1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_STATUS_MASK GENMASK(12, 9) 34 35 /* sqc shift */ 36 #define QM_SQ_HOP_NUM_SHIFT 0 37 #define QM_SQ_PAGE_SIZE_SHIFT 4 38 #define QM_SQ_BUF_SIZE_SHIFT 8 39 #define QM_SQ_SQE_SIZE_SHIFT 12 40 #define QM_SQ_PRIORITY_SHIFT 0 41 #define QM_SQ_ORDERS_SHIFT 4 42 #define QM_SQ_TYPE_SHIFT 8 43 #define QM_QC_PASID_ENABLE 0x1 44 #define QM_QC_PASID_ENABLE_SHIFT 7 45 46 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 47 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1) 48 49 /* cqc shift */ 50 #define QM_CQ_HOP_NUM_SHIFT 0 51 #define QM_CQ_PAGE_SIZE_SHIFT 4 52 #define QM_CQ_BUF_SIZE_SHIFT 8 53 #define QM_CQ_CQE_SIZE_SHIFT 12 54 #define QM_CQ_PHASE_SHIFT 0 55 #define QM_CQ_FLAG_SHIFT 1 56 57 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 58 #define QM_QC_CQE_SIZE 4 59 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1) 60 61 /* eqc shift */ 62 #define QM_EQE_AEQE_SIZE (2UL << 12) 63 #define QM_EQC_PHASE_SHIFT 16 64 65 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 66 #define QM_EQE_CQN_MASK GENMASK(15, 0) 67 68 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 69 #define QM_AEQE_TYPE_SHIFT 17 70 #define QM_AEQE_TYPE_MASK 0xf 71 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 72 #define QM_CQ_OVERFLOW 0 73 #define QM_EQ_OVERFLOW 1 74 #define QM_CQE_ERROR 2 75 76 #define QM_XQ_DEPTH_SHIFT 16 77 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 78 79 #define QM_DOORBELL_CMD_SQ 0 80 #define QM_DOORBELL_CMD_CQ 1 81 #define QM_DOORBELL_CMD_EQ 2 82 #define QM_DOORBELL_CMD_AEQ 3 83 84 #define QM_DOORBELL_BASE_V1 0x340 85 #define QM_DB_CMD_SHIFT_V1 16 86 #define QM_DB_INDEX_SHIFT_V1 32 87 #define QM_DB_PRIORITY_SHIFT_V1 48 88 #define QM_PAGE_SIZE 0x0034 89 #define QM_QP_DB_INTERVAL 0x10000 90 #define QM_DB_TIMEOUT_CFG 0x100074 91 #define QM_DB_TIMEOUT_SET 0x1fffff 92 93 #define QM_MEM_START_INIT 0x100040 94 #define QM_MEM_INIT_DONE 0x100044 95 #define QM_VFT_CFG_RDY 0x10006c 96 #define QM_VFT_CFG_OP_WR 0x100058 97 #define QM_VFT_CFG_TYPE 0x10005c 98 #define QM_VFT_CFG 0x100060 99 #define QM_VFT_CFG_OP_ENABLE 0x100054 100 #define QM_PM_CTRL 0x100148 101 #define QM_IDLE_DISABLE BIT(9) 102 103 #define QM_SUB_VERSION_ID 0x210 104 105 #define QM_VFT_CFG_DATA_L 0x100064 106 #define QM_VFT_CFG_DATA_H 0x100068 107 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 108 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 109 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 110 #define QM_SQC_VFT_START_SQN_SHIFT 28 111 #define QM_SQC_VFT_VALID (1ULL << 44) 112 #define QM_SQC_VFT_SQN_SHIFT 45 113 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 114 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 115 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 116 #define QM_CQC_VFT_VALID (1ULL << 28) 117 118 #define QM_SQC_VFT_BASE_SHIFT_V2 28 119 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 120 #define QM_SQC_VFT_NUM_SHIFT_V2 45 121 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 122 #define QM_MAX_QC_TYPE 2 123 124 #define QM_ABNORMAL_INT_SOURCE 0x100000 125 #define QM_ABNORMAL_INT_MASK 0x100004 126 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 127 #define QM_ABNORMAL_INT_STATUS 0x100008 128 #define QM_ABNORMAL_INT_SET 0x10000c 129 #define QM_ABNORMAL_INF00 0x100010 130 #define QM_FIFO_OVERFLOW_TYPE 0xc0 131 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 132 #define QM_FIFO_OVERFLOW_VF 0x3f 133 #define QM_FIFO_OVERFLOW_QP_SHIFT 16 134 #define QM_ABNORMAL_INF01 0x100014 135 #define QM_DB_TIMEOUT_TYPE 0xc0 136 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 137 #define QM_DB_TIMEOUT_VF 0x3f 138 #define QM_DB_TIMEOUT_QP_SHIFT 16 139 #define QM_ABNORMAL_INF02 0x100018 140 #define QM_AXI_POISON_ERR BIT(22) 141 #define QM_RAS_CE_ENABLE 0x1000ec 142 #define QM_RAS_FE_ENABLE 0x1000f0 143 #define QM_RAS_NFE_ENABLE 0x1000f4 144 #define QM_RAS_CE_THRESHOLD 0x1000f8 145 #define QM_RAS_CE_TIMES_PER_IRQ 1 146 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 147 #define QM_AXI_RRESP_ERR BIT(0) 148 #define QM_ECC_MBIT BIT(2) 149 #define QM_DB_TIMEOUT BIT(10) 150 #define QM_OF_FIFO_OF BIT(11) 151 152 #define QM_RESET_WAIT_TIMEOUT 400 153 #define QM_PEH_VENDOR_ID 0x1000d8 154 #define ACC_VENDOR_ID_VALUE 0x5a5a 155 #define QM_PEH_DFX_INFO0 0x1000fc 156 #define QM_PEH_DFX_INFO1 0x100100 157 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 158 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 159 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 160 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 161 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 162 #define ACC_MASTER_TRANS_RETURN_RW 3 163 #define ACC_MASTER_TRANS_RETURN 0x300150 164 #define ACC_MASTER_GLOBAL_CTRL 0x300000 165 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 166 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 167 #define ACC_AM_ROB_ECC_INT_STS 0x300104 168 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 169 #define QM_MSI_CAP_ENABLE BIT(16) 170 171 /* interfunction communication */ 172 #define QM_IFC_READY_STATUS 0x100128 173 #define QM_IFC_INT_SET_P 0x100130 174 #define QM_IFC_INT_CFG 0x100134 175 #define QM_IFC_INT_SOURCE_P 0x100138 176 #define QM_IFC_INT_SOURCE_V 0x0020 177 #define QM_IFC_INT_MASK 0x0024 178 #define QM_IFC_INT_STATUS 0x0028 179 #define QM_IFC_INT_SET_V 0x002C 180 #define QM_PF2VF_PF_W 0x104700 181 #define QM_VF2PF_PF_R 0x104800 182 #define QM_VF2PF_VF_W 0x320 183 #define QM_PF2VF_VF_R 0x380 184 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 185 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 186 #define QM_IFC_INT_SOURCE_MASK BIT(0) 187 #define QM_IFC_INT_DISABLE BIT(0) 188 #define QM_IFC_INT_STATUS_MASK BIT(0) 189 #define QM_IFC_INT_SET_MASK BIT(0) 190 #define QM_WAIT_DST_ACK 10 191 #define QM_MAX_PF_WAIT_COUNT 10 192 #define QM_MAX_VF_WAIT_COUNT 40 193 #define QM_VF_RESET_WAIT_US 20000 194 #define QM_VF_RESET_WAIT_CNT 3000 195 #define QM_VF2PF_REG_SIZE 4 196 #define QM_IFC_CMD_MASK GENMASK(31, 0) 197 #define QM_IFC_DATA_SHIFT 32 198 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 199 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 200 201 #define POLL_PERIOD 10 202 #define POLL_TIMEOUT 1000 203 #define WAIT_PERIOD_US_MAX 200 204 #define WAIT_PERIOD_US_MIN 100 205 #define MAX_WAIT_COUNTS 1000 206 #define QM_CACHE_WB_START 0x204 207 #define QM_CACHE_WB_DONE 0x208 208 #define QM_FUNC_CAPS_REG 0x3100 209 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 210 211 #define PCI_BAR_2 2 212 #define PCI_BAR_4 4 213 #define QMC_ALIGN(sz) ALIGN(sz, 32) 214 215 #define QM_DBG_READ_LEN 256 216 #define QM_PCI_COMMAND_INVALID ~0 217 #define QM_RESET_STOP_TX_OFFSET 1 218 #define QM_RESET_STOP_RX_OFFSET 2 219 220 #define WAIT_PERIOD 20 221 #define REMOVE_WAIT_DELAY 10 222 223 #define QM_QOS_PARAM_NUM 2 224 #define QM_QOS_MAX_VAL 1000 225 #define QM_QOS_RATE 100 226 #define QM_QOS_EXPAND_RATE 1000 227 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 228 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 229 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 230 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 231 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 232 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 233 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 234 #define QM_SHAPER_CBS_B 1 235 #define QM_SHAPER_VFT_OFFSET 6 236 #define QM_QOS_MIN_ERROR_RATE 5 237 #define QM_SHAPER_MIN_CBS_S 8 238 #define QM_QOS_TICK 0x300U 239 #define QM_QOS_DIVISOR_CLK 0x1f40U 240 #define QM_QOS_MAX_CIR_B 200 241 #define QM_QOS_MIN_CIR_B 100 242 #define QM_QOS_MAX_CIR_U 6 243 #define QM_AUTOSUSPEND_DELAY 3000 244 245 /* abnormal status value for stopping queue */ 246 #define QM_STOP_QUEUE_FAIL 1 247 #define QM_DUMP_SQC_FAIL 3 248 #define QM_DUMP_CQC_FAIL 4 249 #define QM_FINISH_WAIT 5 250 251 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 252 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 253 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 254 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 255 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 256 257 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 258 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 259 260 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 261 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 262 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 263 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 264 265 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 266 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 267 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 268 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 269 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 270 271 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 272 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 273 274 enum vft_type { 275 SQC_VFT = 0, 276 CQC_VFT, 277 SHAPER_VFT, 278 }; 279 280 enum qm_alg_type { 281 ALG_TYPE_0, 282 ALG_TYPE_1, 283 }; 284 285 enum qm_ifc_cmd { 286 QM_PF_FLR_PREPARE = 0x01, 287 QM_PF_SRST_PREPARE, 288 QM_PF_RESET_DONE, 289 QM_VF_PREPARE_DONE, 290 QM_VF_PREPARE_FAIL, 291 QM_VF_START_DONE, 292 QM_VF_START_FAIL, 293 QM_PF_SET_QOS, 294 QM_VF_GET_QOS, 295 }; 296 297 enum qm_basic_type { 298 QM_TOTAL_QP_NUM_CAP = 0x0, 299 QM_FUNC_MAX_QP_CAP, 300 QM_XEQ_DEPTH_CAP, 301 QM_QP_DEPTH_CAP, 302 QM_EQ_IRQ_TYPE_CAP, 303 QM_AEQ_IRQ_TYPE_CAP, 304 QM_ABN_IRQ_TYPE_CAP, 305 QM_PF2VF_IRQ_TYPE_CAP, 306 QM_PF_IRQ_NUM_CAP, 307 QM_VF_IRQ_NUM_CAP, 308 }; 309 310 enum qm_cap_table_type { 311 QM_CAP_VF = 0x0, 312 QM_AEQE_NUM, 313 QM_SCQE_NUM, 314 QM_EQ_IRQ, 315 QM_AEQ_IRQ, 316 QM_ABNORMAL_IRQ, 317 QM_MB_IRQ, 318 MAX_IRQ_NUM, 319 EXT_BAR_INDEX, 320 }; 321 322 static const struct hisi_qm_cap_query_info qm_cap_query_info[] = { 323 {QM_CAP_VF, "QM_CAP_VF ", 0x3100, 0x0, 0x0, 0x6F01}, 324 {QM_AEQE_NUM, "QM_AEQE_NUM ", 0x3104, 0x800, 0x4000800, 0x4000800}, 325 {QM_SCQE_NUM, "QM_SCQE_NUM ", 326 0x3108, 0x4000400, 0x4000400, 0x4000400}, 327 {QM_EQ_IRQ, "QM_EQ_IRQ ", 0x310c, 0x10000, 0x10000, 0x10000}, 328 {QM_AEQ_IRQ, "QM_AEQ_IRQ ", 0x3110, 0x0, 0x10001, 0x10001}, 329 {QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ ", 0x3114, 0x0, 0x10003, 0x10003}, 330 {QM_MB_IRQ, "QM_MB_IRQ ", 0x3118, 0x0, 0x0, 0x10002}, 331 {MAX_IRQ_NUM, "MAX_IRQ_NUM ", 0x311c, 0x10001, 0x40002, 0x40003}, 332 {EXT_BAR_INDEX, "EXT_BAR_INDEX ", 0x3120, 0x0, 0x0, 0x14}, 333 }; 334 335 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 336 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 337 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 338 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 339 {QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1}, 340 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 341 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 342 {QM_SUPPORT_DAE, 0x3100, 0, BIT(15), 0x0, 0x0, 0x0}, 343 }; 344 345 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 346 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 347 }; 348 349 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 350 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 351 }; 352 353 static const struct hisi_qm_cap_info qm_basic_info[] = { 354 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 355 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 356 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 357 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 358 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 359 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 360 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 361 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 362 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 363 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 364 }; 365 366 struct qm_mailbox { 367 __le16 w0; 368 __le16 queue_num; 369 __le32 base_l; 370 __le32 base_h; 371 __le32 rsvd; 372 }; 373 374 struct qm_doorbell { 375 __le16 queue_num; 376 __le16 cmd; 377 __le16 index; 378 __le16 priority; 379 }; 380 381 struct hisi_qm_resource { 382 struct hisi_qm *qm; 383 int distance; 384 struct list_head list; 385 }; 386 387 /** 388 * struct qm_hw_err - Structure describing the device errors 389 * @list: hardware error list 390 * @timestamp: timestamp when the error occurred 391 */ 392 struct qm_hw_err { 393 struct list_head list; 394 unsigned long long timestamp; 395 }; 396 397 struct hisi_qm_hw_ops { 398 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 399 void (*qm_db)(struct hisi_qm *qm, u16 qn, 400 u8 cmd, u16 index, u8 priority); 401 int (*debug_init)(struct hisi_qm *qm); 402 void (*hw_error_init)(struct hisi_qm *qm); 403 void (*hw_error_uninit)(struct hisi_qm *qm); 404 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 405 int (*set_msi)(struct hisi_qm *qm, bool set); 406 407 /* (u64)msg = (u32)data << 32 | (enum qm_ifc_cmd)cmd */ 408 int (*set_ifc_begin)(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num); 409 void (*set_ifc_end)(struct hisi_qm *qm); 410 int (*get_ifc)(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num); 411 }; 412 413 struct hisi_qm_hw_error { 414 u32 int_msk; 415 const char *msg; 416 }; 417 418 static const struct hisi_qm_hw_error qm_hw_error[] = { 419 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 420 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 421 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 422 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 423 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 424 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 425 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 426 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 427 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 428 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 429 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 430 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 431 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 432 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 433 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 434 }; 435 436 static const char * const qm_db_timeout[] = { 437 "sq", "cq", "eq", "aeq", 438 }; 439 440 static const char * const qm_fifo_overflow[] = { 441 "cq", "eq", "aeq", 442 }; 443 444 struct qm_typical_qos_table { 445 u32 start; 446 u32 end; 447 u32 val; 448 }; 449 450 /* the qos step is 100 */ 451 static struct qm_typical_qos_table shaper_cir_s[] = { 452 {100, 100, 4}, 453 {200, 200, 3}, 454 {300, 500, 2}, 455 {600, 1000, 1}, 456 {1100, 100000, 0}, 457 }; 458 459 static struct qm_typical_qos_table shaper_cbs_s[] = { 460 {100, 200, 9}, 461 {300, 500, 11}, 462 {600, 1000, 12}, 463 {1100, 10000, 16}, 464 {10100, 25000, 17}, 465 {25100, 50000, 18}, 466 {50100, 100000, 19} 467 }; 468 469 static void qm_irqs_unregister(struct hisi_qm *qm); 470 static int qm_reset_device(struct hisi_qm *qm); 471 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp, 472 unsigned int device) 473 { 474 struct pci_dev *pdev; 475 u32 n, q_num; 476 int ret; 477 478 if (!val) 479 return -EINVAL; 480 481 pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL); 482 if (!pdev) { 483 q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2); 484 pr_info("No device found currently, suppose queue number is %u\n", 485 q_num); 486 } else { 487 if (pdev->revision == QM_HW_V1) 488 q_num = QM_QNUM_V1; 489 else 490 q_num = QM_QNUM_V2; 491 492 pci_dev_put(pdev); 493 } 494 495 ret = kstrtou32(val, 10, &n); 496 if (ret || n < QM_MIN_QNUM || n > q_num) 497 return -EINVAL; 498 499 return param_set_int(val, kp); 500 } 501 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set); 502 503 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 504 { 505 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 506 } 507 508 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 509 { 510 return qm->err_ini->get_dev_hw_err_status(qm); 511 } 512 513 /* Check if the error causes the master ooo block */ 514 static bool qm_check_dev_error(struct hisi_qm *qm) 515 { 516 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 517 u32 err_status; 518 519 if (pf_qm->fun_type == QM_HW_VF) 520 return false; 521 522 err_status = qm_get_hw_error_status(pf_qm); 523 if (err_status & pf_qm->err_info.qm_shutdown_mask) 524 return true; 525 526 if (pf_qm->err_ini->dev_is_abnormal) 527 return pf_qm->err_ini->dev_is_abnormal(pf_qm); 528 529 return false; 530 } 531 532 static int qm_wait_reset_finish(struct hisi_qm *qm) 533 { 534 int delay = 0; 535 536 /* All reset requests need to be queued for processing */ 537 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 538 msleep(++delay); 539 if (delay > QM_RESET_WAIT_TIMEOUT) 540 return -EBUSY; 541 } 542 543 return 0; 544 } 545 546 static int qm_reset_prepare_ready(struct hisi_qm *qm) 547 { 548 struct pci_dev *pdev = qm->pdev; 549 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 550 551 /* 552 * PF and VF on host doesnot support resetting at the 553 * same time on Kunpeng920. 554 */ 555 if (qm->ver < QM_HW_V3) 556 return qm_wait_reset_finish(pf_qm); 557 558 return qm_wait_reset_finish(qm); 559 } 560 561 static void qm_reset_bit_clear(struct hisi_qm *qm) 562 { 563 struct pci_dev *pdev = qm->pdev; 564 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 565 566 if (qm->ver < QM_HW_V3) 567 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 568 569 clear_bit(QM_RESETTING, &qm->misc_ctl); 570 } 571 572 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 573 u64 base, u16 queue, bool op) 574 { 575 mailbox->w0 = cpu_to_le16((cmd) | 576 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 577 (0x1 << QM_MB_BUSY_SHIFT)); 578 mailbox->queue_num = cpu_to_le16(queue); 579 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 580 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 581 mailbox->rsvd = 0; 582 } 583 584 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 585 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 586 { 587 u32 val; 588 589 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 590 val, !((val >> QM_MB_BUSY_SHIFT) & 591 0x1), POLL_PERIOD, POLL_TIMEOUT); 592 } 593 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 594 595 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 596 static void qm_mb_write(struct hisi_qm *qm, const void *src) 597 { 598 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 599 600 #if IS_ENABLED(CONFIG_ARM64) 601 unsigned long tmp0 = 0, tmp1 = 0; 602 #endif 603 604 if (!IS_ENABLED(CONFIG_ARM64)) { 605 memcpy_toio(fun_base, src, 16); 606 dma_wmb(); 607 return; 608 } 609 610 #if IS_ENABLED(CONFIG_ARM64) 611 asm volatile("ldp %0, %1, %3\n" 612 "stp %0, %1, %2\n" 613 "dmb oshst\n" 614 : "=&r" (tmp0), 615 "=&r" (tmp1), 616 "+Q" (*((char __iomem *)fun_base)) 617 : "Q" (*((char *)src)) 618 : "memory"); 619 #endif 620 } 621 622 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 623 { 624 int ret; 625 u32 val; 626 627 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 628 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 629 ret = -EBUSY; 630 goto mb_busy; 631 } 632 633 qm_mb_write(qm, mailbox); 634 635 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 636 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 637 ret = -ETIMEDOUT; 638 goto mb_busy; 639 } 640 641 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 642 if (val & QM_MB_STATUS_MASK) { 643 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 644 ret = -EIO; 645 goto mb_busy; 646 } 647 648 return 0; 649 650 mb_busy: 651 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 652 return ret; 653 } 654 655 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 656 bool op) 657 { 658 struct qm_mailbox mailbox; 659 int ret; 660 661 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 662 663 mutex_lock(&qm->mailbox_lock); 664 ret = qm_mb_nolock(qm, &mailbox); 665 mutex_unlock(&qm->mailbox_lock); 666 667 return ret; 668 } 669 EXPORT_SYMBOL_GPL(hisi_qm_mb); 670 671 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */ 672 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op) 673 { 674 struct qm_mailbox mailbox; 675 dma_addr_t xqc_dma; 676 void *tmp_xqc; 677 size_t size; 678 int ret; 679 680 switch (cmd) { 681 case QM_MB_CMD_SQC: 682 size = sizeof(struct qm_sqc); 683 tmp_xqc = qm->xqc_buf.sqc; 684 xqc_dma = qm->xqc_buf.sqc_dma; 685 break; 686 case QM_MB_CMD_CQC: 687 size = sizeof(struct qm_cqc); 688 tmp_xqc = qm->xqc_buf.cqc; 689 xqc_dma = qm->xqc_buf.cqc_dma; 690 break; 691 case QM_MB_CMD_EQC: 692 size = sizeof(struct qm_eqc); 693 tmp_xqc = qm->xqc_buf.eqc; 694 xqc_dma = qm->xqc_buf.eqc_dma; 695 break; 696 case QM_MB_CMD_AEQC: 697 size = sizeof(struct qm_aeqc); 698 tmp_xqc = qm->xqc_buf.aeqc; 699 xqc_dma = qm->xqc_buf.aeqc_dma; 700 break; 701 default: 702 dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd); 703 return -EINVAL; 704 } 705 706 /* Setting xqc will fail if master OOO is blocked. */ 707 if (qm_check_dev_error(qm)) { 708 dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n"); 709 return -EIO; 710 } 711 712 mutex_lock(&qm->mailbox_lock); 713 if (!op) 714 memcpy(tmp_xqc, xqc, size); 715 716 qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op); 717 ret = qm_mb_nolock(qm, &mailbox); 718 if (!ret && op) 719 memcpy(xqc, tmp_xqc, size); 720 721 mutex_unlock(&qm->mailbox_lock); 722 723 return ret; 724 } 725 726 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 727 { 728 u64 doorbell; 729 730 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 731 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 732 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 733 734 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 735 } 736 737 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 738 { 739 void __iomem *io_base = qm->io_base; 740 u16 randata = 0; 741 u64 doorbell; 742 743 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 744 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 745 QM_DOORBELL_SQ_CQ_BASE_V2; 746 else 747 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 748 749 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 750 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 751 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 752 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 753 754 writeq(doorbell, io_base); 755 } 756 757 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 758 { 759 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 760 qn, cmd, index); 761 762 qm->ops->qm_db(qm, qn, cmd, index, priority); 763 } 764 765 static void qm_disable_clock_gate(struct hisi_qm *qm) 766 { 767 u32 val; 768 769 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 770 if (qm->ver < QM_HW_V3) 771 return; 772 773 val = readl(qm->io_base + QM_PM_CTRL); 774 val |= QM_IDLE_DISABLE; 775 writel(val, qm->io_base + QM_PM_CTRL); 776 } 777 778 static int qm_dev_mem_reset(struct hisi_qm *qm) 779 { 780 u32 val; 781 782 writel(0x1, qm->io_base + QM_MEM_START_INIT); 783 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 784 val & BIT(0), POLL_PERIOD, 785 POLL_TIMEOUT); 786 } 787 788 /** 789 * hisi_qm_get_hw_info() - Get device information. 790 * @qm: The qm which want to get information. 791 * @info_table: Array for storing device information. 792 * @index: Index in info_table. 793 * @is_read: Whether read from reg, 0: not support read from reg. 794 * 795 * This function returns device information the caller needs. 796 */ 797 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 798 const struct hisi_qm_cap_info *info_table, 799 u32 index, bool is_read) 800 { 801 u32 val; 802 803 switch (qm->ver) { 804 case QM_HW_V1: 805 return info_table[index].v1_val; 806 case QM_HW_V2: 807 return info_table[index].v2_val; 808 default: 809 if (!is_read) 810 return info_table[index].v3_val; 811 812 val = readl(qm->io_base + info_table[index].offset); 813 return (val >> info_table[index].shift) & info_table[index].mask; 814 } 815 } 816 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 817 818 u32 hisi_qm_get_cap_value(struct hisi_qm *qm, 819 const struct hisi_qm_cap_query_info *info_table, 820 u32 index, bool is_read) 821 { 822 u32 val; 823 824 switch (qm->ver) { 825 case QM_HW_V1: 826 return info_table[index].v1_val; 827 case QM_HW_V2: 828 return info_table[index].v2_val; 829 default: 830 if (!is_read) 831 return info_table[index].v3_val; 832 833 val = readl(qm->io_base + info_table[index].offset); 834 return val; 835 } 836 } 837 EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value); 838 839 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 840 u16 *high_bits, enum qm_basic_type type) 841 { 842 u32 depth; 843 844 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 845 *low_bits = depth & QM_XQ_DEPTH_MASK; 846 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 847 } 848 849 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 850 u32 dev_algs_size) 851 { 852 struct device *dev = &qm->pdev->dev; 853 char *algs, *ptr; 854 int i; 855 856 if (!qm->uacce) 857 return 0; 858 859 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 860 dev_err(dev, "algs size %u is equal or larger than %d.\n", 861 dev_algs_size, QM_DEV_ALG_MAX_LEN); 862 return -EINVAL; 863 } 864 865 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN, GFP_KERNEL); 866 if (!algs) 867 return -ENOMEM; 868 869 for (i = 0; i < dev_algs_size; i++) 870 if (alg_msk & dev_algs[i].alg_msk) 871 strcat(algs, dev_algs[i].alg); 872 873 ptr = strrchr(algs, '\n'); 874 if (ptr) 875 *ptr = '\0'; 876 877 qm->uacce->algs = algs; 878 879 return 0; 880 } 881 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 882 883 static u32 qm_get_irq_num(struct hisi_qm *qm) 884 { 885 if (qm->fun_type == QM_HW_PF) 886 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 887 888 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 889 } 890 891 static int qm_pm_get_sync(struct hisi_qm *qm) 892 { 893 struct device *dev = &qm->pdev->dev; 894 int ret; 895 896 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 897 return 0; 898 899 ret = pm_runtime_resume_and_get(dev); 900 if (ret < 0) { 901 dev_err(dev, "failed to get_sync(%d).\n", ret); 902 return ret; 903 } 904 905 return 0; 906 } 907 908 static void qm_pm_put_sync(struct hisi_qm *qm) 909 { 910 struct device *dev = &qm->pdev->dev; 911 912 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 913 return; 914 915 pm_runtime_mark_last_busy(dev); 916 pm_runtime_put_autosuspend(dev); 917 } 918 919 static void qm_cq_head_update(struct hisi_qp *qp) 920 { 921 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 922 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 923 qp->qp_status.cq_head = 0; 924 } else { 925 qp->qp_status.cq_head++; 926 } 927 } 928 929 static void qm_poll_req_cb(struct hisi_qp *qp) 930 { 931 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 932 struct hisi_qm *qm = qp->qm; 933 934 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 935 dma_rmb(); 936 qp->req_cb(qp, qp->sqe + qm->sqe_size * 937 le16_to_cpu(cqe->sq_head)); 938 qm_cq_head_update(qp); 939 cqe = qp->cqe + qp->qp_status.cq_head; 940 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 941 qp->qp_status.cq_head, 0); 942 atomic_dec(&qp->qp_status.used); 943 944 cond_resched(); 945 } 946 947 /* set c_flag */ 948 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 949 } 950 951 static void qm_work_process(struct work_struct *work) 952 { 953 struct hisi_qm_poll_data *poll_data = 954 container_of(work, struct hisi_qm_poll_data, work); 955 struct hisi_qm *qm = poll_data->qm; 956 u16 eqe_num = poll_data->eqe_num; 957 struct hisi_qp *qp; 958 int i; 959 960 for (i = eqe_num - 1; i >= 0; i--) { 961 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 962 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 963 continue; 964 965 if (qp->event_cb) { 966 qp->event_cb(qp); 967 continue; 968 } 969 970 if (likely(qp->req_cb)) 971 qm_poll_req_cb(qp); 972 } 973 } 974 975 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 976 { 977 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 978 struct hisi_qm_poll_data *poll_data = NULL; 979 u16 eq_depth = qm->eq_depth; 980 u16 cqn, eqe_num = 0; 981 982 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 983 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 984 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 985 return; 986 } 987 988 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 989 if (unlikely(cqn >= qm->qp_num)) 990 return; 991 poll_data = &qm->poll_data[cqn]; 992 993 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 994 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 995 poll_data->qp_finish_id[eqe_num] = cqn; 996 eqe_num++; 997 998 if (qm->status.eq_head == eq_depth - 1) { 999 qm->status.eqc_phase = !qm->status.eqc_phase; 1000 eqe = qm->eqe; 1001 qm->status.eq_head = 0; 1002 } else { 1003 eqe++; 1004 qm->status.eq_head++; 1005 } 1006 1007 if (eqe_num == (eq_depth >> 1) - 1) 1008 break; 1009 } 1010 1011 poll_data->eqe_num = eqe_num; 1012 queue_work(qm->wq, &poll_data->work); 1013 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 1014 } 1015 1016 static irqreturn_t qm_eq_irq(int irq, void *data) 1017 { 1018 struct hisi_qm *qm = data; 1019 1020 /* Get qp id of completed tasks and re-enable the interrupt */ 1021 qm_get_complete_eqe_num(qm); 1022 1023 return IRQ_HANDLED; 1024 } 1025 1026 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 1027 { 1028 struct hisi_qm *qm = data; 1029 u32 val; 1030 1031 val = readl(qm->io_base + QM_IFC_INT_STATUS); 1032 val &= QM_IFC_INT_STATUS_MASK; 1033 if (!val) 1034 return IRQ_NONE; 1035 1036 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 1037 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 1038 return IRQ_HANDLED; 1039 } 1040 1041 schedule_work(&qm->cmd_process); 1042 1043 return IRQ_HANDLED; 1044 } 1045 1046 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1047 { 1048 u32 *addr; 1049 1050 if (qp->is_in_kernel) 1051 return; 1052 1053 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1054 *addr = 1; 1055 1056 /* make sure setup is completed */ 1057 smp_wmb(); 1058 } 1059 1060 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1061 { 1062 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1063 1064 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1065 hisi_qm_stop_qp(qp); 1066 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1067 } 1068 1069 static void qm_reset_function(struct hisi_qm *qm) 1070 { 1071 struct device *dev = &qm->pdev->dev; 1072 int ret; 1073 1074 if (qm_check_dev_error(qm)) 1075 return; 1076 1077 ret = qm_reset_prepare_ready(qm); 1078 if (ret) { 1079 dev_err(dev, "reset function not ready\n"); 1080 return; 1081 } 1082 1083 ret = hisi_qm_stop(qm, QM_DOWN); 1084 if (ret) { 1085 dev_err(dev, "failed to stop qm when reset function\n"); 1086 goto clear_bit; 1087 } 1088 1089 ret = hisi_qm_start(qm); 1090 if (ret) 1091 dev_err(dev, "failed to start qm when reset function\n"); 1092 1093 clear_bit: 1094 qm_reset_bit_clear(qm); 1095 } 1096 1097 static irqreturn_t qm_aeq_thread(int irq, void *data) 1098 { 1099 struct hisi_qm *qm = data; 1100 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1101 u16 aeq_depth = qm->aeq_depth; 1102 u32 type, qp_id; 1103 1104 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1105 1106 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1107 type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) & 1108 QM_AEQE_TYPE_MASK; 1109 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1110 1111 switch (type) { 1112 case QM_EQ_OVERFLOW: 1113 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1114 qm_reset_function(qm); 1115 return IRQ_HANDLED; 1116 case QM_CQ_OVERFLOW: 1117 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1118 qp_id); 1119 fallthrough; 1120 case QM_CQE_ERROR: 1121 qm_disable_qp(qm, qp_id); 1122 break; 1123 default: 1124 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1125 type); 1126 break; 1127 } 1128 1129 if (qm->status.aeq_head == aeq_depth - 1) { 1130 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1131 aeqe = qm->aeqe; 1132 qm->status.aeq_head = 0; 1133 } else { 1134 aeqe++; 1135 qm->status.aeq_head++; 1136 } 1137 } 1138 1139 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1140 1141 return IRQ_HANDLED; 1142 } 1143 1144 static void qm_init_qp_status(struct hisi_qp *qp) 1145 { 1146 struct hisi_qp_status *qp_status = &qp->qp_status; 1147 1148 qp_status->sq_tail = 0; 1149 qp_status->cq_head = 0; 1150 qp_status->cqc_phase = true; 1151 atomic_set(&qp_status->used, 0); 1152 } 1153 1154 static void qm_init_prefetch(struct hisi_qm *qm) 1155 { 1156 struct device *dev = &qm->pdev->dev; 1157 u32 page_type = 0x0; 1158 1159 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1160 return; 1161 1162 switch (PAGE_SIZE) { 1163 case SZ_4K: 1164 page_type = 0x0; 1165 break; 1166 case SZ_16K: 1167 page_type = 0x1; 1168 break; 1169 case SZ_64K: 1170 page_type = 0x2; 1171 break; 1172 default: 1173 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1174 PAGE_SIZE); 1175 } 1176 1177 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1178 } 1179 1180 /* 1181 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1182 * is the expected qos calculated. 1183 * the formula: 1184 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1185 * 1186 * IR_b * (2 ^ IR_u) * 8000 1187 * IR(Mbps) = ------------------------- 1188 * Tick * (2 ^ IR_s) 1189 */ 1190 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1191 { 1192 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1193 (QM_QOS_TICK * (1 << cir_s)); 1194 } 1195 1196 static u32 acc_shaper_calc_cbs_s(u32 ir) 1197 { 1198 int table_size = ARRAY_SIZE(shaper_cbs_s); 1199 int i; 1200 1201 for (i = 0; i < table_size; i++) { 1202 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1203 return shaper_cbs_s[i].val; 1204 } 1205 1206 return QM_SHAPER_MIN_CBS_S; 1207 } 1208 1209 static u32 acc_shaper_calc_cir_s(u32 ir) 1210 { 1211 int table_size = ARRAY_SIZE(shaper_cir_s); 1212 int i; 1213 1214 for (i = 0; i < table_size; i++) { 1215 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1216 return shaper_cir_s[i].val; 1217 } 1218 1219 return 0; 1220 } 1221 1222 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1223 { 1224 u32 cir_b, cir_u, cir_s, ir_calc; 1225 u32 error_rate; 1226 1227 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1228 cir_s = acc_shaper_calc_cir_s(ir); 1229 1230 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1231 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1232 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1233 1234 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1235 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1236 factor->cir_b = cir_b; 1237 factor->cir_u = cir_u; 1238 factor->cir_s = cir_s; 1239 return 0; 1240 } 1241 } 1242 } 1243 1244 return -EINVAL; 1245 } 1246 1247 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1248 u32 number, struct qm_shaper_factor *factor) 1249 { 1250 u64 tmp = 0; 1251 1252 if (number > 0) { 1253 switch (type) { 1254 case SQC_VFT: 1255 if (qm->ver == QM_HW_V1) { 1256 tmp = QM_SQC_VFT_BUF_SIZE | 1257 QM_SQC_VFT_SQC_SIZE | 1258 QM_SQC_VFT_INDEX_NUMBER | 1259 QM_SQC_VFT_VALID | 1260 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1261 } else { 1262 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1263 QM_SQC_VFT_VALID | 1264 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1265 } 1266 break; 1267 case CQC_VFT: 1268 if (qm->ver == QM_HW_V1) { 1269 tmp = QM_CQC_VFT_BUF_SIZE | 1270 QM_CQC_VFT_SQC_SIZE | 1271 QM_CQC_VFT_INDEX_NUMBER | 1272 QM_CQC_VFT_VALID; 1273 } else { 1274 tmp = QM_CQC_VFT_VALID; 1275 } 1276 break; 1277 case SHAPER_VFT: 1278 if (factor) { 1279 tmp = factor->cir_b | 1280 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1281 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1282 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1283 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1284 } 1285 break; 1286 } 1287 } 1288 1289 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1290 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1291 } 1292 1293 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1294 u32 fun_num, u32 base, u32 number) 1295 { 1296 struct qm_shaper_factor *factor = NULL; 1297 unsigned int val; 1298 int ret; 1299 1300 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1301 factor = &qm->factor[fun_num]; 1302 1303 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1304 val & BIT(0), POLL_PERIOD, 1305 POLL_TIMEOUT); 1306 if (ret) 1307 return ret; 1308 1309 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1310 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1311 if (type == SHAPER_VFT) 1312 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1313 1314 writel(fun_num, qm->io_base + QM_VFT_CFG); 1315 1316 qm_vft_data_cfg(qm, type, base, number, factor); 1317 1318 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1319 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1320 1321 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1322 val & BIT(0), POLL_PERIOD, 1323 POLL_TIMEOUT); 1324 } 1325 1326 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1327 { 1328 u32 qos = qm->factor[fun_num].func_qos; 1329 int ret, i; 1330 1331 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1332 if (ret) { 1333 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1334 return ret; 1335 } 1336 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1337 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1338 /* The base number of queue reuse for different alg type */ 1339 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1340 if (ret) 1341 return ret; 1342 } 1343 1344 return 0; 1345 } 1346 1347 /* The config should be conducted after qm_dev_mem_reset() */ 1348 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1349 u32 number) 1350 { 1351 int ret, i; 1352 1353 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1354 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1355 if (ret) 1356 return ret; 1357 } 1358 1359 /* init default shaper qos val */ 1360 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1361 ret = qm_shaper_init_vft(qm, fun_num); 1362 if (ret) 1363 goto back_sqc_cqc; 1364 } 1365 1366 return 0; 1367 back_sqc_cqc: 1368 for (i = SQC_VFT; i <= CQC_VFT; i++) 1369 qm_set_vft_common(qm, i, fun_num, 0, 0); 1370 1371 return ret; 1372 } 1373 1374 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1375 { 1376 u64 sqc_vft; 1377 int ret; 1378 1379 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1380 if (ret) 1381 return ret; 1382 1383 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1384 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1385 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1386 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1387 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1388 1389 return 0; 1390 } 1391 1392 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1393 { 1394 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1395 } 1396 1397 static void qm_hw_error_cfg(struct hisi_qm *qm) 1398 { 1399 struct hisi_qm_err_info *err_info = &qm->err_info; 1400 1401 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1402 /* clear QM hw residual error source */ 1403 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1404 1405 /* configure error type */ 1406 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1407 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1408 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1409 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1410 } 1411 1412 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1413 { 1414 u32 irq_unmask; 1415 1416 qm_hw_error_cfg(qm); 1417 1418 irq_unmask = ~qm->error_mask; 1419 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1420 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1421 } 1422 1423 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1424 { 1425 u32 irq_mask = qm->error_mask; 1426 1427 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1428 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1429 } 1430 1431 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1432 { 1433 u32 irq_unmask; 1434 1435 qm_hw_error_cfg(qm); 1436 1437 /* enable close master ooo when hardware error happened */ 1438 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1439 1440 irq_unmask = ~qm->error_mask; 1441 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1442 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1443 } 1444 1445 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1446 { 1447 u32 irq_mask = qm->error_mask; 1448 1449 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1450 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1451 1452 /* disable close master ooo when hardware error happened */ 1453 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1454 } 1455 1456 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1457 { 1458 const struct hisi_qm_hw_error *err; 1459 struct device *dev = &qm->pdev->dev; 1460 u32 reg_val, type, vf_num, qp_id; 1461 int i; 1462 1463 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1464 err = &qm_hw_error[i]; 1465 if (!(err->int_msk & error_status)) 1466 continue; 1467 1468 dev_err(dev, "%s [error status=0x%x] found\n", 1469 err->msg, err->int_msk); 1470 1471 if (err->int_msk & QM_DB_TIMEOUT) { 1472 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1473 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1474 QM_DB_TIMEOUT_TYPE_SHIFT; 1475 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1476 qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT; 1477 dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n", 1478 qm_db_timeout[type], vf_num, qp_id); 1479 } else if (err->int_msk & QM_OF_FIFO_OF) { 1480 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1481 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1482 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1483 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1484 qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT; 1485 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1486 dev_err(dev, "qm %s fifo overflow in function %u qp %u\n", 1487 qm_fifo_overflow[type], vf_num, qp_id); 1488 else 1489 dev_err(dev, "unknown error type\n"); 1490 } else if (err->int_msk & QM_AXI_RRESP_ERR) { 1491 reg_val = readl(qm->io_base + QM_ABNORMAL_INF02); 1492 if (reg_val & QM_AXI_POISON_ERR) 1493 dev_err(dev, "qm axi poison error happened\n"); 1494 } 1495 } 1496 } 1497 1498 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1499 { 1500 u32 error_status; 1501 1502 error_status = qm_get_hw_error_status(qm); 1503 if (error_status & qm->error_mask) { 1504 if (error_status & QM_ECC_MBIT) 1505 qm->err_status.is_qm_ecc_mbit = true; 1506 1507 qm_log_hw_error(qm, error_status); 1508 if (error_status & qm->err_info.qm_reset_mask) { 1509 /* Disable the same error reporting until device is recovered. */ 1510 writel(qm->err_info.nfe & (~error_status), 1511 qm->io_base + QM_RAS_NFE_ENABLE); 1512 return ACC_ERR_NEED_RESET; 1513 } 1514 1515 /* Clear error source if not need reset. */ 1516 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1517 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1518 writel(qm->err_info.ce, qm->io_base + QM_RAS_CE_ENABLE); 1519 } 1520 1521 return ACC_ERR_RECOVERED; 1522 } 1523 1524 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1525 { 1526 struct qm_mailbox mailbox; 1527 int ret; 1528 1529 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1530 mutex_lock(&qm->mailbox_lock); 1531 ret = qm_mb_nolock(qm, &mailbox); 1532 if (ret) 1533 goto err_unlock; 1534 1535 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1536 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1537 1538 err_unlock: 1539 mutex_unlock(&qm->mailbox_lock); 1540 return ret; 1541 } 1542 1543 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1544 { 1545 u32 val; 1546 1547 if (qm->fun_type == QM_HW_PF) 1548 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1549 1550 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1551 val |= QM_IFC_INT_SOURCE_MASK; 1552 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1553 } 1554 1555 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1556 { 1557 struct device *dev = &qm->pdev->dev; 1558 enum qm_ifc_cmd cmd; 1559 int ret; 1560 1561 ret = qm->ops->get_ifc(qm, &cmd, NULL, vf_id); 1562 if (ret) { 1563 dev_err(dev, "failed to get command from VF(%u)!\n", vf_id); 1564 return; 1565 } 1566 1567 switch (cmd) { 1568 case QM_VF_PREPARE_FAIL: 1569 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1570 break; 1571 case QM_VF_START_FAIL: 1572 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1573 break; 1574 case QM_VF_PREPARE_DONE: 1575 case QM_VF_START_DONE: 1576 break; 1577 default: 1578 dev_err(dev, "unsupported command(0x%x) sent by VF(%u)!\n", cmd, vf_id); 1579 break; 1580 } 1581 } 1582 1583 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1584 { 1585 struct device *dev = &qm->pdev->dev; 1586 u32 vfs_num = qm->vfs_num; 1587 int cnt = 0; 1588 int ret = 0; 1589 u64 val; 1590 u32 i; 1591 1592 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1593 return 0; 1594 1595 while (true) { 1596 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1597 /* All VFs send command to PF, break */ 1598 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1599 break; 1600 1601 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1602 ret = -EBUSY; 1603 break; 1604 } 1605 1606 msleep(QM_WAIT_DST_ACK); 1607 } 1608 1609 /* PF check VFs msg */ 1610 for (i = 1; i <= vfs_num; i++) { 1611 if (val & BIT(i)) 1612 qm_handle_vf_msg(qm, i); 1613 else 1614 dev_err(dev, "VF(%u) not ping PF!\n", i); 1615 } 1616 1617 /* PF clear interrupt to ack VFs */ 1618 qm_clear_cmd_interrupt(qm, val); 1619 1620 return ret; 1621 } 1622 1623 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1624 { 1625 u32 val; 1626 1627 val = readl(qm->io_base + QM_IFC_INT_CFG); 1628 val &= ~QM_IFC_SEND_ALL_VFS; 1629 val |= fun_num; 1630 writel(val, qm->io_base + QM_IFC_INT_CFG); 1631 1632 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1633 val |= QM_IFC_INT_SET_MASK; 1634 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1635 } 1636 1637 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1638 { 1639 u32 val; 1640 1641 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1642 val |= QM_IFC_INT_SET_MASK; 1643 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1644 } 1645 1646 static int qm_ping_single_vf(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1647 { 1648 struct device *dev = &qm->pdev->dev; 1649 int cnt = 0; 1650 u64 val; 1651 int ret; 1652 1653 ret = qm->ops->set_ifc_begin(qm, cmd, data, fun_num); 1654 if (ret) { 1655 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1656 goto err_unlock; 1657 } 1658 1659 qm_trigger_vf_interrupt(qm, fun_num); 1660 while (true) { 1661 msleep(QM_WAIT_DST_ACK); 1662 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1663 /* if VF respond, PF notifies VF successfully. */ 1664 if (!(val & BIT(fun_num))) 1665 goto err_unlock; 1666 1667 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1668 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1669 ret = -ETIMEDOUT; 1670 break; 1671 } 1672 } 1673 1674 err_unlock: 1675 qm->ops->set_ifc_end(qm); 1676 return ret; 1677 } 1678 1679 static int qm_ping_all_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 1680 { 1681 struct device *dev = &qm->pdev->dev; 1682 u32 vfs_num = qm->vfs_num; 1683 u64 val = 0; 1684 int cnt = 0; 1685 int ret; 1686 u32 i; 1687 1688 ret = qm->ops->set_ifc_begin(qm, cmd, 0, QM_MB_PING_ALL_VFS); 1689 if (ret) { 1690 dev_err(dev, "failed to send command(0x%x) to all vfs!\n", cmd); 1691 qm->ops->set_ifc_end(qm); 1692 return ret; 1693 } 1694 1695 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1696 while (true) { 1697 msleep(QM_WAIT_DST_ACK); 1698 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1699 /* If all VFs acked, PF notifies VFs successfully. */ 1700 if (!(val & GENMASK(vfs_num, 1))) { 1701 qm->ops->set_ifc_end(qm); 1702 return 0; 1703 } 1704 1705 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1706 break; 1707 } 1708 1709 qm->ops->set_ifc_end(qm); 1710 1711 /* Check which vf respond timeout. */ 1712 for (i = 1; i <= vfs_num; i++) { 1713 if (val & BIT(i)) 1714 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1715 } 1716 1717 return -ETIMEDOUT; 1718 } 1719 1720 static int qm_ping_pf(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 1721 { 1722 int cnt = 0; 1723 u32 val; 1724 int ret; 1725 1726 ret = qm->ops->set_ifc_begin(qm, cmd, 0, 0); 1727 if (ret) { 1728 dev_err(&qm->pdev->dev, "failed to send command(0x%x) to PF!\n", cmd); 1729 goto unlock; 1730 } 1731 1732 qm_trigger_pf_interrupt(qm); 1733 /* Waiting for PF response */ 1734 while (true) { 1735 msleep(QM_WAIT_DST_ACK); 1736 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1737 if (!(val & QM_IFC_INT_STATUS_MASK)) 1738 break; 1739 1740 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1741 ret = -ETIMEDOUT; 1742 break; 1743 } 1744 } 1745 1746 unlock: 1747 qm->ops->set_ifc_end(qm); 1748 1749 return ret; 1750 } 1751 1752 static int qm_drain_qm(struct hisi_qm *qm) 1753 { 1754 return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0); 1755 } 1756 1757 static int qm_stop_qp(struct hisi_qp *qp) 1758 { 1759 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1760 } 1761 1762 static int qm_set_msi(struct hisi_qm *qm, bool set) 1763 { 1764 struct pci_dev *pdev = qm->pdev; 1765 1766 if (set) { 1767 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1768 0); 1769 } else { 1770 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1771 ACC_PEH_MSI_DISABLE); 1772 if (qm->err_status.is_qm_ecc_mbit || 1773 qm->err_status.is_dev_ecc_mbit) 1774 return 0; 1775 1776 mdelay(1); 1777 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1778 return -EFAULT; 1779 } 1780 1781 return 0; 1782 } 1783 1784 static void qm_wait_msi_finish(struct hisi_qm *qm) 1785 { 1786 struct pci_dev *pdev = qm->pdev; 1787 u32 cmd = ~0; 1788 int cnt = 0; 1789 u32 val; 1790 int ret; 1791 1792 while (true) { 1793 pci_read_config_dword(pdev, pdev->msi_cap + 1794 PCI_MSI_PENDING_64, &cmd); 1795 if (!cmd) 1796 break; 1797 1798 if (++cnt > MAX_WAIT_COUNTS) { 1799 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1800 break; 1801 } 1802 1803 udelay(1); 1804 } 1805 1806 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1807 val, !(val & QM_PEH_DFX_MASK), 1808 POLL_PERIOD, POLL_TIMEOUT); 1809 if (ret) 1810 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1811 1812 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1813 val, !(val & QM_PEH_MSI_FINISH_MASK), 1814 POLL_PERIOD, POLL_TIMEOUT); 1815 if (ret) 1816 pci_warn(pdev, "failed to finish MSI operation!\n"); 1817 } 1818 1819 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1820 { 1821 struct pci_dev *pdev = qm->pdev; 1822 int ret = -ETIMEDOUT; 1823 u32 cmd, i; 1824 1825 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1826 if (set) 1827 cmd |= QM_MSI_CAP_ENABLE; 1828 else 1829 cmd &= ~QM_MSI_CAP_ENABLE; 1830 1831 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1832 if (set) { 1833 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1834 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1835 if (cmd & QM_MSI_CAP_ENABLE) 1836 return 0; 1837 1838 udelay(1); 1839 } 1840 } else { 1841 udelay(WAIT_PERIOD_US_MIN); 1842 qm_wait_msi_finish(qm); 1843 ret = 0; 1844 } 1845 1846 return ret; 1847 } 1848 1849 static int qm_set_ifc_begin_v3(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1850 { 1851 struct qm_mailbox mailbox; 1852 u64 msg; 1853 1854 msg = cmd | (u64)data << QM_IFC_DATA_SHIFT; 1855 1856 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, msg, fun_num, 0); 1857 mutex_lock(&qm->mailbox_lock); 1858 return qm_mb_nolock(qm, &mailbox); 1859 } 1860 1861 static void qm_set_ifc_end_v3(struct hisi_qm *qm) 1862 { 1863 mutex_unlock(&qm->mailbox_lock); 1864 } 1865 1866 static int qm_get_ifc_v3(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num) 1867 { 1868 u64 msg; 1869 int ret; 1870 1871 ret = qm_get_mb_cmd(qm, &msg, fun_num); 1872 if (ret) 1873 return ret; 1874 1875 *cmd = msg & QM_IFC_CMD_MASK; 1876 1877 if (data) 1878 *data = msg >> QM_IFC_DATA_SHIFT; 1879 1880 return 0; 1881 } 1882 1883 static int qm_set_ifc_begin_v4(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1884 { 1885 uintptr_t offset; 1886 u64 msg; 1887 1888 if (qm->fun_type == QM_HW_PF) 1889 offset = QM_PF2VF_PF_W; 1890 else 1891 offset = QM_VF2PF_VF_W; 1892 1893 msg = cmd | (u64)data << QM_IFC_DATA_SHIFT; 1894 1895 mutex_lock(&qm->ifc_lock); 1896 writeq(msg, qm->io_base + offset); 1897 1898 return 0; 1899 } 1900 1901 static void qm_set_ifc_end_v4(struct hisi_qm *qm) 1902 { 1903 mutex_unlock(&qm->ifc_lock); 1904 } 1905 1906 static u64 qm_get_ifc_pf(struct hisi_qm *qm, u32 fun_num) 1907 { 1908 uintptr_t offset; 1909 1910 offset = QM_VF2PF_PF_R + QM_VF2PF_REG_SIZE * fun_num; 1911 1912 return (u64)readl(qm->io_base + offset); 1913 } 1914 1915 static u64 qm_get_ifc_vf(struct hisi_qm *qm) 1916 { 1917 return readq(qm->io_base + QM_PF2VF_VF_R); 1918 } 1919 1920 static int qm_get_ifc_v4(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num) 1921 { 1922 u64 msg; 1923 1924 if (qm->fun_type == QM_HW_PF) 1925 msg = qm_get_ifc_pf(qm, fun_num); 1926 else 1927 msg = qm_get_ifc_vf(qm); 1928 1929 *cmd = msg & QM_IFC_CMD_MASK; 1930 1931 if (data) 1932 *data = msg >> QM_IFC_DATA_SHIFT; 1933 1934 return 0; 1935 } 1936 1937 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1938 .qm_db = qm_db_v1, 1939 .hw_error_init = qm_hw_error_init_v1, 1940 .set_msi = qm_set_msi, 1941 }; 1942 1943 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1944 .get_vft = qm_get_vft_v2, 1945 .qm_db = qm_db_v2, 1946 .hw_error_init = qm_hw_error_init_v2, 1947 .hw_error_uninit = qm_hw_error_uninit_v2, 1948 .hw_error_handle = qm_hw_error_handle_v2, 1949 .set_msi = qm_set_msi, 1950 }; 1951 1952 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1953 .get_vft = qm_get_vft_v2, 1954 .qm_db = qm_db_v2, 1955 .hw_error_init = qm_hw_error_init_v3, 1956 .hw_error_uninit = qm_hw_error_uninit_v3, 1957 .hw_error_handle = qm_hw_error_handle_v2, 1958 .set_msi = qm_set_msi_v3, 1959 .set_ifc_begin = qm_set_ifc_begin_v3, 1960 .set_ifc_end = qm_set_ifc_end_v3, 1961 .get_ifc = qm_get_ifc_v3, 1962 }; 1963 1964 static const struct hisi_qm_hw_ops qm_hw_ops_v4 = { 1965 .get_vft = qm_get_vft_v2, 1966 .qm_db = qm_db_v2, 1967 .hw_error_init = qm_hw_error_init_v3, 1968 .hw_error_uninit = qm_hw_error_uninit_v3, 1969 .hw_error_handle = qm_hw_error_handle_v2, 1970 .set_msi = qm_set_msi_v3, 1971 .set_ifc_begin = qm_set_ifc_begin_v4, 1972 .set_ifc_end = qm_set_ifc_end_v4, 1973 .get_ifc = qm_get_ifc_v4, 1974 }; 1975 1976 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1977 { 1978 struct hisi_qp_status *qp_status = &qp->qp_status; 1979 u16 sq_tail = qp_status->sq_tail; 1980 1981 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1982 return NULL; 1983 1984 return qp->sqe + sq_tail * qp->qm->sqe_size; 1985 } 1986 1987 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1988 { 1989 u64 *addr; 1990 1991 /* Use last 64 bits of DUS to reset status. */ 1992 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1993 *addr = 0; 1994 } 1995 1996 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1997 { 1998 struct device *dev = &qm->pdev->dev; 1999 struct hisi_qp *qp; 2000 int qp_id; 2001 2002 if (atomic_read(&qm->status.flags) == QM_STOP) { 2003 dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n"); 2004 return ERR_PTR(-EPERM); 2005 } 2006 2007 if (qm->qp_in_used == qm->qp_num) { 2008 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2009 qm->qp_num); 2010 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2011 return ERR_PTR(-EBUSY); 2012 } 2013 2014 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2015 if (qp_id < 0) { 2016 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2017 qm->qp_num); 2018 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2019 return ERR_PTR(-EBUSY); 2020 } 2021 2022 qp = &qm->qp_array[qp_id]; 2023 hisi_qm_unset_hw_reset(qp); 2024 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 2025 2026 qp->event_cb = NULL; 2027 qp->req_cb = NULL; 2028 qp->qp_id = qp_id; 2029 qp->alg_type = alg_type; 2030 qp->is_in_kernel = true; 2031 qm->qp_in_used++; 2032 2033 return qp; 2034 } 2035 2036 /** 2037 * hisi_qm_create_qp() - Create a queue pair from qm. 2038 * @qm: The qm we create a qp from. 2039 * @alg_type: Accelerator specific algorithm type in sqc. 2040 * 2041 * Return created qp, negative error code if failed. 2042 */ 2043 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2044 { 2045 struct hisi_qp *qp; 2046 int ret; 2047 2048 ret = qm_pm_get_sync(qm); 2049 if (ret) 2050 return ERR_PTR(ret); 2051 2052 down_write(&qm->qps_lock); 2053 qp = qm_create_qp_nolock(qm, alg_type); 2054 up_write(&qm->qps_lock); 2055 2056 if (IS_ERR(qp)) 2057 qm_pm_put_sync(qm); 2058 2059 return qp; 2060 } 2061 2062 /** 2063 * hisi_qm_release_qp() - Release a qp back to its qm. 2064 * @qp: The qp we want to release. 2065 * 2066 * This function releases the resource of a qp. 2067 */ 2068 static void hisi_qm_release_qp(struct hisi_qp *qp) 2069 { 2070 struct hisi_qm *qm = qp->qm; 2071 2072 down_write(&qm->qps_lock); 2073 2074 qm->qp_in_used--; 2075 idr_remove(&qm->qp_idr, qp->qp_id); 2076 2077 up_write(&qm->qps_lock); 2078 2079 qm_pm_put_sync(qm); 2080 } 2081 2082 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2083 { 2084 struct hisi_qm *qm = qp->qm; 2085 enum qm_hw_ver ver = qm->ver; 2086 struct qm_sqc sqc = {0}; 2087 2088 if (ver == QM_HW_V1) { 2089 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2090 sqc.w8 = cpu_to_le16(qp->sq_depth - 1); 2091 } else { 2092 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 2093 sqc.w8 = 0; /* rand_qc */ 2094 } 2095 sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2096 sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma)); 2097 sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma)); 2098 sqc.cq_num = cpu_to_le16(qp_id); 2099 sqc.pasid = cpu_to_le16(pasid); 2100 2101 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2102 sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2103 QM_QC_PASID_ENABLE_SHIFT); 2104 2105 return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0); 2106 } 2107 2108 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2109 { 2110 struct hisi_qm *qm = qp->qm; 2111 enum qm_hw_ver ver = qm->ver; 2112 struct qm_cqc cqc = {0}; 2113 2114 if (ver == QM_HW_V1) { 2115 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); 2116 cqc.w8 = cpu_to_le16(qp->cq_depth - 1); 2117 } else { 2118 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2119 cqc.w8 = 0; /* rand_qc */ 2120 } 2121 /* 2122 * Enable request finishing interrupts defaultly. 2123 * So, there will be some interrupts until disabling 2124 * this. 2125 */ 2126 cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2127 cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma)); 2128 cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma)); 2129 cqc.pasid = cpu_to_le16(pasid); 2130 2131 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2132 cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2133 2134 return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0); 2135 } 2136 2137 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2138 { 2139 int ret; 2140 2141 qm_init_qp_status(qp); 2142 2143 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2144 if (ret) 2145 return ret; 2146 2147 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2148 } 2149 2150 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2151 { 2152 struct hisi_qm *qm = qp->qm; 2153 struct device *dev = &qm->pdev->dev; 2154 int qp_id = qp->qp_id; 2155 u32 pasid = arg; 2156 int ret; 2157 2158 if (atomic_read(&qm->status.flags) == QM_STOP) { 2159 dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n"); 2160 return -EPERM; 2161 } 2162 2163 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2164 if (ret) 2165 return ret; 2166 2167 atomic_set(&qp->qp_status.flags, QP_START); 2168 dev_dbg(dev, "queue %d started\n", qp_id); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * hisi_qm_start_qp() - Start a qp into running. 2175 * @qp: The qp we want to start to run. 2176 * @arg: Accelerator specific argument. 2177 * 2178 * After this function, qp can receive request from user. Return 0 if 2179 * successful, negative error code if failed. 2180 */ 2181 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2182 { 2183 struct hisi_qm *qm = qp->qm; 2184 int ret; 2185 2186 down_write(&qm->qps_lock); 2187 ret = qm_start_qp_nolock(qp, arg); 2188 up_write(&qm->qps_lock); 2189 2190 return ret; 2191 } 2192 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2193 2194 /** 2195 * qp_stop_fail_cb() - call request cb. 2196 * @qp: stopped failed qp. 2197 * 2198 * Callback function should be called whether task completed or not. 2199 */ 2200 static void qp_stop_fail_cb(struct hisi_qp *qp) 2201 { 2202 int qp_used = atomic_read(&qp->qp_status.used); 2203 u16 cur_tail = qp->qp_status.sq_tail; 2204 u16 sq_depth = qp->sq_depth; 2205 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2206 struct hisi_qm *qm = qp->qm; 2207 u16 pos; 2208 int i; 2209 2210 for (i = 0; i < qp_used; i++) { 2211 pos = (i + cur_head) % sq_depth; 2212 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2213 atomic_dec(&qp->qp_status.used); 2214 } 2215 } 2216 2217 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id) 2218 { 2219 struct device *dev = &qm->pdev->dev; 2220 struct qm_sqc sqc; 2221 struct qm_cqc cqc; 2222 int ret, i = 0; 2223 2224 while (++i) { 2225 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1); 2226 if (ret) { 2227 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2228 *state = QM_DUMP_SQC_FAIL; 2229 return ret; 2230 } 2231 2232 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1); 2233 if (ret) { 2234 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2235 *state = QM_DUMP_CQC_FAIL; 2236 return ret; 2237 } 2238 2239 if ((sqc.tail == cqc.tail) && 2240 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2241 break; 2242 2243 if (i == MAX_WAIT_COUNTS) { 2244 dev_err(dev, "Fail to empty queue %u!\n", qp_id); 2245 *state = QM_STOP_QUEUE_FAIL; 2246 return -ETIMEDOUT; 2247 } 2248 2249 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2250 } 2251 2252 return 0; 2253 } 2254 2255 /** 2256 * qm_drain_qp() - Drain a qp. 2257 * @qp: The qp we want to drain. 2258 * 2259 * If the device does not support stopping queue by sending mailbox, 2260 * determine whether the queue is cleared by judging the tail pointers of 2261 * sq and cq. 2262 */ 2263 static int qm_drain_qp(struct hisi_qp *qp) 2264 { 2265 struct hisi_qm *qm = qp->qm; 2266 u32 state = 0; 2267 int ret; 2268 2269 /* No need to judge if master OOO is blocked. */ 2270 if (qm_check_dev_error(qm)) 2271 return 0; 2272 2273 /* HW V3 supports drain qp by device */ 2274 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2275 ret = qm_stop_qp(qp); 2276 if (ret) { 2277 dev_err(&qm->pdev->dev, "Failed to stop qp!\n"); 2278 state = QM_STOP_QUEUE_FAIL; 2279 goto set_dev_state; 2280 } 2281 return ret; 2282 } 2283 2284 ret = qm_wait_qp_empty(qm, &state, qp->qp_id); 2285 if (ret) 2286 goto set_dev_state; 2287 2288 return 0; 2289 2290 set_dev_state: 2291 if (qm->debug.dev_dfx.dev_timeout) 2292 qm->debug.dev_dfx.dev_state = state; 2293 2294 return ret; 2295 } 2296 2297 static void qm_stop_qp_nolock(struct hisi_qp *qp) 2298 { 2299 struct hisi_qm *qm = qp->qm; 2300 struct device *dev = &qm->pdev->dev; 2301 int ret; 2302 2303 /* 2304 * It is allowed to stop and release qp when reset, If the qp is 2305 * stopped when reset but still want to be released then, the 2306 * is_resetting flag should be set negative so that this qp will not 2307 * be restarted after reset. 2308 */ 2309 if (atomic_read(&qp->qp_status.flags) != QP_START) { 2310 qp->is_resetting = false; 2311 return; 2312 } 2313 2314 atomic_set(&qp->qp_status.flags, QP_STOP); 2315 2316 /* V3 supports direct stop function when FLR prepare */ 2317 if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) { 2318 ret = qm_drain_qp(qp); 2319 if (ret) 2320 dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id); 2321 } 2322 2323 flush_workqueue(qm->wq); 2324 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2325 qp_stop_fail_cb(qp); 2326 2327 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2328 } 2329 2330 /** 2331 * hisi_qm_stop_qp() - Stop a qp in qm. 2332 * @qp: The qp we want to stop. 2333 * 2334 * This function is reverse of hisi_qm_start_qp. 2335 */ 2336 void hisi_qm_stop_qp(struct hisi_qp *qp) 2337 { 2338 down_write(&qp->qm->qps_lock); 2339 qm_stop_qp_nolock(qp); 2340 up_write(&qp->qm->qps_lock); 2341 } 2342 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2343 2344 /** 2345 * hisi_qp_send() - Queue up a task in the hardware queue. 2346 * @qp: The qp in which to put the message. 2347 * @msg: The message. 2348 * 2349 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2350 * if qp related qm is resetting. 2351 * 2352 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2353 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2354 * reset may happen, we have no lock here considering performance. This 2355 * causes current qm_db sending fail or can not receive sended sqe. QM 2356 * sync/async receive function should handle the error sqe. ACC reset 2357 * done function should clear used sqe to 0. 2358 */ 2359 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2360 { 2361 struct hisi_qp_status *qp_status = &qp->qp_status; 2362 u16 sq_tail = qp_status->sq_tail; 2363 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2364 void *sqe = qm_get_avail_sqe(qp); 2365 2366 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2367 atomic_read(&qp->qm->status.flags) == QM_STOP || 2368 qp->is_resetting)) { 2369 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2370 return -EAGAIN; 2371 } 2372 2373 if (!sqe) 2374 return -EBUSY; 2375 2376 memcpy(sqe, msg, qp->qm->sqe_size); 2377 2378 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2379 atomic_inc(&qp->qp_status.used); 2380 qp_status->sq_tail = sq_tail_next; 2381 2382 return 0; 2383 } 2384 EXPORT_SYMBOL_GPL(hisi_qp_send); 2385 2386 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2387 { 2388 unsigned int val; 2389 2390 if (qm->ver == QM_HW_V1) 2391 return; 2392 2393 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2394 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2395 val, val & BIT(0), POLL_PERIOD, 2396 POLL_TIMEOUT)) 2397 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2398 } 2399 2400 static void qm_qp_event_notifier(struct hisi_qp *qp) 2401 { 2402 wake_up_interruptible(&qp->uacce_q->wait); 2403 } 2404 2405 /* This function returns free number of qp in qm. */ 2406 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2407 { 2408 struct hisi_qm *qm = uacce->priv; 2409 int ret; 2410 2411 down_read(&qm->qps_lock); 2412 ret = qm->qp_num - qm->qp_in_used; 2413 up_read(&qm->qps_lock); 2414 2415 return ret; 2416 } 2417 2418 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2419 { 2420 int i; 2421 2422 for (i = 0; i < qm->qp_num; i++) 2423 qm_set_qp_disable(&qm->qp_array[i], offset); 2424 } 2425 2426 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2427 unsigned long arg, 2428 struct uacce_queue *q) 2429 { 2430 struct hisi_qm *qm = uacce->priv; 2431 struct hisi_qp *qp; 2432 u8 alg_type = 0; 2433 2434 qp = hisi_qm_create_qp(qm, alg_type); 2435 if (IS_ERR(qp)) 2436 return PTR_ERR(qp); 2437 2438 q->priv = qp; 2439 q->uacce = uacce; 2440 qp->uacce_q = q; 2441 qp->event_cb = qm_qp_event_notifier; 2442 qp->pasid = arg; 2443 qp->is_in_kernel = false; 2444 2445 return 0; 2446 } 2447 2448 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2449 { 2450 struct hisi_qp *qp = q->priv; 2451 2452 hisi_qm_release_qp(qp); 2453 } 2454 2455 /* map sq/cq/doorbell to user space */ 2456 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2457 struct vm_area_struct *vma, 2458 struct uacce_qfile_region *qfr) 2459 { 2460 struct hisi_qp *qp = q->priv; 2461 struct hisi_qm *qm = qp->qm; 2462 resource_size_t phys_base = qm->db_phys_base + 2463 qp->qp_id * qm->db_interval; 2464 size_t sz = vma->vm_end - vma->vm_start; 2465 struct pci_dev *pdev = qm->pdev; 2466 struct device *dev = &pdev->dev; 2467 unsigned long vm_pgoff; 2468 int ret; 2469 2470 switch (qfr->type) { 2471 case UACCE_QFRT_MMIO: 2472 if (qm->ver == QM_HW_V1) { 2473 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2474 return -EINVAL; 2475 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2476 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2477 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2478 return -EINVAL; 2479 } else { 2480 if (sz > qm->db_interval) 2481 return -EINVAL; 2482 } 2483 2484 vm_flags_set(vma, VM_IO); 2485 2486 return remap_pfn_range(vma, vma->vm_start, 2487 phys_base >> PAGE_SHIFT, 2488 sz, pgprot_noncached(vma->vm_page_prot)); 2489 case UACCE_QFRT_DUS: 2490 if (sz != qp->qdma.size) 2491 return -EINVAL; 2492 2493 /* 2494 * dma_mmap_coherent() requires vm_pgoff as 0 2495 * restore vm_pfoff to initial value for mmap() 2496 */ 2497 vm_pgoff = vma->vm_pgoff; 2498 vma->vm_pgoff = 0; 2499 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2500 qp->qdma.dma, sz); 2501 vma->vm_pgoff = vm_pgoff; 2502 return ret; 2503 2504 default: 2505 return -EINVAL; 2506 } 2507 } 2508 2509 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2510 { 2511 struct hisi_qp *qp = q->priv; 2512 2513 return hisi_qm_start_qp(qp, qp->pasid); 2514 } 2515 2516 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2517 { 2518 struct hisi_qp *qp = q->priv; 2519 struct hisi_qm *qm = qp->qm; 2520 struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx; 2521 u32 i = 0; 2522 2523 hisi_qm_stop_qp(qp); 2524 2525 if (!dev_dfx->dev_timeout || !dev_dfx->dev_state) 2526 return; 2527 2528 /* 2529 * After the queue fails to be stopped, 2530 * wait for a period of time before releasing the queue. 2531 */ 2532 while (++i) { 2533 msleep(WAIT_PERIOD); 2534 2535 /* Since dev_timeout maybe modified, check i >= dev_timeout */ 2536 if (i >= dev_dfx->dev_timeout) { 2537 dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n", 2538 qp->qp_id, dev_dfx->dev_state); 2539 dev_dfx->dev_state = QM_FINISH_WAIT; 2540 break; 2541 } 2542 } 2543 } 2544 2545 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2546 { 2547 struct hisi_qp *qp = q->priv; 2548 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2549 int updated = 0; 2550 2551 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2552 /* make sure to read data from memory */ 2553 dma_rmb(); 2554 qm_cq_head_update(qp); 2555 cqe = qp->cqe + qp->qp_status.cq_head; 2556 updated = 1; 2557 } 2558 2559 return updated; 2560 } 2561 2562 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2563 { 2564 struct hisi_qm *qm = q->uacce->priv; 2565 struct hisi_qp *qp = q->priv; 2566 2567 down_write(&qm->qps_lock); 2568 qp->alg_type = type; 2569 up_write(&qm->qps_lock); 2570 } 2571 2572 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2573 unsigned long arg) 2574 { 2575 struct hisi_qp *qp = q->priv; 2576 struct hisi_qp_info qp_info; 2577 struct hisi_qp_ctx qp_ctx; 2578 2579 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2580 if (copy_from_user(&qp_ctx, (void __user *)arg, 2581 sizeof(struct hisi_qp_ctx))) 2582 return -EFAULT; 2583 2584 if (qp_ctx.qc_type > QM_MAX_QC_TYPE) 2585 return -EINVAL; 2586 2587 qm_set_sqctype(q, qp_ctx.qc_type); 2588 qp_ctx.id = qp->qp_id; 2589 2590 if (copy_to_user((void __user *)arg, &qp_ctx, 2591 sizeof(struct hisi_qp_ctx))) 2592 return -EFAULT; 2593 2594 return 0; 2595 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2596 if (copy_from_user(&qp_info, (void __user *)arg, 2597 sizeof(struct hisi_qp_info))) 2598 return -EFAULT; 2599 2600 qp_info.sqe_size = qp->qm->sqe_size; 2601 qp_info.sq_depth = qp->sq_depth; 2602 qp_info.cq_depth = qp->cq_depth; 2603 2604 if (copy_to_user((void __user *)arg, &qp_info, 2605 sizeof(struct hisi_qp_info))) 2606 return -EFAULT; 2607 2608 return 0; 2609 } 2610 2611 return -EINVAL; 2612 } 2613 2614 /** 2615 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2616 * according to user's configuration of error threshold. 2617 * @qm: the uacce device 2618 */ 2619 static int qm_hw_err_isolate(struct hisi_qm *qm) 2620 { 2621 struct qm_hw_err *err, *tmp, *hw_err; 2622 struct qm_err_isolate *isolate; 2623 u32 count = 0; 2624 2625 isolate = &qm->isolate_data; 2626 2627 #define SECONDS_PER_HOUR 3600 2628 2629 /* All the hw errs are processed by PF driver */ 2630 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2631 return 0; 2632 2633 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2634 if (!hw_err) 2635 return -ENOMEM; 2636 2637 /* 2638 * Time-stamp every slot AER error. Then check the AER error log when the 2639 * next device AER error occurred. if the device slot AER error count exceeds 2640 * the setting error threshold in one hour, the isolated state will be set 2641 * to true. And the AER error logs that exceed one hour will be cleared. 2642 */ 2643 mutex_lock(&isolate->isolate_lock); 2644 hw_err->timestamp = jiffies; 2645 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2646 if ((hw_err->timestamp - err->timestamp) / HZ > 2647 SECONDS_PER_HOUR) { 2648 list_del(&err->list); 2649 kfree(err); 2650 } else { 2651 count++; 2652 } 2653 } 2654 list_add(&hw_err->list, &isolate->qm_hw_errs); 2655 mutex_unlock(&isolate->isolate_lock); 2656 2657 if (count >= isolate->err_threshold) 2658 isolate->is_isolate = true; 2659 2660 return 0; 2661 } 2662 2663 static void qm_hw_err_destroy(struct hisi_qm *qm) 2664 { 2665 struct qm_hw_err *err, *tmp; 2666 2667 mutex_lock(&qm->isolate_data.isolate_lock); 2668 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2669 list_del(&err->list); 2670 kfree(err); 2671 } 2672 mutex_unlock(&qm->isolate_data.isolate_lock); 2673 } 2674 2675 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2676 { 2677 struct hisi_qm *qm = uacce->priv; 2678 struct hisi_qm *pf_qm; 2679 2680 if (uacce->is_vf) 2681 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2682 else 2683 pf_qm = qm; 2684 2685 return pf_qm->isolate_data.is_isolate ? 2686 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2687 } 2688 2689 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2690 { 2691 struct hisi_qm *qm = uacce->priv; 2692 2693 /* Must be set by PF */ 2694 if (uacce->is_vf) 2695 return -EPERM; 2696 2697 if (qm->isolate_data.is_isolate) 2698 return -EPERM; 2699 2700 qm->isolate_data.err_threshold = num; 2701 2702 /* After the policy is updated, need to reset the hardware err list */ 2703 qm_hw_err_destroy(qm); 2704 2705 return 0; 2706 } 2707 2708 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2709 { 2710 struct hisi_qm *qm = uacce->priv; 2711 struct hisi_qm *pf_qm; 2712 2713 if (uacce->is_vf) { 2714 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2715 return pf_qm->isolate_data.err_threshold; 2716 } 2717 2718 return qm->isolate_data.err_threshold; 2719 } 2720 2721 static const struct uacce_ops uacce_qm_ops = { 2722 .get_available_instances = hisi_qm_get_available_instances, 2723 .get_queue = hisi_qm_uacce_get_queue, 2724 .put_queue = hisi_qm_uacce_put_queue, 2725 .start_queue = hisi_qm_uacce_start_queue, 2726 .stop_queue = hisi_qm_uacce_stop_queue, 2727 .mmap = hisi_qm_uacce_mmap, 2728 .ioctl = hisi_qm_uacce_ioctl, 2729 .is_q_updated = hisi_qm_is_q_updated, 2730 .get_isolate_state = hisi_qm_get_isolate_state, 2731 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2732 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2733 }; 2734 2735 static void qm_remove_uacce(struct hisi_qm *qm) 2736 { 2737 struct uacce_device *uacce = qm->uacce; 2738 2739 if (qm->use_sva) { 2740 qm_hw_err_destroy(qm); 2741 uacce_remove(uacce); 2742 qm->uacce = NULL; 2743 } 2744 } 2745 2746 static int qm_alloc_uacce(struct hisi_qm *qm) 2747 { 2748 struct pci_dev *pdev = qm->pdev; 2749 struct uacce_device *uacce; 2750 unsigned long mmio_page_nr; 2751 unsigned long dus_page_nr; 2752 u16 sq_depth, cq_depth; 2753 struct uacce_interface interface = { 2754 .flags = UACCE_DEV_SVA, 2755 .ops = &uacce_qm_ops, 2756 }; 2757 int ret; 2758 2759 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2760 sizeof(interface.name)); 2761 if (ret < 0) 2762 return -ENAMETOOLONG; 2763 2764 uacce = uacce_alloc(&pdev->dev, &interface); 2765 if (IS_ERR(uacce)) 2766 return PTR_ERR(uacce); 2767 2768 if (uacce->flags & UACCE_DEV_SVA) { 2769 qm->use_sva = true; 2770 } else { 2771 /* only consider sva case */ 2772 qm_remove_uacce(qm); 2773 return -EINVAL; 2774 } 2775 2776 uacce->is_vf = pdev->is_virtfn; 2777 uacce->priv = qm; 2778 2779 if (qm->ver == QM_HW_V1) 2780 uacce->api_ver = HISI_QM_API_VER_BASE; 2781 else if (qm->ver == QM_HW_V2) 2782 uacce->api_ver = HISI_QM_API_VER2_BASE; 2783 else 2784 uacce->api_ver = HISI_QM_API_VER3_BASE; 2785 2786 if (qm->ver == QM_HW_V1) 2787 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2788 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2789 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2790 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2791 else 2792 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2793 2794 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2795 2796 /* Add one more page for device or qp status */ 2797 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2798 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2799 PAGE_SHIFT; 2800 2801 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2802 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2803 2804 qm->uacce = uacce; 2805 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2806 mutex_init(&qm->isolate_data.isolate_lock); 2807 2808 return 0; 2809 } 2810 2811 /** 2812 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2813 * there is user on the QM, return failure without doing anything. 2814 * @qm: The qm needed to be fronzen. 2815 * 2816 * This function frozes QM, then we can do SRIOV disabling. 2817 */ 2818 static int qm_frozen(struct hisi_qm *qm) 2819 { 2820 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2821 return 0; 2822 2823 down_write(&qm->qps_lock); 2824 2825 if (!qm->qp_in_used) { 2826 qm->qp_in_used = qm->qp_num; 2827 up_write(&qm->qps_lock); 2828 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2829 return 0; 2830 } 2831 2832 up_write(&qm->qps_lock); 2833 2834 return -EBUSY; 2835 } 2836 2837 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2838 struct hisi_qm_list *qm_list) 2839 { 2840 struct hisi_qm *qm, *vf_qm; 2841 struct pci_dev *dev; 2842 int ret = 0; 2843 2844 if (!qm_list || !pdev) 2845 return -EINVAL; 2846 2847 /* Try to frozen all the VFs as disable SRIOV */ 2848 mutex_lock(&qm_list->lock); 2849 list_for_each_entry(qm, &qm_list->list, list) { 2850 dev = qm->pdev; 2851 if (dev == pdev) 2852 continue; 2853 if (pci_physfn(dev) == pdev) { 2854 vf_qm = pci_get_drvdata(dev); 2855 ret = qm_frozen(vf_qm); 2856 if (ret) 2857 goto frozen_fail; 2858 } 2859 } 2860 2861 frozen_fail: 2862 mutex_unlock(&qm_list->lock); 2863 2864 return ret; 2865 } 2866 2867 /** 2868 * hisi_qm_wait_task_finish() - Wait until the task is finished 2869 * when removing the driver. 2870 * @qm: The qm needed to wait for the task to finish. 2871 * @qm_list: The list of all available devices. 2872 */ 2873 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2874 { 2875 while (qm_frozen(qm) || 2876 ((qm->fun_type == QM_HW_PF) && 2877 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2878 msleep(WAIT_PERIOD); 2879 } 2880 2881 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2882 test_bit(QM_RESETTING, &qm->misc_ctl)) 2883 msleep(WAIT_PERIOD); 2884 2885 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2886 flush_work(&qm->cmd_process); 2887 2888 udelay(REMOVE_WAIT_DELAY); 2889 } 2890 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2891 2892 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2893 { 2894 struct device *dev = &qm->pdev->dev; 2895 struct qm_dma *qdma; 2896 int i; 2897 2898 for (i = num - 1; i >= 0; i--) { 2899 qdma = &qm->qp_array[i].qdma; 2900 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2901 kfree(qm->poll_data[i].qp_finish_id); 2902 } 2903 2904 kfree(qm->poll_data); 2905 kfree(qm->qp_array); 2906 } 2907 2908 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2909 u16 sq_depth, u16 cq_depth) 2910 { 2911 struct device *dev = &qm->pdev->dev; 2912 size_t off = qm->sqe_size * sq_depth; 2913 struct hisi_qp *qp; 2914 int ret = -ENOMEM; 2915 2916 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2917 GFP_KERNEL); 2918 if (!qm->poll_data[id].qp_finish_id) 2919 return -ENOMEM; 2920 2921 qp = &qm->qp_array[id]; 2922 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2923 GFP_KERNEL); 2924 if (!qp->qdma.va) 2925 goto err_free_qp_finish_id; 2926 2927 qp->sqe = qp->qdma.va; 2928 qp->sqe_dma = qp->qdma.dma; 2929 qp->cqe = qp->qdma.va + off; 2930 qp->cqe_dma = qp->qdma.dma + off; 2931 qp->qdma.size = dma_size; 2932 qp->sq_depth = sq_depth; 2933 qp->cq_depth = cq_depth; 2934 qp->qm = qm; 2935 qp->qp_id = id; 2936 2937 return 0; 2938 2939 err_free_qp_finish_id: 2940 kfree(qm->poll_data[id].qp_finish_id); 2941 return ret; 2942 } 2943 2944 static void hisi_qm_pre_init(struct hisi_qm *qm) 2945 { 2946 struct pci_dev *pdev = qm->pdev; 2947 2948 if (qm->ver == QM_HW_V1) 2949 qm->ops = &qm_hw_ops_v1; 2950 else if (qm->ver == QM_HW_V2) 2951 qm->ops = &qm_hw_ops_v2; 2952 else if (qm->ver == QM_HW_V3) 2953 qm->ops = &qm_hw_ops_v3; 2954 else 2955 qm->ops = &qm_hw_ops_v4; 2956 2957 pci_set_drvdata(pdev, qm); 2958 mutex_init(&qm->mailbox_lock); 2959 mutex_init(&qm->ifc_lock); 2960 init_rwsem(&qm->qps_lock); 2961 qm->qp_in_used = 0; 2962 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2963 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2964 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2965 } 2966 } 2967 2968 static void qm_cmd_uninit(struct hisi_qm *qm) 2969 { 2970 u32 val; 2971 2972 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2973 return; 2974 2975 val = readl(qm->io_base + QM_IFC_INT_MASK); 2976 val |= QM_IFC_INT_DISABLE; 2977 writel(val, qm->io_base + QM_IFC_INT_MASK); 2978 } 2979 2980 static void qm_cmd_init(struct hisi_qm *qm) 2981 { 2982 u32 val; 2983 2984 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2985 return; 2986 2987 /* Clear communication interrupt source */ 2988 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2989 2990 /* Enable pf to vf communication reg. */ 2991 val = readl(qm->io_base + QM_IFC_INT_MASK); 2992 val &= ~QM_IFC_INT_DISABLE; 2993 writel(val, qm->io_base + QM_IFC_INT_MASK); 2994 } 2995 2996 static void qm_put_pci_res(struct hisi_qm *qm) 2997 { 2998 struct pci_dev *pdev = qm->pdev; 2999 3000 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 3001 iounmap(qm->db_io_base); 3002 3003 iounmap(qm->io_base); 3004 pci_release_mem_regions(pdev); 3005 } 3006 3007 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3008 { 3009 struct pci_dev *pdev = qm->pdev; 3010 3011 pci_free_irq_vectors(pdev); 3012 qm_put_pci_res(qm); 3013 pci_disable_device(pdev); 3014 } 3015 3016 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 3017 { 3018 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 3019 writel(state, qm->io_base + QM_VF_STATE); 3020 } 3021 3022 static void hisi_qm_unint_work(struct hisi_qm *qm) 3023 { 3024 destroy_workqueue(qm->wq); 3025 } 3026 3027 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm) 3028 { 3029 struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma; 3030 struct device *dev = &qm->pdev->dev; 3031 3032 dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma); 3033 } 3034 3035 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 3036 { 3037 struct device *dev = &qm->pdev->dev; 3038 3039 hisi_qp_memory_uninit(qm, qm->qp_num); 3040 hisi_qm_free_rsv_buf(qm); 3041 if (qm->qdma.va) { 3042 hisi_qm_cache_wb(qm); 3043 dma_free_coherent(dev, qm->qdma.size, 3044 qm->qdma.va, qm->qdma.dma); 3045 } 3046 3047 idr_destroy(&qm->qp_idr); 3048 3049 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3050 kfree(qm->factor); 3051 } 3052 3053 /** 3054 * hisi_qm_uninit() - Uninitialize qm. 3055 * @qm: The qm needed uninit. 3056 * 3057 * This function uninits qm related device resources. 3058 */ 3059 void hisi_qm_uninit(struct hisi_qm *qm) 3060 { 3061 qm_cmd_uninit(qm); 3062 hisi_qm_unint_work(qm); 3063 3064 down_write(&qm->qps_lock); 3065 hisi_qm_memory_uninit(qm); 3066 hisi_qm_set_state(qm, QM_NOT_READY); 3067 up_write(&qm->qps_lock); 3068 3069 qm_remove_uacce(qm); 3070 qm_irqs_unregister(qm); 3071 hisi_qm_pci_uninit(qm); 3072 } 3073 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3074 3075 /** 3076 * hisi_qm_get_vft() - Get vft from a qm. 3077 * @qm: The qm we want to get its vft. 3078 * @base: The base number of queue in vft. 3079 * @number: The number of queues in vft. 3080 * 3081 * We can allocate multiple queues to a qm by configuring virtual function 3082 * table. We get related configures by this function. Normally, we call this 3083 * function in VF driver to get the queue information. 3084 * 3085 * qm hw v1 does not support this interface. 3086 */ 3087 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3088 { 3089 if (!base || !number) 3090 return -EINVAL; 3091 3092 if (!qm->ops->get_vft) { 3093 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3094 return -EINVAL; 3095 } 3096 3097 return qm->ops->get_vft(qm, base, number); 3098 } 3099 3100 /** 3101 * hisi_qm_set_vft() - Set vft to a qm. 3102 * @qm: The qm we want to set its vft. 3103 * @fun_num: The function number. 3104 * @base: The base number of queue in vft. 3105 * @number: The number of queues in vft. 3106 * 3107 * This function is alway called in PF driver, it is used to assign queues 3108 * among PF and VFs. 3109 * 3110 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3111 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3112 * (VF function number 0x2) 3113 */ 3114 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3115 u32 number) 3116 { 3117 u32 max_q_num = qm->ctrl_qp_num; 3118 3119 if (base >= max_q_num || number > max_q_num || 3120 (base + number) > max_q_num) 3121 return -EINVAL; 3122 3123 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3124 } 3125 3126 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3127 { 3128 struct hisi_qm_status *status = &qm->status; 3129 3130 status->eq_head = 0; 3131 status->aeq_head = 0; 3132 status->eqc_phase = true; 3133 status->aeqc_phase = true; 3134 } 3135 3136 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3137 { 3138 /* Clear eq/aeq interrupt source */ 3139 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3140 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3141 3142 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3143 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3144 } 3145 3146 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3147 { 3148 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3149 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3150 } 3151 3152 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3153 { 3154 struct qm_eqc eqc = {0}; 3155 3156 eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3157 eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3158 if (qm->ver == QM_HW_V1) 3159 eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3160 eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3161 3162 return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0); 3163 } 3164 3165 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3166 { 3167 struct qm_aeqc aeqc = {0}; 3168 3169 aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3170 aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3171 aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3172 3173 return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0); 3174 } 3175 3176 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3177 { 3178 struct device *dev = &qm->pdev->dev; 3179 int ret; 3180 3181 qm_init_eq_aeq_status(qm); 3182 3183 ret = qm_eq_ctx_cfg(qm); 3184 if (ret) { 3185 dev_err(dev, "Set eqc failed!\n"); 3186 return ret; 3187 } 3188 3189 return qm_aeq_ctx_cfg(qm); 3190 } 3191 3192 static int __hisi_qm_start(struct hisi_qm *qm) 3193 { 3194 int ret; 3195 3196 WARN_ON(!qm->qdma.va); 3197 3198 if (qm->fun_type == QM_HW_PF) { 3199 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3200 if (ret) 3201 return ret; 3202 } 3203 3204 ret = qm_eq_aeq_ctx_cfg(qm); 3205 if (ret) 3206 return ret; 3207 3208 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3209 if (ret) 3210 return ret; 3211 3212 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3213 if (ret) 3214 return ret; 3215 3216 qm_init_prefetch(qm); 3217 qm_enable_eq_aeq_interrupts(qm); 3218 3219 return 0; 3220 } 3221 3222 /** 3223 * hisi_qm_start() - start qm 3224 * @qm: The qm to be started. 3225 * 3226 * This function starts a qm, then we can allocate qp from this qm. 3227 */ 3228 int hisi_qm_start(struct hisi_qm *qm) 3229 { 3230 struct device *dev = &qm->pdev->dev; 3231 int ret = 0; 3232 3233 down_write(&qm->qps_lock); 3234 3235 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3236 3237 if (!qm->qp_num) { 3238 dev_err(dev, "qp_num should not be 0\n"); 3239 ret = -EINVAL; 3240 goto err_unlock; 3241 } 3242 3243 ret = __hisi_qm_start(qm); 3244 if (ret) 3245 goto err_unlock; 3246 3247 atomic_set(&qm->status.flags, QM_WORK); 3248 hisi_qm_set_state(qm, QM_READY); 3249 3250 err_unlock: 3251 up_write(&qm->qps_lock); 3252 return ret; 3253 } 3254 EXPORT_SYMBOL_GPL(hisi_qm_start); 3255 3256 static int qm_restart(struct hisi_qm *qm) 3257 { 3258 struct device *dev = &qm->pdev->dev; 3259 struct hisi_qp *qp; 3260 int ret, i; 3261 3262 ret = hisi_qm_start(qm); 3263 if (ret < 0) 3264 return ret; 3265 3266 down_write(&qm->qps_lock); 3267 for (i = 0; i < qm->qp_num; i++) { 3268 qp = &qm->qp_array[i]; 3269 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3270 qp->is_resetting == true) { 3271 ret = qm_start_qp_nolock(qp, 0); 3272 if (ret < 0) { 3273 dev_err(dev, "Failed to start qp%d!\n", i); 3274 3275 up_write(&qm->qps_lock); 3276 return ret; 3277 } 3278 qp->is_resetting = false; 3279 } 3280 } 3281 up_write(&qm->qps_lock); 3282 3283 return 0; 3284 } 3285 3286 /* Stop started qps in reset flow */ 3287 static void qm_stop_started_qp(struct hisi_qm *qm) 3288 { 3289 struct hisi_qp *qp; 3290 int i; 3291 3292 for (i = 0; i < qm->qp_num; i++) { 3293 qp = &qm->qp_array[i]; 3294 if (atomic_read(&qp->qp_status.flags) == QP_START) { 3295 qp->is_resetting = true; 3296 qm_stop_qp_nolock(qp); 3297 } 3298 } 3299 } 3300 3301 /** 3302 * qm_clear_queues() - Clear all queues memory in a qm. 3303 * @qm: The qm in which the queues will be cleared. 3304 * 3305 * This function clears all queues memory in a qm. Reset of accelerator can 3306 * use this to clear queues. 3307 */ 3308 static void qm_clear_queues(struct hisi_qm *qm) 3309 { 3310 struct hisi_qp *qp; 3311 int i; 3312 3313 for (i = 0; i < qm->qp_num; i++) { 3314 qp = &qm->qp_array[i]; 3315 if (qp->is_in_kernel && qp->is_resetting) 3316 memset(qp->qdma.va, 0, qp->qdma.size); 3317 } 3318 3319 memset(qm->qdma.va, 0, qm->qdma.size); 3320 } 3321 3322 /** 3323 * hisi_qm_stop() - Stop a qm. 3324 * @qm: The qm which will be stopped. 3325 * @r: The reason to stop qm. 3326 * 3327 * This function stops qm and its qps, then qm can not accept request. 3328 * Related resources are not released at this state, we can use hisi_qm_start 3329 * to let qm start again. 3330 */ 3331 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3332 { 3333 struct device *dev = &qm->pdev->dev; 3334 int ret = 0; 3335 3336 down_write(&qm->qps_lock); 3337 3338 if (atomic_read(&qm->status.flags) == QM_STOP) 3339 goto err_unlock; 3340 3341 /* Stop all the request sending at first. */ 3342 atomic_set(&qm->status.flags, QM_STOP); 3343 qm->status.stop_reason = r; 3344 3345 if (qm->status.stop_reason != QM_NORMAL) { 3346 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3347 /* 3348 * When performing soft reset, the hardware will no longer 3349 * do tasks, and the tasks in the device will be flushed 3350 * out directly since the master ooo is closed. 3351 */ 3352 if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) && 3353 r != QM_SOFT_RESET) { 3354 ret = qm_drain_qm(qm); 3355 if (ret) { 3356 dev_err(dev, "failed to drain qm!\n"); 3357 goto err_unlock; 3358 } 3359 } 3360 3361 qm_stop_started_qp(qm); 3362 3363 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3364 } 3365 3366 qm_disable_eq_aeq_interrupts(qm); 3367 if (qm->fun_type == QM_HW_PF) { 3368 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3369 if (ret < 0) { 3370 dev_err(dev, "Failed to set vft!\n"); 3371 ret = -EBUSY; 3372 goto err_unlock; 3373 } 3374 } 3375 3376 qm_clear_queues(qm); 3377 qm->status.stop_reason = QM_NORMAL; 3378 3379 err_unlock: 3380 up_write(&qm->qps_lock); 3381 return ret; 3382 } 3383 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3384 3385 static void qm_hw_error_init(struct hisi_qm *qm) 3386 { 3387 if (!qm->ops->hw_error_init) { 3388 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3389 return; 3390 } 3391 3392 qm->ops->hw_error_init(qm); 3393 } 3394 3395 static void qm_hw_error_uninit(struct hisi_qm *qm) 3396 { 3397 if (!qm->ops->hw_error_uninit) { 3398 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3399 return; 3400 } 3401 3402 qm->ops->hw_error_uninit(qm); 3403 } 3404 3405 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3406 { 3407 if (!qm->ops->hw_error_handle) { 3408 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3409 return ACC_ERR_NONE; 3410 } 3411 3412 return qm->ops->hw_error_handle(qm); 3413 } 3414 3415 /** 3416 * hisi_qm_dev_err_init() - Initialize device error configuration. 3417 * @qm: The qm for which we want to do error initialization. 3418 * 3419 * Initialize QM and device error related configuration. 3420 */ 3421 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3422 { 3423 if (qm->fun_type == QM_HW_VF) 3424 return; 3425 3426 qm_hw_error_init(qm); 3427 3428 if (!qm->err_ini->hw_err_enable) { 3429 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3430 return; 3431 } 3432 qm->err_ini->hw_err_enable(qm); 3433 } 3434 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3435 3436 /** 3437 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3438 * @qm: The qm for which we want to do error uninitialization. 3439 * 3440 * Uninitialize QM and device error related configuration. 3441 */ 3442 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3443 { 3444 if (qm->fun_type == QM_HW_VF) 3445 return; 3446 3447 qm_hw_error_uninit(qm); 3448 3449 if (!qm->err_ini->hw_err_disable) { 3450 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3451 return; 3452 } 3453 qm->err_ini->hw_err_disable(qm); 3454 } 3455 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3456 3457 /** 3458 * hisi_qm_free_qps() - free multiple queue pairs. 3459 * @qps: The queue pairs need to be freed. 3460 * @qp_num: The num of queue pairs. 3461 */ 3462 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3463 { 3464 int i; 3465 3466 if (!qps || qp_num <= 0) 3467 return; 3468 3469 for (i = qp_num - 1; i >= 0; i--) 3470 hisi_qm_release_qp(qps[i]); 3471 } 3472 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3473 3474 static void free_list(struct list_head *head) 3475 { 3476 struct hisi_qm_resource *res, *tmp; 3477 3478 list_for_each_entry_safe(res, tmp, head, list) { 3479 list_del(&res->list); 3480 kfree(res); 3481 } 3482 } 3483 3484 static int hisi_qm_sort_devices(int node, struct list_head *head, 3485 struct hisi_qm_list *qm_list) 3486 { 3487 struct hisi_qm_resource *res, *tmp; 3488 struct hisi_qm *qm; 3489 struct list_head *n; 3490 struct device *dev; 3491 int dev_node; 3492 3493 list_for_each_entry(qm, &qm_list->list, list) { 3494 dev = &qm->pdev->dev; 3495 3496 dev_node = dev_to_node(dev); 3497 if (dev_node < 0) 3498 dev_node = 0; 3499 3500 res = kzalloc(sizeof(*res), GFP_KERNEL); 3501 if (!res) 3502 return -ENOMEM; 3503 3504 res->qm = qm; 3505 res->distance = node_distance(dev_node, node); 3506 n = head; 3507 list_for_each_entry(tmp, head, list) { 3508 if (res->distance < tmp->distance) { 3509 n = &tmp->list; 3510 break; 3511 } 3512 } 3513 list_add_tail(&res->list, n); 3514 } 3515 3516 return 0; 3517 } 3518 3519 /** 3520 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3521 * @qm_list: The list of all available devices. 3522 * @qp_num: The number of queue pairs need created. 3523 * @alg_type: The algorithm type. 3524 * @node: The numa node. 3525 * @qps: The queue pairs need created. 3526 * 3527 * This function will sort all available device according to numa distance. 3528 * Then try to create all queue pairs from one device, if all devices do 3529 * not meet the requirements will return error. 3530 */ 3531 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3532 u8 alg_type, int node, struct hisi_qp **qps) 3533 { 3534 struct hisi_qm_resource *tmp; 3535 int ret = -ENODEV; 3536 LIST_HEAD(head); 3537 int i; 3538 3539 if (!qps || !qm_list || qp_num <= 0) 3540 return -EINVAL; 3541 3542 mutex_lock(&qm_list->lock); 3543 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3544 mutex_unlock(&qm_list->lock); 3545 goto err; 3546 } 3547 3548 list_for_each_entry(tmp, &head, list) { 3549 for (i = 0; i < qp_num; i++) { 3550 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3551 if (IS_ERR(qps[i])) { 3552 hisi_qm_free_qps(qps, i); 3553 break; 3554 } 3555 } 3556 3557 if (i == qp_num) { 3558 ret = 0; 3559 break; 3560 } 3561 } 3562 3563 mutex_unlock(&qm_list->lock); 3564 if (ret) 3565 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3566 node, alg_type, qp_num); 3567 3568 err: 3569 free_list(&head); 3570 return ret; 3571 } 3572 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3573 3574 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3575 { 3576 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3577 u32 max_qp_num = qm->max_qp_num; 3578 u32 q_base = qm->qp_num; 3579 int ret; 3580 3581 if (!num_vfs) 3582 return -EINVAL; 3583 3584 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3585 3586 /* If vfs_q_num is less than num_vfs, return error. */ 3587 if (vfs_q_num < num_vfs) 3588 return -EINVAL; 3589 3590 q_num = vfs_q_num / num_vfs; 3591 remain_q_num = vfs_q_num % num_vfs; 3592 3593 for (i = num_vfs; i > 0; i--) { 3594 /* 3595 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3596 * remaining queues equally. 3597 */ 3598 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3599 act_q_num = q_num + remain_q_num; 3600 remain_q_num = 0; 3601 } else if (remain_q_num > 0) { 3602 act_q_num = q_num + 1; 3603 remain_q_num--; 3604 } else { 3605 act_q_num = q_num; 3606 } 3607 3608 act_q_num = min(act_q_num, max_qp_num); 3609 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3610 if (ret) { 3611 for (j = num_vfs; j > i; j--) 3612 hisi_qm_set_vft(qm, j, 0, 0); 3613 return ret; 3614 } 3615 q_base += act_q_num; 3616 } 3617 3618 return 0; 3619 } 3620 3621 static int qm_clear_vft_config(struct hisi_qm *qm) 3622 { 3623 int ret; 3624 u32 i; 3625 3626 for (i = 1; i <= qm->vfs_num; i++) { 3627 ret = hisi_qm_set_vft(qm, i, 0, 0); 3628 if (ret) 3629 return ret; 3630 } 3631 qm->vfs_num = 0; 3632 3633 return 0; 3634 } 3635 3636 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3637 { 3638 struct device *dev = &qm->pdev->dev; 3639 u32 ir = qos * QM_QOS_RATE; 3640 int ret, total_vfs, i; 3641 3642 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3643 if (fun_index > total_vfs) 3644 return -EINVAL; 3645 3646 qm->factor[fun_index].func_qos = qos; 3647 3648 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3649 if (ret) { 3650 dev_err(dev, "failed to calculate shaper parameter!\n"); 3651 return -EINVAL; 3652 } 3653 3654 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3655 /* The base number of queue reuse for different alg type */ 3656 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3657 if (ret) { 3658 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3659 return -EINVAL; 3660 } 3661 } 3662 3663 return 0; 3664 } 3665 3666 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3667 { 3668 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3669 u64 shaper_vft, ir_calc, ir; 3670 unsigned int val; 3671 u32 error_rate; 3672 int ret; 3673 3674 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3675 val & BIT(0), POLL_PERIOD, 3676 POLL_TIMEOUT); 3677 if (ret) 3678 return 0; 3679 3680 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3681 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3682 writel(fun_index, qm->io_base + QM_VFT_CFG); 3683 3684 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3685 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3686 3687 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3688 val & BIT(0), POLL_PERIOD, 3689 POLL_TIMEOUT); 3690 if (ret) 3691 return 0; 3692 3693 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3694 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3695 3696 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3697 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3698 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3699 3700 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3701 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3702 3703 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3704 3705 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3706 3707 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3708 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3709 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3710 return 0; 3711 } 3712 3713 return ir; 3714 } 3715 3716 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3717 { 3718 struct device *dev = &qm->pdev->dev; 3719 u32 qos; 3720 int ret; 3721 3722 qos = qm_get_shaper_vft_qos(qm, fun_num); 3723 if (!qos) { 3724 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3725 return; 3726 } 3727 3728 ret = qm_ping_single_vf(qm, QM_PF_SET_QOS, qos, fun_num); 3729 if (ret) 3730 dev_err(dev, "failed to send command(0x%x) to VF(%u)!\n", QM_PF_SET_QOS, fun_num); 3731 } 3732 3733 static int qm_vf_read_qos(struct hisi_qm *qm) 3734 { 3735 int cnt = 0; 3736 int ret = -EINVAL; 3737 3738 /* reset mailbox qos val */ 3739 qm->mb_qos = 0; 3740 3741 /* vf ping pf to get function qos */ 3742 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3743 if (ret) { 3744 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3745 return ret; 3746 } 3747 3748 while (true) { 3749 msleep(QM_WAIT_DST_ACK); 3750 if (qm->mb_qos) 3751 break; 3752 3753 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3754 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3755 return -ETIMEDOUT; 3756 } 3757 } 3758 3759 return ret; 3760 } 3761 3762 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3763 size_t count, loff_t *pos) 3764 { 3765 struct hisi_qm *qm = filp->private_data; 3766 char tbuf[QM_DBG_READ_LEN]; 3767 u32 qos_val, ir; 3768 int ret; 3769 3770 ret = hisi_qm_get_dfx_access(qm); 3771 if (ret) 3772 return ret; 3773 3774 /* Mailbox and reset cannot be operated at the same time */ 3775 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3776 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3777 ret = -EAGAIN; 3778 goto err_put_dfx_access; 3779 } 3780 3781 if (qm->fun_type == QM_HW_PF) { 3782 ir = qm_get_shaper_vft_qos(qm, 0); 3783 } else { 3784 ret = qm_vf_read_qos(qm); 3785 if (ret) 3786 goto err_get_status; 3787 ir = qm->mb_qos; 3788 } 3789 3790 qos_val = ir / QM_QOS_RATE; 3791 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3792 3793 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3794 3795 err_get_status: 3796 clear_bit(QM_RESETTING, &qm->misc_ctl); 3797 err_put_dfx_access: 3798 hisi_qm_put_dfx_access(qm); 3799 return ret; 3800 } 3801 3802 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3803 unsigned long *val, 3804 unsigned int *fun_index) 3805 { 3806 const struct bus_type *bus_type = qm->pdev->dev.bus; 3807 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3808 char val_buf[QM_DBG_READ_LEN] = {0}; 3809 struct pci_dev *pdev; 3810 struct device *dev; 3811 int ret; 3812 3813 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3814 if (ret != QM_QOS_PARAM_NUM) 3815 return -EINVAL; 3816 3817 ret = kstrtoul(val_buf, 10, val); 3818 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3819 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3820 return -EINVAL; 3821 } 3822 3823 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3824 if (!dev) { 3825 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3826 return -ENODEV; 3827 } 3828 3829 pdev = container_of(dev, struct pci_dev, dev); 3830 3831 *fun_index = pdev->devfn; 3832 3833 return 0; 3834 } 3835 3836 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3837 size_t count, loff_t *pos) 3838 { 3839 struct hisi_qm *qm = filp->private_data; 3840 char tbuf[QM_DBG_READ_LEN]; 3841 unsigned int fun_index; 3842 unsigned long val; 3843 int len, ret; 3844 3845 if (*pos != 0) 3846 return 0; 3847 3848 if (count >= QM_DBG_READ_LEN) 3849 return -ENOSPC; 3850 3851 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3852 if (len < 0) 3853 return len; 3854 3855 tbuf[len] = '\0'; 3856 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3857 if (ret) 3858 return ret; 3859 3860 /* Mailbox and reset cannot be operated at the same time */ 3861 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3862 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3863 return -EAGAIN; 3864 } 3865 3866 ret = qm_pm_get_sync(qm); 3867 if (ret) { 3868 ret = -EINVAL; 3869 goto err_get_status; 3870 } 3871 3872 ret = qm_func_shaper_enable(qm, fun_index, val); 3873 if (ret) { 3874 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3875 ret = -EINVAL; 3876 goto err_put_sync; 3877 } 3878 3879 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3880 fun_index, val); 3881 ret = count; 3882 3883 err_put_sync: 3884 qm_pm_put_sync(qm); 3885 err_get_status: 3886 clear_bit(QM_RESETTING, &qm->misc_ctl); 3887 return ret; 3888 } 3889 3890 static const struct file_operations qm_algqos_fops = { 3891 .owner = THIS_MODULE, 3892 .open = simple_open, 3893 .read = qm_algqos_read, 3894 .write = qm_algqos_write, 3895 }; 3896 3897 /** 3898 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3899 * @qm: The qm for which we want to add debugfs files. 3900 * 3901 * Create function qos debugfs files, VF ping PF to get function qos. 3902 */ 3903 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3904 { 3905 if (qm->fun_type == QM_HW_PF) 3906 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3907 qm, &qm_algqos_fops); 3908 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3909 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3910 qm, &qm_algqos_fops); 3911 } 3912 3913 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3914 { 3915 int i; 3916 3917 for (i = 1; i <= total_func; i++) 3918 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3919 } 3920 3921 /** 3922 * hisi_qm_sriov_enable() - enable virtual functions 3923 * @pdev: the PCIe device 3924 * @max_vfs: the number of virtual functions to enable 3925 * 3926 * Returns the number of enabled VFs. If there are VFs enabled already or 3927 * max_vfs is more than the total number of device can be enabled, returns 3928 * failure. 3929 */ 3930 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3931 { 3932 struct hisi_qm *qm = pci_get_drvdata(pdev); 3933 int pre_existing_vfs, num_vfs, total_vfs, ret; 3934 3935 ret = qm_pm_get_sync(qm); 3936 if (ret) 3937 return ret; 3938 3939 total_vfs = pci_sriov_get_totalvfs(pdev); 3940 pre_existing_vfs = pci_num_vf(pdev); 3941 if (pre_existing_vfs) { 3942 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3943 pre_existing_vfs); 3944 goto err_put_sync; 3945 } 3946 3947 if (max_vfs > total_vfs) { 3948 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3949 ret = -ERANGE; 3950 goto err_put_sync; 3951 } 3952 3953 num_vfs = max_vfs; 3954 3955 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3956 hisi_qm_init_vf_qos(qm, num_vfs); 3957 3958 ret = qm_vf_q_assign(qm, num_vfs); 3959 if (ret) { 3960 pci_err(pdev, "Can't assign queues for VF!\n"); 3961 goto err_put_sync; 3962 } 3963 3964 ret = pci_enable_sriov(pdev, num_vfs); 3965 if (ret) { 3966 pci_err(pdev, "Can't enable VF!\n"); 3967 qm_clear_vft_config(qm); 3968 goto err_put_sync; 3969 } 3970 qm->vfs_num = num_vfs; 3971 3972 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3973 3974 return num_vfs; 3975 3976 err_put_sync: 3977 qm_pm_put_sync(qm); 3978 return ret; 3979 } 3980 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3981 3982 /** 3983 * hisi_qm_sriov_disable - disable virtual functions 3984 * @pdev: the PCI device. 3985 * @is_frozen: true when all the VFs are frozen. 3986 * 3987 * Return failure if there are VFs assigned already or VF is in used. 3988 */ 3989 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3990 { 3991 struct hisi_qm *qm = pci_get_drvdata(pdev); 3992 3993 if (pci_vfs_assigned(pdev)) { 3994 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3995 return -EPERM; 3996 } 3997 3998 /* While VF is in used, SRIOV cannot be disabled. */ 3999 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 4000 pci_err(pdev, "Task is using its VF!\n"); 4001 return -EBUSY; 4002 } 4003 4004 pci_disable_sriov(pdev); 4005 4006 qm->vfs_num = 0; 4007 qm_pm_put_sync(qm); 4008 4009 return qm_clear_vft_config(qm); 4010 } 4011 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4012 4013 /** 4014 * hisi_qm_sriov_configure - configure the number of VFs 4015 * @pdev: The PCI device 4016 * @num_vfs: The number of VFs need enabled 4017 * 4018 * Enable SR-IOV according to num_vfs, 0 means disable. 4019 */ 4020 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4021 { 4022 if (num_vfs == 0) 4023 return hisi_qm_sriov_disable(pdev, false); 4024 else 4025 return hisi_qm_sriov_enable(pdev, num_vfs); 4026 } 4027 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4028 4029 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4030 { 4031 if (!qm->err_ini->get_err_result) { 4032 dev_err(&qm->pdev->dev, "Device doesn't support reset!\n"); 4033 return ACC_ERR_NONE; 4034 } 4035 4036 return qm->err_ini->get_err_result(qm); 4037 } 4038 4039 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4040 { 4041 enum acc_err_result qm_ret, dev_ret; 4042 4043 /* log qm error */ 4044 qm_ret = qm_hw_error_handle(qm); 4045 4046 /* log device error */ 4047 dev_ret = qm_dev_err_handle(qm); 4048 4049 return (qm_ret == ACC_ERR_NEED_RESET || 4050 dev_ret == ACC_ERR_NEED_RESET) ? 4051 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4052 } 4053 4054 /** 4055 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4056 * @pdev: The PCI device which need report error. 4057 * @state: The connectivity between CPU and device. 4058 * 4059 * We register this function into PCIe AER handlers, It will report device or 4060 * qm hardware error status when error occur. 4061 */ 4062 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4063 pci_channel_state_t state) 4064 { 4065 struct hisi_qm *qm = pci_get_drvdata(pdev); 4066 enum acc_err_result ret; 4067 4068 if (pdev->is_virtfn) 4069 return PCI_ERS_RESULT_NONE; 4070 4071 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4072 if (state == pci_channel_io_perm_failure) 4073 return PCI_ERS_RESULT_DISCONNECT; 4074 4075 ret = qm_process_dev_error(qm); 4076 if (ret == ACC_ERR_NEED_RESET) 4077 return PCI_ERS_RESULT_NEED_RESET; 4078 4079 return PCI_ERS_RESULT_RECOVERED; 4080 } 4081 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4082 4083 static int qm_check_req_recv(struct hisi_qm *qm) 4084 { 4085 struct pci_dev *pdev = qm->pdev; 4086 int ret; 4087 u32 val; 4088 4089 if (qm->ver >= QM_HW_V3) 4090 return 0; 4091 4092 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4093 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4094 (val == ACC_VENDOR_ID_VALUE), 4095 POLL_PERIOD, POLL_TIMEOUT); 4096 if (ret) { 4097 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4098 return ret; 4099 } 4100 4101 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4102 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4103 (val == PCI_VENDOR_ID_HUAWEI), 4104 POLL_PERIOD, POLL_TIMEOUT); 4105 if (ret) 4106 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4107 4108 return ret; 4109 } 4110 4111 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4112 { 4113 struct pci_dev *pdev = qm->pdev; 4114 u16 cmd; 4115 int i; 4116 4117 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4118 if (set) 4119 cmd |= PCI_COMMAND_MEMORY; 4120 else 4121 cmd &= ~PCI_COMMAND_MEMORY; 4122 4123 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4124 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4125 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4126 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4127 return 0; 4128 4129 udelay(1); 4130 } 4131 4132 return -ETIMEDOUT; 4133 } 4134 4135 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4136 { 4137 struct pci_dev *pdev = qm->pdev; 4138 u16 sriov_ctrl; 4139 int pos; 4140 int i; 4141 4142 /* 4143 * Since function qm_set_vf_mse is called only after SRIOV is enabled, 4144 * pci_find_ext_capability cannot return 0, pos does not need to be 4145 * checked. 4146 */ 4147 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4148 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4149 if (set) 4150 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4151 else 4152 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4153 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4154 4155 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4156 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4157 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4158 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4159 return 0; 4160 4161 udelay(1); 4162 } 4163 4164 return -ETIMEDOUT; 4165 } 4166 4167 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4168 { 4169 u32 nfe_enb = 0; 4170 4171 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4172 if (qm->ver >= QM_HW_V3) 4173 return; 4174 4175 if (!qm->err_status.is_dev_ecc_mbit && 4176 qm->err_status.is_qm_ecc_mbit && 4177 qm->err_ini->close_axi_master_ooo) { 4178 qm->err_ini->close_axi_master_ooo(qm); 4179 } else if (qm->err_status.is_dev_ecc_mbit && 4180 !qm->err_status.is_qm_ecc_mbit && 4181 !qm->err_ini->close_axi_master_ooo) { 4182 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4183 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4184 qm->io_base + QM_RAS_NFE_ENABLE); 4185 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4186 } 4187 } 4188 4189 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4190 enum qm_stop_reason stop_reason) 4191 { 4192 struct hisi_qm_list *qm_list = qm->qm_list; 4193 struct pci_dev *pdev = qm->pdev; 4194 struct pci_dev *virtfn; 4195 struct hisi_qm *vf_qm; 4196 int ret = 0; 4197 4198 mutex_lock(&qm_list->lock); 4199 list_for_each_entry(vf_qm, &qm_list->list, list) { 4200 virtfn = vf_qm->pdev; 4201 if (virtfn == pdev) 4202 continue; 4203 4204 if (pci_physfn(virtfn) == pdev) { 4205 /* save VFs PCIE BAR configuration */ 4206 pci_save_state(virtfn); 4207 4208 ret = hisi_qm_stop(vf_qm, stop_reason); 4209 if (ret) 4210 goto stop_fail; 4211 } 4212 } 4213 4214 stop_fail: 4215 mutex_unlock(&qm_list->lock); 4216 return ret; 4217 } 4218 4219 static int qm_try_stop_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd, 4220 enum qm_stop_reason stop_reason) 4221 { 4222 struct pci_dev *pdev = qm->pdev; 4223 int ret; 4224 4225 if (!qm->vfs_num) 4226 return 0; 4227 4228 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4229 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4230 ret = qm_ping_all_vfs(qm, cmd); 4231 if (ret) 4232 pci_err(pdev, "failed to send command to all VFs before PF reset!\n"); 4233 } else { 4234 ret = qm_vf_reset_prepare(qm, stop_reason); 4235 if (ret) 4236 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4237 } 4238 4239 return ret; 4240 } 4241 4242 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4243 { 4244 struct pci_dev *pdev = qm->pdev; 4245 int ret; 4246 4247 if (qm->err_ini->set_priv_status) { 4248 ret = qm->err_ini->set_priv_status(qm); 4249 if (ret) 4250 return ret; 4251 } 4252 4253 ret = qm_reset_prepare_ready(qm); 4254 if (ret) { 4255 pci_err(pdev, "Controller reset not ready!\n"); 4256 return ret; 4257 } 4258 4259 qm_dev_ecc_mbit_handle(qm); 4260 4261 /* PF obtains the information of VF by querying the register. */ 4262 qm_cmd_uninit(qm); 4263 4264 /* Whether VFs stop successfully, soft reset will continue. */ 4265 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4266 if (ret) 4267 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4268 4269 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4270 if (ret) { 4271 pci_err(pdev, "Fails to stop QM!\n"); 4272 qm_reset_bit_clear(qm); 4273 return ret; 4274 } 4275 4276 if (qm->use_sva) { 4277 ret = qm_hw_err_isolate(qm); 4278 if (ret) 4279 pci_err(pdev, "failed to isolate hw err!\n"); 4280 } 4281 4282 ret = qm_wait_vf_prepare_finish(qm); 4283 if (ret) 4284 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4285 4286 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4287 4288 return 0; 4289 } 4290 4291 static int qm_master_ooo_check(struct hisi_qm *qm) 4292 { 4293 u32 val; 4294 int ret; 4295 4296 /* Check the ooo register of the device before resetting the device. */ 4297 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4298 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4299 val, (val == ACC_MASTER_TRANS_RETURN_RW), 4300 POLL_PERIOD, POLL_TIMEOUT); 4301 if (ret) 4302 pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); 4303 4304 return ret; 4305 } 4306 4307 static int qm_soft_reset_prepare(struct hisi_qm *qm) 4308 { 4309 struct pci_dev *pdev = qm->pdev; 4310 int ret; 4311 4312 /* Ensure all doorbells and mailboxes received by QM */ 4313 ret = qm_check_req_recv(qm); 4314 if (ret) 4315 return ret; 4316 4317 if (qm->vfs_num) { 4318 ret = qm_set_vf_mse(qm, false); 4319 if (ret) { 4320 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4321 return ret; 4322 } 4323 } 4324 4325 ret = qm->ops->set_msi(qm, false); 4326 if (ret) { 4327 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4328 return ret; 4329 } 4330 4331 ret = qm_master_ooo_check(qm); 4332 if (ret) 4333 return ret; 4334 4335 if (qm->err_ini->close_sva_prefetch) 4336 qm->err_ini->close_sva_prefetch(qm); 4337 4338 ret = qm_set_pf_mse(qm, false); 4339 if (ret) 4340 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4341 4342 return ret; 4343 } 4344 4345 static int qm_reset_device(struct hisi_qm *qm) 4346 { 4347 struct pci_dev *pdev = qm->pdev; 4348 4349 /* The reset related sub-control registers are not in PCI BAR */ 4350 if (ACPI_HANDLE(&pdev->dev)) { 4351 unsigned long long value = 0; 4352 acpi_status s; 4353 4354 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4355 qm->err_info.acpi_rst, 4356 NULL, &value); 4357 if (ACPI_FAILURE(s)) { 4358 pci_err(pdev, "NO controller reset method!\n"); 4359 return -EIO; 4360 } 4361 4362 if (value) { 4363 pci_err(pdev, "Reset step %llu failed!\n", value); 4364 return -EIO; 4365 } 4366 4367 return 0; 4368 } 4369 4370 pci_err(pdev, "No reset method!\n"); 4371 return -EINVAL; 4372 } 4373 4374 static int qm_soft_reset(struct hisi_qm *qm) 4375 { 4376 int ret; 4377 4378 ret = qm_soft_reset_prepare(qm); 4379 if (ret) 4380 return ret; 4381 4382 return qm_reset_device(qm); 4383 } 4384 4385 static int qm_vf_reset_done(struct hisi_qm *qm) 4386 { 4387 struct hisi_qm_list *qm_list = qm->qm_list; 4388 struct pci_dev *pdev = qm->pdev; 4389 struct pci_dev *virtfn; 4390 struct hisi_qm *vf_qm; 4391 int ret = 0; 4392 4393 mutex_lock(&qm_list->lock); 4394 list_for_each_entry(vf_qm, &qm_list->list, list) { 4395 virtfn = vf_qm->pdev; 4396 if (virtfn == pdev) 4397 continue; 4398 4399 if (pci_physfn(virtfn) == pdev) { 4400 /* enable VFs PCIE BAR configuration */ 4401 pci_restore_state(virtfn); 4402 4403 ret = qm_restart(vf_qm); 4404 if (ret) 4405 goto restart_fail; 4406 } 4407 } 4408 4409 restart_fail: 4410 mutex_unlock(&qm_list->lock); 4411 return ret; 4412 } 4413 4414 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 4415 { 4416 struct pci_dev *pdev = qm->pdev; 4417 int ret; 4418 4419 if (!qm->vfs_num) 4420 return 0; 4421 4422 ret = qm_vf_q_assign(qm, qm->vfs_num); 4423 if (ret) { 4424 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4425 return ret; 4426 } 4427 4428 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4429 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4430 ret = qm_ping_all_vfs(qm, cmd); 4431 if (ret) 4432 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4433 } else { 4434 ret = qm_vf_reset_done(qm); 4435 if (ret) 4436 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4437 } 4438 4439 return ret; 4440 } 4441 4442 static int qm_dev_hw_init(struct hisi_qm *qm) 4443 { 4444 return qm->err_ini->hw_init(qm); 4445 } 4446 4447 static void qm_restart_prepare(struct hisi_qm *qm) 4448 { 4449 u32 value; 4450 4451 if (qm->err_ini->open_sva_prefetch) 4452 qm->err_ini->open_sva_prefetch(qm); 4453 4454 if (qm->ver >= QM_HW_V3) 4455 return; 4456 4457 if (!qm->err_status.is_qm_ecc_mbit && 4458 !qm->err_status.is_dev_ecc_mbit) 4459 return; 4460 4461 /* temporarily close the OOO port used for PEH to write out MSI */ 4462 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4463 writel(value & ~qm->err_info.msi_wr_port, 4464 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4465 4466 /* clear dev ecc 2bit error source if having */ 4467 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4468 if (value && qm->err_ini->clear_dev_hw_err_status) 4469 qm->err_ini->clear_dev_hw_err_status(qm, value); 4470 4471 /* clear QM ecc mbit error source */ 4472 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4473 4474 /* clear AM Reorder Buffer ecc mbit source */ 4475 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4476 } 4477 4478 static void qm_restart_done(struct hisi_qm *qm) 4479 { 4480 u32 value; 4481 4482 if (qm->ver >= QM_HW_V3) 4483 goto clear_flags; 4484 4485 if (!qm->err_status.is_qm_ecc_mbit && 4486 !qm->err_status.is_dev_ecc_mbit) 4487 return; 4488 4489 /* open the OOO port for PEH to write out MSI */ 4490 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4491 value |= qm->err_info.msi_wr_port; 4492 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4493 4494 clear_flags: 4495 qm->err_status.is_qm_ecc_mbit = false; 4496 qm->err_status.is_dev_ecc_mbit = false; 4497 } 4498 4499 static int qm_controller_reset_done(struct hisi_qm *qm) 4500 { 4501 struct pci_dev *pdev = qm->pdev; 4502 int ret; 4503 4504 ret = qm->ops->set_msi(qm, true); 4505 if (ret) { 4506 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4507 return ret; 4508 } 4509 4510 ret = qm_set_pf_mse(qm, true); 4511 if (ret) { 4512 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4513 return ret; 4514 } 4515 4516 if (qm->vfs_num) { 4517 ret = qm_set_vf_mse(qm, true); 4518 if (ret) { 4519 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4520 return ret; 4521 } 4522 } 4523 4524 ret = qm_dev_hw_init(qm); 4525 if (ret) { 4526 pci_err(pdev, "Failed to init device\n"); 4527 return ret; 4528 } 4529 4530 qm_restart_prepare(qm); 4531 hisi_qm_dev_err_init(qm); 4532 if (qm->err_ini->open_axi_master_ooo) 4533 qm->err_ini->open_axi_master_ooo(qm); 4534 4535 ret = qm_dev_mem_reset(qm); 4536 if (ret) { 4537 pci_err(pdev, "failed to reset device memory\n"); 4538 return ret; 4539 } 4540 4541 ret = qm_restart(qm); 4542 if (ret) { 4543 pci_err(pdev, "Failed to start QM!\n"); 4544 return ret; 4545 } 4546 4547 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4548 if (ret) 4549 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4550 4551 ret = qm_wait_vf_prepare_finish(qm); 4552 if (ret) 4553 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4554 4555 qm_cmd_init(qm); 4556 qm_restart_done(qm); 4557 4558 qm_reset_bit_clear(qm); 4559 4560 return 0; 4561 } 4562 4563 static int qm_controller_reset(struct hisi_qm *qm) 4564 { 4565 struct pci_dev *pdev = qm->pdev; 4566 int ret; 4567 4568 pci_info(pdev, "Controller resetting...\n"); 4569 4570 ret = qm_controller_reset_prepare(qm); 4571 if (ret) { 4572 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4573 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4574 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4575 return ret; 4576 } 4577 4578 hisi_qm_show_last_dfx_regs(qm); 4579 if (qm->err_ini->show_last_dfx_regs) 4580 qm->err_ini->show_last_dfx_regs(qm); 4581 4582 ret = qm_soft_reset(qm); 4583 if (ret) 4584 goto err_reset; 4585 4586 ret = qm_controller_reset_done(qm); 4587 if (ret) 4588 goto err_reset; 4589 4590 pci_info(pdev, "Controller reset complete\n"); 4591 4592 return 0; 4593 4594 err_reset: 4595 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4596 qm_reset_bit_clear(qm); 4597 4598 /* if resetting fails, isolate the device */ 4599 if (qm->use_sva) 4600 qm->isolate_data.is_isolate = true; 4601 return ret; 4602 } 4603 4604 /** 4605 * hisi_qm_dev_slot_reset() - slot reset 4606 * @pdev: the PCIe device 4607 * 4608 * This function offers QM relate PCIe device reset interface. Drivers which 4609 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4610 */ 4611 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4612 { 4613 struct hisi_qm *qm = pci_get_drvdata(pdev); 4614 int ret; 4615 4616 if (pdev->is_virtfn) 4617 return PCI_ERS_RESULT_RECOVERED; 4618 4619 /* reset pcie device controller */ 4620 ret = qm_controller_reset(qm); 4621 if (ret) { 4622 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4623 return PCI_ERS_RESULT_DISCONNECT; 4624 } 4625 4626 return PCI_ERS_RESULT_RECOVERED; 4627 } 4628 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4629 4630 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4631 { 4632 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4633 struct hisi_qm *qm = pci_get_drvdata(pdev); 4634 u32 delay = 0; 4635 int ret; 4636 4637 hisi_qm_dev_err_uninit(pf_qm); 4638 4639 /* 4640 * Check whether there is an ECC mbit error, If it occurs, need to 4641 * wait for soft reset to fix it. 4642 */ 4643 while (qm_check_dev_error(qm)) { 4644 msleep(++delay); 4645 if (delay > QM_RESET_WAIT_TIMEOUT) 4646 return; 4647 } 4648 4649 ret = qm_reset_prepare_ready(qm); 4650 if (ret) { 4651 pci_err(pdev, "FLR not ready!\n"); 4652 return; 4653 } 4654 4655 /* PF obtains the information of VF by querying the register. */ 4656 if (qm->fun_type == QM_HW_PF) 4657 qm_cmd_uninit(qm); 4658 4659 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4660 if (ret) 4661 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4662 4663 ret = hisi_qm_stop(qm, QM_DOWN); 4664 if (ret) { 4665 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4666 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4667 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4668 return; 4669 } 4670 4671 ret = qm_wait_vf_prepare_finish(qm); 4672 if (ret) 4673 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4674 4675 pci_info(pdev, "FLR resetting...\n"); 4676 } 4677 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4678 4679 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4680 { 4681 struct pci_dev *pf_pdev = pci_physfn(pdev); 4682 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4683 u32 id; 4684 4685 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4686 if (id == QM_PCI_COMMAND_INVALID) { 4687 pci_err(pdev, "Device can not be used!\n"); 4688 return false; 4689 } 4690 4691 return true; 4692 } 4693 4694 void hisi_qm_reset_done(struct pci_dev *pdev) 4695 { 4696 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4697 struct hisi_qm *qm = pci_get_drvdata(pdev); 4698 int ret; 4699 4700 if (qm->fun_type == QM_HW_PF) { 4701 ret = qm_dev_hw_init(qm); 4702 if (ret) { 4703 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4704 goto flr_done; 4705 } 4706 } 4707 4708 hisi_qm_dev_err_init(pf_qm); 4709 4710 ret = qm_restart(qm); 4711 if (ret) { 4712 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4713 goto flr_done; 4714 } 4715 4716 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4717 if (ret) 4718 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4719 4720 ret = qm_wait_vf_prepare_finish(qm); 4721 if (ret) 4722 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4723 4724 flr_done: 4725 if (qm->fun_type == QM_HW_PF) 4726 qm_cmd_init(qm); 4727 4728 if (qm_flr_reset_complete(pdev)) 4729 pci_info(pdev, "FLR reset complete\n"); 4730 4731 qm_reset_bit_clear(qm); 4732 } 4733 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4734 4735 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4736 { 4737 struct hisi_qm *qm = data; 4738 enum acc_err_result ret; 4739 4740 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4741 ret = qm_process_dev_error(qm); 4742 if (ret == ACC_ERR_NEED_RESET && 4743 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4744 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4745 schedule_work(&qm->rst_work); 4746 4747 return IRQ_HANDLED; 4748 } 4749 4750 /** 4751 * hisi_qm_dev_shutdown() - Shutdown device. 4752 * @pdev: The device will be shutdown. 4753 * 4754 * This function will stop qm when OS shutdown or rebooting. 4755 */ 4756 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4757 { 4758 struct hisi_qm *qm = pci_get_drvdata(pdev); 4759 int ret; 4760 4761 ret = hisi_qm_stop(qm, QM_DOWN); 4762 if (ret) 4763 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4764 4765 hisi_qm_cache_wb(qm); 4766 } 4767 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4768 4769 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4770 { 4771 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4772 int ret; 4773 4774 ret = qm_pm_get_sync(qm); 4775 if (ret) { 4776 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4777 return; 4778 } 4779 4780 /* reset pcie device controller */ 4781 ret = qm_controller_reset(qm); 4782 if (ret) 4783 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4784 4785 qm_pm_put_sync(qm); 4786 } 4787 4788 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4789 enum qm_stop_reason stop_reason) 4790 { 4791 enum qm_ifc_cmd cmd = QM_VF_PREPARE_DONE; 4792 struct pci_dev *pdev = qm->pdev; 4793 int ret; 4794 4795 ret = qm_reset_prepare_ready(qm); 4796 if (ret) { 4797 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4798 atomic_set(&qm->status.flags, QM_STOP); 4799 cmd = QM_VF_PREPARE_FAIL; 4800 goto err_prepare; 4801 } 4802 4803 ret = hisi_qm_stop(qm, stop_reason); 4804 if (ret) { 4805 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4806 atomic_set(&qm->status.flags, QM_STOP); 4807 cmd = QM_VF_PREPARE_FAIL; 4808 goto err_prepare; 4809 } else { 4810 goto out; 4811 } 4812 4813 err_prepare: 4814 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4815 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4816 out: 4817 pci_save_state(pdev); 4818 ret = qm_ping_pf(qm, cmd); 4819 if (ret) 4820 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4821 } 4822 4823 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4824 { 4825 enum qm_ifc_cmd cmd = QM_VF_START_DONE; 4826 struct pci_dev *pdev = qm->pdev; 4827 int ret; 4828 4829 pci_restore_state(pdev); 4830 ret = hisi_qm_start(qm); 4831 if (ret) { 4832 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4833 cmd = QM_VF_START_FAIL; 4834 } 4835 4836 qm_cmd_init(qm); 4837 ret = qm_ping_pf(qm, cmd); 4838 if (ret) 4839 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4840 4841 qm_reset_bit_clear(qm); 4842 } 4843 4844 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4845 { 4846 struct device *dev = &qm->pdev->dev; 4847 u32 val, cmd; 4848 int ret; 4849 4850 /* Wait for reset to finish */ 4851 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4852 val == BIT(0), QM_VF_RESET_WAIT_US, 4853 QM_VF_RESET_WAIT_TIMEOUT_US); 4854 /* hardware completion status should be available by this time */ 4855 if (ret) { 4856 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4857 return -ETIMEDOUT; 4858 } 4859 4860 /* 4861 * Whether message is got successfully, 4862 * VF needs to ack PF by clearing the interrupt. 4863 */ 4864 ret = qm->ops->get_ifc(qm, &cmd, NULL, 0); 4865 qm_clear_cmd_interrupt(qm, 0); 4866 if (ret) { 4867 dev_err(dev, "failed to get command from PF in reset done!\n"); 4868 return ret; 4869 } 4870 4871 if (cmd != QM_PF_RESET_DONE) { 4872 dev_err(dev, "the command(0x%x) is not reset done!\n", cmd); 4873 ret = -EINVAL; 4874 } 4875 4876 return ret; 4877 } 4878 4879 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4880 enum qm_stop_reason stop_reason) 4881 { 4882 struct device *dev = &qm->pdev->dev; 4883 int ret; 4884 4885 dev_info(dev, "device reset start...\n"); 4886 4887 /* The message is obtained by querying the register during resetting */ 4888 qm_cmd_uninit(qm); 4889 qm_pf_reset_vf_prepare(qm, stop_reason); 4890 4891 ret = qm_wait_pf_reset_finish(qm); 4892 if (ret) 4893 goto err_get_status; 4894 4895 qm_pf_reset_vf_done(qm); 4896 4897 dev_info(dev, "device reset done.\n"); 4898 4899 return; 4900 4901 err_get_status: 4902 qm_cmd_init(qm); 4903 qm_reset_bit_clear(qm); 4904 } 4905 4906 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4907 { 4908 struct device *dev = &qm->pdev->dev; 4909 enum qm_ifc_cmd cmd; 4910 u32 data; 4911 int ret; 4912 4913 /* 4914 * Get the msg from source by sending mailbox. Whether message is got 4915 * successfully, destination needs to ack source by clearing the interrupt. 4916 */ 4917 ret = qm->ops->get_ifc(qm, &cmd, &data, fun_num); 4918 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4919 if (ret) { 4920 dev_err(dev, "failed to get command from source!\n"); 4921 return; 4922 } 4923 4924 switch (cmd) { 4925 case QM_PF_FLR_PREPARE: 4926 qm_pf_reset_vf_process(qm, QM_DOWN); 4927 break; 4928 case QM_PF_SRST_PREPARE: 4929 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4930 break; 4931 case QM_VF_GET_QOS: 4932 qm_vf_get_qos(qm, fun_num); 4933 break; 4934 case QM_PF_SET_QOS: 4935 qm->mb_qos = data; 4936 break; 4937 default: 4938 dev_err(dev, "unsupported command(0x%x) sent by function(%u)!\n", cmd, fun_num); 4939 break; 4940 } 4941 } 4942 4943 static void qm_cmd_process(struct work_struct *cmd_process) 4944 { 4945 struct hisi_qm *qm = container_of(cmd_process, 4946 struct hisi_qm, cmd_process); 4947 u32 vfs_num = qm->vfs_num; 4948 u64 val; 4949 u32 i; 4950 4951 if (qm->fun_type == QM_HW_PF) { 4952 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4953 if (!val) 4954 return; 4955 4956 for (i = 1; i <= vfs_num; i++) { 4957 if (val & BIT(i)) 4958 qm_handle_cmd_msg(qm, i); 4959 } 4960 4961 return; 4962 } 4963 4964 qm_handle_cmd_msg(qm, 0); 4965 } 4966 4967 /** 4968 * hisi_qm_alg_register() - Register alg to crypto. 4969 * @qm: The qm needs add. 4970 * @qm_list: The qm list. 4971 * @guard: Guard of qp_num. 4972 * 4973 * Register algorithm to crypto when the function is satisfy guard. 4974 */ 4975 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4976 { 4977 struct device *dev = &qm->pdev->dev; 4978 4979 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4980 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4981 return 0; 4982 } 4983 4984 if (qm->qp_num < guard) { 4985 dev_info(dev, "qp_num is less than task need.\n"); 4986 return 0; 4987 } 4988 4989 return qm_list->register_to_crypto(qm); 4990 } 4991 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4992 4993 /** 4994 * hisi_qm_alg_unregister() - Unregister alg from crypto. 4995 * @qm: The qm needs delete. 4996 * @qm_list: The qm list. 4997 * @guard: Guard of qp_num. 4998 * 4999 * Unregister algorithm from crypto when the last function is satisfy guard. 5000 */ 5001 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 5002 { 5003 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5004 return; 5005 5006 if (qm->qp_num < guard) 5007 return; 5008 5009 qm_list->unregister_from_crypto(qm); 5010 } 5011 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5012 5013 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 5014 { 5015 struct pci_dev *pdev = qm->pdev; 5016 u32 irq_vector, val; 5017 5018 if (qm->fun_type == QM_HW_VF) 5019 return; 5020 5021 val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val; 5022 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5023 return; 5024 5025 irq_vector = val & QM_IRQ_VECTOR_MASK; 5026 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5027 } 5028 5029 static int qm_register_abnormal_irq(struct hisi_qm *qm) 5030 { 5031 struct pci_dev *pdev = qm->pdev; 5032 u32 irq_vector, val; 5033 int ret; 5034 5035 if (qm->fun_type == QM_HW_VF) 5036 return 0; 5037 5038 val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val; 5039 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5040 return 0; 5041 5042 irq_vector = val & QM_IRQ_VECTOR_MASK; 5043 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 5044 if (ret) 5045 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 5046 5047 return ret; 5048 } 5049 5050 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 5051 { 5052 struct pci_dev *pdev = qm->pdev; 5053 u32 irq_vector, val; 5054 5055 val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val; 5056 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5057 return; 5058 5059 irq_vector = val & QM_IRQ_VECTOR_MASK; 5060 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5061 } 5062 5063 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 5064 { 5065 struct pci_dev *pdev = qm->pdev; 5066 u32 irq_vector, val; 5067 int ret; 5068 5069 val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val; 5070 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5071 return 0; 5072 5073 irq_vector = val & QM_IRQ_VECTOR_MASK; 5074 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5075 if (ret) 5076 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5077 5078 return ret; 5079 } 5080 5081 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5082 { 5083 struct pci_dev *pdev = qm->pdev; 5084 u32 irq_vector, val; 5085 5086 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val; 5087 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5088 return; 5089 5090 irq_vector = val & QM_IRQ_VECTOR_MASK; 5091 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5092 } 5093 5094 static int qm_register_aeq_irq(struct hisi_qm *qm) 5095 { 5096 struct pci_dev *pdev = qm->pdev; 5097 u32 irq_vector, val; 5098 int ret; 5099 5100 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val; 5101 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5102 return 0; 5103 5104 irq_vector = val & QM_IRQ_VECTOR_MASK; 5105 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 5106 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 5107 if (ret) 5108 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5109 5110 return ret; 5111 } 5112 5113 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5114 { 5115 struct pci_dev *pdev = qm->pdev; 5116 u32 irq_vector, val; 5117 5118 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val; 5119 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5120 return; 5121 5122 irq_vector = val & QM_IRQ_VECTOR_MASK; 5123 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5124 } 5125 5126 static int qm_register_eq_irq(struct hisi_qm *qm) 5127 { 5128 struct pci_dev *pdev = qm->pdev; 5129 u32 irq_vector, val; 5130 int ret; 5131 5132 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val; 5133 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5134 return 0; 5135 5136 irq_vector = val & QM_IRQ_VECTOR_MASK; 5137 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5138 if (ret) 5139 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5140 5141 return ret; 5142 } 5143 5144 static void qm_irqs_unregister(struct hisi_qm *qm) 5145 { 5146 qm_unregister_mb_cmd_irq(qm); 5147 qm_unregister_abnormal_irq(qm); 5148 qm_unregister_aeq_irq(qm); 5149 qm_unregister_eq_irq(qm); 5150 } 5151 5152 static int qm_irqs_register(struct hisi_qm *qm) 5153 { 5154 int ret; 5155 5156 ret = qm_register_eq_irq(qm); 5157 if (ret) 5158 return ret; 5159 5160 ret = qm_register_aeq_irq(qm); 5161 if (ret) 5162 goto free_eq_irq; 5163 5164 ret = qm_register_abnormal_irq(qm); 5165 if (ret) 5166 goto free_aeq_irq; 5167 5168 ret = qm_register_mb_cmd_irq(qm); 5169 if (ret) 5170 goto free_abnormal_irq; 5171 5172 return 0; 5173 5174 free_abnormal_irq: 5175 qm_unregister_abnormal_irq(qm); 5176 free_aeq_irq: 5177 qm_unregister_aeq_irq(qm); 5178 free_eq_irq: 5179 qm_unregister_eq_irq(qm); 5180 return ret; 5181 } 5182 5183 static int qm_get_qp_num(struct hisi_qm *qm) 5184 { 5185 struct device *dev = &qm->pdev->dev; 5186 bool is_db_isolation; 5187 5188 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5189 if (qm->fun_type == QM_HW_VF) { 5190 if (qm->ver != QM_HW_V1) 5191 /* v2 starts to support get vft by mailbox */ 5192 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5193 5194 return 0; 5195 } 5196 5197 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5198 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5199 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5200 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5201 5202 if (qm->qp_num <= qm->max_qp_num) 5203 return 0; 5204 5205 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5206 /* Check whether the set qp number is valid */ 5207 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5208 qm->qp_num, qm->max_qp_num); 5209 return -EINVAL; 5210 } 5211 5212 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5213 qm->qp_num, qm->max_qp_num); 5214 qm->qp_num = qm->max_qp_num; 5215 qm->debug.curr_qm_qp_num = qm->qp_num; 5216 5217 return 0; 5218 } 5219 5220 static int qm_pre_store_caps(struct hisi_qm *qm) 5221 { 5222 struct hisi_qm_cap_record *qm_cap; 5223 struct pci_dev *pdev = qm->pdev; 5224 size_t i, size; 5225 5226 size = ARRAY_SIZE(qm_cap_query_info); 5227 qm_cap = devm_kcalloc(&pdev->dev, sizeof(*qm_cap), size, GFP_KERNEL); 5228 if (!qm_cap) 5229 return -ENOMEM; 5230 5231 for (i = 0; i < size; i++) { 5232 qm_cap[i].type = qm_cap_query_info[i].type; 5233 qm_cap[i].name = qm_cap_query_info[i].name; 5234 qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info, 5235 i, qm->cap_ver); 5236 } 5237 5238 qm->cap_tables.qm_cap_table = qm_cap; 5239 qm->cap_tables.qm_cap_size = size; 5240 5241 return 0; 5242 } 5243 5244 static int qm_get_hw_caps(struct hisi_qm *qm) 5245 { 5246 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5247 qm_cap_info_pf : qm_cap_info_vf; 5248 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5249 ARRAY_SIZE(qm_cap_info_vf); 5250 u32 val, i; 5251 5252 /* Doorbell isolate register is a independent register. */ 5253 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5254 if (val) 5255 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5256 5257 if (qm->ver >= QM_HW_V3) { 5258 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5259 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5260 } 5261 5262 /* Get PF/VF common capbility */ 5263 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5264 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5265 if (val) 5266 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5267 } 5268 5269 /* Get PF/VF different capbility */ 5270 for (i = 0; i < size; i++) { 5271 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5272 if (val) 5273 set_bit(cap_info[i].type, &qm->caps); 5274 } 5275 5276 /* Fetch and save the value of qm capability registers */ 5277 return qm_pre_store_caps(qm); 5278 } 5279 5280 static void qm_get_version(struct hisi_qm *qm) 5281 { 5282 struct pci_dev *pdev = qm->pdev; 5283 u32 sub_version_id; 5284 5285 qm->ver = pdev->revision; 5286 5287 if (pdev->revision == QM_HW_V3) { 5288 sub_version_id = readl(qm->io_base + QM_SUB_VERSION_ID); 5289 if (sub_version_id) 5290 qm->ver = sub_version_id; 5291 } 5292 } 5293 5294 static int qm_get_pci_res(struct hisi_qm *qm) 5295 { 5296 struct pci_dev *pdev = qm->pdev; 5297 struct device *dev = &pdev->dev; 5298 int ret; 5299 5300 ret = pci_request_mem_regions(pdev, qm->dev_name); 5301 if (ret < 0) { 5302 dev_err(dev, "Failed to request mem regions!\n"); 5303 return ret; 5304 } 5305 5306 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5307 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5308 if (!qm->io_base) { 5309 ret = -EIO; 5310 goto err_request_mem_regions; 5311 } 5312 5313 qm_get_version(qm); 5314 5315 ret = qm_get_hw_caps(qm); 5316 if (ret) 5317 goto err_ioremap; 5318 5319 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5320 qm->db_interval = QM_QP_DB_INTERVAL; 5321 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5322 qm->db_io_base = ioremap(qm->db_phys_base, 5323 pci_resource_len(pdev, PCI_BAR_4)); 5324 if (!qm->db_io_base) { 5325 ret = -EIO; 5326 goto err_ioremap; 5327 } 5328 } else { 5329 qm->db_phys_base = qm->phys_base; 5330 qm->db_io_base = qm->io_base; 5331 qm->db_interval = 0; 5332 } 5333 5334 hisi_qm_pre_init(qm); 5335 ret = qm_get_qp_num(qm); 5336 if (ret) 5337 goto err_db_ioremap; 5338 5339 return 0; 5340 5341 err_db_ioremap: 5342 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5343 iounmap(qm->db_io_base); 5344 err_ioremap: 5345 iounmap(qm->io_base); 5346 err_request_mem_regions: 5347 pci_release_mem_regions(pdev); 5348 return ret; 5349 } 5350 5351 static int qm_clear_device(struct hisi_qm *qm) 5352 { 5353 acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); 5354 int ret; 5355 5356 if (qm->fun_type == QM_HW_VF) 5357 return 0; 5358 5359 /* Device does not support reset, return */ 5360 if (!qm->err_ini->err_info_init) 5361 return 0; 5362 qm->err_ini->err_info_init(qm); 5363 5364 if (!handle) 5365 return 0; 5366 5367 /* No reset method, return */ 5368 if (!acpi_has_method(handle, qm->err_info.acpi_rst)) 5369 return 0; 5370 5371 ret = qm_master_ooo_check(qm); 5372 if (ret) { 5373 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5374 return ret; 5375 } 5376 5377 if (qm->err_ini->set_priv_status) { 5378 ret = qm->err_ini->set_priv_status(qm); 5379 if (ret) { 5380 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5381 return ret; 5382 } 5383 } 5384 5385 return qm_reset_device(qm); 5386 } 5387 5388 static int hisi_qm_pci_init(struct hisi_qm *qm) 5389 { 5390 struct pci_dev *pdev = qm->pdev; 5391 struct device *dev = &pdev->dev; 5392 unsigned int num_vec; 5393 int ret; 5394 5395 ret = pci_enable_device_mem(pdev); 5396 if (ret < 0) { 5397 dev_err(dev, "Failed to enable device mem!\n"); 5398 return ret; 5399 } 5400 5401 ret = qm_get_pci_res(qm); 5402 if (ret) 5403 goto err_disable_pcidev; 5404 5405 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5406 if (ret < 0) 5407 goto err_get_pci_res; 5408 pci_set_master(pdev); 5409 5410 num_vec = qm_get_irq_num(qm); 5411 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5412 if (ret < 0) { 5413 dev_err(dev, "Failed to enable MSI vectors!\n"); 5414 goto err_get_pci_res; 5415 } 5416 5417 ret = qm_clear_device(qm); 5418 if (ret) 5419 goto err_free_vectors; 5420 5421 return 0; 5422 5423 err_free_vectors: 5424 pci_free_irq_vectors(pdev); 5425 err_get_pci_res: 5426 qm_put_pci_res(qm); 5427 err_disable_pcidev: 5428 pci_disable_device(pdev); 5429 return ret; 5430 } 5431 5432 static int hisi_qm_init_work(struct hisi_qm *qm) 5433 { 5434 int i; 5435 5436 for (i = 0; i < qm->qp_num; i++) 5437 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5438 5439 if (qm->fun_type == QM_HW_PF) 5440 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5441 5442 if (qm->ver > QM_HW_V2) 5443 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5444 5445 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5446 WQ_UNBOUND, num_online_cpus(), 5447 pci_name(qm->pdev)); 5448 if (!qm->wq) { 5449 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5450 return -ENOMEM; 5451 } 5452 5453 return 0; 5454 } 5455 5456 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5457 { 5458 struct device *dev = &qm->pdev->dev; 5459 u16 sq_depth, cq_depth; 5460 size_t qp_dma_size; 5461 int i, ret; 5462 5463 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5464 if (!qm->qp_array) 5465 return -ENOMEM; 5466 5467 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5468 if (!qm->poll_data) { 5469 kfree(qm->qp_array); 5470 return -ENOMEM; 5471 } 5472 5473 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5474 5475 /* one more page for device or qp statuses */ 5476 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5477 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5478 for (i = 0; i < qm->qp_num; i++) { 5479 qm->poll_data[i].qm = qm; 5480 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5481 if (ret) 5482 goto err_init_qp_mem; 5483 5484 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5485 } 5486 5487 return 0; 5488 err_init_qp_mem: 5489 hisi_qp_memory_uninit(qm, i); 5490 5491 return ret; 5492 } 5493 5494 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm) 5495 { 5496 struct qm_rsv_buf *xqc_buf = &qm->xqc_buf; 5497 struct qm_dma *xqc_dma = &xqc_buf->qcdma; 5498 struct device *dev = &qm->pdev->dev; 5499 size_t off = 0; 5500 5501 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \ 5502 (xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \ 5503 (xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \ 5504 off += QMC_ALIGN(sizeof(struct qm_##type)); \ 5505 } while (0) 5506 5507 xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) + 5508 QMC_ALIGN(sizeof(struct qm_aeqc)) + 5509 QMC_ALIGN(sizeof(struct qm_sqc)) + 5510 QMC_ALIGN(sizeof(struct qm_cqc)); 5511 xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size, 5512 &xqc_dma->dma, GFP_KERNEL); 5513 if (!xqc_dma->va) 5514 return -ENOMEM; 5515 5516 QM_XQC_BUF_INIT(xqc_buf, eqc); 5517 QM_XQC_BUF_INIT(xqc_buf, aeqc); 5518 QM_XQC_BUF_INIT(xqc_buf, sqc); 5519 QM_XQC_BUF_INIT(xqc_buf, cqc); 5520 5521 return 0; 5522 } 5523 5524 static int hisi_qm_memory_init(struct hisi_qm *qm) 5525 { 5526 struct device *dev = &qm->pdev->dev; 5527 int ret, total_func; 5528 size_t off = 0; 5529 5530 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5531 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5532 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5533 if (!qm->factor) 5534 return -ENOMEM; 5535 5536 /* Only the PF value needs to be initialized */ 5537 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5538 } 5539 5540 #define QM_INIT_BUF(qm, type, num) do { \ 5541 (qm)->type = ((qm)->qdma.va + (off)); \ 5542 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5543 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5544 } while (0) 5545 5546 idr_init(&qm->qp_idr); 5547 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5548 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5549 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5550 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5551 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5552 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5553 GFP_ATOMIC); 5554 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5555 if (!qm->qdma.va) { 5556 ret = -ENOMEM; 5557 goto err_destroy_idr; 5558 } 5559 5560 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5561 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5562 QM_INIT_BUF(qm, sqc, qm->qp_num); 5563 QM_INIT_BUF(qm, cqc, qm->qp_num); 5564 5565 ret = hisi_qm_alloc_rsv_buf(qm); 5566 if (ret) 5567 goto err_free_qdma; 5568 5569 ret = hisi_qp_alloc_memory(qm); 5570 if (ret) 5571 goto err_free_reserve_buf; 5572 5573 return 0; 5574 5575 err_free_reserve_buf: 5576 hisi_qm_free_rsv_buf(qm); 5577 err_free_qdma: 5578 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5579 err_destroy_idr: 5580 idr_destroy(&qm->qp_idr); 5581 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5582 kfree(qm->factor); 5583 5584 return ret; 5585 } 5586 5587 /** 5588 * hisi_qm_init() - Initialize configures about qm. 5589 * @qm: The qm needing init. 5590 * 5591 * This function init qm, then we can call hisi_qm_start to put qm into work. 5592 */ 5593 int hisi_qm_init(struct hisi_qm *qm) 5594 { 5595 struct pci_dev *pdev = qm->pdev; 5596 struct device *dev = &pdev->dev; 5597 int ret; 5598 5599 ret = hisi_qm_pci_init(qm); 5600 if (ret) 5601 return ret; 5602 5603 ret = qm_irqs_register(qm); 5604 if (ret) 5605 goto err_pci_init; 5606 5607 if (qm->fun_type == QM_HW_PF) { 5608 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5609 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5610 qm_disable_clock_gate(qm); 5611 ret = qm_dev_mem_reset(qm); 5612 if (ret) { 5613 dev_err(dev, "failed to reset device memory\n"); 5614 goto err_irq_register; 5615 } 5616 } 5617 5618 if (qm->mode == UACCE_MODE_SVA) { 5619 ret = qm_alloc_uacce(qm); 5620 if (ret < 0) 5621 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5622 } 5623 5624 ret = hisi_qm_memory_init(qm); 5625 if (ret) 5626 goto err_alloc_uacce; 5627 5628 ret = hisi_qm_init_work(qm); 5629 if (ret) 5630 goto err_free_qm_memory; 5631 5632 qm_cmd_init(qm); 5633 5634 return 0; 5635 5636 err_free_qm_memory: 5637 hisi_qm_memory_uninit(qm); 5638 err_alloc_uacce: 5639 qm_remove_uacce(qm); 5640 err_irq_register: 5641 qm_irqs_unregister(qm); 5642 err_pci_init: 5643 hisi_qm_pci_uninit(qm); 5644 return ret; 5645 } 5646 EXPORT_SYMBOL_GPL(hisi_qm_init); 5647 5648 /** 5649 * hisi_qm_get_dfx_access() - Try to get dfx access. 5650 * @qm: pointer to accelerator device. 5651 * 5652 * Try to get dfx access, then user can get message. 5653 * 5654 * If device is in suspended, return failure, otherwise 5655 * bump up the runtime PM usage counter. 5656 */ 5657 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5658 { 5659 struct device *dev = &qm->pdev->dev; 5660 5661 if (pm_runtime_suspended(dev)) { 5662 dev_info(dev, "can not read/write - device in suspended.\n"); 5663 return -EAGAIN; 5664 } 5665 5666 return qm_pm_get_sync(qm); 5667 } 5668 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5669 5670 /** 5671 * hisi_qm_put_dfx_access() - Put dfx access. 5672 * @qm: pointer to accelerator device. 5673 * 5674 * Put dfx access, drop runtime PM usage counter. 5675 */ 5676 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5677 { 5678 qm_pm_put_sync(qm); 5679 } 5680 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5681 5682 /** 5683 * hisi_qm_pm_init() - Initialize qm runtime PM. 5684 * @qm: pointer to accelerator device. 5685 * 5686 * Function that initialize qm runtime PM. 5687 */ 5688 void hisi_qm_pm_init(struct hisi_qm *qm) 5689 { 5690 struct device *dev = &qm->pdev->dev; 5691 5692 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5693 return; 5694 5695 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5696 pm_runtime_use_autosuspend(dev); 5697 pm_runtime_put_noidle(dev); 5698 } 5699 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5700 5701 /** 5702 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5703 * @qm: pointer to accelerator device. 5704 * 5705 * Function that uninitialize qm runtime PM. 5706 */ 5707 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5708 { 5709 struct device *dev = &qm->pdev->dev; 5710 5711 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5712 return; 5713 5714 pm_runtime_get_noresume(dev); 5715 pm_runtime_dont_use_autosuspend(dev); 5716 } 5717 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5718 5719 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5720 { 5721 struct pci_dev *pdev = qm->pdev; 5722 int ret; 5723 5724 ret = qm->ops->set_msi(qm, false); 5725 if (ret) { 5726 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5727 return ret; 5728 } 5729 5730 ret = qm_master_ooo_check(qm); 5731 if (ret) 5732 return ret; 5733 5734 if (qm->err_ini->set_priv_status) { 5735 ret = qm->err_ini->set_priv_status(qm); 5736 if (ret) 5737 return ret; 5738 } 5739 5740 ret = qm_set_pf_mse(qm, false); 5741 if (ret) 5742 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5743 5744 return ret; 5745 } 5746 5747 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5748 { 5749 struct pci_dev *pdev = qm->pdev; 5750 int ret; 5751 5752 ret = qm_set_pf_mse(qm, true); 5753 if (ret) { 5754 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5755 return ret; 5756 } 5757 5758 ret = qm->ops->set_msi(qm, true); 5759 if (ret) { 5760 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5761 return ret; 5762 } 5763 5764 ret = qm_dev_hw_init(qm); 5765 if (ret) { 5766 pci_err(pdev, "failed to init device after resuming\n"); 5767 return ret; 5768 } 5769 5770 qm_cmd_init(qm); 5771 hisi_qm_dev_err_init(qm); 5772 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5773 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5774 qm_disable_clock_gate(qm); 5775 ret = qm_dev_mem_reset(qm); 5776 if (ret) 5777 pci_err(pdev, "failed to reset device memory\n"); 5778 5779 return ret; 5780 } 5781 5782 /** 5783 * hisi_qm_suspend() - Runtime suspend of given device. 5784 * @dev: device to suspend. 5785 * 5786 * Function that suspend the device. 5787 */ 5788 int hisi_qm_suspend(struct device *dev) 5789 { 5790 struct pci_dev *pdev = to_pci_dev(dev); 5791 struct hisi_qm *qm = pci_get_drvdata(pdev); 5792 int ret; 5793 5794 pci_info(pdev, "entering suspended state\n"); 5795 5796 ret = hisi_qm_stop(qm, QM_NORMAL); 5797 if (ret) { 5798 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5799 return ret; 5800 } 5801 5802 ret = qm_prepare_for_suspend(qm); 5803 if (ret) 5804 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5805 5806 return ret; 5807 } 5808 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5809 5810 /** 5811 * hisi_qm_resume() - Runtime resume of given device. 5812 * @dev: device to resume. 5813 * 5814 * Function that resume the device. 5815 */ 5816 int hisi_qm_resume(struct device *dev) 5817 { 5818 struct pci_dev *pdev = to_pci_dev(dev); 5819 struct hisi_qm *qm = pci_get_drvdata(pdev); 5820 int ret; 5821 5822 pci_info(pdev, "resuming from suspend state\n"); 5823 5824 ret = qm_rebuild_for_resume(qm); 5825 if (ret) { 5826 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5827 return ret; 5828 } 5829 5830 ret = hisi_qm_start(qm); 5831 if (ret) { 5832 if (qm_check_dev_error(qm)) { 5833 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5834 return 0; 5835 } 5836 5837 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5838 } 5839 5840 return ret; 5841 } 5842 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5843 5844 MODULE_LICENSE("GPL v2"); 5845 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5846 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5847