1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 
32 #include <linux/atomic.h>
33 #include <linux/debugfs.h>
34 #include <linux/firmware.h>
35 #include <linux/kref.h>
36 #include <linux/sched/signal.h>
37 #include <linux/seq_file.h>
38 #include <linux/slab.h>
39 #include <linux/wait.h>
40 
41 #include <drm/drm_device.h>
42 #include <drm/drm_file.h>
43 
44 #include "radeon.h"
45 #include "radeon_reg.h"
46 #include "radeon_trace.h"
47 
48 /*
49  * Fences mark an event in the GPUs pipeline and are used
50  * for GPU/CPU synchronization.  When the fence is written,
51  * it is expected that all buffers associated with that fence
52  * are no longer in use by the associated ring on the GPU and
53  * that the relevant GPU caches have been flushed.  Whether
54  * we use a scratch register or memory location depends on the asic
55  * and whether writeback is enabled.
56  */
57 
58 /**
59  * radeon_fence_write - write a fence value
60  *
61  * @rdev: radeon_device pointer
62  * @seq: sequence number to write
63  * @ring: ring index the fence is associated with
64  *
65  * Writes a fence value to memory or a scratch register (all asics).
66  */
67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68 {
69 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70 
71 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
72 		if (drv->cpu_addr)
73 			*drv->cpu_addr = cpu_to_le32(seq);
74 	} else {
75 		WREG32(drv->scratch_reg, seq);
76 	}
77 }
78 
79 /**
80  * radeon_fence_read - read a fence value
81  *
82  * @rdev: radeon_device pointer
83  * @ring: ring index the fence is associated with
84  *
85  * Reads a fence value from memory or a scratch register (all asics).
86  * Returns the value of the fence read from memory or register.
87  */
88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89 {
90 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91 	u32 seq = 0;
92 
93 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94 		if (drv->cpu_addr)
95 			seq = le32_to_cpu(*drv->cpu_addr);
96 		else
97 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
98 	} else {
99 		seq = RREG32(drv->scratch_reg);
100 	}
101 	return seq;
102 }
103 
104 /**
105  * radeon_fence_schedule_check - schedule lockup check
106  *
107  * @rdev: radeon_device pointer
108  * @ring: ring index we should work with
109  *
110  * Queues a delayed work item to check for lockups.
111  */
112 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
113 {
114 	/*
115 	 * Do not reset the timer here with mod_delayed_work,
116 	 * this can livelock in an interaction with TTM delayed destroy.
117 	 */
118 	queue_delayed_work(system_power_efficient_wq,
119 			   &rdev->fence_drv[ring].lockup_work,
120 			   RADEON_FENCE_JIFFIES_TIMEOUT);
121 }
122 
123 /**
124  * radeon_fence_emit - emit a fence on the requested ring
125  *
126  * @rdev: radeon_device pointer
127  * @fence: radeon fence object
128  * @ring: ring index the fence is associated with
129  *
130  * Emits a fence command on the requested ring (all asics).
131  * Returns 0 on success, -ENOMEM on failure.
132  */
133 int radeon_fence_emit(struct radeon_device *rdev,
134 		      struct radeon_fence **fence,
135 		      int ring)
136 {
137 	u64 seq;
138 
139 	/* we are protected by the ring emission mutex */
140 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
141 	if ((*fence) == NULL)
142 		return -ENOMEM;
143 
144 	(*fence)->rdev = rdev;
145 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
146 	(*fence)->ring = ring;
147 	(*fence)->is_vm_update = false;
148 	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
149 		       &rdev->fence_queue.lock,
150 		       rdev->fence_context + ring,
151 		       seq);
152 	radeon_fence_ring_emit(rdev, ring, *fence);
153 	trace_radeon_fence_emit(rdev_to_drm(rdev), ring, (*fence)->seq);
154 	radeon_fence_schedule_check(rdev, ring);
155 	return 0;
156 }
157 
158 /*
159  * radeon_fence_check_signaled - callback from fence_queue
160  *
161  * this function is called with fence_queue lock held, which is also used
162  * for the fence locking itself, so unlocked variants are used for
163  * fence_signal, and remove_wait_queue.
164  */
165 static int radeon_fence_check_signaled(wait_queue_entry_t *wait,
166 				       unsigned int mode, int flags, void *key)
167 {
168 	struct radeon_fence *fence;
169 	u64 seq;
170 
171 	fence = container_of(wait, struct radeon_fence, fence_wake);
172 
173 	/*
174 	 * We cannot use radeon_fence_process here because we're already
175 	 * in the waitqueue, in a call from wake_up_all.
176 	 */
177 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
178 	if (seq >= fence->seq) {
179 		dma_fence_signal_locked(&fence->base);
180 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
181 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
182 		dma_fence_put(&fence->base);
183 	}
184 	return 0;
185 }
186 
187 /**
188  * radeon_fence_activity - check for fence activity
189  *
190  * @rdev: radeon_device pointer
191  * @ring: ring index the fence is associated with
192  *
193  * Checks the current fence value and calculates the last
194  * signalled fence value. Returns true if activity occured
195  * on the ring, and the fence_queue should be waken up.
196  */
197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198 {
199 	uint64_t seq, last_seq, last_emitted;
200 	unsigned int count_loop = 0;
201 	bool wake = false;
202 
203 	/* Note there is a scenario here for an infinite loop but it's
204 	 * very unlikely to happen. For it to happen, the current polling
205 	 * process need to be interrupted by another process and another
206 	 * process needs to update the last_seq btw the atomic read and
207 	 * xchg of the current process.
208 	 *
209 	 * More over for this to go in infinite loop there need to be
210 	 * continuously new fence signaled ie radeon_fence_read needs
211 	 * to return a different value each time for both the currently
212 	 * polling process and the other process that xchg the last_seq
213 	 * btw atomic read and xchg of the current process. And the
214 	 * value the other process set as last seq must be higher than
215 	 * the seq value we just read. Which means that current process
216 	 * need to be interrupted after radeon_fence_read and before
217 	 * atomic xchg.
218 	 *
219 	 * To be even more safe we count the number of time we loop and
220 	 * we bail after 10 loop just accepting the fact that we might
221 	 * have temporarly set the last_seq not to the true real last
222 	 * seq but to an older one.
223 	 */
224 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225 	do {
226 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227 		seq = radeon_fence_read(rdev, ring);
228 		seq |= last_seq & 0xffffffff00000000LL;
229 		if (seq < last_seq) {
230 			seq &= 0xffffffff;
231 			seq |= last_emitted & 0xffffffff00000000LL;
232 		}
233 
234 		if (seq <= last_seq || seq > last_emitted)
235 			break;
236 
237 		/* If we loop over we don't want to return without
238 		 * checking if a fence is signaled as it means that the
239 		 * seq we just read is different from the previous on.
240 		 */
241 		wake = true;
242 		last_seq = seq;
243 		if ((count_loop++) > 10) {
244 			/* We looped over too many time leave with the
245 			 * fact that we might have set an older fence
246 			 * seq then the current real last seq as signaled
247 			 * by the hw.
248 			 */
249 			break;
250 		}
251 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252 
253 	if (seq < last_emitted)
254 		radeon_fence_schedule_check(rdev, ring);
255 
256 	return wake;
257 }
258 
259 /**
260  * radeon_fence_check_lockup - check for hardware lockup
261  *
262  * @work: delayed work item
263  *
264  * Checks for fence activity and if there is none probe
265  * the hardware if a lockup occured.
266  */
267 static void radeon_fence_check_lockup(struct work_struct *work)
268 {
269 	struct radeon_fence_driver *fence_drv;
270 	struct radeon_device *rdev;
271 	int ring;
272 
273 	fence_drv = container_of(work, struct radeon_fence_driver,
274 				 lockup_work.work);
275 	rdev = fence_drv->rdev;
276 	ring = fence_drv - &rdev->fence_drv[0];
277 
278 	if (!down_read_trylock(&rdev->exclusive_lock)) {
279 		/* just reschedule the check if a reset is going on */
280 		radeon_fence_schedule_check(rdev, ring);
281 		return;
282 	}
283 
284 	if (fence_drv->delayed_irq && rdev->irq.installed) {
285 		unsigned long irqflags;
286 
287 		fence_drv->delayed_irq = false;
288 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
289 		radeon_irq_set(rdev);
290 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291 	}
292 
293 	if (radeon_fence_activity(rdev, ring))
294 		wake_up_all(&rdev->fence_queue);
295 
296 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297 
298 		/* good news we believe it's a lockup */
299 		dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n",
300 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
301 			 fence_drv->sync_seq[ring], ring);
302 
303 		/* remember that we need an reset */
304 		rdev->needs_reset = true;
305 		wake_up_all(&rdev->fence_queue);
306 	}
307 	up_read(&rdev->exclusive_lock);
308 }
309 
310 /**
311  * radeon_fence_process - process a fence
312  *
313  * @rdev: radeon_device pointer
314  * @ring: ring index the fence is associated with
315  *
316  * Checks the current fence value and wakes the fence queue
317  * if the sequence number has increased (all asics).
318  */
319 void radeon_fence_process(struct radeon_device *rdev, int ring)
320 {
321 	if (radeon_fence_activity(rdev, ring))
322 		wake_up_all(&rdev->fence_queue);
323 }
324 
325 /**
326  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
327  *
328  * @rdev: radeon device pointer
329  * @seq: sequence number
330  * @ring: ring index the fence is associated with
331  *
332  * Check if the last signaled fence sequnce number is >= the requested
333  * sequence number (all asics).
334  * Returns true if the fence has signaled (current fence value
335  * is >= requested value) or false if it has not (current fence
336  * value is < the requested value.  Helper function for
337  * radeon_fence_signaled().
338  */
339 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
340 				      u64 seq, unsigned int ring)
341 {
342 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
343 		return true;
344 
345 	/* poll new last sequence at least once */
346 	radeon_fence_process(rdev, ring);
347 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
348 		return true;
349 
350 	return false;
351 }
352 
353 static bool radeon_fence_is_signaled(struct dma_fence *f)
354 {
355 	struct radeon_fence *fence = to_radeon_fence(f);
356 	struct radeon_device *rdev = fence->rdev;
357 	unsigned int ring = fence->ring;
358 	u64 seq = fence->seq;
359 
360 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
361 		return true;
362 
363 	if (down_read_trylock(&rdev->exclusive_lock)) {
364 		radeon_fence_process(rdev, ring);
365 		up_read(&rdev->exclusive_lock);
366 
367 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
368 			return true;
369 	}
370 	return false;
371 }
372 
373 /**
374  * radeon_fence_enable_signaling - enable signalling on fence
375  * @f: fence
376  *
377  * This function is called with fence_queue lock held, and adds a callback
378  * to fence_queue that checks if this fence is signaled, and if so it
379  * signals the fence and removes itself.
380  */
381 static bool radeon_fence_enable_signaling(struct dma_fence *f)
382 {
383 	struct radeon_fence *fence = to_radeon_fence(f);
384 	struct radeon_device *rdev = fence->rdev;
385 
386 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
387 		return false;
388 
389 	if (down_read_trylock(&rdev->exclusive_lock)) {
390 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
391 
392 		if (radeon_fence_activity(rdev, fence->ring))
393 			wake_up_all_locked(&rdev->fence_queue);
394 
395 		/* did fence get signaled after we enabled the sw irq? */
396 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
397 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
398 			up_read(&rdev->exclusive_lock);
399 			return false;
400 		}
401 
402 		up_read(&rdev->exclusive_lock);
403 	} else {
404 		/* we're probably in a lockup, lets not fiddle too much */
405 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
406 			rdev->fence_drv[fence->ring].delayed_irq = true;
407 		radeon_fence_schedule_check(rdev, fence->ring);
408 	}
409 
410 	fence->fence_wake.flags = 0;
411 	fence->fence_wake.private = NULL;
412 	fence->fence_wake.func = radeon_fence_check_signaled;
413 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
414 	dma_fence_get(f);
415 	return true;
416 }
417 
418 /**
419  * radeon_fence_signaled - check if a fence has signaled
420  *
421  * @fence: radeon fence object
422  *
423  * Check if the requested fence has signaled (all asics).
424  * Returns true if the fence has signaled or false if it has not.
425  */
426 bool radeon_fence_signaled(struct radeon_fence *fence)
427 {
428 	if (!fence)
429 		return true;
430 
431 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
432 		dma_fence_signal(&fence->base);
433 		return true;
434 	}
435 	return false;
436 }
437 
438 /**
439  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
440  *
441  * @rdev: radeon device pointer
442  * @seq: sequence numbers
443  *
444  * Check if the last signaled fence sequnce number is >= the requested
445  * sequence number (all asics).
446  * Returns true if any has signaled (current value is >= requested value)
447  * or false if it has not. Helper function for radeon_fence_wait_seq.
448  */
449 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
450 {
451 	unsigned int i;
452 
453 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
454 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
455 			return true;
456 	}
457 	return false;
458 }
459 
460 /**
461  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
462  *
463  * @rdev: radeon device pointer
464  * @target_seq: sequence number(s) we want to wait for
465  * @intr: use interruptable sleep
466  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
467  *
468  * Wait for the requested sequence number(s) to be written by any ring
469  * (all asics).  Sequnce number array is indexed by ring id.
470  * @intr selects whether to use interruptable (true) or non-interruptable
471  * (false) sleep when waiting for the sequence number.  Helper function
472  * for radeon_fence_wait_*().
473  * Returns remaining time if the sequence number has passed, 0 when
474  * the wait timeout, or an error for all other cases.
475  * -EDEADLK is returned when a GPU lockup has been detected.
476  */
477 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
478 					  u64 *target_seq, bool intr,
479 					  long timeout)
480 {
481 	long r;
482 	int i;
483 
484 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
485 		return timeout;
486 
487 	/* enable IRQs and tracing */
488 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
489 		if (!target_seq[i])
490 			continue;
491 
492 		trace_radeon_fence_wait_begin(rdev_to_drm(rdev), i, target_seq[i]);
493 		radeon_irq_kms_sw_irq_get(rdev, i);
494 	}
495 
496 	if (intr) {
497 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
498 			radeon_fence_any_seq_signaled(rdev, target_seq)
499 			 || rdev->needs_reset), timeout);
500 	} else {
501 		r = wait_event_timeout(rdev->fence_queue, (
502 			radeon_fence_any_seq_signaled(rdev, target_seq)
503 			 || rdev->needs_reset), timeout);
504 	}
505 
506 	if (rdev->needs_reset)
507 		r = -EDEADLK;
508 
509 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
510 		if (!target_seq[i])
511 			continue;
512 
513 		radeon_irq_kms_sw_irq_put(rdev, i);
514 		trace_radeon_fence_wait_end(rdev_to_drm(rdev), i, target_seq[i]);
515 	}
516 
517 	return r;
518 }
519 
520 /**
521  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
522  *
523  * @fence: radeon fence object
524  * @intr: use interruptible sleep
525  *
526  * Wait for the requested fence to signal (all asics).
527  * @intr selects whether to use interruptable (true) or non-interruptable
528  * (false) sleep when waiting for the fence.
529  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
530  * Returns remaining time if the sequence number has passed, 0 when
531  * the wait timeout, or an error for all other cases.
532  */
533 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
534 {
535 	uint64_t seq[RADEON_NUM_RINGS] = {};
536 	long r;
537 
538 	/*
539 	 * This function should not be called on !radeon fences.
540 	 * If this is the case, it would mean this function can
541 	 * also be called on radeon fences belonging to another card.
542 	 * exclusive_lock is not held in that case.
543 	 */
544 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
545 		return dma_fence_wait(&fence->base, intr);
546 
547 	seq[fence->ring] = fence->seq;
548 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
549 	if (r <= 0)
550 		return r;
551 
552 	dma_fence_signal(&fence->base);
553 	return r;
554 }
555 
556 /**
557  * radeon_fence_wait - wait for a fence to signal
558  *
559  * @fence: radeon fence object
560  * @intr: use interruptible sleep
561  *
562  * Wait for the requested fence to signal (all asics).
563  * @intr selects whether to use interruptable (true) or non-interruptable
564  * (false) sleep when waiting for the fence.
565  * Returns 0 if the fence has passed, error for all other cases.
566  */
567 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
568 {
569 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
570 
571 	if (r > 0)
572 		return 0;
573 	else
574 		return r;
575 }
576 
577 /**
578  * radeon_fence_wait_next - wait for the next fence to signal
579  *
580  * @rdev: radeon device pointer
581  * @ring: ring index the fence is associated with
582  *
583  * Wait for the next fence on the requested ring to signal (all asics).
584  * Returns 0 if the next fence has passed, error for all other cases.
585  * Caller must hold ring lock.
586  */
587 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
588 {
589 	uint64_t seq[RADEON_NUM_RINGS] = {};
590 	long r;
591 
592 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
593 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
594 		/* nothing to wait for, last_seq is already
595 		 * the last emited fence
596 		 */
597 		return -ENOENT;
598 	}
599 
600 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
601 	if (r < 0)
602 		return r;
603 
604 	return 0;
605 }
606 
607 /**
608  * radeon_fence_wait_empty - wait for all fences to signal
609  *
610  * @rdev: radeon device pointer
611  * @ring: ring index the fence is associated with
612  *
613  * Wait for all fences on the requested ring to signal (all asics).
614  * Returns 0 if the fences have passed, error for all other cases.
615  * Caller must hold ring lock.
616  */
617 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
618 {
619 	uint64_t seq[RADEON_NUM_RINGS] = {};
620 	long r;
621 
622 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
623 	if (!seq[ring])
624 		return 0;
625 
626 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
627 	if (r < 0) {
628 		if (r == -EDEADLK)
629 			return -EDEADLK;
630 
631 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
632 			ring, r);
633 	}
634 	return 0;
635 }
636 
637 /**
638  * radeon_fence_ref - take a ref on a fence
639  *
640  * @fence: radeon fence object
641  *
642  * Take a reference on a fence (all asics).
643  * Returns the fence.
644  */
645 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
646 {
647 	dma_fence_get(&fence->base);
648 	return fence;
649 }
650 
651 /**
652  * radeon_fence_unref - remove a ref on a fence
653  *
654  * @fence: radeon fence object
655  *
656  * Remove a reference on a fence (all asics).
657  */
658 void radeon_fence_unref(struct radeon_fence **fence)
659 {
660 	struct radeon_fence *tmp = *fence;
661 
662 	*fence = NULL;
663 	if (tmp)
664 		dma_fence_put(&tmp->base);
665 }
666 
667 /**
668  * radeon_fence_count_emitted - get the count of emitted fences
669  *
670  * @rdev: radeon device pointer
671  * @ring: ring index the fence is associated with
672  *
673  * Get the number of fences emitted on the requested ring (all asics).
674  * Returns the number of emitted fences on the ring.  Used by the
675  * dynpm code to ring track activity.
676  */
677 unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
678 {
679 	uint64_t emitted;
680 
681 	/* We are not protected by ring lock when reading the last sequence
682 	 * but it's ok to report slightly wrong fence count here.
683 	 */
684 	radeon_fence_process(rdev, ring);
685 	emitted = rdev->fence_drv[ring].sync_seq[ring]
686 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
687 	/* to avoid 32bits warp around */
688 	if (emitted > 0x10000000)
689 		emitted = 0x10000000;
690 
691 	return (unsigned int)emitted;
692 }
693 
694 /**
695  * radeon_fence_need_sync - do we need a semaphore
696  *
697  * @fence: radeon fence object
698  * @dst_ring: which ring to check against
699  *
700  * Check if the fence needs to be synced against another ring
701  * (all asics).  If so, we need to emit a semaphore.
702  * Returns true if we need to sync with another ring, false if
703  * not.
704  */
705 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
706 {
707 	struct radeon_fence_driver *fdrv;
708 
709 	if (!fence)
710 		return false;
711 
712 	if (fence->ring == dst_ring)
713 		return false;
714 
715 	/* we are protected by the ring mutex */
716 	fdrv = &fence->rdev->fence_drv[dst_ring];
717 	if (fence->seq <= fdrv->sync_seq[fence->ring])
718 		return false;
719 
720 	return true;
721 }
722 
723 /**
724  * radeon_fence_note_sync - record the sync point
725  *
726  * @fence: radeon fence object
727  * @dst_ring: which ring to check against
728  *
729  * Note the sequence number at which point the fence will
730  * be synced with the requested ring (all asics).
731  */
732 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
733 {
734 	struct radeon_fence_driver *dst, *src;
735 	unsigned int i;
736 
737 	if (!fence)
738 		return;
739 
740 	if (fence->ring == dst_ring)
741 		return;
742 
743 	/* we are protected by the ring mutex */
744 	src = &fence->rdev->fence_drv[fence->ring];
745 	dst = &fence->rdev->fence_drv[dst_ring];
746 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
747 		if (i == dst_ring)
748 			continue;
749 
750 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
751 	}
752 }
753 
754 /**
755  * radeon_fence_driver_start_ring - make the fence driver
756  * ready for use on the requested ring.
757  *
758  * @rdev: radeon device pointer
759  * @ring: ring index to start the fence driver on
760  *
761  * Make the fence driver ready for processing (all asics).
762  * Not all asics have all rings, so each asic will only
763  * start the fence driver on the rings it has.
764  * Returns 0 for success, errors for failure.
765  */
766 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
767 {
768 	uint64_t index;
769 	int r;
770 
771 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
772 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
773 		rdev->fence_drv[ring].scratch_reg = 0;
774 		if (ring != R600_RING_TYPE_UVD_INDEX) {
775 			index = R600_WB_EVENT_OFFSET + ring * 4;
776 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
777 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
778 							 index;
779 
780 		} else {
781 			/* put fence directly behind firmware */
782 			index = ALIGN(rdev->uvd_fw->size, 8);
783 			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
784 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
785 		}
786 
787 	} else {
788 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
789 		if (r) {
790 			dev_err(rdev->dev, "fence failed to get scratch register\n");
791 			return r;
792 		}
793 		index = RADEON_WB_SCRATCH_OFFSET +
794 			rdev->fence_drv[ring].scratch_reg -
795 			rdev->scratch.reg_base;
796 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
797 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
798 	}
799 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
800 	rdev->fence_drv[ring].initialized = true;
801 	dev_info(rdev->dev, "fence driver on ring %d uses gpu addr 0x%016llx\n",
802 		 ring, rdev->fence_drv[ring].gpu_addr);
803 	return 0;
804 }
805 
806 /**
807  * radeon_fence_driver_init_ring - init the fence driver
808  * for the requested ring.
809  *
810  * @rdev: radeon device pointer
811  * @ring: ring index to start the fence driver on
812  *
813  * Init the fence driver for the requested ring (all asics).
814  * Helper function for radeon_fence_driver_init().
815  */
816 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
817 {
818 	int i;
819 
820 	rdev->fence_drv[ring].scratch_reg = -1;
821 	rdev->fence_drv[ring].cpu_addr = NULL;
822 	rdev->fence_drv[ring].gpu_addr = 0;
823 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
824 		rdev->fence_drv[ring].sync_seq[i] = 0;
825 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
826 	rdev->fence_drv[ring].initialized = false;
827 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
828 			  radeon_fence_check_lockup);
829 	rdev->fence_drv[ring].rdev = rdev;
830 }
831 
832 /**
833  * radeon_fence_driver_init - init the fence driver
834  * for all possible rings.
835  *
836  * @rdev: radeon device pointer
837  *
838  * Init the fence driver for all possible rings (all asics).
839  * Not all asics have all rings, so each asic will only
840  * start the fence driver on the rings it has using
841  * radeon_fence_driver_start_ring().
842  */
843 void radeon_fence_driver_init(struct radeon_device *rdev)
844 {
845 	int ring;
846 
847 	init_waitqueue_head(&rdev->fence_queue);
848 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++)
849 		radeon_fence_driver_init_ring(rdev, ring);
850 
851 	radeon_debugfs_fence_init(rdev);
852 }
853 
854 /**
855  * radeon_fence_driver_fini - tear down the fence driver
856  * for all possible rings.
857  *
858  * @rdev: radeon device pointer
859  *
860  * Tear down the fence driver for all possible rings (all asics).
861  */
862 void radeon_fence_driver_fini(struct radeon_device *rdev)
863 {
864 	int ring, r;
865 
866 	mutex_lock(&rdev->ring_lock);
867 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
868 		if (!rdev->fence_drv[ring].initialized)
869 			continue;
870 		r = radeon_fence_wait_empty(rdev, ring);
871 		if (r) {
872 			/* no need to trigger GPU reset as we are unloading */
873 			radeon_fence_driver_force_completion(rdev, ring);
874 		}
875 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
876 		wake_up_all(&rdev->fence_queue);
877 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
878 		rdev->fence_drv[ring].initialized = false;
879 	}
880 	mutex_unlock(&rdev->ring_lock);
881 }
882 
883 /**
884  * radeon_fence_driver_force_completion - force all fence waiter to complete
885  *
886  * @rdev: radeon device pointer
887  * @ring: the ring to complete
888  *
889  * In case of GPU reset failure make sure no process keep waiting on fence
890  * that will never complete.
891  */
892 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
893 {
894 	if (rdev->fence_drv[ring].initialized) {
895 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
896 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
897 	}
898 }
899 
900 
901 /*
902  * Fence debugfs
903  */
904 #if defined(CONFIG_DEBUG_FS)
905 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
906 {
907 	struct radeon_device *rdev = m->private;
908 	int i, j;
909 
910 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
911 		if (!rdev->fence_drv[i].initialized)
912 			continue;
913 
914 		radeon_fence_process(rdev, i);
915 
916 		seq_printf(m, "--- ring %d ---\n", i);
917 		seq_printf(m, "Last signaled fence 0x%016llx\n",
918 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
919 		seq_printf(m, "Last emitted        0x%016llx\n",
920 			   rdev->fence_drv[i].sync_seq[i]);
921 
922 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
923 			if (i != j && rdev->fence_drv[j].initialized)
924 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
925 					   j, rdev->fence_drv[i].sync_seq[j]);
926 		}
927 	}
928 	return 0;
929 }
930 
931 /*
932  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
933  *
934  * Manually trigger a gpu reset at the next fence wait.
935  */
936 static int radeon_debugfs_gpu_reset(void *data, u64 *val)
937 {
938 	struct radeon_device *rdev = (struct radeon_device *)data;
939 
940 	down_read(&rdev->exclusive_lock);
941 	*val = rdev->needs_reset;
942 	rdev->needs_reset = true;
943 	wake_up_all(&rdev->fence_queue);
944 	up_read(&rdev->exclusive_lock);
945 
946 	return 0;
947 }
948 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
949 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
950 			 radeon_debugfs_gpu_reset, NULL, "%lld\n");
951 #endif
952 
953 void radeon_debugfs_fence_init(struct radeon_device *rdev)
954 {
955 #if defined(CONFIG_DEBUG_FS)
956 	struct dentry *root = rdev_to_drm(rdev)->primary->debugfs_root;
957 
958 	debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
959 			    &radeon_debugfs_gpu_reset_fops);
960 	debugfs_create_file("radeon_fence_info", 0444, root, rdev,
961 			    &radeon_debugfs_fence_info_fops);
962 
963 
964 #endif
965 }
966 
967 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
968 {
969 	return "radeon";
970 }
971 
972 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
973 {
974 	struct radeon_fence *fence = to_radeon_fence(f);
975 
976 	switch (fence->ring) {
977 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
978 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
979 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
980 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
981 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
982 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
983 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
984 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
985 	default:
986 		WARN_ON_ONCE(1);
987 		return "radeon.unk";
988 	}
989 }
990 
991 static inline bool radeon_test_signaled(struct radeon_fence *fence)
992 {
993 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
994 }
995 
996 struct radeon_wait_cb {
997 	struct dma_fence_cb base;
998 	struct task_struct *task;
999 };
1000 
1001 static void
1002 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1003 {
1004 	struct radeon_wait_cb *wait =
1005 		container_of(cb, struct radeon_wait_cb, base);
1006 
1007 	wake_up_process(wait->task);
1008 }
1009 
1010 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1011 					     signed long t)
1012 {
1013 	struct radeon_fence *fence = to_radeon_fence(f);
1014 	struct radeon_device *rdev = fence->rdev;
1015 	struct radeon_wait_cb cb;
1016 
1017 	cb.task = current;
1018 
1019 	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1020 		return t;
1021 
1022 	while (t > 0) {
1023 		if (intr)
1024 			set_current_state(TASK_INTERRUPTIBLE);
1025 		else
1026 			set_current_state(TASK_UNINTERRUPTIBLE);
1027 
1028 		/*
1029 		 * radeon_test_signaled must be called after
1030 		 * set_current_state to prevent a race with wake_up_process
1031 		 */
1032 		if (radeon_test_signaled(fence))
1033 			break;
1034 
1035 		if (rdev->needs_reset) {
1036 			t = -EDEADLK;
1037 			break;
1038 		}
1039 
1040 		t = schedule_timeout(t);
1041 
1042 		if (t > 0 && intr && signal_pending(current))
1043 			t = -ERESTARTSYS;
1044 	}
1045 
1046 	__set_current_state(TASK_RUNNING);
1047 	dma_fence_remove_callback(f, &cb.base);
1048 
1049 	return t;
1050 }
1051 
1052 const struct dma_fence_ops radeon_fence_ops = {
1053 	.get_driver_name = radeon_fence_get_driver_name,
1054 	.get_timeline_name = radeon_fence_get_timeline_name,
1055 	.enable_signaling = radeon_fence_enable_signaling,
1056 	.signaled = radeon_fence_is_signaled,
1057 	.wait = radeon_fence_default_wait,
1058 	.release = NULL,
1059 };
1060