0;
491 	for_each_set_bit(ch_idx, active_scan_mask, ARRAY_SIZE(priv->l)) {
492 		size += tsc2046_adc_group_set_layout(priv, group, ch_idx);
493 		tsc2046_adc_group_set_cmd(priv, group, ch_idx);
494 		group++;
495 	}
496 
497 	priv->groups = group;
498 	priv->xfer.len = size;
499 	priv->time_per_scan_us = size * 8 * priv->time_per_bit_ns / NSEC_PER_USEC;
500 
501 	if (priv->scan_interval_us < priv->time_per_scan_us)
502 		dev_warn(&priv->spi->dev, "The scan interval (%d) is less then calculated scan time (%d)\n",
503 			 priv->scan_interval_us, priv->time_per_scan_us);
504 
505 	mutex_unlock(&priv->slock);
506 
507 	return 0;
508 }
509 
510 static const struct iio_info tsc2046_adc_info = {
511 	.read_raw	  = tsc2046_adc_read_raw,
512 	.update_scan_mode = tsc2046_adc_update_scan_mode,
513 };
514 
515 static enum hrtimer_restart tsc2046_adc_timer(struct hrtimer *hrtimer)
516 {
517 	struct tsc2046_adc_priv *priv = container_of(hrtimer,
518 						     struct tsc2046_adc_priv,
519 						     trig_timer);
520 	unsigned long flags;
521 
522 	/*
523 	 * This state machine should address following challenges :
524 	 * - the interrupt source is based on level shifter attached to the X
525 	 *   channel of ADC. It will change the state every time we switch
526 	 *   between channels. So, we need to disable IRQ if we do
527 	 *   iio_trigger_poll().
528 	 * - we should do iio_trigger_poll() at some reduced sample rate
529 	 * - we should still trigger for some amount of time after last
530 	 *   interrupt with enabled IRQ was processed.
531 	 */
532 
533 	spin_lock_irqsave(&priv->state_lock, flags);
534 	switch (priv->state) {
535 	case TSC2046_STATE_ENABLE_IRQ:
536 		if (priv->poll_cnt < TI_TSC2046_POLL_CNT) {
537 			priv->poll_cnt++;
538 			hrtimer_start(&priv->trig_timer,
539 				      ns_to_ktime(priv->scan_interval_us *
540 						  NSEC_PER_USEC),
541 				      HRTIMER_MODE_REL_SOFT);
542 
543 			if (priv->poll_cnt >= TI_TSC2046_MIN_POLL_CNT) {
544 				priv->state = TSC2046_STATE_POLL_IRQ_DISABLE;
545 				enable_irq(priv->spi->irq);
546 			} else {
547 				priv->state = TSC2046_STATE_POLL;
548 			}
549 		} else {
550 			priv->state = TSC2046_STATE_STANDBY;
551 			enable_irq(priv->spi->irq);
552 		}
553 		break;
554 	case TSC2046_STATE_POLL_IRQ_DISABLE:
555 		disable_irq_nosync(priv->spi->irq);
556 		fallthrough;
557 	case TSC2046_STATE_POLL:
558 		priv->state = TSC2046_STATE_ENABLE_IRQ;
559 		/* iio_trigger_poll() starts hrtimer */
560 		iio_trigger_poll(priv->trig);
561 		break;
562 	case TSC2046_STATE_SHUTDOWN:
563 		break;
564 	case TSC2046_STATE_STANDBY:
565 		fallthrough;
566 	default:
567 		dev_warn(&priv->spi->dev, "Got unexpected state: %i\n",
568 			 priv->state);
569 		break;
570 	}
571 	spin_unlock_irqrestore(&priv->state_lock, flags);
572 
573 	return HRTIMER_NORESTART;
574 }
575 
576 static irqreturn_t tsc2046_adc_irq(int irq, void *dev_id)
577 {
578 	struct iio_dev *indio_dev = dev_id;
579 	struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
580 	unsigned long flags;
581 
582 	hrtimer_try_to_cancel(&priv->trig_timer);
583 
584 	spin_lock_irqsave(&priv->state_lock, flags);
585 	if (priv->state != TSC2046_STATE_SHUTDOWN) {
586 		priv->state = TSC2046_STATE_ENABLE_IRQ;
587 		priv->poll_cnt = 0;
588 
589 		/* iio_trigger_poll() starts hrtimer */
590 		disable_irq_nosync(priv->spi->irq);
591 		iio_trigger_poll(priv->trig);
592 	}
593 	spin_unlock_irqrestore(&priv->state_lock, flags);
594 
595 	return IRQ_HANDLED;
596 }
597 
598 static void tsc2046_adc_reenable_trigger(struct iio_trigger *trig)
599 {
600 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
601 	struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
602 	ktime_t tim;
603 
604 	/*
605 	 * We can sample it as fast as we can, but usually we do not need so
606 	 * many samples. Reduce the sample rate for default (touchscreen) use
607 	 * case.
608 	 */
609 	tim = ns_to_ktime((priv->scan_interval_us - priv->time_per_scan_us) *
610 			  NSEC_PER_USEC);
611 	hrtimer_start(&priv->trig_timer, tim, HRTIMER_MODE_REL_SOFT);
612 }
613 
614 static int tsc2046_adc_set_trigger_state(struct iio_trigger *trig, bool enable)
615 {
616 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
617 	struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
618 	unsigned long flags;
619 
620 	if (enable) {
621 		spin_lock_irqsave(&priv->state_lock, flags);
622 		if (priv->state == TSC2046_STATE_SHUTDOWN) {
623 			priv->state = TSC2046_STATE_STANDBY;
624 			enable_irq(priv->spi->irq);
625 		}
626 		spin_unlock_irqrestore(&priv->state_lock, flags);
627 	} else {
628 		spin_lock_irqsave(&priv->state_lock, flags);
629 
630 		if (priv->state == TSC2046_STATE_STANDBY ||
631 		    priv->state == TSC2046_STATE_POLL_IRQ_DISABLE)
632 			disable_irq_nosync(priv->spi->irq);
633 
634 		priv->state = TSC2046_STATE_SHUTDOWN;
635 		spin_unlock_irqrestore(&priv->state_lock, flags);
636 
637 		hrtimer_cancel(&priv->trig_timer);
638 	}
639 
640 	return 0;
641 }
642 
643 static const struct iio_trigger_ops tsc2046_adc_trigger_ops = {
644 	.set_trigger_state = tsc2046_adc_set_trigger_state,
645 	.reenable = tsc2046_adc_reenable_trigger,
646 };
647 
648 static int tsc2046_adc_setup_spi_msg(struct tsc2046_adc_priv *priv)
649 {
650 	unsigned int ch_idx;
651 	size_t size;
652 	int ret;
653 
654 	/*
655 	 * Make dummy read to set initial power state and get real SPI clock
656 	 * freq. It seems to be not important which channel is used for this
657 	 * case.
658 	 */
659 	ret = tsc2046_adc_read_one(priv, TI_TSC2046_ADDR_TEMP0,
660 				   &priv->effective_speed_hz);
661 	if (ret < 0)
662 		return ret;
663 
664 	/*
665 	 * In case SPI controller do not report effective_speed_hz, use
666 	 * configure value and hope it will match.
667 	 */
668 	if (!priv->effective_speed_hz)
669 		priv->effective_speed_hz = priv->spi->max_speed_hz;
670 
671 
672 	priv->scan_interval_us = TI_TSC2046_SAMPLE_INTERVAL_US;
673 	priv->time_per_bit_ns = DIV_ROUND_UP(NSEC_PER_SEC,
674 					     priv->effective_speed_hz);
675 
676 	/*
677 	 * Calculate and allocate maximal size buffer if all channels are
678 	 * enabled.
679 	 */
680 	size = 0;
681 	for (ch_idx = 0; ch_idx < ARRAY_SIZE(priv->l); ch_idx++)
682 		size += tsc2046_adc_group_set_layout(priv, ch_idx, ch_idx);
683 
684 	if (size > PAGE_SIZE) {
685 		dev_err(&priv->spi->dev,
686 			"Calculated scan buffer is too big. Try to reduce spi-max-frequency, settling-time-us or oversampling-ratio\n");
687 		return -ENOSPC;
688 	}
689 
690 	priv->tx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL);
691 	if (!priv->tx)
692 		return -ENOMEM;
693 
694 	priv->rx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL);
695 	if (!priv->rx)
696 		return -ENOMEM;
697 
698 	priv->xfer.tx_buf = priv->tx;
699 	priv->xfer.rx_buf = priv->rx;
700 	priv->xfer.len = size;
701 	spi_message_init_with_transfers(&priv->msg, &priv->xfer, 1);
702 
703 	return 0;
704 }
705 
706 static void tsc2046_adc_parse_fwnode(struct tsc2046_adc_priv *priv)
707 {
708 	struct fwnode_handle *child;
709 	struct device *dev = &priv->spi->dev;
710 	unsigned int i;
711 
712 	for (i = 0; i < ARRAY_SIZE(priv->ch_cfg); i++) {
713 		priv->ch_cfg[i].settling_time_us = 1;
714 		priv->ch_cfg[i].oversampling_ratio = 1;
715 	}
716 
717 	device_for_each_child_node(dev, child) {
718 		u32 stl, overs, reg;
719 		int ret;
720 
721 		ret = fwnode_property_read_u32(child, "reg", &reg);
722 		if (ret) {
723 			dev_err(dev, "invalid reg on %pfw, err: %pe\n", child,
724 				ERR_PTR(ret));
725 			continue;
726 		}
727 
728 		if (reg >= ARRAY_SIZE(priv->ch_cfg)) {
729 			dev_err(dev, "%pfw: Unsupported reg value: %i, max supported is: %zu.\n",
730 				child, reg, ARRAY_SIZE(priv->ch_cfg));
731 			continue;
732 		}
733 
734 		ret = fwnode_property_read_u32(child, "settling-time-us", &stl);
735 		if (!ret)
736 			priv->ch_cfg[reg].settling_time_us = stl;
737 
738 		ret = fwnode_property_read_u32(child, "oversampling-ratio",
739 					       &overs);
740 		if (!ret)
741 			priv->ch_cfg[reg].oversampling_ratio = overs;
742 	}
743 }
744 
745 static int tsc2046_adc_probe(struct spi_device *spi)
746 {
747 	const struct tsc2046_adc_dcfg *dcfg;
748 	struct device *dev = &spi->dev;
749 	struct tsc2046_adc_priv *priv;
750 	struct iio_dev *indio_dev;
751 	struct iio_trigger *trig;
752 	int ret;
753 
754 	if (spi->max_speed_hz > TI_TSC2046_MAX_CLK_FREQ) {
755 		dev_err(dev, "SPI max_speed_hz is too high: %d Hz. Max supported freq is %zu Hz\n",
756 			spi->max_speed_hz, TI_TSC2046_MAX_CLK_FREQ);
757 		return -EINVAL;
758 	}
759 
760 	dcfg = spi_get_device_match_data(spi);
761 	if (!dcfg)
762 		return -EINVAL;
763 
764 	spi->mode &= ~SPI_MODE_X_MASK;
765 	spi->mode |= SPI_MODE_0;
766 	ret = spi_setup(spi);
767 	if (ret < 0)
768 		return dev_err_probe(dev, ret, "Error in SPI setup\n");
769 
770 	indio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
771 	if (!indio_dev)
772 		return -ENOMEM;
773 
774 	priv = iio_priv(indio_dev);
775 	priv->dcfg = dcfg;
776 
777 	priv->spi = spi;
778 
779 	indio_dev->name = TI_TSC2046_NAME;
780 	indio_dev->modes = INDIO_DIRECT_MODE;
781 	indio_dev->channels = dcfg->channels;
782 	indio_dev->num_channels = dcfg->num_channels;
783 	indio_dev->info = &tsc2046_adc_info;
784 
785 	ret = devm_regulator_get_enable_read_voltage(dev, "vref");
786 	if (ret < 0 && ret != -ENODEV)
787 		return ret;
788 
789 	priv->internal_vref = ret == -ENODEV;
790 	priv->vref_mv = priv->internal_vref ? TI_TSC2046_INT_VREF : ret / MILLI;
791 
792 	tsc2046_adc_parse_fwnode(priv);
793 
794 	ret = tsc2046_adc_setup_spi_msg(priv);
795 	if (ret)
796 		return ret;
797 
798 	mutex_init(&priv->slock);
799 
800 	ret = devm_request_irq(dev, spi->irq, &tsc2046_adc_irq,
801 			       IRQF_NO_AUTOEN, indio_dev->name, indio_dev);
802 	if (ret)
803 		return ret;
804 
805 	trig = devm_iio_trigger_alloc(dev, "touchscreen-%s", indio_dev->name);
806 	if (!trig)
807 		return -ENOMEM;
808 
809 	priv->trig = trig;
810 	iio_trigger_set_drvdata(trig, indio_dev);
811 	trig->ops = &tsc2046_adc_trigger_ops;
812 
813 	spin_lock_init(&priv->state_lock);
814 	priv->state = TSC2046_STATE_SHUTDOWN;
815 	hrtimer_setup(&priv->trig_timer, tsc2046_adc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
816 
817 	ret = devm_iio_trigger_register(dev, trig);
818 	if (ret) {
819 		dev_err(dev, "failed to register trigger\n");
820 		return ret;
821 	}
822 
823 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
824 					      &tsc2046_adc_trigger_handler, NULL);
825 	if (ret) {
826 		dev_err(dev, "Failed to setup triggered buffer\n");
827 		return ret;
828 	}
829 
830 	/* set default trigger */
831 	indio_dev->trig = iio_trigger_get(priv->trig);
832 
833 	return devm_iio_device_register(dev, indio_dev);
834 }
835 
836 static const struct of_device_id ads7950_of_table[] = {
837 	{ .compatible = "ti,tsc2046e-adc", .data = &tsc2046_adc_dcfg_tsc2046e },
838 	{ }
839 };
840 MODULE_DEVICE_TABLE(of, ads7950_of_table);
841 
842 static const struct spi_device_id tsc2046_adc_spi_ids[] = {
843 	{ "tsc2046e-adc", (unsigned long)&tsc2046_adc_dcfg_tsc2046e },
844 	{ }
845 };
846 MODULE_DEVICE_TABLE(spi, tsc2046_adc_spi_ids);
847 
848 static struct spi_driver tsc2046_adc_driver = {
849 	.driver = {
850 		.name = "tsc2046",
851 		.of_match_table = ads7950_of_table,
852 	},
853 	.id_table = tsc2046_adc_spi_ids,
854 	.probe = tsc2046_adc_probe,
855 };
856 module_spi_driver(tsc2046_adc_driver);
857 
858 MODULE_AUTHOR("Oleksij Rempel <kernel@pengutronix.de>");
859 MODULE_DESCRIPTION("TI TSC2046 ADC");
860 MODULE_LICENSE("GPL v2");
861