1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/dcache.h>
12 #include <linux/kernel.h>
13 #include <linux/math64.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/i2c.h>
19 #include <linux/hwmon.h>
20 #include <linux/hwmon-sysfs.h>
21 #include <linux/pmbus.h>
22 #include <linux/regulator/driver.h>
23 #include <linux/regulator/machine.h>
24 #include <linux/of.h>
25 #include <linux/thermal.h>
26 #include "pmbus.h"
27 
28 /*
29  * Number of additional attribute pointers to allocate
30  * with each call to krealloc
31  */
32 #define PMBUS_ATTR_ALLOC_SIZE	32
33 #define PMBUS_NAME_SIZE		24
34 
35 /*
36  * The type of operation used for picking the delay between
37  * successive pmbus operations.
38  */
39 #define PMBUS_OP_WRITE		BIT(0)
40 #define PMBUS_OP_PAGE_CHANGE	BIT(1)
41 
42 static int wp = -1;
43 module_param(wp, int, 0444);
44 
45 struct pmbus_sensor {
46 	struct pmbus_sensor *next;
47 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
48 	struct device_attribute attribute;
49 	u8 page;		/* page number */
50 	u8 phase;		/* phase number, 0xff for all phases */
51 	u16 reg;		/* register */
52 	enum pmbus_sensor_classes class;	/* sensor class */
53 	bool update;		/* runtime sensor update needed */
54 	bool convert;		/* Whether or not to apply linear/vid/direct */
55 	int data;		/* Sensor data; negative if there was a read error */
56 };
57 #define to_pmbus_sensor(_attr) \
58 	container_of(_attr, struct pmbus_sensor, attribute)
59 
60 struct pmbus_boolean {
61 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
62 	struct sensor_device_attribute attribute;
63 	struct pmbus_sensor *s1;
64 	struct pmbus_sensor *s2;
65 };
66 #define to_pmbus_boolean(_attr) \
67 	container_of(_attr, struct pmbus_boolean, attribute)
68 
69 struct pmbus_label {
70 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
71 	struct device_attribute attribute;
72 	char label[PMBUS_NAME_SIZE];	/* label */
73 };
74 #define to_pmbus_label(_attr) \
75 	container_of(_attr, struct pmbus_label, attribute)
76 
77 /* Macros for converting between sensor index and register/page/status mask */
78 
79 #define PB_STATUS_MASK	0xffff
80 #define PB_REG_SHIFT	16
81 #define PB_REG_MASK	0x3ff
82 #define PB_PAGE_SHIFT	26
83 #define PB_PAGE_MASK	0x3f
84 
85 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
86 						 ((reg) << PB_REG_SHIFT) | (mask))
87 
88 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
89 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
90 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
91 
92 struct pmbus_data {
93 	struct device *dev;
94 	struct device *hwmon_dev;
95 	struct regulator_dev **rdevs;
96 
97 	u32 flags;		/* from platform data */
98 
99 	u8 revision;	/* The PMBus revision the device is compliant with */
100 
101 	int exponent[PMBUS_PAGES];
102 				/* linear mode: exponent for output voltages */
103 
104 	const struct pmbus_driver_info *info;
105 
106 	int max_attributes;
107 	int num_attributes;
108 	struct attribute_group group;
109 	const struct attribute_group **groups;
110 
111 	struct pmbus_sensor *sensors;
112 
113 	struct mutex update_lock;
114 
115 	bool has_status_word;		/* device uses STATUS_WORD register */
116 	int (*read_status)(struct i2c_client *client, int page);
117 
118 	s16 currpage;	/* current page, -1 for unknown/unset */
119 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
120 
121 	int vout_low[PMBUS_PAGES];	/* voltage low margin */
122 	int vout_high[PMBUS_PAGES];	/* voltage high margin */
123 
124 	ktime_t next_access_backoff;	/* Wait until at least this time */
125 };
126 
127 struct pmbus_debugfs_entry {
128 	struct i2c_client *client;
129 	u8 page;
130 	u8 reg;
131 };
132 
133 static const int pmbus_fan_rpm_mask[] = {
134 	PB_FAN_1_RPM,
135 	PB_FAN_2_RPM,
136 	PB_FAN_1_RPM,
137 	PB_FAN_2_RPM,
138 };
139 
140 static const int pmbus_fan_config_registers[] = {
141 	PMBUS_FAN_CONFIG_12,
142 	PMBUS_FAN_CONFIG_12,
143 	PMBUS_FAN_CONFIG_34,
144 	PMBUS_FAN_CONFIG_34
145 };
146 
147 static const int pmbus_fan_command_registers[] = {
148 	PMBUS_FAN_COMMAND_1,
149 	PMBUS_FAN_COMMAND_2,
150 	PMBUS_FAN_COMMAND_3,
151 	PMBUS_FAN_COMMAND_4,
152 };
153 
154 void pmbus_clear_cache(struct i2c_client *client)
155 {
156 	struct pmbus_data *data = i2c_get_clientdata(client);
157 	struct pmbus_sensor *sensor;
158 
159 	for (sensor = data->sensors; sensor; sensor = sensor->next)
160 		sensor->data = -ENODATA;
161 }
162 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
163 
164 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
165 {
166 	struct pmbus_data *data = i2c_get_clientdata(client);
167 	struct pmbus_sensor *sensor;
168 
169 	for (sensor = data->sensors; sensor; sensor = sensor->next)
170 		if (sensor->reg == reg)
171 			sensor->update = update;
172 }
173 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
174 
175 /* Some chips need a delay between accesses. */
176 static void pmbus_wait(struct i2c_client *client)
177 {
178 	struct pmbus_data *data = i2c_get_clientdata(client);
179 	s64 delay = ktime_us_delta(data->next_access_backoff, ktime_get());
180 
181 	if (delay > 0)
182 		fsleep(delay);
183 }
184 
185 /* Sets the last operation timestamp for pmbus_wait */
186 static void pmbus_update_ts(struct i2c_client *client, int op)
187 {
188 	struct pmbus_data *data = i2c_get_clientdata(client);
189 	const struct pmbus_driver_info *info = data->info;
190 	int delay = info->access_delay;
191 
192 	if (op & PMBUS_OP_WRITE)
193 		delay = max(delay, info->write_delay);
194 	if (op & PMBUS_OP_PAGE_CHANGE)
195 		delay = max(delay, info->page_change_delay);
196 
197 	if (delay > 0)
198 		data->next_access_backoff = ktime_add_us(ktime_get(), delay);
199 }
200 
201 int pmbus_set_page(struct i2c_client *client, int page, int phase)
202 {
203 	struct pmbus_data *data = i2c_get_clientdata(client);
204 	int rv;
205 
206 	if (page < 0)
207 		return 0;
208 
209 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
210 	    data->info->pages > 1 && page != data->currpage) {
211 		pmbus_wait(client);
212 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
213 		pmbus_update_ts(client, PMBUS_OP_WRITE | PMBUS_OP_PAGE_CHANGE);
214 		if (rv < 0)
215 			return rv;
216 
217 		pmbus_wait(client);
218 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
219 		pmbus_update_ts(client, 0);
220 		if (rv < 0)
221 			return rv;
222 
223 		if (rv != page)
224 			return -EIO;
225 	}
226 	data->currpage = page;
227 
228 	if (data->info->phases[page] && data->currphase != phase &&
229 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
230 		pmbus_wait(client);
231 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
232 					       phase);
233 		pmbus_update_ts(client, PMBUS_OP_WRITE);
234 		if (rv)
235 			return rv;
236 	}
237 	data->currphase = phase;
238 
239 	return 0;
240 }
241 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
242 
243 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
244 {
245 	int rv;
246 
247 	rv = pmbus_set_page(client, page, 0xff);
248 	if (rv < 0)
249 		return rv;
250 
251 	pmbus_wait(client);
252 	rv = i2c_smbus_write_byte(client, value);
253 	pmbus_update_ts(client, PMBUS_OP_WRITE);
254 
255 	return rv;
256 }
257 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
258 
259 /*
260  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
261  * a device specific mapping function exists and calls it if necessary.
262  */
263 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
264 {
265 	struct pmbus_data *data = i2c_get_clientdata(client);
266 	const struct pmbus_driver_info *info = data->info;
267 	int status;
268 
269 	if (info->write_byte) {
270 		status = info->write_byte(client, page, value);
271 		if (status != -ENODATA)
272 			return status;
273 	}
274 	return pmbus_write_byte(client, page, value);
275 }
276 
277 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
278 			  u16 word)
279 {
280 	int rv;
281 
282 	rv = pmbus_set_page(client, page, 0xff);
283 	if (rv < 0)
284 		return rv;
285 
286 	pmbus_wait(client);
287 	rv = i2c_smbus_write_word_data(client, reg, word);
288 	pmbus_update_ts(client, PMBUS_OP_WRITE);
289 
290 	return rv;
291 }
292 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
293 
294 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
295 				u16 word)
296 {
297 	int bit;
298 	int id;
299 	int rv;
300 
301 	switch (reg) {
302 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
303 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
304 		bit = pmbus_fan_rpm_mask[id];
305 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
306 		break;
307 	default:
308 		rv = -ENXIO;
309 		break;
310 	}
311 
312 	return rv;
313 }
314 
315 /*
316  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
317  * a device specific mapping function exists and calls it if necessary.
318  */
319 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
320 				  u16 word)
321 {
322 	struct pmbus_data *data = i2c_get_clientdata(client);
323 	const struct pmbus_driver_info *info = data->info;
324 	int status;
325 
326 	if (info->write_word_data) {
327 		status = info->write_word_data(client, page, reg, word);
328 		if (status != -ENODATA)
329 			return status;
330 	}
331 
332 	if (reg >= PMBUS_VIRT_BASE)
333 		return pmbus_write_virt_reg(client, page, reg, word);
334 
335 	return pmbus_write_word_data(client, page, reg, word);
336 }
337 
338 /*
339  * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
340  * a device specific mapping function exists and calls it if necessary.
341  */
342 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
343 {
344 	struct pmbus_data *data = i2c_get_clientdata(client);
345 	const struct pmbus_driver_info *info = data->info;
346 	int status;
347 
348 	if (info->write_byte_data) {
349 		status = info->write_byte_data(client, page, reg, value);
350 		if (status != -ENODATA)
351 			return status;
352 	}
353 	return pmbus_write_byte_data(client, page, reg, value);
354 }
355 
356 /*
357  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
358  * a device specific mapping function exists and calls it if necessary.
359  */
360 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
361 {
362 	struct pmbus_data *data = i2c_get_clientdata(client);
363 	const struct pmbus_driver_info *info = data->info;
364 	int status;
365 
366 	if (info->read_byte_data) {
367 		status = info->read_byte_data(client, page, reg);
368 		if (status != -ENODATA)
369 			return status;
370 	}
371 	return pmbus_read_byte_data(client, page, reg);
372 }
373 
374 int pmbus_update_fan(struct i2c_client *client, int page, int id,
375 		     u8 config, u8 mask, u16 command)
376 {
377 	int from;
378 	int rv;
379 	u8 to;
380 
381 	from = _pmbus_read_byte_data(client, page,
382 				     pmbus_fan_config_registers[id]);
383 	if (from < 0)
384 		return from;
385 
386 	to = (from & ~mask) | (config & mask);
387 	if (to != from) {
388 		rv = _pmbus_write_byte_data(client, page,
389 					    pmbus_fan_config_registers[id], to);
390 		if (rv < 0)
391 			return rv;
392 	}
393 
394 	return _pmbus_write_word_data(client, page,
395 				      pmbus_fan_command_registers[id], command);
396 }
397 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
398 
399 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
400 {
401 	int rv;
402 
403 	rv = pmbus_set_page(client, page, phase);
404 	if (rv < 0)
405 		return rv;
406 
407 	pmbus_wait(client);
408 	rv = i2c_smbus_read_word_data(client, reg);
409 	pmbus_update_ts(client, 0);
410 
411 	return rv;
412 }
413 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
414 
415 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
416 {
417 	int rv;
418 	int id;
419 
420 	switch (reg) {
421 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
422 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
423 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
424 		break;
425 	default:
426 		rv = -ENXIO;
427 		break;
428 	}
429 
430 	return rv;
431 }
432 
433 /*
434  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
435  * a device specific mapping function exists and calls it if necessary.
436  */
437 static int _pmbus_read_word_data(struct i2c_client *client, int page,
438 				 int phase, int reg)
439 {
440 	struct pmbus_data *data = i2c_get_clientdata(client);
441 	const struct pmbus_driver_info *info = data->info;
442 	int status;
443 
444 	if (info->read_word_data) {
445 		status = info->read_word_data(client, page, phase, reg);
446 		if (status != -ENODATA)
447 			return status;
448 	}
449 
450 	if (reg >= PMBUS_VIRT_BASE)
451 		return pmbus_read_virt_reg(client, page, reg);
452 
453 	return pmbus_read_word_data(client, page, phase, reg);
454 }
455 
456 /* Same as above, but without phase parameter, for use in check functions */
457 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
458 {
459 	return _pmbus_read_word_data(client, page, 0xff, reg);
460 }
461 
462 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
463 {
464 	int rv;
465 
466 	rv = pmbus_set_page(client, page, 0xff);
467 	if (rv < 0)
468 		return rv;
469 
470 	pmbus_wait(client);
471 	rv = i2c_smbus_read_byte_data(client, reg);
472 	pmbus_update_ts(client, 0);
473 
474 	return rv;
475 }
476 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
477 
478 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
479 {
480 	int rv;
481 
482 	rv = pmbus_set_page(client, page, 0xff);
483 	if (rv < 0)
484 		return rv;
485 
486 	pmbus_wait(client);
487 	rv = i2c_smbus_write_byte_data(client, reg, value);
488 	pmbus_update_ts(client, PMBUS_OP_WRITE);
489 
490 	return rv;
491 }
492 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
493 
494 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
495 			   u8 mask, u8 value)
496 {
497 	unsigned int tmp;
498 	int rv;
499 
500 	rv = _pmbus_read_byte_data(client, page, reg);
501 	if (rv < 0)
502 		return rv;
503 
504 	tmp = (rv & ~mask) | (value & mask);
505 
506 	if (tmp != rv)
507 		rv = _pmbus_write_byte_data(client, page, reg, tmp);
508 
509 	return rv;
510 }
511 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
512 
513 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
514 				 char *data_buf)
515 {
516 	int rv;
517 
518 	rv = pmbus_set_page(client, page, 0xff);
519 	if (rv < 0)
520 		return rv;
521 
522 	pmbus_wait(client);
523 	rv = i2c_smbus_read_block_data(client, reg, data_buf);
524 	pmbus_update_ts(client, 0);
525 
526 	return rv;
527 }
528 
529 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
530 					      int reg)
531 {
532 	struct pmbus_sensor *sensor;
533 
534 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
535 		if (sensor->page == page && sensor->reg == reg)
536 			return sensor;
537 	}
538 
539 	return ERR_PTR(-EINVAL);
540 }
541 
542 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
543 			      enum pmbus_fan_mode mode,
544 			      bool from_cache)
545 {
546 	struct pmbus_data *data = i2c_get_clientdata(client);
547 	bool want_rpm, have_rpm;
548 	struct pmbus_sensor *s;
549 	int config;
550 	int reg;
551 
552 	want_rpm = (mode == rpm);
553 
554 	if (from_cache) {
555 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
556 		s = pmbus_find_sensor(data, page, reg + id);
557 		if (IS_ERR(s))
558 			return PTR_ERR(s);
559 
560 		return s->data;
561 	}
562 
563 	config = _pmbus_read_byte_data(client, page,
564 				       pmbus_fan_config_registers[id]);
565 	if (config < 0)
566 		return config;
567 
568 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
569 	if (want_rpm == have_rpm)
570 		return pmbus_read_word_data(client, page, 0xff,
571 					    pmbus_fan_command_registers[id]);
572 
573 	/* Can't sensibly map between RPM and PWM, just return zero */
574 	return 0;
575 }
576 
577 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
578 			      enum pmbus_fan_mode mode)
579 {
580 	return pmbus_get_fan_rate(client, page, id, mode, false);
581 }
582 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
583 
584 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
585 			      enum pmbus_fan_mode mode)
586 {
587 	return pmbus_get_fan_rate(client, page, id, mode, true);
588 }
589 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
590 
591 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
592 {
593 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
594 }
595 
596 void pmbus_clear_faults(struct i2c_client *client)
597 {
598 	struct pmbus_data *data = i2c_get_clientdata(client);
599 	int i;
600 
601 	for (i = 0; i < data->info->pages; i++)
602 		pmbus_clear_fault_page(client, i);
603 }
604 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
605 
606 static int pmbus_check_status_cml(struct i2c_client *client)
607 {
608 	struct pmbus_data *data = i2c_get_clientdata(client);
609 	int status, status2;
610 
611 	status = data->read_status(client, -1);
612 	if (status < 0 || (status & PB_STATUS_CML)) {
613 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
614 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
615 			return -EIO;
616 	}
617 	return 0;
618 }
619 
620 static bool pmbus_check_register(struct i2c_client *client,
621 				 int (*func)(struct i2c_client *client,
622 					     int page, int reg),
623 				 int page, int reg)
624 {
625 	int rv;
626 	struct pmbus_data *data = i2c_get_clientdata(client);
627 
628 	rv = func(client, page, reg);
629 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
630 		rv = pmbus_check_status_cml(client);
631 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
632 		data->read_status(client, -1);
633 	if (reg < PMBUS_VIRT_BASE)
634 		pmbus_clear_fault_page(client, -1);
635 	return rv >= 0;
636 }
637 
638 static bool pmbus_check_status_register(struct i2c_client *client, int page)
639 {
640 	int status;
641 	struct pmbus_data *data = i2c_get_clientdata(client);
642 
643 	status = data->read_status(client, page);
644 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
645 	    (status & PB_STATUS_CML)) {
646 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
647 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
648 			status = -EIO;
649 	}
650 
651 	pmbus_clear_fault_page(client, -1);
652 	return status >= 0;
653 }
654 
655 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
656 {
657 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
658 }
659 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
660 
661 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
662 {
663 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
664 }
665 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
666 
667 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
668 						      int page, int reg)
669 {
670 	int rv;
671 	struct pmbus_data *data = i2c_get_clientdata(client);
672 	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
673 
674 	rv = pmbus_read_block_data(client, page, reg, data_buf);
675 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
676 		rv = pmbus_check_status_cml(client);
677 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
678 		data->read_status(client, -1);
679 	pmbus_clear_fault_page(client, -1);
680 	return rv >= 0;
681 }
682 
683 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
684 {
685 	struct pmbus_data *data = i2c_get_clientdata(client);
686 
687 	return data->info;
688 }
689 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
690 
691 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
692 {
693 	struct pmbus_data *data = i2c_get_clientdata(client);
694 	int status;
695 
696 	switch (reg) {
697 	case PMBUS_STATUS_WORD:
698 		status = data->read_status(client, page);
699 		break;
700 	default:
701 		status = _pmbus_read_byte_data(client, page, reg);
702 		break;
703 	}
704 	if (status < 0)
705 		pmbus_clear_faults(client);
706 	return status;
707 }
708 
709 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
710 {
711 	if (sensor->data < 0 || sensor->update)
712 		sensor->data = _pmbus_read_word_data(client, sensor->page,
713 						     sensor->phase, sensor->reg);
714 }
715 
716 /*
717  * Convert ieee754 sensor values to milli- or micro-units
718  * depending on sensor type.
719  *
720  * ieee754 data format:
721  *	bit 15:		sign
722  *	bit 10..14:	exponent
723  *	bit 0..9:	mantissa
724  * exponent=0:
725  *	v=(−1)^signbit * 2^(−14) * 0.significantbits
726  * exponent=1..30:
727  *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
728  * exponent=31:
729  *	v=NaN
730  *
731  * Add the number mantissa bits into the calculations for simplicity.
732  * To do that, add '10' to the exponent. By doing that, we can just add
733  * 0x400 to normal values and get the expected result.
734  */
735 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
736 				   struct pmbus_sensor *sensor)
737 {
738 	int exponent;
739 	bool sign;
740 	long val;
741 
742 	/* only support half precision for now */
743 	sign = sensor->data & 0x8000;
744 	exponent = (sensor->data >> 10) & 0x1f;
745 	val = sensor->data & 0x3ff;
746 
747 	if (exponent == 0) {			/* subnormal */
748 		exponent = -(14 + 10);
749 	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
750 		exponent = 0;
751 		val = 65504;
752 	} else {
753 		exponent -= (15 + 10);		/* normal */
754 		val |= 0x400;
755 	}
756 
757 	/* scale result to milli-units for all sensors except fans */
758 	if (sensor->class != PSC_FAN)
759 		val = val * 1000L;
760 
761 	/* scale result to micro-units for power sensors */
762 	if (sensor->class == PSC_POWER)
763 		val = val * 1000L;
764 
765 	if (exponent >= 0)
766 		val <<= exponent;
767 	else
768 		val >>= -exponent;
769 
770 	if (sign)
771 		val = -val;
772 
773 	return val;
774 }
775 
776 /*
777  * Convert linear sensor values to milli- or micro-units
778  * depending on sensor type.
779  */
780 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
781 				 struct pmbus_sensor *sensor)
782 {
783 	s16 exponent;
784 	s32 mantissa;
785 	s64 val;
786 
787 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
788 		exponent = data->exponent[sensor->page];
789 		mantissa = (u16)sensor->data;
790 	} else {				/* LINEAR11 */
791 		exponent = ((s16)sensor->data) >> 11;
792 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
793 	}
794 
795 	val = mantissa;
796 
797 	/* scale result to milli-units for all sensors except fans */
798 	if (sensor->class != PSC_FAN)
799 		val = val * 1000LL;
800 
801 	/* scale result to micro-units for power sensors */
802 	if (sensor->class == PSC_POWER)
803 		val = val * 1000LL;
804 
805 	if (exponent >= 0)
806 		val <<= exponent;
807 	else
808 		val >>= -exponent;
809 
810 	return val;
811 }
812 
813 /*
814  * Convert direct sensor values to milli- or micro-units
815  * depending on sensor type.
816  */
817 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
818 				 struct pmbus_sensor *sensor)
819 {
820 	s64 b, val = (s16)sensor->data;
821 	s32 m, R;
822 
823 	m = data->info->m[sensor->class];
824 	b = data->info->b[sensor->class];
825 	R = data->info->R[sensor->class];
826 
827 	if (m == 0)
828 		return 0;
829 
830 	/* X = 1/m * (Y * 10^-R - b) */
831 	R = -R;
832 	/* scale result to milli-units for everything but fans */
833 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
834 		R += 3;
835 		b *= 1000;
836 	}
837 
838 	/* scale result to micro-units for power sensors */
839 	if (sensor->class == PSC_POWER) {
840 		R += 3;
841 		b *= 1000;
842 	}
843 
844 	while (R > 0) {
845 		val *= 10;
846 		R--;
847 	}
848 	while (R < 0) {
849 		val = div_s64(val + 5LL, 10L);  /* round closest */
850 		R++;
851 	}
852 
853 	val = div_s64(val - b, m);
854 	return val;
855 }
856 
857 /*
858  * Convert VID sensor values to milli- or micro-units
859  * depending on sensor type.
860  */
861 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
862 			      struct pmbus_sensor *sensor)
863 {
864 	long val = sensor->data;
865 	long rv = 0;
866 
867 	switch (data->info->vrm_version[sensor->page]) {
868 	case vr11:
869 		if (val >= 0x02 && val <= 0xb2)
870 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
871 		break;
872 	case vr12:
873 		if (val >= 0x01)
874 			rv = 250 + (val - 1) * 5;
875 		break;
876 	case vr13:
877 		if (val >= 0x01)
878 			rv = 500 + (val - 1) * 10;
879 		break;
880 	case imvp9:
881 		if (val >= 0x01)
882 			rv = 200 + (val - 1) * 10;
883 		break;
884 	case amd625mv:
885 		if (val >= 0x0 && val <= 0xd8)
886 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
887 		break;
888 	}
889 	return rv;
890 }
891 
892 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
893 {
894 	s64 val;
895 
896 	if (!sensor->convert)
897 		return sensor->data;
898 
899 	switch (data->info->format[sensor->class]) {
900 	case direct:
901 		val = pmbus_reg2data_direct(data, sensor);
902 		break;
903 	case vid:
904 		val = pmbus_reg2data_vid(data, sensor);
905 		break;
906 	case ieee754:
907 		val = pmbus_reg2data_ieee754(data, sensor);
908 		break;
909 	case linear:
910 	default:
911 		val = pmbus_reg2data_linear(data, sensor);
912 		break;
913 	}
914 	return val;
915 }
916 
917 #define MAX_IEEE_MANTISSA	(0x7ff * 1000)
918 #define MIN_IEEE_MANTISSA	(0x400 * 1000)
919 
920 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
921 				  struct pmbus_sensor *sensor, long val)
922 {
923 	u16 exponent = (15 + 10);
924 	long mantissa;
925 	u16 sign = 0;
926 
927 	/* simple case */
928 	if (val == 0)
929 		return 0;
930 
931 	if (val < 0) {
932 		sign = 0x8000;
933 		val = -val;
934 	}
935 
936 	/* Power is in uW. Convert to mW before converting. */
937 	if (sensor->class == PSC_POWER)
938 		val = DIV_ROUND_CLOSEST(val, 1000L);
939 
940 	/*
941 	 * For simplicity, convert fan data to milli-units
942 	 * before calculating the exponent.
943 	 */
944 	if (sensor->class == PSC_FAN)
945 		val = val * 1000;
946 
947 	/* Reduce large mantissa until it fits into 10 bit */
948 	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
949 		exponent++;
950 		val >>= 1;
951 	}
952 	/*
953 	 * Increase small mantissa to generate valid 'normal'
954 	 * number
955 	 */
956 	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
957 		exponent--;
958 		val <<= 1;
959 	}
960 
961 	/* Convert mantissa from milli-units to units */
962 	mantissa = DIV_ROUND_CLOSEST(val, 1000);
963 
964 	/*
965 	 * Ensure that the resulting number is within range.
966 	 * Valid range is 0x400..0x7ff, where bit 10 reflects
967 	 * the implied high bit in normalized ieee754 numbers.
968 	 * Set the range to 0x400..0x7ff to reflect this.
969 	 * The upper bit is then removed by the mask against
970 	 * 0x3ff in the final assignment.
971 	 */
972 	if (mantissa > 0x7ff)
973 		mantissa = 0x7ff;
974 	else if (mantissa < 0x400)
975 		mantissa = 0x400;
976 
977 	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
978 	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
979 }
980 
981 #define MAX_LIN_MANTISSA	(1023 * 1000)
982 #define MIN_LIN_MANTISSA	(511 * 1000)
983 
984 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
985 				 struct pmbus_sensor *sensor, s64 val)
986 {
987 	s16 exponent = 0, mantissa;
988 	bool negative = false;
989 
990 	/* simple case */
991 	if (val == 0)
992 		return 0;
993 
994 	if (sensor->class == PSC_VOLTAGE_OUT) {
995 		/* LINEAR16 does not support negative voltages */
996 		if (val < 0)
997 			return 0;
998 
999 		/*
1000 		 * For a static exponents, we don't have a choice
1001 		 * but to adjust the value to it.
1002 		 */
1003 		if (data->exponent[sensor->page] < 0)
1004 			val <<= -data->exponent[sensor->page];
1005 		else
1006 			val >>= data->exponent[sensor->page];
1007 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1008 		return clamp_val(val, 0, 0xffff);
1009 	}
1010 
1011 	if (val < 0) {
1012 		negative = true;
1013 		val = -val;
1014 	}
1015 
1016 	/* Power is in uW. Convert to mW before converting. */
1017 	if (sensor->class == PSC_POWER)
1018 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1019 
1020 	/*
1021 	 * For simplicity, convert fan data to milli-units
1022 	 * before calculating the exponent.
1023 	 */
1024 	if (sensor->class == PSC_FAN)
1025 		val = val * 1000LL;
1026 
1027 	/* Reduce large mantissa until it fits into 10 bit */
1028 	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1029 		exponent++;
1030 		val >>= 1;
1031 	}
1032 	/* Increase small mantissa to improve precision */
1033 	while (val < MIN_LIN_MANTISSA && exponent > -15) {
1034 		exponent--;
1035 		val <<= 1;
1036 	}
1037 
1038 	/* Convert mantissa from milli-units to units */
1039 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1040 
1041 	/* restore sign */
1042 	if (negative)
1043 		mantissa = -mantissa;
1044 
1045 	/* Convert to 5 bit exponent, 11 bit mantissa */
1046 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1047 }
1048 
1049 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1050 				 struct pmbus_sensor *sensor, s64 val)
1051 {
1052 	s64 b;
1053 	s32 m, R;
1054 
1055 	m = data->info->m[sensor->class];
1056 	b = data->info->b[sensor->class];
1057 	R = data->info->R[sensor->class];
1058 
1059 	/* Power is in uW. Adjust R and b. */
1060 	if (sensor->class == PSC_POWER) {
1061 		R -= 3;
1062 		b *= 1000;
1063 	}
1064 
1065 	/* Calculate Y = (m * X + b) * 10^R */
1066 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1067 		R -= 3;		/* Adjust R and b for data in milli-units */
1068 		b *= 1000;
1069 	}
1070 	val = val * m + b;
1071 
1072 	while (R > 0) {
1073 		val *= 10;
1074 		R--;
1075 	}
1076 	while (R < 0) {
1077 		val = div_s64(val + 5LL, 10L);  /* round closest */
1078 		R++;
1079 	}
1080 
1081 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1082 }
1083 
1084 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1085 			      struct pmbus_sensor *sensor, s64 val)
1086 {
1087 	val = clamp_val(val, 500, 1600);
1088 
1089 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1090 }
1091 
1092 static u16 pmbus_data2reg(struct pmbus_data *data,
1093 			  struct pmbus_sensor *sensor, s64 val)
1094 {
1095 	u16 regval;
1096 
1097 	if (!sensor->convert)
1098 		return val;
1099 
1100 	switch (data->info->format[sensor->class]) {
1101 	case direct:
1102 		regval = pmbus_data2reg_direct(data, sensor, val);
1103 		break;
1104 	case vid:
1105 		regval = pmbus_data2reg_vid(data, sensor, val);
1106 		break;
1107 	case ieee754:
1108 		regval = pmbus_data2reg_ieee754(data, sensor, val);
1109 		break;
1110 	case linear:
1111 	default:
1112 		regval = pmbus_data2reg_linear(data, sensor, val);
1113 		break;
1114 	}
1115 	return regval;
1116 }
1117 
1118 /*
1119  * Return boolean calculated from converted data.
1120  * <index> defines a status register index and mask.
1121  * The mask is in the lower 8 bits, the register index is in bits 8..23.
1122  *
1123  * The associated pmbus_boolean structure contains optional pointers to two
1124  * sensor attributes. If specified, those attributes are compared against each
1125  * other to determine if a limit has been exceeded.
1126  *
1127  * If the sensor attribute pointers are NULL, the function returns true if
1128  * (status[reg] & mask) is true.
1129  *
1130  * If sensor attribute pointers are provided, a comparison against a specified
1131  * limit has to be performed to determine the boolean result.
1132  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1133  * sensor values referenced by sensor attribute pointers s1 and s2).
1134  *
1135  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1136  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1137  *
1138  * If a negative value is stored in any of the referenced registers, this value
1139  * reflects an error code which will be returned.
1140  */
1141 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1142 			     int index)
1143 {
1144 	struct pmbus_data *data = i2c_get_clientdata(client);
1145 	struct pmbus_sensor *s1 = b->s1;
1146 	struct pmbus_sensor *s2 = b->s2;
1147 	u16 mask = pb_index_to_mask(index);
1148 	u8 page = pb_index_to_page(index);
1149 	u16 reg = pb_index_to_reg(index);
1150 	int ret, status;
1151 	u16 regval;
1152 
1153 	mutex_lock(&data->update_lock);
1154 	status = pmbus_get_status(client, page, reg);
1155 	if (status < 0) {
1156 		ret = status;
1157 		goto unlock;
1158 	}
1159 
1160 	if (s1)
1161 		pmbus_update_sensor_data(client, s1);
1162 	if (s2)
1163 		pmbus_update_sensor_data(client, s2);
1164 
1165 	regval = status & mask;
1166 	if (regval) {
1167 		if (data->revision >= PMBUS_REV_12) {
1168 			ret = _pmbus_write_byte_data(client, page, reg, regval);
1169 			if (ret)
1170 				goto unlock;
1171 		} else {
1172 			pmbus_clear_fault_page(client, page);
1173 		}
1174 	}
1175 	if (s1 && s2) {
1176 		s64 v1, v2;
1177 
1178 		if (s1->data < 0) {
1179 			ret = s1->data;
1180 			goto unlock;
1181 		}
1182 		if (s2->data < 0) {
1183 			ret = s2->data;
1184 			goto unlock;
1185 		}
1186 
1187 		v1 = pmbus_reg2data(data, s1);
1188 		v2 = pmbus_reg2data(data, s2);
1189 		ret = !!(regval && v1 >= v2);
1190 	} else {
1191 		ret = !!regval;
1192 	}
1193 unlock:
1194 	mutex_unlock(&data->update_lock);
1195 	return ret;
1196 }
1197 
1198 static ssize_t pmbus_show_boolean(struct device *dev,
1199 				  struct device_attribute *da, char *buf)
1200 {
1201 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1202 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1203 	struct i2c_client *client = to_i2c_client(dev->parent);
1204 	int val;
1205 
1206 	val = pmbus_get_boolean(client, boolean, attr->index);
1207 	if (val < 0)
1208 		return val;
1209 	return sysfs_emit(buf, "%d\n", val);
1210 }
1211 
1212 static ssize_t pmbus_show_sensor(struct device *dev,
1213 				 struct device_attribute *devattr, char *buf)
1214 {
1215 	struct i2c_client *client = to_i2c_client(dev->parent);
1216 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1217 	struct pmbus_data *data = i2c_get_clientdata(client);
1218 	ssize_t ret;
1219 
1220 	mutex_lock(&data->update_lock);
1221 	pmbus_update_sensor_data(client, sensor);
1222 	if (sensor->data < 0)
1223 		ret = sensor->data;
1224 	else
1225 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1226 	mutex_unlock(&data->update_lock);
1227 	return ret;
1228 }
1229 
1230 static ssize_t pmbus_set_sensor(struct device *dev,
1231 				struct device_attribute *devattr,
1232 				const char *buf, size_t count)
1233 {
1234 	struct i2c_client *client = to_i2c_client(dev->parent);
1235 	struct pmbus_data *data = i2c_get_clientdata(client);
1236 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1237 	ssize_t rv = count;
1238 	s64 val;
1239 	int ret;
1240 	u16 regval;
1241 
1242 	if (kstrtos64(buf, 10, &val) < 0)
1243 		return -EINVAL;
1244 
1245 	mutex_lock(&data->update_lock);
1246 	regval = pmbus_data2reg(data, sensor, val);
1247 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1248 	if (ret < 0)
1249 		rv = ret;
1250 	else
1251 		sensor->data = -ENODATA;
1252 	mutex_unlock(&data->update_lock);
1253 	return rv;
1254 }
1255 
1256 static ssize_t pmbus_show_label(struct device *dev,
1257 				struct device_attribute *da, char *buf)
1258 {
1259 	struct pmbus_label *label = to_pmbus_label(da);
1260 
1261 	return sysfs_emit(buf, "%s\n", label->label);
1262 }
1263 
1264 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1265 {
1266 	if (data->num_attributes >= data->max_attributes - 1) {
1267 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1268 		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1269 						      new_max_attrs, sizeof(void *),
1270 						      GFP_KERNEL);
1271 		if (!new_attrs)
1272 			return -ENOMEM;
1273 		data->group.attrs = new_attrs;
1274 		data->max_attributes = new_max_attrs;
1275 	}
1276 
1277 	data->group.attrs[data->num_attributes++] = attr;
1278 	data->group.attrs[data->num_attributes] = NULL;
1279 	return 0;
1280 }
1281 
1282 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1283 				const char *name,
1284 				umode_t mode,
1285 				ssize_t (*show)(struct device *dev,
1286 						struct device_attribute *attr,
1287 						char *buf),
1288 				ssize_t (*store)(struct device *dev,
1289 						 struct device_attribute *attr,
1290 						 const char *buf, size_t count))
1291 {
1292 	sysfs_attr_init(&dev_attr->attr);
1293 	dev_attr->attr.name = name;
1294 	dev_attr->attr.mode = mode;
1295 	dev_attr->show = show;
1296 	dev_attr->store = store;
1297 }
1298 
1299 static void pmbus_attr_init(struct sensor_device_attribute *a,
1300 			    const char *name,
1301 			    umode_t mode,
1302 			    ssize_t (*show)(struct device *dev,
1303 					    struct device_attribute *attr,
1304 					    char *buf),
1305 			    ssize_t (*store)(struct device *dev,
1306 					     struct device_attribute *attr,
1307 					     const char *buf, size_t count),
1308 			    int idx)
1309 {
1310 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1311 	a->index = idx;
1312 }
1313 
1314 static int pmbus_add_boolean(struct pmbus_data *data,
1315 			     const char *name, const char *type, int seq,
1316 			     struct pmbus_sensor *s1,
1317 			     struct pmbus_sensor *s2,
1318 			     u8 page, u16 reg, u16 mask)
1319 {
1320 	struct pmbus_boolean *boolean;
1321 	struct sensor_device_attribute *a;
1322 
1323 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1324 		return -EINVAL;
1325 
1326 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1327 	if (!boolean)
1328 		return -ENOMEM;
1329 
1330 	a = &boolean->attribute;
1331 
1332 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1333 		 name, seq, type);
1334 	boolean->s1 = s1;
1335 	boolean->s2 = s2;
1336 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1337 			pb_reg_to_index(page, reg, mask));
1338 
1339 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1340 }
1341 
1342 /* of thermal for pmbus temperature sensors */
1343 struct pmbus_thermal_data {
1344 	struct pmbus_data *pmbus_data;
1345 	struct pmbus_sensor *sensor;
1346 };
1347 
1348 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1349 {
1350 	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1351 	struct pmbus_sensor *sensor = tdata->sensor;
1352 	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1353 	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1354 	struct device *dev = pmbus_data->hwmon_dev;
1355 	int ret = 0;
1356 
1357 	if (!dev) {
1358 		/* May not even get to hwmon yet */
1359 		*temp = 0;
1360 		return 0;
1361 	}
1362 
1363 	mutex_lock(&pmbus_data->update_lock);
1364 	pmbus_update_sensor_data(client, sensor);
1365 	if (sensor->data < 0)
1366 		ret = sensor->data;
1367 	else
1368 		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1369 	mutex_unlock(&pmbus_data->update_lock);
1370 
1371 	return ret;
1372 }
1373 
1374 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1375 	.get_temp = pmbus_thermal_get_temp,
1376 };
1377 
1378 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1379 				    struct pmbus_sensor *sensor, int index)
1380 {
1381 	struct device *dev = pmbus_data->dev;
1382 	struct pmbus_thermal_data *tdata;
1383 	struct thermal_zone_device *tzd;
1384 
1385 	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1386 	if (!tdata)
1387 		return -ENOMEM;
1388 
1389 	tdata->sensor = sensor;
1390 	tdata->pmbus_data = pmbus_data;
1391 
1392 	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1393 					    &pmbus_thermal_ops);
1394 	/*
1395 	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1396 	 * so ignore that error but forward any other error.
1397 	 */
1398 	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1399 		return PTR_ERR(tzd);
1400 
1401 	return 0;
1402 }
1403 
1404 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1405 					     const char *name, const char *type,
1406 					     int seq, int page, int phase,
1407 					     int reg,
1408 					     enum pmbus_sensor_classes class,
1409 					     bool update, bool readonly,
1410 					     bool convert)
1411 {
1412 	struct pmbus_sensor *sensor;
1413 	struct device_attribute *a;
1414 
1415 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1416 	if (!sensor)
1417 		return NULL;
1418 	a = &sensor->attribute;
1419 
1420 	if (type)
1421 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1422 			 name, seq, type);
1423 	else
1424 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1425 			 name, seq);
1426 
1427 	if (data->flags & PMBUS_WRITE_PROTECTED)
1428 		readonly = true;
1429 
1430 	sensor->page = page;
1431 	sensor->phase = phase;
1432 	sensor->reg = reg;
1433 	sensor->class = class;
1434 	sensor->update = update;
1435 	sensor->convert = convert;
1436 	sensor->data = -ENODATA;
1437 	pmbus_dev_attr_init(a, sensor->name,
1438 			    readonly ? 0444 : 0644,
1439 			    pmbus_show_sensor, pmbus_set_sensor);
1440 
1441 	if (pmbus_add_attribute(data, &a->attr))
1442 		return NULL;
1443 
1444 	sensor->next = data->sensors;
1445 	data->sensors = sensor;
1446 
1447 	/* temperature sensors with _input values are registered with thermal */
1448 	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1449 		pmbus_thermal_add_sensor(data, sensor, seq);
1450 
1451 	return sensor;
1452 }
1453 
1454 static int pmbus_add_label(struct pmbus_data *data,
1455 			   const char *name, int seq,
1456 			   const char *lstring, int index, int phase)
1457 {
1458 	struct pmbus_label *label;
1459 	struct device_attribute *a;
1460 
1461 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1462 	if (!label)
1463 		return -ENOMEM;
1464 
1465 	a = &label->attribute;
1466 
1467 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1468 	if (!index) {
1469 		if (phase == 0xff)
1470 			strscpy(label->label, lstring);
1471 		else
1472 			snprintf(label->label, sizeof(label->label), "%s.%d",
1473 				 lstring, phase);
1474 	} else {
1475 		if (phase == 0xff)
1476 			snprintf(label->label, sizeof(label->label), "%s%d",
1477 				 lstring, index);
1478 		else
1479 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1480 				 lstring, index, phase);
1481 	}
1482 
1483 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1484 	return pmbus_add_attribute(data, &a->attr);
1485 }
1486 
1487 /*
1488  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1489  */
1490 
1491 /*
1492  * The pmbus_limit_attr structure describes a single limit attribute
1493  * and its associated alarm attribute.
1494  */
1495 struct pmbus_limit_attr {
1496 	u16 reg;		/* Limit register */
1497 	u16 sbit;		/* Alarm attribute status bit */
1498 	bool update;		/* True if register needs updates */
1499 	bool low;		/* True if low limit; for limits with compare functions only */
1500 	const char *attr;	/* Attribute name */
1501 	const char *alarm;	/* Alarm attribute name */
1502 };
1503 
1504 /*
1505  * The pmbus_sensor_attr structure describes one sensor attribute. This
1506  * description includes a reference to the associated limit attributes.
1507  */
1508 struct pmbus_sensor_attr {
1509 	u16 reg;			/* sensor register */
1510 	u16 gbit;			/* generic status bit */
1511 	u8 nlimit;			/* # of limit registers */
1512 	enum pmbus_sensor_classes class;/* sensor class */
1513 	const char *label;		/* sensor label */
1514 	bool paged;			/* true if paged sensor */
1515 	bool update;			/* true if update needed */
1516 	bool compare;			/* true if compare function needed */
1517 	u32 func;			/* sensor mask */
1518 	u32 sfunc;			/* sensor status mask */
1519 	int sreg;			/* status register */
1520 	const struct pmbus_limit_attr *limit;/* limit registers */
1521 };
1522 
1523 /*
1524  * Add a set of limit attributes and, if supported, the associated
1525  * alarm attributes.
1526  * returns 0 if no alarm register found, 1 if an alarm register was found,
1527  * < 0 on errors.
1528  */
1529 static int pmbus_add_limit_attrs(struct i2c_client *client,
1530 				 struct pmbus_data *data,
1531 				 const struct pmbus_driver_info *info,
1532 				 const char *name, int index, int page,
1533 				 struct pmbus_sensor *base,
1534 				 const struct pmbus_sensor_attr *attr)
1535 {
1536 	const struct pmbus_limit_attr *l = attr->limit;
1537 	int nlimit = attr->nlimit;
1538 	int have_alarm = 0;
1539 	int i, ret;
1540 	struct pmbus_sensor *curr;
1541 
1542 	for (i = 0; i < nlimit; i++) {
1543 		if (pmbus_check_word_register(client, page, l->reg)) {
1544 			curr = pmbus_add_sensor(data, name, l->attr, index,
1545 						page, 0xff, l->reg, attr->class,
1546 						attr->update || l->update,
1547 						false, true);
1548 			if (!curr)
1549 				return -ENOMEM;
1550 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1551 				ret = pmbus_add_boolean(data, name,
1552 					l->alarm, index,
1553 					attr->compare ?  l->low ? curr : base
1554 						      : NULL,
1555 					attr->compare ? l->low ? base : curr
1556 						      : NULL,
1557 					page, attr->sreg, l->sbit);
1558 				if (ret)
1559 					return ret;
1560 				have_alarm = 1;
1561 			}
1562 		}
1563 		l++;
1564 	}
1565 	return have_alarm;
1566 }
1567 
1568 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1569 				      struct pmbus_data *data,
1570 				      const struct pmbus_driver_info *info,
1571 				      const char *name,
1572 				      int index, int page, int phase,
1573 				      const struct pmbus_sensor_attr *attr,
1574 				      bool paged)
1575 {
1576 	struct pmbus_sensor *base;
1577 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1578 	int ret;
1579 
1580 	if (attr->label) {
1581 		ret = pmbus_add_label(data, name, index, attr->label,
1582 				      paged ? page + 1 : 0, phase);
1583 		if (ret)
1584 			return ret;
1585 	}
1586 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1587 				attr->reg, attr->class, true, true, true);
1588 	if (!base)
1589 		return -ENOMEM;
1590 	/* No limit and alarm attributes for phase specific sensors */
1591 	if (attr->sfunc && phase == 0xff) {
1592 		ret = pmbus_add_limit_attrs(client, data, info, name,
1593 					    index, page, base, attr);
1594 		if (ret < 0)
1595 			return ret;
1596 		/*
1597 		 * Add generic alarm attribute only if there are no individual
1598 		 * alarm attributes, if there is a global alarm bit, and if
1599 		 * the generic status register (word or byte, depending on
1600 		 * which global bit is set) for this page is accessible.
1601 		 */
1602 		if (!ret && attr->gbit &&
1603 		    (!upper || data->has_status_word) &&
1604 		    pmbus_check_status_register(client, page)) {
1605 			ret = pmbus_add_boolean(data, name, "alarm", index,
1606 						NULL, NULL,
1607 						page, PMBUS_STATUS_WORD,
1608 						attr->gbit);
1609 			if (ret)
1610 				return ret;
1611 		}
1612 	}
1613 	return 0;
1614 }
1615 
1616 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1617 				  const struct pmbus_sensor_attr *attr)
1618 {
1619 	int p;
1620 
1621 	if (attr->paged)
1622 		return true;
1623 
1624 	/*
1625 	 * Some attributes may be present on more than one page despite
1626 	 * not being marked with the paged attribute. If that is the case,
1627 	 * then treat the sensor as being paged and add the page suffix to the
1628 	 * attribute name.
1629 	 * We don't just add the paged attribute to all such attributes, in
1630 	 * order to maintain the un-suffixed labels in the case where the
1631 	 * attribute is only on page 0.
1632 	 */
1633 	for (p = 1; p < info->pages; p++) {
1634 		if (info->func[p] & attr->func)
1635 			return true;
1636 	}
1637 	return false;
1638 }
1639 
1640 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1641 				  struct pmbus_data *data,
1642 				  const char *name,
1643 				  const struct pmbus_sensor_attr *attrs,
1644 				  int nattrs)
1645 {
1646 	const struct pmbus_driver_info *info = data->info;
1647 	int index, i;
1648 	int ret;
1649 
1650 	index = 1;
1651 	for (i = 0; i < nattrs; i++) {
1652 		int page, pages;
1653 		bool paged = pmbus_sensor_is_paged(info, attrs);
1654 
1655 		pages = paged ? info->pages : 1;
1656 		for (page = 0; page < pages; page++) {
1657 			if (info->func[page] & attrs->func) {
1658 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1659 								 name, index, page,
1660 								 0xff, attrs, paged);
1661 				if (ret)
1662 					return ret;
1663 				index++;
1664 			}
1665 			if (info->phases[page]) {
1666 				int phase;
1667 
1668 				for (phase = 0; phase < info->phases[page];
1669 				     phase++) {
1670 					if (!(info->pfunc[phase] & attrs->func))
1671 						continue;
1672 					ret = pmbus_add_sensor_attrs_one(client,
1673 						data, info, name, index, page,
1674 						phase, attrs, paged);
1675 					if (ret)
1676 						return ret;
1677 					index++;
1678 				}
1679 			}
1680 		}
1681 		attrs++;
1682 	}
1683 	return 0;
1684 }
1685 
1686 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1687 	{
1688 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1689 		.attr = "min",
1690 		.alarm = "min_alarm",
1691 		.sbit = PB_VOLTAGE_UV_WARNING,
1692 	}, {
1693 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1694 		.attr = "lcrit",
1695 		.alarm = "lcrit_alarm",
1696 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1697 	}, {
1698 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1699 		.attr = "max",
1700 		.alarm = "max_alarm",
1701 		.sbit = PB_VOLTAGE_OV_WARNING,
1702 	}, {
1703 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1704 		.attr = "crit",
1705 		.alarm = "crit_alarm",
1706 		.sbit = PB_VOLTAGE_OV_FAULT,
1707 	}, {
1708 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1709 		.update = true,
1710 		.attr = "average",
1711 	}, {
1712 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1713 		.update = true,
1714 		.attr = "lowest",
1715 	}, {
1716 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1717 		.update = true,
1718 		.attr = "highest",
1719 	}, {
1720 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1721 		.attr = "reset_history",
1722 	}, {
1723 		.reg = PMBUS_MFR_VIN_MIN,
1724 		.attr = "rated_min",
1725 	}, {
1726 		.reg = PMBUS_MFR_VIN_MAX,
1727 		.attr = "rated_max",
1728 	},
1729 };
1730 
1731 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1732 	{
1733 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1734 		.attr = "min",
1735 		.alarm = "min_alarm",
1736 		.sbit = PB_VOLTAGE_UV_WARNING,
1737 	}, {
1738 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1739 		.attr = "lcrit",
1740 		.alarm = "lcrit_alarm",
1741 		.sbit = PB_VOLTAGE_UV_FAULT,
1742 	}, {
1743 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1744 		.attr = "max",
1745 		.alarm = "max_alarm",
1746 		.sbit = PB_VOLTAGE_OV_WARNING,
1747 	}, {
1748 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1749 		.attr = "crit",
1750 		.alarm = "crit_alarm",
1751 		.sbit = PB_VOLTAGE_OV_FAULT,
1752 	}
1753 };
1754 
1755 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1756 	{
1757 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1758 		.attr = "min",
1759 		.alarm = "min_alarm",
1760 		.sbit = PB_VOLTAGE_UV_WARNING,
1761 	}, {
1762 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1763 		.attr = "lcrit",
1764 		.alarm = "lcrit_alarm",
1765 		.sbit = PB_VOLTAGE_UV_FAULT,
1766 	}, {
1767 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1768 		.attr = "max",
1769 		.alarm = "max_alarm",
1770 		.sbit = PB_VOLTAGE_OV_WARNING,
1771 	}, {
1772 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1773 		.attr = "crit",
1774 		.alarm = "crit_alarm",
1775 		.sbit = PB_VOLTAGE_OV_FAULT,
1776 	}, {
1777 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1778 		.update = true,
1779 		.attr = "average",
1780 	}, {
1781 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1782 		.update = true,
1783 		.attr = "lowest",
1784 	}, {
1785 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1786 		.update = true,
1787 		.attr = "highest",
1788 	}, {
1789 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1790 		.attr = "reset_history",
1791 	}, {
1792 		.reg = PMBUS_MFR_VOUT_MIN,
1793 		.attr = "rated_min",
1794 	}, {
1795 		.reg = PMBUS_MFR_VOUT_MAX,
1796 		.attr = "rated_max",
1797 	},
1798 };
1799 
1800 static const struct pmbus_sensor_attr voltage_attributes[] = {
1801 	{
1802 		.reg = PMBUS_READ_VIN,
1803 		.class = PSC_VOLTAGE_IN,
1804 		.label = "vin",
1805 		.func = PMBUS_HAVE_VIN,
1806 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1807 		.sreg = PMBUS_STATUS_INPUT,
1808 		.gbit = PB_STATUS_VIN_UV,
1809 		.limit = vin_limit_attrs,
1810 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1811 	}, {
1812 		.reg = PMBUS_VIRT_READ_VMON,
1813 		.class = PSC_VOLTAGE_IN,
1814 		.label = "vmon",
1815 		.func = PMBUS_HAVE_VMON,
1816 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1817 		.sreg = PMBUS_VIRT_STATUS_VMON,
1818 		.limit = vmon_limit_attrs,
1819 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1820 	}, {
1821 		.reg = PMBUS_READ_VCAP,
1822 		.class = PSC_VOLTAGE_IN,
1823 		.label = "vcap",
1824 		.func = PMBUS_HAVE_VCAP,
1825 	}, {
1826 		.reg = PMBUS_READ_VOUT,
1827 		.class = PSC_VOLTAGE_OUT,
1828 		.label = "vout",
1829 		.paged = true,
1830 		.func = PMBUS_HAVE_VOUT,
1831 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1832 		.sreg = PMBUS_STATUS_VOUT,
1833 		.gbit = PB_STATUS_VOUT_OV,
1834 		.limit = vout_limit_attrs,
1835 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1836 	}
1837 };
1838 
1839 /* Current attributes */
1840 
1841 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1842 	{
1843 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1844 		.attr = "max",
1845 		.alarm = "max_alarm",
1846 		.sbit = PB_IIN_OC_WARNING,
1847 	}, {
1848 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1849 		.attr = "crit",
1850 		.alarm = "crit_alarm",
1851 		.sbit = PB_IIN_OC_FAULT,
1852 	}, {
1853 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1854 		.update = true,
1855 		.attr = "average",
1856 	}, {
1857 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1858 		.update = true,
1859 		.attr = "lowest",
1860 	}, {
1861 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1862 		.update = true,
1863 		.attr = "highest",
1864 	}, {
1865 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1866 		.attr = "reset_history",
1867 	}, {
1868 		.reg = PMBUS_MFR_IIN_MAX,
1869 		.attr = "rated_max",
1870 	},
1871 };
1872 
1873 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1874 	{
1875 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1876 		.attr = "max",
1877 		.alarm = "max_alarm",
1878 		.sbit = PB_IOUT_OC_WARNING,
1879 	}, {
1880 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1881 		.attr = "lcrit",
1882 		.alarm = "lcrit_alarm",
1883 		.sbit = PB_IOUT_UC_FAULT,
1884 	}, {
1885 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1886 		.attr = "crit",
1887 		.alarm = "crit_alarm",
1888 		.sbit = PB_IOUT_OC_FAULT,
1889 	}, {
1890 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1891 		.update = true,
1892 		.attr = "average",
1893 	}, {
1894 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1895 		.update = true,
1896 		.attr = "lowest",
1897 	}, {
1898 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1899 		.update = true,
1900 		.attr = "highest",
1901 	}, {
1902 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1903 		.attr = "reset_history",
1904 	}, {
1905 		.reg = PMBUS_MFR_IOUT_MAX,
1906 		.attr = "rated_max",
1907 	},
1908 };
1909 
1910 static const struct pmbus_sensor_attr current_attributes[] = {
1911 	{
1912 		.reg = PMBUS_READ_IIN,
1913 		.class = PSC_CURRENT_IN,
1914 		.label = "iin",
1915 		.func = PMBUS_HAVE_IIN,
1916 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1917 		.sreg = PMBUS_STATUS_INPUT,
1918 		.gbit = PB_STATUS_INPUT,
1919 		.limit = iin_limit_attrs,
1920 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1921 	}, {
1922 		.reg = PMBUS_READ_IOUT,
1923 		.class = PSC_CURRENT_OUT,
1924 		.label = "iout",
1925 		.paged = true,
1926 		.func = PMBUS_HAVE_IOUT,
1927 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1928 		.sreg = PMBUS_STATUS_IOUT,
1929 		.gbit = PB_STATUS_IOUT_OC,
1930 		.limit = iout_limit_attrs,
1931 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1932 	}
1933 };
1934 
1935 /* Power attributes */
1936 
1937 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1938 	{
1939 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1940 		.attr = "max",
1941 		.alarm = "alarm",
1942 		.sbit = PB_PIN_OP_WARNING,
1943 	}, {
1944 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1945 		.update = true,
1946 		.attr = "average",
1947 	}, {
1948 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1949 		.update = true,
1950 		.attr = "input_lowest",
1951 	}, {
1952 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1953 		.update = true,
1954 		.attr = "input_highest",
1955 	}, {
1956 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1957 		.attr = "reset_history",
1958 	}, {
1959 		.reg = PMBUS_MFR_PIN_MAX,
1960 		.attr = "rated_max",
1961 	},
1962 };
1963 
1964 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1965 	{
1966 		.reg = PMBUS_POUT_MAX,
1967 		.attr = "cap",
1968 		.alarm = "cap_alarm",
1969 		.sbit = PB_POWER_LIMITING,
1970 	}, {
1971 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1972 		.attr = "max",
1973 		.alarm = "max_alarm",
1974 		.sbit = PB_POUT_OP_WARNING,
1975 	}, {
1976 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1977 		.attr = "crit",
1978 		.alarm = "crit_alarm",
1979 		.sbit = PB_POUT_OP_FAULT,
1980 	}, {
1981 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1982 		.update = true,
1983 		.attr = "average",
1984 	}, {
1985 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1986 		.update = true,
1987 		.attr = "input_lowest",
1988 	}, {
1989 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1990 		.update = true,
1991 		.attr = "input_highest",
1992 	}, {
1993 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1994 		.attr = "reset_history",
1995 	}, {
1996 		.reg = PMBUS_MFR_POUT_MAX,
1997 		.attr = "rated_max",
1998 	},
1999 };
2000 
2001 static const struct pmbus_sensor_attr power_attributes[] = {
2002 	{
2003 		.reg = PMBUS_READ_PIN,
2004 		.class = PSC_POWER,
2005 		.label = "pin",
2006 		.func = PMBUS_HAVE_PIN,
2007 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
2008 		.sreg = PMBUS_STATUS_INPUT,
2009 		.gbit = PB_STATUS_INPUT,
2010 		.limit = pin_limit_attrs,
2011 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
2012 	}, {
2013 		.reg = PMBUS_READ_POUT,
2014 		.class = PSC_POWER,
2015 		.label = "pout",
2016 		.paged = true,
2017 		.func = PMBUS_HAVE_POUT,
2018 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
2019 		.sreg = PMBUS_STATUS_IOUT,
2020 		.limit = pout_limit_attrs,
2021 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
2022 	}
2023 };
2024 
2025 /* Temperature atributes */
2026 
2027 static const struct pmbus_limit_attr temp_limit_attrs[] = {
2028 	{
2029 		.reg = PMBUS_UT_WARN_LIMIT,
2030 		.low = true,
2031 		.attr = "min",
2032 		.alarm = "min_alarm",
2033 		.sbit = PB_TEMP_UT_WARNING,
2034 	}, {
2035 		.reg = PMBUS_UT_FAULT_LIMIT,
2036 		.low = true,
2037 		.attr = "lcrit",
2038 		.alarm = "lcrit_alarm",
2039 		.sbit = PB_TEMP_UT_FAULT,
2040 	}, {
2041 		.reg = PMBUS_OT_WARN_LIMIT,
2042 		.attr = "max",
2043 		.alarm = "max_alarm",
2044 		.sbit = PB_TEMP_OT_WARNING,
2045 	}, {
2046 		.reg = PMBUS_OT_FAULT_LIMIT,
2047 		.attr = "crit",
2048 		.alarm = "crit_alarm",
2049 		.sbit = PB_TEMP_OT_FAULT,
2050 	}, {
2051 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
2052 		.attr = "lowest",
2053 	}, {
2054 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
2055 		.attr = "average",
2056 	}, {
2057 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
2058 		.attr = "highest",
2059 	}, {
2060 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2061 		.attr = "reset_history",
2062 	}, {
2063 		.reg = PMBUS_MFR_MAX_TEMP_1,
2064 		.attr = "rated_max",
2065 	},
2066 };
2067 
2068 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2069 	{
2070 		.reg = PMBUS_UT_WARN_LIMIT,
2071 		.low = true,
2072 		.attr = "min",
2073 		.alarm = "min_alarm",
2074 		.sbit = PB_TEMP_UT_WARNING,
2075 	}, {
2076 		.reg = PMBUS_UT_FAULT_LIMIT,
2077 		.low = true,
2078 		.attr = "lcrit",
2079 		.alarm = "lcrit_alarm",
2080 		.sbit = PB_TEMP_UT_FAULT,
2081 	}, {
2082 		.reg = PMBUS_OT_WARN_LIMIT,
2083 		.attr = "max",
2084 		.alarm = "max_alarm",
2085 		.sbit = PB_TEMP_OT_WARNING,
2086 	}, {
2087 		.reg = PMBUS_OT_FAULT_LIMIT,
2088 		.attr = "crit",
2089 		.alarm = "crit_alarm",
2090 		.sbit = PB_TEMP_OT_FAULT,
2091 	}, {
2092 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2093 		.attr = "lowest",
2094 	}, {
2095 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2096 		.attr = "average",
2097 	}, {
2098 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2099 		.attr = "highest",
2100 	}, {
2101 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2102 		.attr = "reset_history",
2103 	}, {
2104 		.reg = PMBUS_MFR_MAX_TEMP_2,
2105 		.attr = "rated_max",
2106 	},
2107 };
2108 
2109 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2110 	{
2111 		.reg = PMBUS_UT_WARN_LIMIT,
2112 		.low = true,
2113 		.attr = "min",
2114 		.alarm = "min_alarm",
2115 		.sbit = PB_TEMP_UT_WARNING,
2116 	}, {
2117 		.reg = PMBUS_UT_FAULT_LIMIT,
2118 		.low = true,
2119 		.attr = "lcrit",
2120 		.alarm = "lcrit_alarm",
2121 		.sbit = PB_TEMP_UT_FAULT,
2122 	}, {
2123 		.reg = PMBUS_OT_WARN_LIMIT,
2124 		.attr = "max",
2125 		.alarm = "max_alarm",
2126 		.sbit = PB_TEMP_OT_WARNING,
2127 	}, {
2128 		.reg = PMBUS_OT_FAULT_LIMIT,
2129 		.attr = "crit",
2130 		.alarm = "crit_alarm",
2131 		.sbit = PB_TEMP_OT_FAULT,
2132 	}, {
2133 		.reg = PMBUS_MFR_MAX_TEMP_3,
2134 		.attr = "rated_max",
2135 	},
2136 };
2137 
2138 static const struct pmbus_sensor_attr temp_attributes[] = {
2139 	{
2140 		.reg = PMBUS_READ_TEMPERATURE_1,
2141 		.class = PSC_TEMPERATURE,
2142 		.paged = true,
2143 		.update = true,
2144 		.compare = true,
2145 		.func = PMBUS_HAVE_TEMP,
2146 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2147 		.sreg = PMBUS_STATUS_TEMPERATURE,
2148 		.gbit = PB_STATUS_TEMPERATURE,
2149 		.limit = temp_limit_attrs,
2150 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2151 	}, {
2152 		.reg = PMBUS_READ_TEMPERATURE_2,
2153 		.class = PSC_TEMPERATURE,
2154 		.paged = true,
2155 		.update = true,
2156 		.compare = true,
2157 		.func = PMBUS_HAVE_TEMP2,
2158 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2159 		.sreg = PMBUS_STATUS_TEMPERATURE,
2160 		.gbit = PB_STATUS_TEMPERATURE,
2161 		.limit = temp_limit_attrs2,
2162 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2163 	}, {
2164 		.reg = PMBUS_READ_TEMPERATURE_3,
2165 		.class = PSC_TEMPERATURE,
2166 		.paged = true,
2167 		.update = true,
2168 		.compare = true,
2169 		.func = PMBUS_HAVE_TEMP3,
2170 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2171 		.sreg = PMBUS_STATUS_TEMPERATURE,
2172 		.gbit = PB_STATUS_TEMPERATURE,
2173 		.limit = temp_limit_attrs3,
2174 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2175 	}
2176 };
2177 
2178 static const int pmbus_fan_registers[] = {
2179 	PMBUS_READ_FAN_SPEED_1,
2180 	PMBUS_READ_FAN_SPEED_2,
2181 	PMBUS_READ_FAN_SPEED_3,
2182 	PMBUS_READ_FAN_SPEED_4
2183 };
2184 
2185 static const int pmbus_fan_status_registers[] = {
2186 	PMBUS_STATUS_FAN_12,
2187 	PMBUS_STATUS_FAN_12,
2188 	PMBUS_STATUS_FAN_34,
2189 	PMBUS_STATUS_FAN_34
2190 };
2191 
2192 static const u32 pmbus_fan_flags[] = {
2193 	PMBUS_HAVE_FAN12,
2194 	PMBUS_HAVE_FAN12,
2195 	PMBUS_HAVE_FAN34,
2196 	PMBUS_HAVE_FAN34
2197 };
2198 
2199 static const u32 pmbus_fan_status_flags[] = {
2200 	PMBUS_HAVE_STATUS_FAN12,
2201 	PMBUS_HAVE_STATUS_FAN12,
2202 	PMBUS_HAVE_STATUS_FAN34,
2203 	PMBUS_HAVE_STATUS_FAN34
2204 };
2205 
2206 /* Fans */
2207 
2208 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2209 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2210 			      struct pmbus_data *data, int index, int page,
2211 			      int id, u8 config)
2212 {
2213 	struct pmbus_sensor *sensor;
2214 
2215 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2216 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2217 				  false, false, true);
2218 
2219 	if (!sensor)
2220 		return -ENOMEM;
2221 
2222 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2223 	      (data->info->func[page] & PMBUS_HAVE_PWM34)))
2224 		return 0;
2225 
2226 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2227 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2228 				  false, false, true);
2229 
2230 	if (!sensor)
2231 		return -ENOMEM;
2232 
2233 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2234 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2235 				  true, false, false);
2236 
2237 	if (!sensor)
2238 		return -ENOMEM;
2239 
2240 	return 0;
2241 }
2242 
2243 static int pmbus_add_fan_attributes(struct i2c_client *client,
2244 				    struct pmbus_data *data)
2245 {
2246 	const struct pmbus_driver_info *info = data->info;
2247 	int index = 1;
2248 	int page;
2249 	int ret;
2250 
2251 	for (page = 0; page < info->pages; page++) {
2252 		int f;
2253 
2254 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2255 			int regval;
2256 
2257 			if (!(info->func[page] & pmbus_fan_flags[f]))
2258 				break;
2259 
2260 			if (!pmbus_check_word_register(client, page,
2261 						       pmbus_fan_registers[f]))
2262 				break;
2263 
2264 			/*
2265 			 * Skip fan if not installed.
2266 			 * Each fan configuration register covers multiple fans,
2267 			 * so we have to do some magic.
2268 			 */
2269 			regval = _pmbus_read_byte_data(client, page,
2270 				pmbus_fan_config_registers[f]);
2271 			if (regval < 0 ||
2272 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2273 				continue;
2274 
2275 			if (pmbus_add_sensor(data, "fan", "input", index,
2276 					     page, 0xff, pmbus_fan_registers[f],
2277 					     PSC_FAN, true, true, true) == NULL)
2278 				return -ENOMEM;
2279 
2280 			/* Fan control */
2281 			if (pmbus_check_word_register(client, page,
2282 					pmbus_fan_command_registers[f])) {
2283 				ret = pmbus_add_fan_ctrl(client, data, index,
2284 							 page, f, regval);
2285 				if (ret < 0)
2286 					return ret;
2287 			}
2288 
2289 			/*
2290 			 * Each fan status register covers multiple fans,
2291 			 * so we have to do some magic.
2292 			 */
2293 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2294 			    pmbus_check_byte_register(client,
2295 					page, pmbus_fan_status_registers[f])) {
2296 				int reg;
2297 
2298 				if (f > 1)	/* fan 3, 4 */
2299 					reg = PMBUS_STATUS_FAN_34;
2300 				else
2301 					reg = PMBUS_STATUS_FAN_12;
2302 				ret = pmbus_add_boolean(data, "fan",
2303 					"alarm", index, NULL, NULL, page, reg,
2304 					PB_FAN_FAN1_WARNING >> (f & 1));
2305 				if (ret)
2306 					return ret;
2307 				ret = pmbus_add_boolean(data, "fan",
2308 					"fault", index, NULL, NULL, page, reg,
2309 					PB_FAN_FAN1_FAULT >> (f & 1));
2310 				if (ret)
2311 					return ret;
2312 			}
2313 			index++;
2314 		}
2315 	}
2316 	return 0;
2317 }
2318 
2319 struct pmbus_samples_attr {
2320 	int reg;
2321 	char *name;
2322 };
2323 
2324 struct pmbus_samples_reg {
2325 	int page;
2326 	struct pmbus_samples_attr *attr;
2327 	struct device_attribute dev_attr;
2328 };
2329 
2330 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2331 	{
2332 		.reg = PMBUS_VIRT_SAMPLES,
2333 		.name = "samples",
2334 	}, {
2335 		.reg = PMBUS_VIRT_IN_SAMPLES,
2336 		.name = "in_samples",
2337 	}, {
2338 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2339 		.name = "curr_samples",
2340 	}, {
2341 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2342 		.name = "power_samples",
2343 	}, {
2344 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2345 		.name = "temp_samples",
2346 	}
2347 };
2348 
2349 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2350 
2351 static ssize_t pmbus_show_samples(struct device *dev,
2352 				  struct device_attribute *devattr, char *buf)
2353 {
2354 	int val;
2355 	struct i2c_client *client = to_i2c_client(dev->parent);
2356 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2357 	struct pmbus_data *data = i2c_get_clientdata(client);
2358 
2359 	mutex_lock(&data->update_lock);
2360 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2361 	mutex_unlock(&data->update_lock);
2362 	if (val < 0)
2363 		return val;
2364 
2365 	return sysfs_emit(buf, "%d\n", val);
2366 }
2367 
2368 static ssize_t pmbus_set_samples(struct device *dev,
2369 				 struct device_attribute *devattr,
2370 				 const char *buf, size_t count)
2371 {
2372 	int ret;
2373 	long val;
2374 	struct i2c_client *client = to_i2c_client(dev->parent);
2375 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2376 	struct pmbus_data *data = i2c_get_clientdata(client);
2377 
2378 	if (kstrtol(buf, 0, &val) < 0)
2379 		return -EINVAL;
2380 
2381 	mutex_lock(&data->update_lock);
2382 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2383 	mutex_unlock(&data->update_lock);
2384 
2385 	return ret ? : count;
2386 }
2387 
2388 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2389 				  struct pmbus_samples_attr *attr)
2390 {
2391 	struct pmbus_samples_reg *reg;
2392 
2393 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2394 	if (!reg)
2395 		return -ENOMEM;
2396 
2397 	reg->attr = attr;
2398 	reg->page = page;
2399 
2400 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2401 			    pmbus_show_samples, pmbus_set_samples);
2402 
2403 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2404 }
2405 
2406 static int pmbus_add_samples_attributes(struct i2c_client *client,
2407 					struct pmbus_data *data)
2408 {
2409 	const struct pmbus_driver_info *info = data->info;
2410 	int s;
2411 
2412 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2413 		return 0;
2414 
2415 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2416 		struct pmbus_samples_attr *attr;
2417 		int ret;
2418 
2419 		attr = &pmbus_samples_registers[s];
2420 		if (!pmbus_check_word_register(client, 0, attr->reg))
2421 			continue;
2422 
2423 		ret = pmbus_add_samples_attr(data, 0, attr);
2424 		if (ret)
2425 			return ret;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static int pmbus_find_attributes(struct i2c_client *client,
2432 				 struct pmbus_data *data)
2433 {
2434 	int ret;
2435 
2436 	/* Voltage sensors */
2437 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2438 				     ARRAY_SIZE(voltage_attributes));
2439 	if (ret)
2440 		return ret;
2441 
2442 	/* Current sensors */
2443 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2444 				     ARRAY_SIZE(current_attributes));
2445 	if (ret)
2446 		return ret;
2447 
2448 	/* Power sensors */
2449 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2450 				     ARRAY_SIZE(power_attributes));
2451 	if (ret)
2452 		return ret;
2453 
2454 	/* Temperature sensors */
2455 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2456 				     ARRAY_SIZE(temp_attributes));
2457 	if (ret)
2458 		return ret;
2459 
2460 	/* Fans */
2461 	ret = pmbus_add_fan_attributes(client, data);
2462 	if (ret)
2463 		return ret;
2464 
2465 	ret = pmbus_add_samples_attributes(client, data);
2466 	return ret;
2467 }
2468 
2469 /*
2470  * The pmbus_class_attr_map structure maps one sensor class to
2471  * it's corresponding sensor attributes array.
2472  */
2473 struct pmbus_class_attr_map {
2474 	enum pmbus_sensor_classes class;
2475 	int nattr;
2476 	const struct pmbus_sensor_attr *attr;
2477 };
2478 
2479 static const struct pmbus_class_attr_map class_attr_map[] = {
2480 	{
2481 		.class = PSC_VOLTAGE_IN,
2482 		.attr = voltage_attributes,
2483 		.nattr = ARRAY_SIZE(voltage_attributes),
2484 	}, {
2485 		.class = PSC_VOLTAGE_OUT,
2486 		.attr = voltage_attributes,
2487 		.nattr = ARRAY_SIZE(voltage_attributes),
2488 	}, {
2489 		.class = PSC_CURRENT_IN,
2490 		.attr = current_attributes,
2491 		.nattr = ARRAY_SIZE(current_attributes),
2492 	}, {
2493 		.class = PSC_CURRENT_OUT,
2494 		.attr = current_attributes,
2495 		.nattr = ARRAY_SIZE(current_attributes),
2496 	}, {
2497 		.class = PSC_POWER,
2498 		.attr = power_attributes,
2499 		.nattr = ARRAY_SIZE(power_attributes),
2500 	}, {
2501 		.class = PSC_TEMPERATURE,
2502 		.attr = temp_attributes,
2503 		.nattr = ARRAY_SIZE(temp_attributes),
2504 	}
2505 };
2506 
2507 /*
2508  * Read the coefficients for direct mode.
2509  */
2510 static int pmbus_read_coefficients(struct i2c_client *client,
2511 				   struct pmbus_driver_info *info,
2512 				   const struct pmbus_sensor_attr *attr)
2513 {
2514 	int rv;
2515 	union i2c_smbus_data data;
2516 	enum pmbus_sensor_classes class = attr->class;
2517 	s8 R;
2518 	s16 m, b;
2519 
2520 	data.block[0] = 2;
2521 	data.block[1] = attr->reg;
2522 	data.block[2] = 0x01;
2523 
2524 	pmbus_wait(client);
2525 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2526 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2527 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2528 	pmbus_update_ts(client, PMBUS_OP_WRITE);
2529 
2530 	if (rv < 0)
2531 		return rv;
2532 
2533 	if (data.block[0] != 5)
2534 		return -EIO;
2535 
2536 	m = data.block[1] | (data.block[2] << 8);
2537 	b = data.block[3] | (data.block[4] << 8);
2538 	R = data.block[5];
2539 	info->m[class] = m;
2540 	info->b[class] = b;
2541 	info->R[class] = R;
2542 
2543 	return rv;
2544 }
2545 
2546 static int pmbus_init_coefficients(struct i2c_client *client,
2547 				   struct pmbus_driver_info *info)
2548 {
2549 	int i, n, ret = -EINVAL;
2550 	const struct pmbus_class_attr_map *map;
2551 	const struct pmbus_sensor_attr *attr;
2552 
2553 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2554 		map = &class_attr_map[i];
2555 		if (info->format[map->class] != direct)
2556 			continue;
2557 		for (n = 0; n < map->nattr; n++) {
2558 			attr = &map->attr[n];
2559 			if (map->class != attr->class)
2560 				continue;
2561 			ret = pmbus_read_coefficients(client, info, attr);
2562 			if (ret >= 0)
2563 				break;
2564 		}
2565 		if (ret < 0) {
2566 			dev_err(&client->dev,
2567 				"No coefficients found for sensor class %d\n",
2568 				map->class);
2569 			return -EINVAL;
2570 		}
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 /*
2577  * Identify chip parameters.
2578  * This function is called for all chips.
2579  */
2580 static int pmbus_identify_common(struct i2c_client *client,
2581 				 struct pmbus_data *data, int page)
2582 {
2583 	int vout_mode = -1;
2584 
2585 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2586 		vout_mode = _pmbus_read_byte_data(client, page,
2587 						  PMBUS_VOUT_MODE);
2588 	if (vout_mode >= 0 && vout_mode != 0xff) {
2589 		/*
2590 		 * Not all chips support the VOUT_MODE command,
2591 		 * so a failure to read it is not an error.
2592 		 */
2593 		switch (vout_mode >> 5) {
2594 		case 0:	/* linear mode      */
2595 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2596 				return -ENODEV;
2597 
2598 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2599 			break;
2600 		case 1: /* VID mode         */
2601 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2602 				return -ENODEV;
2603 			break;
2604 		case 2:	/* direct mode      */
2605 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2606 				return -ENODEV;
2607 			break;
2608 		case 3:	/* ieee 754 half precision */
2609 			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2610 				return -ENODEV;
2611 			break;
2612 		default:
2613 			return -ENODEV;
2614 		}
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2621 {
2622 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2623 }
2624 
2625 static int pmbus_read_status_word(struct i2c_client *client, int page)
2626 {
2627 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2628 }
2629 
2630 /* PEC attribute support */
2631 
2632 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2633 			char *buf)
2634 {
2635 	struct i2c_client *client = to_i2c_client(dev);
2636 
2637 	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2638 }
2639 
2640 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2641 			 const char *buf, size_t count)
2642 {
2643 	struct i2c_client *client = to_i2c_client(dev);
2644 	bool enable;
2645 	int err;
2646 
2647 	err = kstrtobool(buf, &enable);
2648 	if (err < 0)
2649 		return err;
2650 
2651 	if (enable)
2652 		client->flags |= I2C_CLIENT_PEC;
2653 	else
2654 		client->flags &= ~I2C_CLIENT_PEC;
2655 
2656 	return count;
2657 }
2658 
2659 static DEVICE_ATTR_RW(pec);
2660 
2661 static void pmbus_remove_pec(void *dev)
2662 {
2663 	device_remove_file(dev, &dev_attr_pec);
2664 }
2665 
2666 static void pmbus_init_wp(struct i2c_client *client, struct pmbus_data *data)
2667 {
2668 	int ret;
2669 
2670 	switch (wp) {
2671 	case 0:
2672 		_pmbus_write_byte_data(client, -1,
2673 				       PMBUS_WRITE_PROTECT, 0);
2674 		break;
2675 
2676 	case 1:
2677 		_pmbus_write_byte_data(client, -1,
2678 				       PMBUS_WRITE_PROTECT, PB_WP_VOUT);
2679 		break;
2680 
2681 	case 2:
2682 		_pmbus_write_byte_data(client, -1,
2683 				       PMBUS_WRITE_PROTECT, PB_WP_OP);
2684 		break;
2685 
2686 	case 3:
2687 		_pmbus_write_byte_data(client, -1,
2688 				       PMBUS_WRITE_PROTECT, PB_WP_ALL);
2689 		break;
2690 
2691 	default:
2692 		/* Ignore the other values */
2693 		break;
2694 	}
2695 
2696 	ret = _pmbus_read_byte_data(client, -1, PMBUS_WRITE_PROTECT);
2697 	if (ret < 0)
2698 		return;
2699 
2700 	switch (ret & PB_WP_ANY) {
2701 	case PB_WP_ALL:
2702 		data->flags |= PMBUS_OP_PROTECTED;
2703 		fallthrough;
2704 	case PB_WP_OP:
2705 		data->flags |= PMBUS_VOUT_PROTECTED;
2706 		fallthrough;
2707 	case PB_WP_VOUT:
2708 		data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2709 		break;
2710 
2711 	default:
2712 		break;
2713 	}
2714 }
2715 
2716 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2717 			     struct pmbus_driver_info *info)
2718 {
2719 	struct device *dev = &client->dev;
2720 	int page, ret;
2721 
2722 	/*
2723 	 * Figure out if PEC is enabled before accessing any other register.
2724 	 * Make sure PEC is disabled, will be enabled later if needed.
2725 	 */
2726 	client->flags &= ~I2C_CLIENT_PEC;
2727 
2728 	/* Enable PEC if the controller and bus supports it */
2729 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2730 		pmbus_wait(client);
2731 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2732 		pmbus_update_ts(client, 0);
2733 
2734 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2735 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2736 				client->flags |= I2C_CLIENT_PEC;
2737 		}
2738 	}
2739 
2740 	/*
2741 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2742 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2743 	 * Bail out if both registers are not supported.
2744 	 */
2745 	data->read_status = pmbus_read_status_word;
2746 	pmbus_wait(client);
2747 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2748 	pmbus_update_ts(client, 0);
2749 
2750 	if (ret < 0 || ret == 0xffff) {
2751 		data->read_status = pmbus_read_status_byte;
2752 		pmbus_wait(client);
2753 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2754 		pmbus_update_ts(client, 0);
2755 
2756 		if (ret < 0 || ret == 0xff) {
2757 			dev_err(dev, "PMBus status register not found\n");
2758 			return -ENODEV;
2759 		}
2760 	} else {
2761 		data->has_status_word = true;
2762 	}
2763 
2764 	/*
2765 	 * Check if the chip is write protected. If it is, we can not clear
2766 	 * faults, and we should not try it. Also, in that case, writes into
2767 	 * limit registers need to be disabled.
2768 	 */
2769 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT))
2770 		pmbus_init_wp(client, data);
2771 
2772 	ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2773 	if (ret >= 0)
2774 		data->revision = ret;
2775 
2776 	if (data->info->pages)
2777 		pmbus_clear_faults(client);
2778 	else
2779 		pmbus_clear_fault_page(client, -1);
2780 
2781 	if (info->identify) {
2782 		ret = (*info->identify)(client, info);
2783 		if (ret < 0) {
2784 			dev_err(dev, "Chip identification failed\n");
2785 			return ret;
2786 		}
2787 	}
2788 
2789 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2790 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2791 		return -ENODEV;
2792 	}
2793 
2794 	for (page = 0; page < info->pages; page++) {
2795 		ret = pmbus_identify_common(client, data, page);
2796 		if (ret < 0) {
2797 			dev_err(dev, "Failed to identify chip capabilities\n");
2798 			return ret;
2799 		}
2800 	}
2801 
2802 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2803 		if (!i2c_check_functionality(client->adapter,
2804 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2805 			return -ENODEV;
2806 
2807 		ret = pmbus_init_coefficients(client, info);
2808 		if (ret < 0)
2809 			return ret;
2810 	}
2811 
2812 	if (client->flags & I2C_CLIENT_PEC) {
2813 		/*
2814 		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2815 		 * chip support PEC. Add 'pec' attribute to client device to let
2816 		 * the user control it.
2817 		 */
2818 		ret = device_create_file(dev, &dev_attr_pec);
2819 		if (ret)
2820 			return ret;
2821 		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2822 		if (ret)
2823 			return ret;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2830 struct pmbus_status_assoc {
2831 	int pflag, rflag, eflag;
2832 };
2833 
2834 /* PMBus->regulator bit mappings for a PMBus status register */
2835 struct pmbus_status_category {
2836 	int func;
2837 	int reg;
2838 	const struct pmbus_status_assoc *bits; /* zero-terminated */
2839 };
2840 
2841 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2842 	{
2843 		.func = PMBUS_HAVE_STATUS_VOUT,
2844 		.reg = PMBUS_STATUS_VOUT,
2845 		.bits = (const struct pmbus_status_assoc[]) {
2846 			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2847 			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2848 			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2849 			REGULATOR_EVENT_UNDER_VOLTAGE },
2850 			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2851 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2852 			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2853 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2854 			{ },
2855 		},
2856 	}, {
2857 		.func = PMBUS_HAVE_STATUS_IOUT,
2858 		.reg = PMBUS_STATUS_IOUT,
2859 		.bits = (const struct pmbus_status_assoc[]) {
2860 			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2861 			REGULATOR_EVENT_OVER_CURRENT_WARN },
2862 			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2863 			REGULATOR_EVENT_OVER_CURRENT },
2864 			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2865 			REGULATOR_EVENT_OVER_CURRENT },
2866 			{ },
2867 		},
2868 	}, {
2869 		.func = PMBUS_HAVE_STATUS_TEMP,
2870 		.reg = PMBUS_STATUS_TEMPERATURE,
2871 		.bits = (const struct pmbus_status_assoc[]) {
2872 			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2873 			REGULATOR_EVENT_OVER_TEMP_WARN },
2874 			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2875 			REGULATOR_EVENT_OVER_TEMP },
2876 			{ },
2877 		},
2878 	},
2879 };
2880 
2881 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2882 {
2883 	int ret;
2884 
2885 	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2886 
2887 	if (ret < 0)
2888 		return ret;
2889 
2890 	return !!(ret & PB_OPERATION_CONTROL_ON);
2891 }
2892 
2893 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2894 {
2895 	struct pmbus_data *data = i2c_get_clientdata(client);
2896 	int ret;
2897 
2898 	mutex_lock(&data->update_lock);
2899 	ret = _pmbus_is_enabled(client, page);
2900 	mutex_unlock(&data->update_lock);
2901 
2902 	return ret;
2903 }
2904 
2905 #define to_dev_attr(_dev_attr) \
2906 	container_of(_dev_attr, struct device_attribute, attr)
2907 
2908 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2909 {
2910 	int i;
2911 
2912 	for (i = 0; i < data->num_attributes; i++) {
2913 		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2914 		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2915 		int index = attr->index;
2916 		u16 smask = pb_index_to_mask(index);
2917 		u8 spage = pb_index_to_page(index);
2918 		u16 sreg = pb_index_to_reg(index);
2919 
2920 		if (reg == sreg && page == spage && (smask & flags)) {
2921 			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2922 			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2923 			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2924 			flags &= ~smask;
2925 		}
2926 
2927 		if (!flags)
2928 			break;
2929 	}
2930 }
2931 
2932 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2933 			    unsigned int *event, bool notify)
2934 {
2935 	int i, status;
2936 	const struct pmbus_status_category *cat;
2937 	const struct pmbus_status_assoc *bit;
2938 	struct device *dev = data->dev;
2939 	struct i2c_client *client = to_i2c_client(dev);
2940 	int func = data->info->func[page];
2941 
2942 	*flags = 0;
2943 	*event = 0;
2944 
2945 	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2946 		cat = &pmbus_status_flag_map[i];
2947 		if (!(func & cat->func))
2948 			continue;
2949 
2950 		status = _pmbus_read_byte_data(client, page, cat->reg);
2951 		if (status < 0)
2952 			return status;
2953 
2954 		for (bit = cat->bits; bit->pflag; bit++)
2955 			if (status & bit->pflag) {
2956 				*flags |= bit->rflag;
2957 				*event |= bit->eflag;
2958 			}
2959 
2960 		if (notify && status)
2961 			pmbus_notify(data, page, cat->reg, status);
2962 	}
2963 
2964 	/*
2965 	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2966 	 * bits.  Some of the other bits are tempting (especially for cases
2967 	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2968 	 * functionality), but there's an unfortunate ambiguity in that
2969 	 * they're defined as indicating a fault *or* a warning, so we can't
2970 	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2971 	 * REGULATOR_ERROR_<foo>_WARN.
2972 	 */
2973 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2974 	if (status < 0)
2975 		return status;
2976 
2977 	if (_pmbus_is_enabled(client, page)) {
2978 		if (status & PB_STATUS_OFF) {
2979 			*flags |= REGULATOR_ERROR_FAIL;
2980 			*event |= REGULATOR_EVENT_FAIL;
2981 		}
2982 
2983 		if (status & PB_STATUS_POWER_GOOD_N) {
2984 			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2985 			*event |= REGULATOR_EVENT_REGULATION_OUT;
2986 		}
2987 	}
2988 	/*
2989 	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2990 	 * defined strictly as fault indicators (not warnings).
2991 	 */
2992 	if (status & PB_STATUS_IOUT_OC) {
2993 		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2994 		*event |= REGULATOR_EVENT_OVER_CURRENT;
2995 	}
2996 	if (status & PB_STATUS_VOUT_OV) {
2997 		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2998 		*event |= REGULATOR_EVENT_FAIL;
2999 	}
3000 
3001 	/*
3002 	 * If we haven't discovered any thermal faults or warnings via
3003 	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
3004 	 * a (conservative) best-effort interpretation.
3005 	 */
3006 	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
3007 	    (status & PB_STATUS_TEMPERATURE)) {
3008 		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
3009 		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
3016 					  unsigned int *event, bool notify)
3017 {
3018 	int ret;
3019 
3020 	mutex_lock(&data->update_lock);
3021 	ret = _pmbus_get_flags(data, page, flags, event, notify);
3022 	mutex_unlock(&data->update_lock);
3023 
3024 	return ret;
3025 }
3026 
3027 #if IS_ENABLED(CONFIG_REGULATOR)
3028 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
3029 {
3030 	struct device *dev = rdev_get_dev(rdev);
3031 	struct i2c_client *client = to_i2c_client(dev->parent);
3032 
3033 	return pmbus_is_enabled(client, rdev_get_id(rdev));
3034 }
3035 
3036 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
3037 {
3038 	struct device *dev = rdev_get_dev(rdev);
3039 	struct i2c_client *client = to_i2c_client(dev->parent);
3040 	struct pmbus_data *data = i2c_get_clientdata(client);
3041 	u8 page = rdev_get_id(rdev);
3042 	int ret;
3043 
3044 	mutex_lock(&data->update_lock);
3045 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3046 				     PB_OPERATION_CONTROL_ON,
3047 				     enable ? PB_OPERATION_CONTROL_ON : 0);
3048 	mutex_unlock(&data->update_lock);
3049 
3050 	return ret;
3051 }
3052 
3053 static int pmbus_regulator_enable(struct regulator_dev *rdev)
3054 {
3055 	return _pmbus_regulator_on_off(rdev, 1);
3056 }
3057 
3058 static int pmbus_regulator_disable(struct regulator_dev *rdev)
3059 {
3060 	return _pmbus_regulator_on_off(rdev, 0);
3061 }
3062 
3063 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3064 {
3065 	struct device *dev = rdev_get_dev(rdev);
3066 	struct i2c_client *client = to_i2c_client(dev->parent);
3067 	struct pmbus_data *data = i2c_get_clientdata(client);
3068 	int event;
3069 
3070 	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3071 }
3072 
3073 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3074 {
3075 	struct device *dev = rdev_get_dev(rdev);
3076 	struct i2c_client *client = to_i2c_client(dev->parent);
3077 	struct pmbus_data *data = i2c_get_clientdata(client);
3078 	u8 page = rdev_get_id(rdev);
3079 	int status, ret;
3080 	int event;
3081 
3082 	mutex_lock(&data->update_lock);
3083 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3084 	if (status < 0) {
3085 		ret = status;
3086 		goto unlock;
3087 	}
3088 
3089 	if (status & PB_STATUS_OFF) {
3090 		ret = REGULATOR_STATUS_OFF;
3091 		goto unlock;
3092 	}
3093 
3094 	/* If regulator is ON & reports power good then return ON */
3095 	if (!(status & PB_STATUS_POWER_GOOD_N)) {
3096 		ret = REGULATOR_STATUS_ON;
3097 		goto unlock;
3098 	}
3099 
3100 	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3101 	if (ret)
3102 		goto unlock;
3103 
3104 	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3105 	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3106 		ret = REGULATOR_STATUS_ERROR;
3107 		goto unlock;
3108 	}
3109 
3110 	ret = REGULATOR_STATUS_UNDEFINED;
3111 
3112 unlock:
3113 	mutex_unlock(&data->update_lock);
3114 	return ret;
3115 }
3116 
3117 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3118 {
3119 	struct pmbus_data *data = i2c_get_clientdata(client);
3120 	struct pmbus_sensor s = {
3121 		.page = page,
3122 		.class = PSC_VOLTAGE_OUT,
3123 		.convert = true,
3124 		.data = -1,
3125 	};
3126 
3127 	if (data->vout_low[page] < 0) {
3128 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3129 			s.data = _pmbus_read_word_data(client, page, 0xff,
3130 						       PMBUS_MFR_VOUT_MIN);
3131 		if (s.data < 0) {
3132 			s.data = _pmbus_read_word_data(client, page, 0xff,
3133 						       PMBUS_VOUT_MARGIN_LOW);
3134 			if (s.data < 0)
3135 				return s.data;
3136 		}
3137 		data->vout_low[page] = pmbus_reg2data(data, &s);
3138 	}
3139 
3140 	return data->vout_low[page];
3141 }
3142 
3143 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3144 {
3145 	struct pmbus_data *data = i2c_get_clientdata(client);
3146 	struct pmbus_sensor s = {
3147 		.page = page,
3148 		.class = PSC_VOLTAGE_OUT,
3149 		.convert = true,
3150 		.data = -1,
3151 	};
3152 
3153 	if (data->vout_high[page] < 0) {
3154 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3155 			s.data = _pmbus_read_word_data(client, page, 0xff,
3156 						       PMBUS_MFR_VOUT_MAX);
3157 		if (s.data < 0) {
3158 			s.data = _pmbus_read_word_data(client, page, 0xff,
3159 						       PMBUS_VOUT_MARGIN_HIGH);
3160 			if (s.data < 0)
3161 				return s.data;
3162 		}
3163 		data->vout_high[page] = pmbus_reg2data(data, &s);
3164 	}
3165 
3166 	return data->vout_high[page];
3167 }
3168 
3169 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3170 {
3171 	struct device *dev = rdev_get_dev(rdev);
3172 	struct i2c_client *client = to_i2c_client(dev->parent);
3173 	struct pmbus_data *data = i2c_get_clientdata(client);
3174 	struct pmbus_sensor s = {
3175 		.page = rdev_get_id(rdev),
3176 		.class = PSC_VOLTAGE_OUT,
3177 		.convert = true,
3178 	};
3179 
3180 	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3181 	if (s.data < 0)
3182 		return s.data;
3183 
3184 	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3185 }
3186 
3187 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3188 				       int max_uv, unsigned int *selector)
3189 {
3190 	struct device *dev = rdev_get_dev(rdev);
3191 	struct i2c_client *client = to_i2c_client(dev->parent);
3192 	struct pmbus_data *data = i2c_get_clientdata(client);
3193 	struct pmbus_sensor s = {
3194 		.page = rdev_get_id(rdev),
3195 		.class = PSC_VOLTAGE_OUT,
3196 		.convert = true,
3197 		.data = -1,
3198 	};
3199 	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3200 	int low, high;
3201 
3202 	*selector = 0;
3203 
3204 	low = pmbus_regulator_get_low_margin(client, s.page);
3205 	if (low < 0)
3206 		return low;
3207 
3208 	high = pmbus_regulator_get_high_margin(client, s.page);
3209 	if (high < 0)
3210 		return high;
3211 
3212 	/* Make sure we are within margins */
3213 	if (low > val)
3214 		val = low;
3215 	if (high < val)
3216 		val = high;
3217 
3218 	val = pmbus_data2reg(data, &s, val);
3219 
3220 	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3221 }
3222 
3223 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3224 					unsigned int selector)
3225 {
3226 	struct device *dev = rdev_get_dev(rdev);
3227 	struct i2c_client *client = to_i2c_client(dev->parent);
3228 	struct pmbus_data *data = i2c_get_clientdata(client);
3229 	int val, low, high;
3230 
3231 	if (data->flags & PMBUS_VOUT_PROTECTED)
3232 		return 0;
3233 
3234 	if (selector >= rdev->desc->n_voltages ||
3235 	    selector < rdev->desc->linear_min_sel)
3236 		return -EINVAL;
3237 
3238 	selector -= rdev->desc->linear_min_sel;
3239 	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3240 				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3241 
3242 	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3243 	if (low < 0)
3244 		return low;
3245 
3246 	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3247 	if (high < 0)
3248 		return high;
3249 
3250 	if (val >= low && val <= high)
3251 		return val * 1000; /* unit is uV */
3252 
3253 	return 0;
3254 }
3255 
3256 const struct regulator_ops pmbus_regulator_ops = {
3257 	.enable = pmbus_regulator_enable,
3258 	.disable = pmbus_regulator_disable,
3259 	.is_enabled = pmbus_regulator_is_enabled,
3260 	.get_error_flags = pmbus_regulator_get_error_flags,
3261 	.get_status = pmbus_regulator_get_status,
3262 	.get_voltage = pmbus_regulator_get_voltage,
3263 	.set_voltage = pmbus_regulator_set_voltage,
3264 	.list_voltage = pmbus_regulator_list_voltage,
3265 };
3266 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3267 
3268 int pmbus_regulator_init_cb(struct regulator_dev *rdev,
3269 			    struct regulator_config *config)
3270 {
3271 	struct pmbus_data *data = config->driver_data;
3272 	struct regulation_constraints *constraints = rdev->constraints;
3273 
3274 	if (data->flags & PMBUS_OP_PROTECTED)
3275 		constraints->valid_ops_mask &= ~REGULATOR_CHANGE_STATUS;
3276 
3277 	if (data->flags & PMBUS_VOUT_PROTECTED)
3278 		constraints->valid_ops_mask &= ~REGULATOR_CHANGE_VOLTAGE;
3279 
3280 	return 0;
3281 }
3282 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_init_cb, "PMBUS");
3283 
3284 static int pmbus_regulator_register(struct pmbus_data *data)
3285 {
3286 	struct device *dev = data->dev;
3287 	const struct pmbus_driver_info *info = data->info;
3288 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3289 	int i;
3290 
3291 	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3292 				   GFP_KERNEL);
3293 	if (!data->rdevs)
3294 		return -ENOMEM;
3295 
3296 	for (i = 0; i < info->num_regulators; i++) {
3297 		struct regulator_config config = { };
3298 
3299 		config.dev = dev;
3300 		config.driver_data = data;
3301 
3302 		if (pdata && pdata->reg_init_data)
3303 			config.init_data = &pdata->reg_init_data[i];
3304 
3305 		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3306 							 &config);
3307 		if (IS_ERR(data->rdevs[i]))
3308 			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3309 					     "Failed to register %s regulator\n",
3310 					     info->reg_desc[i].name);
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3317 {
3318 	int j;
3319 
3320 	for (j = 0; j < data->info->num_regulators; j++) {
3321 		if (page == rdev_get_id(data->rdevs[j])) {
3322 			regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3323 			break;
3324 		}
3325 	}
3326 }
3327 #else
3328 static int pmbus_regulator_register(struct pmbus_data *data)
3329 {
3330 	return 0;
3331 }
3332 
3333 static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3334 {
3335 }
3336 #endif
3337 
3338 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3339 {
3340 	int ret;
3341 
3342 	ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3343 
3344 	/*
3345 	 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3346 	 * is not supported by the chip.
3347 	 */
3348 	pmbus_clear_fault_page(client, page);
3349 
3350 	return ret;
3351 }
3352 
3353 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3354 {
3355 	struct pmbus_data *data = pdata;
3356 	struct i2c_client *client = to_i2c_client(data->dev);
3357 	int i, status, event;
3358 
3359 	mutex_lock(&data->update_lock);
3360 	for (i = 0; i < data->info->pages; i++) {
3361 		_pmbus_get_flags(data, i, &status, &event, true);
3362 
3363 		if (event)
3364 			pmbus_regulator_notify(data, i, event);
3365 	}
3366 
3367 	pmbus_clear_faults(client);
3368 	mutex_unlock(&data->update_lock);
3369 
3370 	return IRQ_HANDLED;
3371 }
3372 
3373 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3374 {
3375 	struct device *dev = &client->dev;
3376 	const struct pmbus_status_category *cat;
3377 	const struct pmbus_status_assoc *bit;
3378 	int i, j, err, func;
3379 	u8 mask;
3380 
3381 	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3382 					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3383 					 PMBUS_STATUS_FAN_34};
3384 
3385 	if (!client->irq)
3386 		return 0;
3387 
3388 	for (i = 0; i < data->info->pages; i++) {
3389 		func = data->info->func[i];
3390 
3391 		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3392 			cat = &pmbus_status_flag_map[j];
3393 			if (!(func & cat->func))
3394 				continue;
3395 			mask = 0;
3396 			for (bit = cat->bits; bit->pflag; bit++)
3397 				mask |= bit->pflag;
3398 
3399 			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3400 			if (err)
3401 				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3402 					     cat->reg);
3403 		}
3404 
3405 		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3406 			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3407 	}
3408 
3409 	/* Register notifiers */
3410 	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3411 					IRQF_ONESHOT, "pmbus-irq", data);
3412 	if (err) {
3413 		dev_err(dev, "failed to request an irq %d\n", err);
3414 		return err;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3421 
3422 static int pmbus_debugfs_get(void *data, u64 *val)
3423 {
3424 	int rc;
3425 	struct pmbus_debugfs_entry *entry = data;
3426 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3427 
3428 	rc = mutex_lock_interruptible(&pdata->update_lock);
3429 	if (rc)
3430 		return rc;
3431 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3432 	mutex_unlock(&pdata->update_lock);
3433 	if (rc < 0)
3434 		return rc;
3435 
3436 	*val = rc;
3437 
3438 	return 0;
3439 }
3440 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3441 			 "0x%02llx\n");
3442 
3443 static int pmbus_debugfs_get_status(void *data, u64 *val)
3444 {
3445 	int rc;
3446 	struct pmbus_debugfs_entry *entry = data;
3447 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3448 
3449 	rc = mutex_lock_interruptible(&pdata->update_lock);
3450 	if (rc)
3451 		return rc;
3452 	rc = pdata->read_status(entry->client, entry->page);
3453 	mutex_unlock(&pdata->update_lock);
3454 	if (rc < 0)
3455 		return rc;
3456 
3457 	*val = rc;
3458 
3459 	return 0;
3460 }
3461 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3462 			 NULL, "0x%04llx\n");
3463 
3464 static ssize_t pmbus_debugfs_block_read(struct file *file, char __user *buf,
3465 					size_t count, loff_t *ppos)
3466 {
3467 	int rc;
3468 	struct pmbus_debugfs_entry *entry = file->private_data;
3469 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3470 	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3471 
3472 	rc = mutex_lock_interruptible(&pdata->update_lock);
3473 	if (rc)
3474 		return rc;
3475 	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3476 				   data);
3477 	mutex_unlock(&pdata->update_lock);
3478 	if (rc < 0)
3479 		return rc;
3480 
3481 	/* Add newline at the end of a read data */
3482 	data[rc] = '\n';
3483 
3484 	/* Include newline into the length */
3485 	rc += 1;
3486 
3487 	return simple_read_from_buffer(buf, count, ppos, data, rc);
3488 }
3489 
3490 static const struct file_operations pmbus_debugfs_block_ops = {
3491 	.llseek = noop_llseek,
3492 	.read = pmbus_debugfs_block_read,
3493 	.write = NULL,
3494 	.open = simple_open,
3495 };
3496 
3497 static void pmbus_remove_symlink(void *symlink)
3498 {
3499 	debugfs_remove(symlink);
3500 }
3501 
3502 struct pmbus_debugfs_data {
3503 	u8 reg;
3504 	u32 flag;
3505 	const char *name;
3506 };
3507 
3508 static const struct pmbus_debugfs_data pmbus_debugfs_block_data[] = {
3509 	{ .reg = PMBUS_MFR_ID, .name = "mfr_id" },
3510 	{ .reg = PMBUS_MFR_MODEL, .name = "mfr_model" },
3511 	{ .reg = PMBUS_MFR_REVISION, .name = "mfr_revision" },
3512 	{ .reg = PMBUS_MFR_LOCATION, .name = "mfr_location" },
3513 	{ .reg = PMBUS_MFR_DATE, .name = "mfr_date" },
3514 	{ .reg = PMBUS_MFR_SERIAL, .name = "mfr_serial" },
3515 };
3516 
3517 static const struct pmbus_debugfs_data pmbus_debugfs_status_data[] = {
3518 	{ .reg = PMBUS_STATUS_VOUT, .flag = PMBUS_HAVE_STATUS_VOUT, .name = "status%d_vout" },
3519 	{ .reg = PMBUS_STATUS_IOUT, .flag = PMBUS_HAVE_STATUS_IOUT, .name = "status%d_iout" },
3520 	{ .reg = PMBUS_STATUS_INPUT, .flag = PMBUS_HAVE_STATUS_INPUT, .name = "status%d_input" },
3521 	{ .reg = PMBUS_STATUS_TEMPERATURE, .flag = PMBUS_HAVE_STATUS_TEMP,
3522 	  .name = "status%d_temp" },
3523 	{ .reg = PMBUS_STATUS_FAN_12, .flag = PMBUS_HAVE_STATUS_FAN12, .name = "status%d_fan12" },
3524 	{ .reg = PMBUS_STATUS_FAN_34, .flag = PMBUS_HAVE_STATUS_FAN34, .name = "status%d_fan34" },
3525 	{ .reg = PMBUS_STATUS_CML, .name = "status%d_cml" },
3526 	{ .reg = PMBUS_STATUS_OTHER, .name = "status%d_other" },
3527 	{ .reg = PMBUS_STATUS_MFR_SPECIFIC, .name = "status%d_mfr" },
3528 };
3529 
3530 static void pmbus_init_debugfs(struct i2c_client *client,
3531 			       struct pmbus_data *data)
3532 {
3533 	struct dentry *symlink_d, *debugfs = client->debugfs;
3534 	struct pmbus_debugfs_entry *entries;
3535 	const char *pathname, *symlink;
3536 	char name[PMBUS_NAME_SIZE];
3537 	int page, i, idx = 0;
3538 
3539 	/*
3540 	 * client->debugfs may be NULL or an ERR_PTR(). dentry_path_raw()
3541 	 * does not check if its parameters are valid, so validate
3542 	 * client->debugfs before using it.
3543 	 */
3544 	if (!pmbus_debugfs_dir || IS_ERR_OR_NULL(debugfs))
3545 		return;
3546 
3547 	/*
3548 	 * Backwards compatibility: Create symlink from /pmbus/<hwmon_device>
3549 	 * to i2c debugfs directory.
3550 	 */
3551 	pathname = dentry_path_raw(debugfs, name, sizeof(name));
3552 	if (IS_ERR(pathname))
3553 		return;
3554 
3555 	/*
3556 	 * The path returned by dentry_path_raw() starts with '/'. Prepend it
3557 	 * with ".." to get the symlink relative to the pmbus root directory.
3558 	 */
3559 	symlink = kasprintf(GFP_KERNEL, "..%s", pathname);
3560 	if (!symlink)
3561 		return;
3562 
3563 	symlink_d = debugfs_create_symlink(dev_name(data->hwmon_dev),
3564 					   pmbus_debugfs_dir, symlink);
3565 	kfree(symlink);
3566 
3567 	devm_add_action_or_reset(data->dev, pmbus_remove_symlink, symlink_d);
3568 
3569 	/*
3570 	 * Allocate the max possible entries we need.
3571 	 * device specific:
3572 	 *	ARRAY_SIZE(pmbus_debugfs_block_data) + 2
3573 	 * page specific:
3574 	 *	ARRAY_SIZE(pmbus_debugfs_status_data) + 1
3575 	 */
3576 	entries = devm_kcalloc(data->dev,
3577 			       ARRAY_SIZE(pmbus_debugfs_block_data) + 2 +
3578 			       data->info->pages * (ARRAY_SIZE(pmbus_debugfs_status_data) + 1),
3579 			       sizeof(*entries), GFP_KERNEL);
3580 	if (!entries)
3581 		return;
3582 
3583 	/*
3584 	 * Add device-specific entries.
3585 	 * Please note that the PMBUS standard allows all registers to be
3586 	 * page-specific.
3587 	 * To reduce the number of debugfs entries for devices with many pages
3588 	 * assume that values of the following registers are the same for all
3589 	 * pages and report values only for page 0.
3590 	 */
3591 	if (!(data->flags & PMBUS_NO_CAPABILITY) &&
3592 	    pmbus_check_byte_register(client, 0, PMBUS_CAPABILITY)) {
3593 		entries[idx].client = client;
3594 		entries[idx].page = 0;
3595 		entries[idx].reg = PMBUS_CAPABILITY;
3596 		debugfs_create_file("capability", 0444, debugfs,
3597 				    &entries[idx++],
3598 				    &pmbus_debugfs_ops);
3599 	}
3600 	if (pmbus_check_byte_register(client, 0, PMBUS_REVISION)) {
3601 		entries[idx].client = client;
3602 		entries[idx].page = 0;
3603 		entries[idx].reg = PMBUS_REVISION;
3604 		debugfs_create_file("pmbus_revision", 0444, debugfs,
3605 				    &entries[idx++],
3606 				    &pmbus_debugfs_ops);
3607 	}
3608 
3609 	for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_block_data); i++) {
3610 		const struct pmbus_debugfs_data *d = &pmbus_debugfs_block_data[i];
3611 
3612 		if (pmbus_check_block_register(client, 0, d->reg)) {
3613 			entries[idx].client = client;
3614 			entries[idx].page = 0;
3615 			entries[idx].reg = d->reg;
3616 			debugfs_create_file(d->name, 0444, debugfs,
3617 					    &entries[idx++],
3618 					    &pmbus_debugfs_block_ops);
3619 		}
3620 	}
3621 
3622 	/* Add page specific entries */
3623 	for (page = 0; page < data->info->pages; ++page) {
3624 		/* Check accessibility of status register if it's not page 0 */
3625 		if (!page || pmbus_check_status_register(client, page)) {
3626 			/* No need to set reg as we have special read op. */
3627 			entries[idx].client = client;
3628 			entries[idx].page = page;
3629 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", page);
3630 			debugfs_create_file(name, 0444, debugfs,
3631 					    &entries[idx++],
3632 					    &pmbus_debugfs_ops_status);
3633 		}
3634 
3635 		for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_status_data); i++) {
3636 			const struct pmbus_debugfs_data *d =
3637 					&pmbus_debugfs_status_data[i];
3638 
3639 			if ((data->info->func[page] & d->flag) ||
3640 			    (!d->flag && pmbus_check_byte_register(client, page, d->reg))) {
3641 				entries[idx].client = client;
3642 				entries[idx].page = page;
3643 				entries[idx].reg = d->reg;
3644 				scnprintf(name, PMBUS_NAME_SIZE, d->name, page);
3645 				debugfs_create_file(name, 0444, debugfs,
3646 						    &entries[idx++],
3647 						    &pmbus_debugfs_ops);
3648 			}
3649 		}
3650 	}
3651 }
3652 
3653 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3654 {
3655 	struct device *dev = &client->dev;
3656 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3657 	struct pmbus_data *data;
3658 	size_t groups_num = 0;
3659 	int ret;
3660 	int i;
3661 	char *name;
3662 
3663 	if (!info)
3664 		return -ENODEV;
3665 
3666 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3667 				     | I2C_FUNC_SMBUS_BYTE_DATA
3668 				     | I2C_FUNC_SMBUS_WORD_DATA))
3669 		return -ENODEV;
3670 
3671 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3672 	if (!data)
3673 		return -ENOMEM;
3674 
3675 	if (info->groups)
3676 		while (info->groups[groups_num])
3677 			groups_num++;
3678 
3679 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3680 				    GFP_KERNEL);
3681 	if (!data->groups)
3682 		return -ENOMEM;
3683 
3684 	i2c_set_clientdata(client, data);
3685 	mutex_init(&data->update_lock);
3686 	data->dev = dev;
3687 
3688 	if (pdata)
3689 		data->flags = pdata->flags;
3690 	data->info = info;
3691 	data->currpage = -1;
3692 	data->currphase = -1;
3693 
3694 	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3695 		data->vout_low[i] = -1;
3696 		data->vout_high[i] = -1;
3697 	}
3698 
3699 	ret = pmbus_init_common(client, data, info);
3700 	if (ret < 0)
3701 		return ret;
3702 
3703 	ret = pmbus_find_attributes(client, data);
3704 	if (ret)
3705 		return ret;
3706 
3707 	/*
3708 	 * If there are no attributes, something is wrong.
3709 	 * Bail out instead of trying to register nothing.
3710 	 */
3711 	if (!data->num_attributes) {
3712 		dev_err(dev, "No attributes found\n");
3713 		return -ENODEV;
3714 	}
3715 
3716 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3717 	if (!name)
3718 		return -ENOMEM;
3719 	strreplace(name, '-', '_');
3720 
3721 	data->groups[0] = &data->group;
3722 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3723 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, name,
3724 								 data, data->groups);
3725 	if (IS_ERR(data->hwmon_dev)) {
3726 		dev_err(dev, "Failed to register hwmon device\n");
3727 		return PTR_ERR(data->hwmon_dev);
3728 	}
3729 
3730 	ret = pmbus_regulator_register(data);
3731 	if (ret)
3732 		return ret;
3733 
3734 	ret = pmbus_irq_setup(client, data);
3735 	if (ret)
3736 		return ret;
3737 
3738 	pmbus_init_debugfs(client, data);
3739 
3740 	return 0;
3741 }
3742 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3743 
3744 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3745 {
3746 	/*
3747 	 * client->debugfs may be an ERR_PTR(). Returning that to
3748 	 * the calling code would potentially require additional
3749 	 * complexity in the calling code and otherwise add no
3750 	 * value. Return NULL in that case.
3751 	 */
3752 	if (IS_ERR_OR_NULL(client->debugfs))
3753 		return NULL;
3754 	return client->debugfs;
3755 }
3756 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3757 
3758 int pmbus_lock_interruptible(struct i2c_client *client)
3759 {
3760 	struct pmbus_data *data = i2c_get_clientdata(client);
3761 
3762 	return mutex_lock_interruptible(&data->update_lock);
3763 }
3764 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3765 
3766 void pmbus_unlock(struct i2c_client *client)
3767 {
3768 	struct pmbus_data *data = i2c_get_clientdata(client);
3769 
3770 	mutex_unlock(&data->update_lock);
3771 }
3772 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3773 
3774 static int __init pmbus_core_init(void)
3775 {
3776 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3777 	if (IS_ERR(pmbus_debugfs_dir))
3778 		pmbus_debugfs_dir = NULL;
3779 
3780 	return 0;
3781 }
3782 
3783 static void __exit pmbus_core_exit(void)
3784 {
3785 	debugfs_remove_recursive(pmbus_debugfs_dir);
3786 }
3787 
3788 module_init(pmbus_core_init);
3789 module_exit(pmbus_core_exit);
3790 
3791 MODULE_AUTHOR("Guenter Roeck");
3792 MODULE_DESCRIPTION("PMBus core driver");
3793 MODULE_LICENSE("GPL");
3794