1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 #include <asm/msr.h> 37 38 #include "psp-dev.h" 39 #include "sev-dev.h" 40 41 #define DEVICE_NAME "sev" 42 #define SEV_FW_FILE "amd/sev.fw" 43 #define SEV_FW_NAME_SIZE 64 44 45 /* Minimum firmware version required for the SEV-SNP support */ 46 #define SNP_MIN_API_MAJOR 1 47 #define SNP_MIN_API_MINOR 51 48 49 /* 50 * Maximum number of firmware-writable buffers that might be specified 51 * in the parameters of a legacy SEV command buffer. 52 */ 53 #define CMD_BUF_FW_WRITABLE_MAX 2 54 55 /* Leave room in the descriptor array for an end-of-list indicator. */ 56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 57 58 static DEFINE_MUTEX(sev_cmd_mutex); 59 static struct sev_misc_dev *misc_dev; 60 61 static int psp_cmd_timeout = 100; 62 module_param(psp_cmd_timeout, int, 0644); 63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 64 65 static int psp_probe_timeout = 5; 66 module_param(psp_probe_timeout, int, 0644); 67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 68 69 static char *init_ex_path; 70 module_param(init_ex_path, charp, 0444); 71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 72 73 static bool psp_init_on_probe = true; 74 module_param(psp_init_on_probe, bool, 0444); 75 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 76 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 81 82 static bool psp_dead; 83 static int psp_timeout; 84 85 /* Trusted Memory Region (TMR): 86 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 87 * to allocate the memory, which will return aligned memory for the specified 88 * allocation order. 89 * 90 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 91 */ 92 #define SEV_TMR_SIZE (1024 * 1024) 93 #define SNP_TMR_SIZE (2 * 1024 * 1024) 94 95 static void *sev_es_tmr; 96 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 97 98 /* INIT_EX NV Storage: 99 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 100 * allocator to allocate the memory, which will return aligned memory for the 101 * specified allocation order. 102 */ 103 #define NV_LENGTH (32 * 1024) 104 static void *sev_init_ex_buffer; 105 106 /* 107 * SEV_DATA_RANGE_LIST: 108 * Array containing range of pages that firmware transitions to HV-fixed 109 * page state. 110 */ 111 static struct sev_data_range_list *snp_range_list; 112 113 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic); 114 115 static int snp_shutdown_on_panic(struct notifier_block *nb, 116 unsigned long reason, void *arg); 117 118 static struct notifier_block snp_panic_notifier = { 119 .notifier_call = snp_shutdown_on_panic, 120 }; 121 122 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 123 { 124 struct sev_device *sev = psp_master->sev_data; 125 126 if (sev->api_major > maj) 127 return true; 128 129 if (sev->api_major == maj && sev->api_minor >= min) 130 return true; 131 132 return false; 133 } 134 135 static void sev_irq_handler(int irq, void *data, unsigned int status) 136 { 137 struct sev_device *sev = data; 138 int reg; 139 140 /* Check if it is command completion: */ 141 if (!(status & SEV_CMD_COMPLETE)) 142 return; 143 144 /* Check if it is SEV command completion: */ 145 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 146 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 147 sev->int_rcvd = 1; 148 wake_up(&sev->int_queue); 149 } 150 } 151 152 static int sev_wait_cmd_ioc(struct sev_device *sev, 153 unsigned int *reg, unsigned int timeout) 154 { 155 int ret; 156 157 /* 158 * If invoked during panic handling, local interrupts are disabled, 159 * so the PSP command completion interrupt can't be used. Poll for 160 * PSP command completion instead. 161 */ 162 if (irqs_disabled()) { 163 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 164 165 /* Poll for SEV command completion: */ 166 while (timeout_usecs--) { 167 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 168 if (*reg & PSP_CMDRESP_RESP) 169 return 0; 170 171 udelay(10); 172 } 173 return -ETIMEDOUT; 174 } 175 176 ret = wait_event_timeout(sev->int_queue, 177 sev->int_rcvd, timeout * HZ); 178 if (!ret) 179 return -ETIMEDOUT; 180 181 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 182 183 return 0; 184 } 185 186 static int sev_cmd_buffer_len(int cmd) 187 { 188 switch (cmd) { 189 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 190 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 191 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 192 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 193 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 194 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 195 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 196 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 197 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 198 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 199 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 200 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 201 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 202 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 203 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 204 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 205 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 206 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 207 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 208 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 209 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 210 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 211 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 212 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 213 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 214 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 215 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 216 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 217 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 218 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 219 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 220 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 221 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 222 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 223 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 224 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 225 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 226 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 227 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 228 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 229 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 230 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 231 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 232 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 233 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 234 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 235 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 236 default: return 0; 237 } 238 239 return 0; 240 } 241 242 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 243 { 244 struct file *fp; 245 struct path root; 246 struct cred *cred; 247 const struct cred *old_cred; 248 249 task_lock(&init_task); 250 get_fs_root(init_task.fs, &root); 251 task_unlock(&init_task); 252 253 cred = prepare_creds(); 254 if (!cred) 255 return ERR_PTR(-ENOMEM); 256 cred->fsuid = GLOBAL_ROOT_UID; 257 old_cred = override_creds(cred); 258 259 fp = file_open_root(&root, filename, flags, mode); 260 path_put(&root); 261 262 put_cred(revert_creds(old_cred)); 263 264 return fp; 265 } 266 267 static int sev_read_init_ex_file(void) 268 { 269 struct sev_device *sev = psp_master->sev_data; 270 struct file *fp; 271 ssize_t nread; 272 273 lockdep_assert_held(&sev_cmd_mutex); 274 275 if (!sev_init_ex_buffer) 276 return -EOPNOTSUPP; 277 278 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 279 if (IS_ERR(fp)) { 280 int ret = PTR_ERR(fp); 281 282 if (ret == -ENOENT) { 283 dev_info(sev->dev, 284 "SEV: %s does not exist and will be created later.\n", 285 init_ex_path); 286 ret = 0; 287 } else { 288 dev_err(sev->dev, 289 "SEV: could not open %s for read, error %d\n", 290 init_ex_path, ret); 291 } 292 return ret; 293 } 294 295 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 296 if (nread != NV_LENGTH) { 297 dev_info(sev->dev, 298 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 299 NV_LENGTH, nread); 300 } 301 302 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 303 filp_close(fp, NULL); 304 305 return 0; 306 } 307 308 static int sev_write_init_ex_file(void) 309 { 310 struct sev_device *sev = psp_master->sev_data; 311 struct file *fp; 312 loff_t offset = 0; 313 ssize_t nwrite; 314 315 lockdep_assert_held(&sev_cmd_mutex); 316 317 if (!sev_init_ex_buffer) 318 return 0; 319 320 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 321 if (IS_ERR(fp)) { 322 int ret = PTR_ERR(fp); 323 324 dev_err(sev->dev, 325 "SEV: could not open file for write, error %d\n", 326 ret); 327 return ret; 328 } 329 330 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 331 vfs_fsync(fp, 0); 332 filp_close(fp, NULL); 333 334 if (nwrite != NV_LENGTH) { 335 dev_err(sev->dev, 336 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 337 NV_LENGTH, nwrite); 338 return -EIO; 339 } 340 341 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 342 343 return 0; 344 } 345 346 static int sev_write_init_ex_file_if_required(int cmd_id) 347 { 348 lockdep_assert_held(&sev_cmd_mutex); 349 350 if (!sev_init_ex_buffer) 351 return 0; 352 353 /* 354 * Only a few platform commands modify the SPI/NV area, but none of the 355 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 356 * PEK_CERT_IMPORT, and PDH_GEN do. 357 */ 358 switch (cmd_id) { 359 case SEV_CMD_FACTORY_RESET: 360 case SEV_CMD_INIT_EX: 361 case SEV_CMD_PDH_GEN: 362 case SEV_CMD_PEK_CERT_IMPORT: 363 case SEV_CMD_PEK_GEN: 364 break; 365 default: 366 return 0; 367 } 368 369 return sev_write_init_ex_file(); 370 } 371 372 /* 373 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 374 * needs snp_reclaim_pages(), so a forward declaration is needed. 375 */ 376 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 377 378 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 379 { 380 int ret, err, i; 381 382 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 383 384 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 385 struct sev_data_snp_page_reclaim data = {0}; 386 387 data.paddr = paddr; 388 389 if (locked) 390 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 391 else 392 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 393 394 if (ret) 395 goto cleanup; 396 397 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 398 if (ret) 399 goto cleanup; 400 } 401 402 return 0; 403 404 cleanup: 405 /* 406 * If there was a failure reclaiming the page then it is no longer safe 407 * to release it back to the system; leak it instead. 408 */ 409 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 410 return ret; 411 } 412 413 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 414 { 415 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 416 int rc, i; 417 418 for (i = 0; i < npages; i++, pfn++) { 419 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 420 if (rc) 421 goto cleanup; 422 } 423 424 return 0; 425 426 cleanup: 427 /* 428 * Try unrolling the firmware state changes by 429 * reclaiming the pages which were already changed to the 430 * firmware state. 431 */ 432 snp_reclaim_pages(paddr, i, locked); 433 434 return rc; 435 } 436 437 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order) 438 { 439 unsigned long npages = 1ul << order, paddr; 440 struct sev_device *sev; 441 struct page *page; 442 443 if (!psp_master || !psp_master->sev_data) 444 return NULL; 445 446 page = alloc_pages(gfp_mask, order); 447 if (!page) 448 return NULL; 449 450 /* If SEV-SNP is initialized then add the page in RMP table. */ 451 sev = psp_master->sev_data; 452 if (!sev->snp_initialized) 453 return page; 454 455 paddr = __pa((unsigned long)page_address(page)); 456 if (rmp_mark_pages_firmware(paddr, npages, false)) 457 return NULL; 458 459 return page; 460 } 461 462 void *snp_alloc_firmware_page(gfp_t gfp_mask) 463 { 464 struct page *page; 465 466 page = __snp_alloc_firmware_pages(gfp_mask, 0); 467 468 return page ? page_address(page) : NULL; 469 } 470 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 471 472 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 473 { 474 struct sev_device *sev = psp_master->sev_data; 475 unsigned long paddr, npages = 1ul << order; 476 477 if (!page) 478 return; 479 480 paddr = __pa((unsigned long)page_address(page)); 481 if (sev->snp_initialized && 482 snp_reclaim_pages(paddr, npages, locked)) 483 return; 484 485 __free_pages(page, order); 486 } 487 488 void snp_free_firmware_page(void *addr) 489 { 490 if (!addr) 491 return; 492 493 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 494 } 495 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 496 497 static void *sev_fw_alloc(unsigned long len) 498 { 499 struct page *page; 500 501 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len)); 502 if (!page) 503 return NULL; 504 505 return page_address(page); 506 } 507 508 /** 509 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 510 * parameters corresponding to buffers that may be written to by firmware. 511 * 512 * @paddr_ptr: pointer to the address parameter in the command buffer which may 513 * need to be saved/restored depending on whether a bounce buffer 514 * is used. In the case of a bounce buffer, the command buffer 515 * needs to be updated with the address of the new bounce buffer 516 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 517 * be NULL if this descriptor is only an end-of-list indicator. 518 * 519 * @paddr_orig: storage for the original address parameter, which can be used to 520 * restore the original value in @paddr_ptr in cases where it is 521 * replaced with the address of a bounce buffer. 522 * 523 * @len: length of buffer located at the address originally stored at @paddr_ptr 524 * 525 * @guest_owned: true if the address corresponds to guest-owned pages, in which 526 * case bounce buffers are not needed. 527 */ 528 struct cmd_buf_desc { 529 u64 *paddr_ptr; 530 u64 paddr_orig; 531 u32 len; 532 bool guest_owned; 533 }; 534 535 /* 536 * If a legacy SEV command parameter is a memory address, those pages in 537 * turn need to be transitioned to/from firmware-owned before/after 538 * executing the firmware command. 539 * 540 * Additionally, in cases where those pages are not guest-owned, a bounce 541 * buffer is needed in place of the original memory address parameter. 542 * 543 * A set of descriptors are used to keep track of this handling, and 544 * initialized here based on the specific commands being executed. 545 */ 546 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 547 struct cmd_buf_desc *desc_list) 548 { 549 switch (cmd) { 550 case SEV_CMD_PDH_CERT_EXPORT: { 551 struct sev_data_pdh_cert_export *data = cmd_buf; 552 553 desc_list[0].paddr_ptr = &data->pdh_cert_address; 554 desc_list[0].len = data->pdh_cert_len; 555 desc_list[1].paddr_ptr = &data->cert_chain_address; 556 desc_list[1].len = data->cert_chain_len; 557 break; 558 } 559 case SEV_CMD_GET_ID: { 560 struct sev_data_get_id *data = cmd_buf; 561 562 desc_list[0].paddr_ptr = &data->address; 563 desc_list[0].len = data->len; 564 break; 565 } 566 case SEV_CMD_PEK_CSR: { 567 struct sev_data_pek_csr *data = cmd_buf; 568 569 desc_list[0].paddr_ptr = &data->address; 570 desc_list[0].len = data->len; 571 break; 572 } 573 case SEV_CMD_LAUNCH_UPDATE_DATA: { 574 struct sev_data_launch_update_data *data = cmd_buf; 575 576 desc_list[0].paddr_ptr = &data->address; 577 desc_list[0].len = data->len; 578 desc_list[0].guest_owned = true; 579 break; 580 } 581 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 582 struct sev_data_launch_update_vmsa *data = cmd_buf; 583 584 desc_list[0].paddr_ptr = &data->address; 585 desc_list[0].len = data->len; 586 desc_list[0].guest_owned = true; 587 break; 588 } 589 case SEV_CMD_LAUNCH_MEASURE: { 590 struct sev_data_launch_measure *data = cmd_buf; 591 592 desc_list[0].paddr_ptr = &data->address; 593 desc_list[0].len = data->len; 594 break; 595 } 596 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 597 struct sev_data_launch_secret *data = cmd_buf; 598 599 desc_list[0].paddr_ptr = &data->guest_address; 600 desc_list[0].len = data->guest_len; 601 desc_list[0].guest_owned = true; 602 break; 603 } 604 case SEV_CMD_DBG_DECRYPT: { 605 struct sev_data_dbg *data = cmd_buf; 606 607 desc_list[0].paddr_ptr = &data->dst_addr; 608 desc_list[0].len = data->len; 609 desc_list[0].guest_owned = true; 610 break; 611 } 612 case SEV_CMD_DBG_ENCRYPT: { 613 struct sev_data_dbg *data = cmd_buf; 614 615 desc_list[0].paddr_ptr = &data->dst_addr; 616 desc_list[0].len = data->len; 617 desc_list[0].guest_owned = true; 618 break; 619 } 620 case SEV_CMD_ATTESTATION_REPORT: { 621 struct sev_data_attestation_report *data = cmd_buf; 622 623 desc_list[0].paddr_ptr = &data->address; 624 desc_list[0].len = data->len; 625 break; 626 } 627 case SEV_CMD_SEND_START: { 628 struct sev_data_send_start *data = cmd_buf; 629 630 desc_list[0].paddr_ptr = &data->session_address; 631 desc_list[0].len = data->session_len; 632 break; 633 } 634 case SEV_CMD_SEND_UPDATE_DATA: { 635 struct sev_data_send_update_data *data = cmd_buf; 636 637 desc_list[0].paddr_ptr = &data->hdr_address; 638 desc_list[0].len = data->hdr_len; 639 desc_list[1].paddr_ptr = &data->trans_address; 640 desc_list[1].len = data->trans_len; 641 break; 642 } 643 case SEV_CMD_SEND_UPDATE_VMSA: { 644 struct sev_data_send_update_vmsa *data = cmd_buf; 645 646 desc_list[0].paddr_ptr = &data->hdr_address; 647 desc_list[0].len = data->hdr_len; 648 desc_list[1].paddr_ptr = &data->trans_address; 649 desc_list[1].len = data->trans_len; 650 break; 651 } 652 case SEV_CMD_RECEIVE_UPDATE_DATA: { 653 struct sev_data_receive_update_data *data = cmd_buf; 654 655 desc_list[0].paddr_ptr = &data->guest_address; 656 desc_list[0].len = data->guest_len; 657 desc_list[0].guest_owned = true; 658 break; 659 } 660 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 661 struct sev_data_receive_update_vmsa *data = cmd_buf; 662 663 desc_list[0].paddr_ptr = &data->guest_address; 664 desc_list[0].len = data->guest_len; 665 desc_list[0].guest_owned = true; 666 break; 667 } 668 default: 669 break; 670 } 671 } 672 673 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 674 { 675 unsigned int npages; 676 677 if (!desc->len) 678 return 0; 679 680 /* Allocate a bounce buffer if this isn't a guest owned page. */ 681 if (!desc->guest_owned) { 682 struct page *page; 683 684 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 685 if (!page) { 686 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 687 return -ENOMEM; 688 } 689 690 desc->paddr_orig = *desc->paddr_ptr; 691 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 692 } 693 694 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 695 696 /* Transition the buffer to firmware-owned. */ 697 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 698 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 699 return -EFAULT; 700 } 701 702 return 0; 703 } 704 705 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 706 { 707 unsigned int npages; 708 709 if (!desc->len) 710 return 0; 711 712 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 713 714 /* Transition the buffers back to hypervisor-owned. */ 715 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 716 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 717 return -EFAULT; 718 } 719 720 /* Copy data from bounce buffer and then free it. */ 721 if (!desc->guest_owned) { 722 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 723 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 724 725 memcpy(dst_buf, bounce_buf, desc->len); 726 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 727 728 /* Restore the original address in the command buffer. */ 729 *desc->paddr_ptr = desc->paddr_orig; 730 } 731 732 return 0; 733 } 734 735 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 736 { 737 int i; 738 739 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 740 741 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 742 struct cmd_buf_desc *desc = &desc_list[i]; 743 744 if (!desc->paddr_ptr) 745 break; 746 747 if (snp_map_cmd_buf_desc(desc)) 748 goto err_unmap; 749 } 750 751 return 0; 752 753 err_unmap: 754 for (i--; i >= 0; i--) 755 snp_unmap_cmd_buf_desc(&desc_list[i]); 756 757 return -EFAULT; 758 } 759 760 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 761 { 762 int i, ret = 0; 763 764 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 765 struct cmd_buf_desc *desc = &desc_list[i]; 766 767 if (!desc->paddr_ptr) 768 break; 769 770 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 771 ret = -EFAULT; 772 } 773 774 return ret; 775 } 776 777 static bool sev_cmd_buf_writable(int cmd) 778 { 779 switch (cmd) { 780 case SEV_CMD_PLATFORM_STATUS: 781 case SEV_CMD_GUEST_STATUS: 782 case SEV_CMD_LAUNCH_START: 783 case SEV_CMD_RECEIVE_START: 784 case SEV_CMD_LAUNCH_MEASURE: 785 case SEV_CMD_SEND_START: 786 case SEV_CMD_SEND_UPDATE_DATA: 787 case SEV_CMD_SEND_UPDATE_VMSA: 788 case SEV_CMD_PEK_CSR: 789 case SEV_CMD_PDH_CERT_EXPORT: 790 case SEV_CMD_GET_ID: 791 case SEV_CMD_ATTESTATION_REPORT: 792 return true; 793 default: 794 return false; 795 } 796 } 797 798 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 799 static bool snp_legacy_handling_needed(int cmd) 800 { 801 struct sev_device *sev = psp_master->sev_data; 802 803 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 804 } 805 806 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 807 { 808 if (!snp_legacy_handling_needed(cmd)) 809 return 0; 810 811 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 812 return -EFAULT; 813 814 /* 815 * Before command execution, the command buffer needs to be put into 816 * the firmware-owned state. 817 */ 818 if (sev_cmd_buf_writable(cmd)) { 819 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 820 return -EFAULT; 821 } 822 823 return 0; 824 } 825 826 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 827 { 828 if (!snp_legacy_handling_needed(cmd)) 829 return 0; 830 831 /* 832 * After command completion, the command buffer needs to be put back 833 * into the hypervisor-owned state. 834 */ 835 if (sev_cmd_buf_writable(cmd)) 836 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 837 return -EFAULT; 838 839 return 0; 840 } 841 842 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 843 { 844 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 845 struct psp_device *psp = psp_master; 846 struct sev_device *sev; 847 unsigned int cmdbuff_hi, cmdbuff_lo; 848 unsigned int phys_lsb, phys_msb; 849 unsigned int reg, ret = 0; 850 void *cmd_buf; 851 int buf_len; 852 853 if (!psp || !psp->sev_data) 854 return -ENODEV; 855 856 if (psp_dead) 857 return -EBUSY; 858 859 sev = psp->sev_data; 860 861 buf_len = sev_cmd_buffer_len(cmd); 862 if (WARN_ON_ONCE(!data != !buf_len)) 863 return -EINVAL; 864 865 /* 866 * Copy the incoming data to driver's scratch buffer as __pa() will not 867 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 868 * physically contiguous. 869 */ 870 if (data) { 871 /* 872 * Commands are generally issued one at a time and require the 873 * sev_cmd_mutex, but there could be recursive firmware requests 874 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 875 * preparing buffers for another command. This is the only known 876 * case of nesting in the current code, so exactly one 877 * additional command buffer is available for that purpose. 878 */ 879 if (!sev->cmd_buf_active) { 880 cmd_buf = sev->cmd_buf; 881 sev->cmd_buf_active = true; 882 } else if (!sev->cmd_buf_backup_active) { 883 cmd_buf = sev->cmd_buf_backup; 884 sev->cmd_buf_backup_active = true; 885 } else { 886 dev_err(sev->dev, 887 "SEV: too many firmware commands in progress, no command buffers available.\n"); 888 return -EBUSY; 889 } 890 891 memcpy(cmd_buf, data, buf_len); 892 893 /* 894 * The behavior of the SEV-legacy commands is altered when the 895 * SNP firmware is in the INIT state. 896 */ 897 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 898 if (ret) { 899 dev_err(sev->dev, 900 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 901 cmd, ret); 902 return ret; 903 } 904 } else { 905 cmd_buf = sev->cmd_buf; 906 } 907 908 /* Get the physical address of the command buffer */ 909 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 910 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 911 912 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 913 cmd, phys_msb, phys_lsb, psp_timeout); 914 915 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 916 buf_len, false); 917 918 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 919 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 920 921 sev->int_rcvd = 0; 922 923 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 924 925 /* 926 * If invoked during panic handling, local interrupts are disabled so 927 * the PSP command completion interrupt can't be used. 928 * sev_wait_cmd_ioc() already checks for interrupts disabled and 929 * polls for PSP command completion. Ensure we do not request an 930 * interrupt from the PSP if irqs disabled. 931 */ 932 if (!irqs_disabled()) 933 reg |= SEV_CMDRESP_IOC; 934 935 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 936 937 /* wait for command completion */ 938 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 939 if (ret) { 940 if (psp_ret) 941 *psp_ret = 0; 942 943 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 944 psp_dead = true; 945 946 return ret; 947 } 948 949 psp_timeout = psp_cmd_timeout; 950 951 if (psp_ret) 952 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 953 954 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 955 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 956 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 957 958 /* 959 * PSP firmware may report additional error information in the 960 * command buffer registers on error. Print contents of command 961 * buffer registers if they changed. 962 */ 963 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 964 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 965 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 966 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 967 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 968 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 969 } 970 ret = -EIO; 971 } else { 972 ret = sev_write_init_ex_file_if_required(cmd); 973 } 974 975 /* 976 * Copy potential output from the PSP back to data. Do this even on 977 * failure in case the caller wants to glean something from the error. 978 */ 979 if (data) { 980 int ret_reclaim; 981 /* 982 * Restore the page state after the command completes. 983 */ 984 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 985 if (ret_reclaim) { 986 dev_err(sev->dev, 987 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 988 cmd, ret_reclaim); 989 return ret_reclaim; 990 } 991 992 memcpy(data, cmd_buf, buf_len); 993 994 if (sev->cmd_buf_backup_active) 995 sev->cmd_buf_backup_active = false; 996 else 997 sev->cmd_buf_active = false; 998 999 if (snp_unmap_cmd_buf_desc_list(desc_list)) 1000 return -EFAULT; 1001 } 1002 1003 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 1004 buf_len, false); 1005 1006 return ret; 1007 } 1008 1009 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1010 { 1011 int rc; 1012 1013 mutex_lock(&sev_cmd_mutex); 1014 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1015 mutex_unlock(&sev_cmd_mutex); 1016 1017 return rc; 1018 } 1019 EXPORT_SYMBOL_GPL(sev_do_cmd); 1020 1021 static int __sev_init_locked(int *error) 1022 { 1023 struct sev_data_init data; 1024 1025 memset(&data, 0, sizeof(data)); 1026 if (sev_es_tmr) { 1027 /* 1028 * Do not include the encryption mask on the physical 1029 * address of the TMR (firmware should clear it anyway). 1030 */ 1031 data.tmr_address = __pa(sev_es_tmr); 1032 1033 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1034 data.tmr_len = sev_es_tmr_size; 1035 } 1036 1037 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1038 } 1039 1040 static int __sev_init_ex_locked(int *error) 1041 { 1042 struct sev_data_init_ex data; 1043 1044 memset(&data, 0, sizeof(data)); 1045 data.length = sizeof(data); 1046 data.nv_address = __psp_pa(sev_init_ex_buffer); 1047 data.nv_len = NV_LENGTH; 1048 1049 if (sev_es_tmr) { 1050 /* 1051 * Do not include the encryption mask on the physical 1052 * address of the TMR (firmware should clear it anyway). 1053 */ 1054 data.tmr_address = __pa(sev_es_tmr); 1055 1056 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1057 data.tmr_len = sev_es_tmr_size; 1058 } 1059 1060 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1061 } 1062 1063 static inline int __sev_do_init_locked(int *psp_ret) 1064 { 1065 if (sev_init_ex_buffer) 1066 return __sev_init_ex_locked(psp_ret); 1067 else 1068 return __sev_init_locked(psp_ret); 1069 } 1070 1071 static void snp_set_hsave_pa(void *arg) 1072 { 1073 wrmsrq(MSR_VM_HSAVE_PA, 0); 1074 } 1075 1076 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1077 { 1078 struct sev_data_range_list *range_list = arg; 1079 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1080 size_t size; 1081 1082 /* 1083 * Ensure the list of HV_FIXED pages that will be passed to firmware 1084 * do not exceed the page-sized argument buffer. 1085 */ 1086 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1087 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1088 return -E2BIG; 1089 1090 switch (rs->desc) { 1091 case E820_TYPE_RESERVED: 1092 case E820_TYPE_PMEM: 1093 case E820_TYPE_ACPI: 1094 range->base = rs->start & PAGE_MASK; 1095 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1096 range->page_count = size >> PAGE_SHIFT; 1097 range_list->num_elements++; 1098 break; 1099 default: 1100 break; 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int __sev_snp_init_locked(int *error) 1107 { 1108 struct psp_device *psp = psp_master; 1109 struct sev_data_snp_init_ex data; 1110 struct sev_device *sev; 1111 void *arg = &data; 1112 int cmd, rc = 0; 1113 1114 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1115 return -ENODEV; 1116 1117 sev = psp->sev_data; 1118 1119 if (sev->snp_initialized) 1120 return 0; 1121 1122 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1123 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1124 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1125 return -EOPNOTSUPP; 1126 } 1127 1128 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1129 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1130 1131 /* 1132 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1133 * of system physical address ranges to convert into HV-fixed page 1134 * states during the RMP initialization. For instance, the memory that 1135 * UEFI reserves should be included in the that list. This allows system 1136 * components that occasionally write to memory (e.g. logging to UEFI 1137 * reserved regions) to not fail due to RMP initialization and SNP 1138 * enablement. 1139 * 1140 */ 1141 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1142 /* 1143 * Firmware checks that the pages containing the ranges enumerated 1144 * in the RANGES structure are either in the default page state or in the 1145 * firmware page state. 1146 */ 1147 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1148 if (!snp_range_list) { 1149 dev_err(sev->dev, 1150 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1151 return -ENOMEM; 1152 } 1153 1154 /* 1155 * Retrieve all reserved memory regions from the e820 memory map 1156 * to be setup as HV-fixed pages. 1157 */ 1158 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1159 snp_range_list, snp_filter_reserved_mem_regions); 1160 if (rc) { 1161 dev_err(sev->dev, 1162 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1163 return rc; 1164 } 1165 1166 memset(&data, 0, sizeof(data)); 1167 data.init_rmp = 1; 1168 data.list_paddr_en = 1; 1169 data.list_paddr = __psp_pa(snp_range_list); 1170 cmd = SEV_CMD_SNP_INIT_EX; 1171 } else { 1172 cmd = SEV_CMD_SNP_INIT; 1173 arg = NULL; 1174 } 1175 1176 /* 1177 * The following sequence must be issued before launching the first SNP 1178 * guest to ensure all dirty cache lines are flushed, including from 1179 * updates to the RMP table itself via the RMPUPDATE instruction: 1180 * 1181 * - WBINVD on all running CPUs 1182 * - SEV_CMD_SNP_INIT[_EX] firmware command 1183 * - WBINVD on all running CPUs 1184 * - SEV_CMD_SNP_DF_FLUSH firmware command 1185 */ 1186 wbinvd_on_all_cpus(); 1187 1188 rc = __sev_do_cmd_locked(cmd, arg, error); 1189 if (rc) { 1190 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n", 1191 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT", 1192 rc, *error); 1193 return rc; 1194 } 1195 1196 /* Prepare for first SNP guest launch after INIT. */ 1197 wbinvd_on_all_cpus(); 1198 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1199 if (rc) { 1200 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n", 1201 rc, *error); 1202 return rc; 1203 } 1204 1205 sev->snp_initialized = true; 1206 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1207 1208 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major, 1209 sev->api_minor, sev->build); 1210 1211 atomic_notifier_chain_register(&panic_notifier_list, 1212 &snp_panic_notifier); 1213 1214 sev_es_tmr_size = SNP_TMR_SIZE; 1215 1216 return 0; 1217 } 1218 1219 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1220 { 1221 if (sev_es_tmr) 1222 return; 1223 1224 /* Obtain the TMR memory area for SEV-ES use */ 1225 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1226 if (sev_es_tmr) { 1227 /* Must flush the cache before giving it to the firmware */ 1228 if (!sev->snp_initialized) 1229 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1230 } else { 1231 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1232 } 1233 } 1234 1235 /* 1236 * If an init_ex_path is provided allocate a buffer for the file and 1237 * read in the contents. Additionally, if SNP is initialized, convert 1238 * the buffer pages to firmware pages. 1239 */ 1240 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1241 { 1242 struct page *page; 1243 int rc; 1244 1245 if (!init_ex_path) 1246 return 0; 1247 1248 if (sev_init_ex_buffer) 1249 return 0; 1250 1251 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1252 if (!page) { 1253 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1254 return -ENOMEM; 1255 } 1256 1257 sev_init_ex_buffer = page_address(page); 1258 1259 rc = sev_read_init_ex_file(); 1260 if (rc) 1261 return rc; 1262 1263 /* If SEV-SNP is initialized, transition to firmware page. */ 1264 if (sev->snp_initialized) { 1265 unsigned long npages; 1266 1267 npages = 1UL << get_order(NV_LENGTH); 1268 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1269 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1270 return -ENOMEM; 1271 } 1272 } 1273 1274 return 0; 1275 } 1276 1277 static int __sev_platform_init_locked(int *error) 1278 { 1279 int rc, psp_ret = SEV_RET_NO_FW_CALL; 1280 struct sev_device *sev; 1281 1282 if (!psp_master || !psp_master->sev_data) 1283 return -ENODEV; 1284 1285 sev = psp_master->sev_data; 1286 1287 if (sev->state == SEV_STATE_INIT) 1288 return 0; 1289 1290 __sev_platform_init_handle_tmr(sev); 1291 1292 rc = __sev_platform_init_handle_init_ex_path(sev); 1293 if (rc) 1294 return rc; 1295 1296 rc = __sev_do_init_locked(&psp_ret); 1297 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1298 /* 1299 * Initialization command returned an integrity check failure 1300 * status code, meaning that firmware load and validation of SEV 1301 * related persistent data has failed. Retrying the 1302 * initialization function should succeed by replacing the state 1303 * with a reset state. 1304 */ 1305 dev_err(sev->dev, 1306 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1307 rc = __sev_do_init_locked(&psp_ret); 1308 } 1309 1310 if (error) 1311 *error = psp_ret; 1312 1313 if (rc) { 1314 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n", 1315 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc); 1316 return rc; 1317 } 1318 1319 sev->state = SEV_STATE_INIT; 1320 1321 /* Prepare for first SEV guest launch after INIT */ 1322 wbinvd_on_all_cpus(); 1323 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 1324 if (rc) { 1325 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n", 1326 *error, rc); 1327 return rc; 1328 } 1329 1330 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1331 1332 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1333 sev->api_minor, sev->build); 1334 1335 return 0; 1336 } 1337 1338 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1339 { 1340 struct sev_device *sev; 1341 int rc; 1342 1343 if (!psp_master || !psp_master->sev_data) 1344 return -ENODEV; 1345 1346 sev = psp_master->sev_data; 1347 1348 if (sev->state == SEV_STATE_INIT) 1349 return 0; 1350 1351 rc = __sev_snp_init_locked(&args->error); 1352 if (rc && rc != -ENODEV) 1353 return rc; 1354 1355 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1356 if (args->probe && !psp_init_on_probe) 1357 return 0; 1358 1359 return __sev_platform_init_locked(&args->error); 1360 } 1361 1362 int sev_platform_init(struct sev_platform_init_args *args) 1363 { 1364 int rc; 1365 1366 mutex_lock(&sev_cmd_mutex); 1367 rc = _sev_platform_init_locked(args); 1368 mutex_unlock(&sev_cmd_mutex); 1369 1370 return rc; 1371 } 1372 EXPORT_SYMBOL_GPL(sev_platform_init); 1373 1374 static int __sev_platform_shutdown_locked(int *error) 1375 { 1376 struct psp_device *psp = psp_master; 1377 struct sev_device *sev; 1378 int ret; 1379 1380 if (!psp || !psp->sev_data) 1381 return 0; 1382 1383 sev = psp->sev_data; 1384 1385 if (sev->state == SEV_STATE_UNINIT) 1386 return 0; 1387 1388 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1389 if (ret) { 1390 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n", 1391 *error, ret); 1392 return ret; 1393 } 1394 1395 sev->state = SEV_STATE_UNINIT; 1396 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1397 1398 return ret; 1399 } 1400 1401 static int sev_get_platform_state(int *state, int *error) 1402 { 1403 struct sev_user_data_status data; 1404 int rc; 1405 1406 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1407 if (rc) 1408 return rc; 1409 1410 *state = data.state; 1411 return rc; 1412 } 1413 1414 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1415 { 1416 struct sev_platform_init_args init_args = {0}; 1417 int rc; 1418 1419 rc = _sev_platform_init_locked(&init_args); 1420 if (rc) { 1421 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1422 return rc; 1423 } 1424 1425 *shutdown_required = true; 1426 1427 return 0; 1428 } 1429 1430 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1431 { 1432 int error, rc; 1433 1434 rc = __sev_snp_init_locked(&error); 1435 if (rc) { 1436 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1437 return rc; 1438 } 1439 1440 *shutdown_required = true; 1441 1442 return 0; 1443 } 1444 1445 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1446 { 1447 int state, rc; 1448 1449 if (!writable) 1450 return -EPERM; 1451 1452 /* 1453 * The SEV spec requires that FACTORY_RESET must be issued in 1454 * UNINIT state. Before we go further lets check if any guest is 1455 * active. 1456 * 1457 * If FW is in WORKING state then deny the request otherwise issue 1458 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1459 * 1460 */ 1461 rc = sev_get_platform_state(&state, &argp->error); 1462 if (rc) 1463 return rc; 1464 1465 if (state == SEV_STATE_WORKING) 1466 return -EBUSY; 1467 1468 if (state == SEV_STATE_INIT) { 1469 rc = __sev_platform_shutdown_locked(&argp->error); 1470 if (rc) 1471 return rc; 1472 } 1473 1474 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1475 } 1476 1477 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1478 { 1479 struct sev_user_data_status data; 1480 int ret; 1481 1482 memset(&data, 0, sizeof(data)); 1483 1484 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1485 if (ret) 1486 return ret; 1487 1488 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1489 ret = -EFAULT; 1490 1491 return ret; 1492 } 1493 1494 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1495 { 1496 struct sev_device *sev = psp_master->sev_data; 1497 bool shutdown_required = false; 1498 int rc; 1499 1500 if (!writable) 1501 return -EPERM; 1502 1503 if (sev->state == SEV_STATE_UNINIT) { 1504 rc = sev_move_to_init_state(argp, &shutdown_required); 1505 if (rc) 1506 return rc; 1507 } 1508 1509 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error); 1510 1511 if (shutdown_required) 1512 __sev_firmware_shutdown(sev, false); 1513 1514 return rc; 1515 } 1516 1517 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1518 { 1519 struct sev_device *sev = psp_master->sev_data; 1520 struct sev_user_data_pek_csr input; 1521 bool shutdown_required = false; 1522 struct sev_data_pek_csr data; 1523 void __user *input_address; 1524 void *blob = NULL; 1525 int ret; 1526 1527 if (!writable) 1528 return -EPERM; 1529 1530 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1531 return -EFAULT; 1532 1533 memset(&data, 0, sizeof(data)); 1534 1535 /* userspace wants to query CSR length */ 1536 if (!input.address || !input.length) 1537 goto cmd; 1538 1539 /* allocate a physically contiguous buffer to store the CSR blob */ 1540 input_address = (void __user *)input.address; 1541 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1542 return -EFAULT; 1543 1544 blob = kzalloc(input.length, GFP_KERNEL); 1545 if (!blob) 1546 return -ENOMEM; 1547 1548 data.address = __psp_pa(blob); 1549 data.len = input.length; 1550 1551 cmd: 1552 if (sev->state == SEV_STATE_UNINIT) { 1553 ret = sev_move_to_init_state(argp, &shutdown_required); 1554 if (ret) 1555 goto e_free_blob; 1556 } 1557 1558 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1559 1560 /* If we query the CSR length, FW responded with expected data. */ 1561 input.length = data.len; 1562 1563 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1564 ret = -EFAULT; 1565 goto e_free_blob; 1566 } 1567 1568 if (blob) { 1569 if (copy_to_user(input_address, blob, input.length)) 1570 ret = -EFAULT; 1571 } 1572 1573 e_free_blob: 1574 if (shutdown_required) 1575 __sev_firmware_shutdown(sev, false); 1576 1577 kfree(blob); 1578 return ret; 1579 } 1580 1581 void *psp_copy_user_blob(u64 uaddr, u32 len) 1582 { 1583 if (!uaddr || !len) 1584 return ERR_PTR(-EINVAL); 1585 1586 /* verify that blob length does not exceed our limit */ 1587 if (len > SEV_FW_BLOB_MAX_SIZE) 1588 return ERR_PTR(-EINVAL); 1589 1590 return memdup_user((void __user *)uaddr, len); 1591 } 1592 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1593 1594 static int sev_get_api_version(void) 1595 { 1596 struct sev_device *sev = psp_master->sev_data; 1597 struct sev_user_data_status status; 1598 int error = 0, ret; 1599 1600 ret = sev_platform_status(&status, &error); 1601 if (ret) { 1602 dev_err(sev->dev, 1603 "SEV: failed to get status. Error: %#x\n", error); 1604 return 1; 1605 } 1606 1607 sev->api_major = status.api_major; 1608 sev->api_minor = status.api_minor; 1609 sev->build = status.build; 1610 sev->state = status.state; 1611 1612 return 0; 1613 } 1614 1615 static int sev_get_firmware(struct device *dev, 1616 const struct firmware **firmware) 1617 { 1618 char fw_name_specific[SEV_FW_NAME_SIZE]; 1619 char fw_name_subset[SEV_FW_NAME_SIZE]; 1620 1621 snprintf(fw_name_specific, sizeof(fw_name_specific), 1622 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1623 boot_cpu_data.x86, boot_cpu_data.x86_model); 1624 1625 snprintf(fw_name_subset, sizeof(fw_name_subset), 1626 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1627 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1628 1629 /* Check for SEV FW for a particular model. 1630 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1631 * 1632 * or 1633 * 1634 * Check for SEV FW common to a subset of models. 1635 * Ex. amd_sev_fam17h_model0xh.sbin for 1636 * Family 17h Model 00h -- Family 17h Model 0Fh 1637 * 1638 * or 1639 * 1640 * Fall-back to using generic name: sev.fw 1641 */ 1642 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1643 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1644 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1645 return 0; 1646 1647 return -ENOENT; 1648 } 1649 1650 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1651 static int sev_update_firmware(struct device *dev) 1652 { 1653 struct sev_data_download_firmware *data; 1654 const struct firmware *firmware; 1655 int ret, error, order; 1656 struct page *p; 1657 u64 data_size; 1658 1659 if (!sev_version_greater_or_equal(0, 15)) { 1660 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1661 return -1; 1662 } 1663 1664 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1665 dev_dbg(dev, "No SEV firmware file present\n"); 1666 return -1; 1667 } 1668 1669 /* 1670 * SEV FW expects the physical address given to it to be 32 1671 * byte aligned. Memory allocated has structure placed at the 1672 * beginning followed by the firmware being passed to the SEV 1673 * FW. Allocate enough memory for data structure + alignment 1674 * padding + SEV FW. 1675 */ 1676 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1677 1678 order = get_order(firmware->size + data_size); 1679 p = alloc_pages(GFP_KERNEL, order); 1680 if (!p) { 1681 ret = -1; 1682 goto fw_err; 1683 } 1684 1685 /* 1686 * Copy firmware data to a kernel allocated contiguous 1687 * memory region. 1688 */ 1689 data = page_address(p); 1690 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1691 1692 data->address = __psp_pa(page_address(p) + data_size); 1693 data->len = firmware->size; 1694 1695 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1696 1697 /* 1698 * A quirk for fixing the committed TCB version, when upgrading from 1699 * earlier firmware version than 1.50. 1700 */ 1701 if (!ret && !sev_version_greater_or_equal(1, 50)) 1702 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1703 1704 if (ret) 1705 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1706 1707 __free_pages(p, order); 1708 1709 fw_err: 1710 release_firmware(firmware); 1711 1712 return ret; 1713 } 1714 1715 static int __sev_snp_shutdown_locked(int *error, bool panic) 1716 { 1717 struct psp_device *psp = psp_master; 1718 struct sev_device *sev; 1719 struct sev_data_snp_shutdown_ex data; 1720 int ret; 1721 1722 if (!psp || !psp->sev_data) 1723 return 0; 1724 1725 sev = psp->sev_data; 1726 1727 if (!sev->snp_initialized) 1728 return 0; 1729 1730 memset(&data, 0, sizeof(data)); 1731 data.len = sizeof(data); 1732 data.iommu_snp_shutdown = 1; 1733 1734 /* 1735 * If invoked during panic handling, local interrupts are disabled 1736 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1737 * In that case, a wbinvd() is done on remote CPUs via the NMI 1738 * callback, so only a local wbinvd() is needed here. 1739 */ 1740 if (!panic) 1741 wbinvd_on_all_cpus(); 1742 else 1743 wbinvd(); 1744 1745 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1746 /* SHUTDOWN may require DF_FLUSH */ 1747 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1748 int dfflush_error = SEV_RET_NO_FW_CALL; 1749 1750 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error); 1751 if (ret) { 1752 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n", 1753 ret, dfflush_error); 1754 return ret; 1755 } 1756 /* reissue the shutdown command */ 1757 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1758 error); 1759 } 1760 if (ret) { 1761 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n", 1762 ret, *error); 1763 return ret; 1764 } 1765 1766 /* 1767 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1768 * enforcement by the IOMMU and also transitions all pages 1769 * associated with the IOMMU to the Reclaim state. 1770 * Firmware was transitioning the IOMMU pages to Hypervisor state 1771 * before version 1.53. But, accounting for the number of assigned 1772 * 4kB pages in a 2M page was done incorrectly by not transitioning 1773 * to the Reclaim state. This resulted in RMP #PF when later accessing 1774 * the 2M page containing those pages during kexec boot. Hence, the 1775 * firmware now transitions these pages to Reclaim state and hypervisor 1776 * needs to transition these pages to shared state. SNP Firmware 1777 * version 1.53 and above are needed for kexec boot. 1778 */ 1779 ret = amd_iommu_snp_disable(); 1780 if (ret) { 1781 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1782 return ret; 1783 } 1784 1785 sev->snp_initialized = false; 1786 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1787 1788 atomic_notifier_chain_unregister(&panic_notifier_list, 1789 &snp_panic_notifier); 1790 1791 /* Reset TMR size back to default */ 1792 sev_es_tmr_size = SEV_TMR_SIZE; 1793 1794 return ret; 1795 } 1796 1797 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1798 { 1799 struct sev_device *sev = psp_master->sev_data; 1800 struct sev_user_data_pek_cert_import input; 1801 struct sev_data_pek_cert_import data; 1802 bool shutdown_required = false; 1803 void *pek_blob, *oca_blob; 1804 int ret; 1805 1806 if (!writable) 1807 return -EPERM; 1808 1809 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1810 return -EFAULT; 1811 1812 /* copy PEK certificate blobs from userspace */ 1813 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 1814 if (IS_ERR(pek_blob)) 1815 return PTR_ERR(pek_blob); 1816 1817 data.reserved = 0; 1818 data.pek_cert_address = __psp_pa(pek_blob); 1819 data.pek_cert_len = input.pek_cert_len; 1820 1821 /* copy PEK certificate blobs from userspace */ 1822 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 1823 if (IS_ERR(oca_blob)) { 1824 ret = PTR_ERR(oca_blob); 1825 goto e_free_pek; 1826 } 1827 1828 data.oca_cert_address = __psp_pa(oca_blob); 1829 data.oca_cert_len = input.oca_cert_len; 1830 1831 /* If platform is not in INIT state then transition it to INIT */ 1832 if (sev->state != SEV_STATE_INIT) { 1833 ret = sev_move_to_init_state(argp, &shutdown_required); 1834 if (ret) 1835 goto e_free_oca; 1836 } 1837 1838 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 1839 1840 e_free_oca: 1841 if (shutdown_required) 1842 __sev_firmware_shutdown(sev, false); 1843 1844 kfree(oca_blob); 1845 e_free_pek: 1846 kfree(pek_blob); 1847 return ret; 1848 } 1849 1850 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 1851 { 1852 struct sev_user_data_get_id2 input; 1853 struct sev_data_get_id data; 1854 void __user *input_address; 1855 void *id_blob = NULL; 1856 int ret; 1857 1858 /* SEV GET_ID is available from SEV API v0.16 and up */ 1859 if (!sev_version_greater_or_equal(0, 16)) 1860 return -ENOTSUPP; 1861 1862 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1863 return -EFAULT; 1864 1865 input_address = (void __user *)input.address; 1866 1867 if (input.address && input.length) { 1868 /* 1869 * The length of the ID shouldn't be assumed by software since 1870 * it may change in the future. The allocation size is limited 1871 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 1872 * If the allocation fails, simply return ENOMEM rather than 1873 * warning in the kernel log. 1874 */ 1875 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 1876 if (!id_blob) 1877 return -ENOMEM; 1878 1879 data.address = __psp_pa(id_blob); 1880 data.len = input.length; 1881 } else { 1882 data.address = 0; 1883 data.len = 0; 1884 } 1885 1886 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 1887 1888 /* 1889 * Firmware will return the length of the ID value (either the minimum 1890 * required length or the actual length written), return it to the user. 1891 */ 1892 input.length = data.len; 1893 1894 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1895 ret = -EFAULT; 1896 goto e_free; 1897 } 1898 1899 if (id_blob) { 1900 if (copy_to_user(input_address, id_blob, data.len)) { 1901 ret = -EFAULT; 1902 goto e_free; 1903 } 1904 } 1905 1906 e_free: 1907 kfree(id_blob); 1908 1909 return ret; 1910 } 1911 1912 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 1913 { 1914 struct sev_data_get_id *data; 1915 u64 data_size, user_size; 1916 void *id_blob, *mem; 1917 int ret; 1918 1919 /* SEV GET_ID available from SEV API v0.16 and up */ 1920 if (!sev_version_greater_or_equal(0, 16)) 1921 return -ENOTSUPP; 1922 1923 /* SEV FW expects the buffer it fills with the ID to be 1924 * 8-byte aligned. Memory allocated should be enough to 1925 * hold data structure + alignment padding + memory 1926 * where SEV FW writes the ID. 1927 */ 1928 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 1929 user_size = sizeof(struct sev_user_data_get_id); 1930 1931 mem = kzalloc(data_size + user_size, GFP_KERNEL); 1932 if (!mem) 1933 return -ENOMEM; 1934 1935 data = mem; 1936 id_blob = mem + data_size; 1937 1938 data->address = __psp_pa(id_blob); 1939 data->len = user_size; 1940 1941 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 1942 if (!ret) { 1943 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 1944 ret = -EFAULT; 1945 } 1946 1947 kfree(mem); 1948 1949 return ret; 1950 } 1951 1952 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 1953 { 1954 struct sev_device *sev = psp_master->sev_data; 1955 struct sev_user_data_pdh_cert_export input; 1956 void *pdh_blob = NULL, *cert_blob = NULL; 1957 struct sev_data_pdh_cert_export data; 1958 void __user *input_cert_chain_address; 1959 void __user *input_pdh_cert_address; 1960 bool shutdown_required = false; 1961 int ret; 1962 1963 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1964 return -EFAULT; 1965 1966 memset(&data, 0, sizeof(data)); 1967 1968 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 1969 input_cert_chain_address = (void __user *)input.cert_chain_address; 1970 1971 /* Userspace wants to query the certificate length. */ 1972 if (!input.pdh_cert_address || 1973 !input.pdh_cert_len || 1974 !input.cert_chain_address) 1975 goto cmd; 1976 1977 /* Allocate a physically contiguous buffer to store the PDH blob. */ 1978 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 1979 return -EFAULT; 1980 1981 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 1982 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 1983 return -EFAULT; 1984 1985 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 1986 if (!pdh_blob) 1987 return -ENOMEM; 1988 1989 data.pdh_cert_address = __psp_pa(pdh_blob); 1990 data.pdh_cert_len = input.pdh_cert_len; 1991 1992 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 1993 if (!cert_blob) { 1994 ret = -ENOMEM; 1995 goto e_free_pdh; 1996 } 1997 1998 data.cert_chain_address = __psp_pa(cert_blob); 1999 data.cert_chain_len = input.cert_chain_len; 2000 2001 cmd: 2002 /* If platform is not in INIT state then transition it to INIT. */ 2003 if (sev->state != SEV_STATE_INIT) { 2004 if (!writable) { 2005 ret = -EPERM; 2006 goto e_free_cert; 2007 } 2008 ret = sev_move_to_init_state(argp, &shutdown_required); 2009 if (ret) 2010 goto e_free_cert; 2011 } 2012 2013 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 2014 2015 /* If we query the length, FW responded with expected data. */ 2016 input.cert_chain_len = data.cert_chain_len; 2017 input.pdh_cert_len = data.pdh_cert_len; 2018 2019 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2020 ret = -EFAULT; 2021 goto e_free_cert; 2022 } 2023 2024 if (pdh_blob) { 2025 if (copy_to_user(input_pdh_cert_address, 2026 pdh_blob, input.pdh_cert_len)) { 2027 ret = -EFAULT; 2028 goto e_free_cert; 2029 } 2030 } 2031 2032 if (cert_blob) { 2033 if (copy_to_user(input_cert_chain_address, 2034 cert_blob, input.cert_chain_len)) 2035 ret = -EFAULT; 2036 } 2037 2038 e_free_cert: 2039 if (shutdown_required) 2040 __sev_firmware_shutdown(sev, false); 2041 2042 kfree(cert_blob); 2043 e_free_pdh: 2044 kfree(pdh_blob); 2045 return ret; 2046 } 2047 2048 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 2049 { 2050 struct sev_device *sev = psp_master->sev_data; 2051 bool shutdown_required = false; 2052 struct sev_data_snp_addr buf; 2053 struct page *status_page; 2054 int ret, error; 2055 void *data; 2056 2057 if (!argp->data) 2058 return -EINVAL; 2059 2060 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 2061 if (!status_page) 2062 return -ENOMEM; 2063 2064 data = page_address(status_page); 2065 2066 if (!sev->snp_initialized) { 2067 ret = snp_move_to_init_state(argp, &shutdown_required); 2068 if (ret) 2069 goto cleanup; 2070 } 2071 2072 /* 2073 * Firmware expects status page to be in firmware-owned state, otherwise 2074 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 2075 */ 2076 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 2077 ret = -EFAULT; 2078 goto cleanup; 2079 } 2080 2081 buf.address = __psp_pa(data); 2082 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 2083 2084 /* 2085 * Status page will be transitioned to Reclaim state upon success, or 2086 * left in Firmware state in failure. Use snp_reclaim_pages() to 2087 * transition either case back to Hypervisor-owned state. 2088 */ 2089 if (snp_reclaim_pages(__pa(data), 1, true)) 2090 return -EFAULT; 2091 2092 if (ret) 2093 goto cleanup; 2094 2095 if (copy_to_user((void __user *)argp->data, data, 2096 sizeof(struct sev_user_data_snp_status))) 2097 ret = -EFAULT; 2098 2099 cleanup: 2100 if (shutdown_required) 2101 __sev_snp_shutdown_locked(&error, false); 2102 2103 __free_pages(status_page, 0); 2104 return ret; 2105 } 2106 2107 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2108 { 2109 struct sev_device *sev = psp_master->sev_data; 2110 struct sev_data_snp_commit buf; 2111 bool shutdown_required = false; 2112 int ret, error; 2113 2114 if (!sev->snp_initialized) { 2115 ret = snp_move_to_init_state(argp, &shutdown_required); 2116 if (ret) 2117 return ret; 2118 } 2119 2120 buf.len = sizeof(buf); 2121 2122 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2123 2124 if (shutdown_required) 2125 __sev_snp_shutdown_locked(&error, false); 2126 2127 return ret; 2128 } 2129 2130 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2131 { 2132 struct sev_device *sev = psp_master->sev_data; 2133 struct sev_user_data_snp_config config; 2134 bool shutdown_required = false; 2135 int ret, error; 2136 2137 if (!argp->data) 2138 return -EINVAL; 2139 2140 if (!writable) 2141 return -EPERM; 2142 2143 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2144 return -EFAULT; 2145 2146 if (!sev->snp_initialized) { 2147 ret = snp_move_to_init_state(argp, &shutdown_required); 2148 if (ret) 2149 return ret; 2150 } 2151 2152 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2153 2154 if (shutdown_required) 2155 __sev_snp_shutdown_locked(&error, false); 2156 2157 return ret; 2158 } 2159 2160 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2161 { 2162 struct sev_device *sev = psp_master->sev_data; 2163 struct sev_user_data_snp_vlek_load input; 2164 bool shutdown_required = false; 2165 int ret, error; 2166 void *blob; 2167 2168 if (!argp->data) 2169 return -EINVAL; 2170 2171 if (!writable) 2172 return -EPERM; 2173 2174 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2175 return -EFAULT; 2176 2177 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2178 return -EINVAL; 2179 2180 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2181 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2182 if (IS_ERR(blob)) 2183 return PTR_ERR(blob); 2184 2185 input.vlek_wrapped_address = __psp_pa(blob); 2186 2187 if (!sev->snp_initialized) { 2188 ret = snp_move_to_init_state(argp, &shutdown_required); 2189 if (ret) 2190 goto cleanup; 2191 } 2192 2193 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2194 2195 if (shutdown_required) 2196 __sev_snp_shutdown_locked(&error, false); 2197 2198 cleanup: 2199 kfree(blob); 2200 2201 return ret; 2202 } 2203 2204 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2205 { 2206 void __user *argp = (void __user *)arg; 2207 struct sev_issue_cmd input; 2208 int ret = -EFAULT; 2209 bool writable = file->f_mode & FMODE_WRITE; 2210 2211 if (!psp_master || !psp_master->sev_data) 2212 return -ENODEV; 2213 2214 if (ioctl != SEV_ISSUE_CMD) 2215 return -EINVAL; 2216 2217 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2218 return -EFAULT; 2219 2220 if (input.cmd > SEV_MAX) 2221 return -EINVAL; 2222 2223 mutex_lock(&sev_cmd_mutex); 2224 2225 switch (input.cmd) { 2226 2227 case SEV_FACTORY_RESET: 2228 ret = sev_ioctl_do_reset(&input, writable); 2229 break; 2230 case SEV_PLATFORM_STATUS: 2231 ret = sev_ioctl_do_platform_status(&input); 2232 break; 2233 case SEV_PEK_GEN: 2234 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2235 break; 2236 case SEV_PDH_GEN: 2237 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2238 break; 2239 case SEV_PEK_CSR: 2240 ret = sev_ioctl_do_pek_csr(&input, writable); 2241 break; 2242 case SEV_PEK_CERT_IMPORT: 2243 ret = sev_ioctl_do_pek_import(&input, writable); 2244 break; 2245 case SEV_PDH_CERT_EXPORT: 2246 ret = sev_ioctl_do_pdh_export(&input, writable); 2247 break; 2248 case SEV_GET_ID: 2249 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2250 ret = sev_ioctl_do_get_id(&input); 2251 break; 2252 case SEV_GET_ID2: 2253 ret = sev_ioctl_do_get_id2(&input); 2254 break; 2255 case SNP_PLATFORM_STATUS: 2256 ret = sev_ioctl_do_snp_platform_status(&input); 2257 break; 2258 case SNP_COMMIT: 2259 ret = sev_ioctl_do_snp_commit(&input); 2260 break; 2261 case SNP_SET_CONFIG: 2262 ret = sev_ioctl_do_snp_set_config(&input, writable); 2263 break; 2264 case SNP_VLEK_LOAD: 2265 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2266 break; 2267 default: 2268 ret = -EINVAL; 2269 goto out; 2270 } 2271 2272 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2273 ret = -EFAULT; 2274 out: 2275 mutex_unlock(&sev_cmd_mutex); 2276 2277 return ret; 2278 } 2279 2280 static const struct file_operations sev_fops = { 2281 .owner = THIS_MODULE, 2282 .unlocked_ioctl = sev_ioctl, 2283 }; 2284 2285 int sev_platform_status(struct sev_user_data_status *data, int *error) 2286 { 2287 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2288 } 2289 EXPORT_SYMBOL_GPL(sev_platform_status); 2290 2291 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2292 { 2293 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2294 } 2295 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2296 2297 int sev_guest_activate(struct sev_data_activate *data, int *error) 2298 { 2299 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2300 } 2301 EXPORT_SYMBOL_GPL(sev_guest_activate); 2302 2303 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2304 { 2305 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2306 } 2307 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2308 2309 int sev_guest_df_flush(int *error) 2310 { 2311 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2312 } 2313 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2314 2315 static void sev_exit(struct kref *ref) 2316 { 2317 misc_deregister(&misc_dev->misc); 2318 kfree(misc_dev); 2319 misc_dev = NULL; 2320 } 2321 2322 static int sev_misc_init(struct sev_device *sev) 2323 { 2324 struct device *dev = sev->dev; 2325 int ret; 2326 2327 /* 2328 * SEV feature support can be detected on multiple devices but the SEV 2329 * FW commands must be issued on the master. During probe, we do not 2330 * know the master hence we create /dev/sev on the first device probe. 2331 * sev_do_cmd() finds the right master device to which to issue the 2332 * command to the firmware. 2333 */ 2334 if (!misc_dev) { 2335 struct miscdevice *misc; 2336 2337 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2338 if (!misc_dev) 2339 return -ENOMEM; 2340 2341 misc = &misc_dev->misc; 2342 misc->minor = MISC_DYNAMIC_MINOR; 2343 misc->name = DEVICE_NAME; 2344 misc->fops = &sev_fops; 2345 2346 ret = misc_register(misc); 2347 if (ret) 2348 return ret; 2349 2350 kref_init(&misc_dev->refcount); 2351 } else { 2352 kref_get(&misc_dev->refcount); 2353 } 2354 2355 init_waitqueue_head(&sev->int_queue); 2356 sev->misc = misc_dev; 2357 dev_dbg(dev, "registered SEV device\n"); 2358 2359 return 0; 2360 } 2361 2362 int sev_dev_init(struct psp_device *psp) 2363 { 2364 struct device *dev = psp->dev; 2365 struct sev_device *sev; 2366 int ret = -ENOMEM; 2367 2368 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2369 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2370 return 0; 2371 } 2372 2373 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2374 if (!sev) 2375 goto e_err; 2376 2377 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2378 if (!sev->cmd_buf) 2379 goto e_sev; 2380 2381 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2382 2383 psp->sev_data = sev; 2384 2385 sev->dev = dev; 2386 sev->psp = psp; 2387 2388 sev->io_regs = psp->io_regs; 2389 2390 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2391 if (!sev->vdata) { 2392 ret = -ENODEV; 2393 dev_err(dev, "sev: missing driver data\n"); 2394 goto e_buf; 2395 } 2396 2397 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2398 2399 ret = sev_misc_init(sev); 2400 if (ret) 2401 goto e_irq; 2402 2403 dev_notice(dev, "sev enabled\n"); 2404 2405 return 0; 2406 2407 e_irq: 2408 psp_clear_sev_irq_handler(psp); 2409 e_buf: 2410 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2411 e_sev: 2412 devm_kfree(dev, sev); 2413 e_err: 2414 psp->sev_data = NULL; 2415 2416 dev_notice(dev, "sev initialization failed\n"); 2417 2418 return ret; 2419 } 2420 2421 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2422 { 2423 int error; 2424 2425 __sev_platform_shutdown_locked(NULL); 2426 2427 if (sev_es_tmr) { 2428 /* 2429 * The TMR area was encrypted, flush it from the cache. 2430 * 2431 * If invoked during panic handling, local interrupts are 2432 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2433 * can't be used. In that case, wbinvd() is done on remote CPUs 2434 * via the NMI callback, and done for this CPU later during 2435 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2436 */ 2437 if (!panic) 2438 wbinvd_on_all_cpus(); 2439 2440 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2441 get_order(sev_es_tmr_size), 2442 true); 2443 sev_es_tmr = NULL; 2444 } 2445 2446 if (sev_init_ex_buffer) { 2447 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2448 get_order(NV_LENGTH), 2449 true); 2450 sev_init_ex_buffer = NULL; 2451 } 2452 2453 if (snp_range_list) { 2454 kfree(snp_range_list); 2455 snp_range_list = NULL; 2456 } 2457 2458 __sev_snp_shutdown_locked(&error, panic); 2459 } 2460 2461 static void sev_firmware_shutdown(struct sev_device *sev) 2462 { 2463 mutex_lock(&sev_cmd_mutex); 2464 __sev_firmware_shutdown(sev, false); 2465 mutex_unlock(&sev_cmd_mutex); 2466 } 2467 2468 void sev_platform_shutdown(void) 2469 { 2470 if (!psp_master || !psp_master->sev_data) 2471 return; 2472 2473 sev_firmware_shutdown(psp_master->sev_data); 2474 } 2475 EXPORT_SYMBOL_GPL(sev_platform_shutdown); 2476 2477 void sev_dev_destroy(struct psp_device *psp) 2478 { 2479 struct sev_device *sev = psp->sev_data; 2480 2481 if (!sev) 2482 return; 2483 2484 sev_firmware_shutdown(sev); 2485 2486 if (sev->misc) 2487 kref_put(&misc_dev->refcount, sev_exit); 2488 2489 psp_clear_sev_irq_handler(psp); 2490 } 2491 2492 static int snp_shutdown_on_panic(struct notifier_block *nb, 2493 unsigned long reason, void *arg) 2494 { 2495 struct sev_device *sev = psp_master->sev_data; 2496 2497 /* 2498 * If sev_cmd_mutex is already acquired, then it's likely 2499 * another PSP command is in flight and issuing a shutdown 2500 * would fail in unexpected ways. Rather than create even 2501 * more confusion during a panic, just bail out here. 2502 */ 2503 if (mutex_is_locked(&sev_cmd_mutex)) 2504 return NOTIFY_DONE; 2505 2506 __sev_firmware_shutdown(sev, true); 2507 2508 return NOTIFY_DONE; 2509 } 2510 2511 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2512 void *data, int *error) 2513 { 2514 if (!filep || filep->f_op != &sev_fops) 2515 return -EBADF; 2516 2517 return sev_do_cmd(cmd, data, error); 2518 } 2519 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2520 2521 void sev_pci_init(void) 2522 { 2523 struct sev_device *sev = psp_master->sev_data; 2524 u8 api_major, api_minor, build; 2525 2526 if (!sev) 2527 return; 2528 2529 psp_timeout = psp_probe_timeout; 2530 2531 if (sev_get_api_version()) 2532 goto err; 2533 2534 api_major = sev->api_major; 2535 api_minor = sev->api_minor; 2536 build = sev->build; 2537 2538 if (sev_update_firmware(sev->dev) == 0) 2539 sev_get_api_version(); 2540 2541 if (api_major != sev->api_major || api_minor != sev->api_minor || 2542 build != sev->build) 2543 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2544 api_major, api_minor, build, 2545 sev->api_major, sev->api_minor, sev->build); 2546 2547 return; 2548 2549 err: 2550 sev_dev_destroy(psp_master); 2551 2552 psp_master->sev_data = NULL; 2553 } 2554 2555 void sev_pci_exit(void) 2556 { 2557 struct sev_device *sev = psp_master->sev_data; 2558 2559 if (!sev) 2560 return; 2561 2562 sev_firmware_shutdown(sev); 2563 } 2564