1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SHA-512 routines supporting the Power 7+ Nest Accelerators driver
4  *
5  * Copyright (C) 2011-2012 International Business Machines Inc.
6  *
7  * Author: Kent Yoder <yoder1@us.ibm.com>
8  */
9 
10 #include <crypto/internal/hash.h>
11 #include <crypto/sha2.h>
12 #include <linux/errno.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/string.h>
17 #include <linux/unaligned.h>
18 
19 #include "nx_csbcpb.h"
20 #include "nx.h"
21 
22 struct sha512_state_be {
23 	__be64 state[SHA512_DIGEST_SIZE / 8];
24 	u64 count[2];
25 };
26 
27 static int nx_crypto_ctx_sha512_init(struct crypto_shash *tfm)
28 {
29 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(tfm);
30 	int err;
31 
32 	err = nx_crypto_ctx_sha_init(tfm);
33 	if (err)
34 		return err;
35 
36 	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
37 
38 	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
39 
40 	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
41 
42 	return 0;
43 }
44 
45 static int nx_sha512_init(struct shash_desc *desc)
46 {
47 	struct sha512_state_be *sctx = shash_desc_ctx(desc);
48 
49 	sctx->state[0] = __cpu_to_be64(SHA512_H0);
50 	sctx->state[1] = __cpu_to_be64(SHA512_H1);
51 	sctx->state[2] = __cpu_to_be64(SHA512_H2);
52 	sctx->state[3] = __cpu_to_be64(SHA512_H3);
53 	sctx->state[4] = __cpu_to_be64(SHA512_H4);
54 	sctx->state[5] = __cpu_to_be64(SHA512_H5);
55 	sctx->state[6] = __cpu_to_be64(SHA512_H6);
56 	sctx->state[7] = __cpu_to_be64(SHA512_H7);
57 	sctx->count[0] = 0;
58 	sctx->count[1] = 0;
59 
60 	return 0;
61 }
62 
63 static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
64 			    unsigned int len)
65 {
66 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
67 	struct sha512_state_be *sctx = shash_desc_ctx(desc);
68 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
69 	u64 to_process, leftover, total = len;
70 	struct nx_sg *out_sg;
71 	unsigned long irq_flags;
72 	int rc = 0;
73 	int data_len;
74 	u32 max_sg_len;
75 
76 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
77 
78 	memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
79 	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
80 	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
81 
82 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
83 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
84 	max_sg_len = min_t(u64, max_sg_len,
85 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
86 
87 	data_len = SHA512_DIGEST_SIZE;
88 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
89 				  &data_len, max_sg_len);
90 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
91 
92 	if (data_len != SHA512_DIGEST_SIZE) {
93 		rc = -EINVAL;
94 		goto out;
95 	}
96 
97 	do {
98 		struct nx_sg *in_sg = nx_ctx->in_sg;
99 
100 		to_process = total & ~(SHA512_BLOCK_SIZE - 1);
101 
102 		data_len = to_process;
103 		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
104 					 &data_len, max_sg_len);
105 
106 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
107 
108 		to_process = data_len;
109 		leftover = total - to_process;
110 
111 		/*
112 		 * we've hit the nx chip previously and we're updating
113 		 * again, so copy over the partial digest.
114 		 */
115 		memcpy(csbcpb->cpb.sha512.input_partial_digest,
116 			       csbcpb->cpb.sha512.message_digest,
117 			       SHA512_DIGEST_SIZE);
118 
119 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
120 			rc = -EINVAL;
121 			goto out;
122 		}
123 
124 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
125 		if (rc)
126 			goto out;
127 
128 		atomic_inc(&(nx_ctx->stats->sha512_ops));
129 
130 		total -= to_process;
131 		data += to_process;
132 		sctx->count[0] += to_process;
133 		if (sctx->count[0] < to_process)
134 			sctx->count[1]++;
135 	} while (leftover >= SHA512_BLOCK_SIZE);
136 
137 	rc = leftover;
138 	memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
139 out:
140 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
141 	return rc;
142 }
143 
144 static int nx_sha512_finup(struct shash_desc *desc, const u8 *src,
145 			   unsigned int nbytes, u8 *out)
146 {
147 	struct sha512_state_be *sctx = shash_desc_ctx(desc);
148 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
149 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
150 	struct nx_sg *in_sg, *out_sg;
151 	u32 max_sg_len;
152 	unsigned long irq_flags;
153 	u64 count0, count1;
154 	int rc = 0;
155 	int len;
156 
157 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
158 
159 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
160 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
161 	max_sg_len = min_t(u64, max_sg_len,
162 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
163 
164 	/* final is represented by continuing the operation and indicating that
165 	 * this is not an intermediate operation
166 	 * copy over the partial digest */
167 	memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state, SHA512_DIGEST_SIZE);
168 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
169 	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
170 
171 	count0 = sctx->count[0] + nbytes;
172 	count1 = sctx->count[1];
173 
174 	csbcpb->cpb.sha512.message_bit_length_lo = count0 << 3;
175 	csbcpb->cpb.sha512.message_bit_length_hi = (count1 << 3) |
176 						   (count0 >> 61);
177 
178 	len = nbytes;
179 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)src, &len, max_sg_len);
180 
181 	if (len != nbytes) {
182 		rc = -EINVAL;
183 		goto out;
184 	}
185 
186 	len = SHA512_DIGEST_SIZE;
187 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
188 				 max_sg_len);
189 
190 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
191 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
192 
193 	if (!nx_ctx->op.outlen) {
194 		rc = -EINVAL;
195 		goto out;
196 	}
197 
198 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
199 	if (rc)
200 		goto out;
201 
202 	atomic_inc(&(nx_ctx->stats->sha512_ops));
203 	atomic64_add(count0, &(nx_ctx->stats->sha512_bytes));
204 
205 	memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
206 out:
207 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
208 	return rc;
209 }
210 
211 static int nx_sha512_export(struct shash_desc *desc, void *out)
212 {
213 	struct sha512_state_be *sctx = shash_desc_ctx(desc);
214 	union {
215 		u8 *u8;
216 		u64 *u64;
217 	} p = { .u8 = out };
218 	int i;
219 
220 	for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(*p.u64); i++)
221 		put_unaligned(be64_to_cpu(sctx->state[i]), p.u64++);
222 
223 	put_unaligned(sctx->count[0], p.u64++);
224 	put_unaligned(sctx->count[1], p.u64++);
225 	return 0;
226 }
227 
228 static int nx_sha512_import(struct shash_desc *desc, const void *in)
229 {
230 	struct sha512_state_be *sctx = shash_desc_ctx(desc);
231 	union {
232 		const u8 *u8;
233 		const u64 *u64;
234 	} p = { .u8 = in };
235 	int i;
236 
237 	for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(*p.u64); i++)
238 		sctx->state[i] = cpu_to_be64(get_unaligned(p.u64++));
239 
240 	sctx->count[0] = get_unaligned(p.u64++);
241 	sctx->count[1] = get_unaligned(p.u64++);
242 	return 0;
243 }
244 
245 struct shash_alg nx_shash_sha512_alg = {
246 	.digestsize = SHA512_DIGEST_SIZE,
247 	.init       = nx_sha512_init,
248 	.update     = nx_sha512_update,
249 	.finup      = nx_sha512_finup,
250 	.export     = nx_sha512_export,
251 	.import     = nx_sha512_import,
252 	.init_tfm   = nx_crypto_ctx_sha512_init,
253 	.exit_tfm   = nx_crypto_ctx_shash_exit,
254 	.descsize   = sizeof(struct sha512_state_be),
255 	.statesize  = sizeof(struct sha512_state_be),
256 	.base       = {
257 		.cra_name        = "sha512",
258 		.cra_driver_name = "sha512-nx",
259 		.cra_priority    = 300,
260 		.cra_flags	 = CRYPTO_AHASH_ALG_BLOCK_ONLY,
261 		.cra_blocksize   = SHA512_BLOCK_SIZE,
262 		.cra_module      = THIS_MODULE,
263 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
264 	}
265 };
266