1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31 
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/e820/types.h>
35 #include <asm/sev.h>
36 #include <asm/msr.h>
37 
38 #include "psp-dev.h"
39 #include "sev-dev.h"
40 
41 #define DEVICE_NAME		"sev"
42 #define SEV_FW_FILE		"amd/sev.fw"
43 #define SEV_FW_NAME_SIZE	64
44 
45 /* Minimum firmware version required for the SEV-SNP support */
46 #define SNP_MIN_API_MAJOR	1
47 #define SNP_MIN_API_MINOR	51
48 
49 /*
50  * Maximum number of firmware-writable buffers that might be specified
51  * in the parameters of a legacy SEV command buffer.
52  */
53 #define CMD_BUF_FW_WRITABLE_MAX 2
54 
55 /* Leave room in the descriptor array for an end-of-list indicator. */
56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
57 
58 static DEFINE_MUTEX(sev_cmd_mutex);
59 static struct sev_misc_dev *misc_dev;
60 
61 static int psp_cmd_timeout = 100;
62 module_param(psp_cmd_timeout, int, 0644);
63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
64 
65 static int psp_probe_timeout = 5;
66 module_param(psp_probe_timeout, int, 0644);
67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
68 
69 static char *init_ex_path;
70 module_param(init_ex_path, charp, 0444);
71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
72 
73 static bool psp_init_on_probe = true;
74 module_param(psp_init_on_probe, bool, 0444);
75 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
76 
77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
81 
82 static bool psp_dead;
83 static int psp_timeout;
84 
85 /* Trusted Memory Region (TMR):
86  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
87  *   to allocate the memory, which will return aligned memory for the specified
88  *   allocation order.
89  *
90  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
91  */
92 #define SEV_TMR_SIZE		(1024 * 1024)
93 #define SNP_TMR_SIZE		(2 * 1024 * 1024)
94 
95 static void *sev_es_tmr;
96 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
97 
98 /* INIT_EX NV Storage:
99  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
100  *   allocator to allocate the memory, which will return aligned memory for the
101  *   specified allocation order.
102  */
103 #define NV_LENGTH (32 * 1024)
104 static void *sev_init_ex_buffer;
105 
106 /*
107  * SEV_DATA_RANGE_LIST:
108  *   Array containing range of pages that firmware transitions to HV-fixed
109  *   page state.
110  */
111 static struct sev_data_range_list *snp_range_list;
112 
113 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
114 
115 static int snp_shutdown_on_panic(struct notifier_block *nb,
116 				 unsigned long reason, void *arg);
117 
118 static struct notifier_block snp_panic_notifier = {
119 	.notifier_call = snp_shutdown_on_panic,
120 };
121 
122 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
123 {
124 	struct sev_device *sev = psp_master->sev_data;
125 
126 	if (sev->api_major > maj)
127 		return true;
128 
129 	if (sev->api_major == maj && sev->api_minor >= min)
130 		return true;
131 
132 	return false;
133 }
134 
135 static void sev_irq_handler(int irq, void *data, unsigned int status)
136 {
137 	struct sev_device *sev = data;
138 	int reg;
139 
140 	/* Check if it is command completion: */
141 	if (!(status & SEV_CMD_COMPLETE))
142 		return;
143 
144 	/* Check if it is SEV command completion: */
145 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
146 	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
147 		sev->int_rcvd = 1;
148 		wake_up(&sev->int_queue);
149 	}
150 }
151 
152 static int sev_wait_cmd_ioc(struct sev_device *sev,
153 			    unsigned int *reg, unsigned int timeout)
154 {
155 	int ret;
156 
157 	/*
158 	 * If invoked during panic handling, local interrupts are disabled,
159 	 * so the PSP command completion interrupt can't be used. Poll for
160 	 * PSP command completion instead.
161 	 */
162 	if (irqs_disabled()) {
163 		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
164 
165 		/* Poll for SEV command completion: */
166 		while (timeout_usecs--) {
167 			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
168 			if (*reg & PSP_CMDRESP_RESP)
169 				return 0;
170 
171 			udelay(10);
172 		}
173 		return -ETIMEDOUT;
174 	}
175 
176 	ret = wait_event_timeout(sev->int_queue,
177 			sev->int_rcvd, timeout * HZ);
178 	if (!ret)
179 		return -ETIMEDOUT;
180 
181 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
182 
183 	return 0;
184 }
185 
186 static int sev_cmd_buffer_len(int cmd)
187 {
188 	switch (cmd) {
189 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
190 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
191 	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
192 	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
193 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
194 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
195 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
196 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
197 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
198 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
199 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
200 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
201 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
202 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
203 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
204 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
205 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
206 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
207 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
208 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
209 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
210 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
211 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
212 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
213 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
214 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
215 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
216 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
217 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
218 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
219 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
220 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
221 	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
222 	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
223 	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
224 	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
225 	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
226 	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
227 	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
228 	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
229 	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
230 	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
231 	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
232 	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
233 	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
234 	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
235 	case SEV_CMD_SNP_COMMIT:		return sizeof(struct sev_data_snp_commit);
236 	default:				return 0;
237 	}
238 
239 	return 0;
240 }
241 
242 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
243 {
244 	struct file *fp;
245 	struct path root;
246 	struct cred *cred;
247 	const struct cred *old_cred;
248 
249 	task_lock(&init_task);
250 	get_fs_root(init_task.fs, &root);
251 	task_unlock(&init_task);
252 
253 	cred = prepare_creds();
254 	if (!cred)
255 		return ERR_PTR(-ENOMEM);
256 	cred->fsuid = GLOBAL_ROOT_UID;
257 	old_cred = override_creds(cred);
258 
259 	fp = file_open_root(&root, filename, flags, mode);
260 	path_put(&root);
261 
262 	put_cred(revert_creds(old_cred));
263 
264 	return fp;
265 }
266 
267 static int sev_read_init_ex_file(void)
268 {
269 	struct sev_device *sev = psp_master->sev_data;
270 	struct file *fp;
271 	ssize_t nread;
272 
273 	lockdep_assert_held(&sev_cmd_mutex);
274 
275 	if (!sev_init_ex_buffer)
276 		return -EOPNOTSUPP;
277 
278 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
279 	if (IS_ERR(fp)) {
280 		int ret = PTR_ERR(fp);
281 
282 		if (ret == -ENOENT) {
283 			dev_info(sev->dev,
284 				"SEV: %s does not exist and will be created later.\n",
285 				init_ex_path);
286 			ret = 0;
287 		} else {
288 			dev_err(sev->dev,
289 				"SEV: could not open %s for read, error %d\n",
290 				init_ex_path, ret);
291 		}
292 		return ret;
293 	}
294 
295 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
296 	if (nread != NV_LENGTH) {
297 		dev_info(sev->dev,
298 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
299 			NV_LENGTH, nread);
300 	}
301 
302 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
303 	filp_close(fp, NULL);
304 
305 	return 0;
306 }
307 
308 static int sev_write_init_ex_file(void)
309 {
310 	struct sev_device *sev = psp_master->sev_data;
311 	struct file *fp;
312 	loff_t offset = 0;
313 	ssize_t nwrite;
314 
315 	lockdep_assert_held(&sev_cmd_mutex);
316 
317 	if (!sev_init_ex_buffer)
318 		return 0;
319 
320 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
321 	if (IS_ERR(fp)) {
322 		int ret = PTR_ERR(fp);
323 
324 		dev_err(sev->dev,
325 			"SEV: could not open file for write, error %d\n",
326 			ret);
327 		return ret;
328 	}
329 
330 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
331 	vfs_fsync(fp, 0);
332 	filp_close(fp, NULL);
333 
334 	if (nwrite != NV_LENGTH) {
335 		dev_err(sev->dev,
336 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
337 			NV_LENGTH, nwrite);
338 		return -EIO;
339 	}
340 
341 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
342 
343 	return 0;
344 }
345 
346 static int sev_write_init_ex_file_if_required(int cmd_id)
347 {
348 	lockdep_assert_held(&sev_cmd_mutex);
349 
350 	if (!sev_init_ex_buffer)
351 		return 0;
352 
353 	/*
354 	 * Only a few platform commands modify the SPI/NV area, but none of the
355 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
356 	 * PEK_CERT_IMPORT, and PDH_GEN do.
357 	 */
358 	switch (cmd_id) {
359 	case SEV_CMD_FACTORY_RESET:
360 	case SEV_CMD_INIT_EX:
361 	case SEV_CMD_PDH_GEN:
362 	case SEV_CMD_PEK_CERT_IMPORT:
363 	case SEV_CMD_PEK_GEN:
364 		break;
365 	default:
366 		return 0;
367 	}
368 
369 	return sev_write_init_ex_file();
370 }
371 
372 /*
373  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
374  * needs snp_reclaim_pages(), so a forward declaration is needed.
375  */
376 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
377 
378 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
379 {
380 	int ret, err, i;
381 
382 	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
383 
384 	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
385 		struct sev_data_snp_page_reclaim data = {0};
386 
387 		data.paddr = paddr;
388 
389 		if (locked)
390 			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
391 		else
392 			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
393 
394 		if (ret)
395 			goto cleanup;
396 
397 		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
398 		if (ret)
399 			goto cleanup;
400 	}
401 
402 	return 0;
403 
404 cleanup:
405 	/*
406 	 * If there was a failure reclaiming the page then it is no longer safe
407 	 * to release it back to the system; leak it instead.
408 	 */
409 	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
410 	return ret;
411 }
412 
413 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
414 {
415 	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
416 	int rc, i;
417 
418 	for (i = 0; i < npages; i++, pfn++) {
419 		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
420 		if (rc)
421 			goto cleanup;
422 	}
423 
424 	return 0;
425 
426 cleanup:
427 	/*
428 	 * Try unrolling the firmware state changes by
429 	 * reclaiming the pages which were already changed to the
430 	 * firmware state.
431 	 */
432 	snp_reclaim_pages(paddr, i, locked);
433 
434 	return rc;
435 }
436 
437 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order)
438 {
439 	unsigned long npages = 1ul << order, paddr;
440 	struct sev_device *sev;
441 	struct page *page;
442 
443 	if (!psp_master || !psp_master->sev_data)
444 		return NULL;
445 
446 	page = alloc_pages(gfp_mask, order);
447 	if (!page)
448 		return NULL;
449 
450 	/* If SEV-SNP is initialized then add the page in RMP table. */
451 	sev = psp_master->sev_data;
452 	if (!sev->snp_initialized)
453 		return page;
454 
455 	paddr = __pa((unsigned long)page_address(page));
456 	if (rmp_mark_pages_firmware(paddr, npages, false))
457 		return NULL;
458 
459 	return page;
460 }
461 
462 void *snp_alloc_firmware_page(gfp_t gfp_mask)
463 {
464 	struct page *page;
465 
466 	page = __snp_alloc_firmware_pages(gfp_mask, 0);
467 
468 	return page ? page_address(page) : NULL;
469 }
470 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
471 
472 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
473 {
474 	struct sev_device *sev = psp_master->sev_data;
475 	unsigned long paddr, npages = 1ul << order;
476 
477 	if (!page)
478 		return;
479 
480 	paddr = __pa((unsigned long)page_address(page));
481 	if (sev->snp_initialized &&
482 	    snp_reclaim_pages(paddr, npages, locked))
483 		return;
484 
485 	__free_pages(page, order);
486 }
487 
488 void snp_free_firmware_page(void *addr)
489 {
490 	if (!addr)
491 		return;
492 
493 	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
494 }
495 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
496 
497 static void *sev_fw_alloc(unsigned long len)
498 {
499 	struct page *page;
500 
501 	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len));
502 	if (!page)
503 		return NULL;
504 
505 	return page_address(page);
506 }
507 
508 /**
509  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
510  * parameters corresponding to buffers that may be written to by firmware.
511  *
512  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
513  *              need to be saved/restored depending on whether a bounce buffer
514  *              is used. In the case of a bounce buffer, the command buffer
515  *              needs to be updated with the address of the new bounce buffer
516  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
517  *              be NULL if this descriptor is only an end-of-list indicator.
518  *
519  * @paddr_orig: storage for the original address parameter, which can be used to
520  *              restore the original value in @paddr_ptr in cases where it is
521  *              replaced with the address of a bounce buffer.
522  *
523  * @len: length of buffer located at the address originally stored at @paddr_ptr
524  *
525  * @guest_owned: true if the address corresponds to guest-owned pages, in which
526  *               case bounce buffers are not needed.
527  */
528 struct cmd_buf_desc {
529 	u64 *paddr_ptr;
530 	u64 paddr_orig;
531 	u32 len;
532 	bool guest_owned;
533 };
534 
535 /*
536  * If a legacy SEV command parameter is a memory address, those pages in
537  * turn need to be transitioned to/from firmware-owned before/after
538  * executing the firmware command.
539  *
540  * Additionally, in cases where those pages are not guest-owned, a bounce
541  * buffer is needed in place of the original memory address parameter.
542  *
543  * A set of descriptors are used to keep track of this handling, and
544  * initialized here based on the specific commands being executed.
545  */
546 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
547 					   struct cmd_buf_desc *desc_list)
548 {
549 	switch (cmd) {
550 	case SEV_CMD_PDH_CERT_EXPORT: {
551 		struct sev_data_pdh_cert_export *data = cmd_buf;
552 
553 		desc_list[0].paddr_ptr = &data->pdh_cert_address;
554 		desc_list[0].len = data->pdh_cert_len;
555 		desc_list[1].paddr_ptr = &data->cert_chain_address;
556 		desc_list[1].len = data->cert_chain_len;
557 		break;
558 	}
559 	case SEV_CMD_GET_ID: {
560 		struct sev_data_get_id *data = cmd_buf;
561 
562 		desc_list[0].paddr_ptr = &data->address;
563 		desc_list[0].len = data->len;
564 		break;
565 	}
566 	case SEV_CMD_PEK_CSR: {
567 		struct sev_data_pek_csr *data = cmd_buf;
568 
569 		desc_list[0].paddr_ptr = &data->address;
570 		desc_list[0].len = data->len;
571 		break;
572 	}
573 	case SEV_CMD_LAUNCH_UPDATE_DATA: {
574 		struct sev_data_launch_update_data *data = cmd_buf;
575 
576 		desc_list[0].paddr_ptr = &data->address;
577 		desc_list[0].len = data->len;
578 		desc_list[0].guest_owned = true;
579 		break;
580 	}
581 	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
582 		struct sev_data_launch_update_vmsa *data = cmd_buf;
583 
584 		desc_list[0].paddr_ptr = &data->address;
585 		desc_list[0].len = data->len;
586 		desc_list[0].guest_owned = true;
587 		break;
588 	}
589 	case SEV_CMD_LAUNCH_MEASURE: {
590 		struct sev_data_launch_measure *data = cmd_buf;
591 
592 		desc_list[0].paddr_ptr = &data->address;
593 		desc_list[0].len = data->len;
594 		break;
595 	}
596 	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
597 		struct sev_data_launch_secret *data = cmd_buf;
598 
599 		desc_list[0].paddr_ptr = &data->guest_address;
600 		desc_list[0].len = data->guest_len;
601 		desc_list[0].guest_owned = true;
602 		break;
603 	}
604 	case SEV_CMD_DBG_DECRYPT: {
605 		struct sev_data_dbg *data = cmd_buf;
606 
607 		desc_list[0].paddr_ptr = &data->dst_addr;
608 		desc_list[0].len = data->len;
609 		desc_list[0].guest_owned = true;
610 		break;
611 	}
612 	case SEV_CMD_DBG_ENCRYPT: {
613 		struct sev_data_dbg *data = cmd_buf;
614 
615 		desc_list[0].paddr_ptr = &data->dst_addr;
616 		desc_list[0].len = data->len;
617 		desc_list[0].guest_owned = true;
618 		break;
619 	}
620 	case SEV_CMD_ATTESTATION_REPORT: {
621 		struct sev_data_attestation_report *data = cmd_buf;
622 
623 		desc_list[0].paddr_ptr = &data->address;
624 		desc_list[0].len = data->len;
625 		break;
626 	}
627 	case SEV_CMD_SEND_START: {
628 		struct sev_data_send_start *data = cmd_buf;
629 
630 		desc_list[0].paddr_ptr = &data->session_address;
631 		desc_list[0].len = data->session_len;
632 		break;
633 	}
634 	case SEV_CMD_SEND_UPDATE_DATA: {
635 		struct sev_data_send_update_data *data = cmd_buf;
636 
637 		desc_list[0].paddr_ptr = &data->hdr_address;
638 		desc_list[0].len = data->hdr_len;
639 		desc_list[1].paddr_ptr = &data->trans_address;
640 		desc_list[1].len = data->trans_len;
641 		break;
642 	}
643 	case SEV_CMD_SEND_UPDATE_VMSA: {
644 		struct sev_data_send_update_vmsa *data = cmd_buf;
645 
646 		desc_list[0].paddr_ptr = &data->hdr_address;
647 		desc_list[0].len = data->hdr_len;
648 		desc_list[1].paddr_ptr = &data->trans_address;
649 		desc_list[1].len = data->trans_len;
650 		break;
651 	}
652 	case SEV_CMD_RECEIVE_UPDATE_DATA: {
653 		struct sev_data_receive_update_data *data = cmd_buf;
654 
655 		desc_list[0].paddr_ptr = &data->guest_address;
656 		desc_list[0].len = data->guest_len;
657 		desc_list[0].guest_owned = true;
658 		break;
659 	}
660 	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
661 		struct sev_data_receive_update_vmsa *data = cmd_buf;
662 
663 		desc_list[0].paddr_ptr = &data->guest_address;
664 		desc_list[0].len = data->guest_len;
665 		desc_list[0].guest_owned = true;
666 		break;
667 	}
668 	default:
669 		break;
670 	}
671 }
672 
673 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
674 {
675 	unsigned int npages;
676 
677 	if (!desc->len)
678 		return 0;
679 
680 	/* Allocate a bounce buffer if this isn't a guest owned page. */
681 	if (!desc->guest_owned) {
682 		struct page *page;
683 
684 		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
685 		if (!page) {
686 			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
687 			return -ENOMEM;
688 		}
689 
690 		desc->paddr_orig = *desc->paddr_ptr;
691 		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
692 	}
693 
694 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
695 
696 	/* Transition the buffer to firmware-owned. */
697 	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
698 		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
699 		return -EFAULT;
700 	}
701 
702 	return 0;
703 }
704 
705 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
706 {
707 	unsigned int npages;
708 
709 	if (!desc->len)
710 		return 0;
711 
712 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
713 
714 	/* Transition the buffers back to hypervisor-owned. */
715 	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
716 		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
717 		return -EFAULT;
718 	}
719 
720 	/* Copy data from bounce buffer and then free it. */
721 	if (!desc->guest_owned) {
722 		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
723 		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
724 
725 		memcpy(dst_buf, bounce_buf, desc->len);
726 		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
727 
728 		/* Restore the original address in the command buffer. */
729 		*desc->paddr_ptr = desc->paddr_orig;
730 	}
731 
732 	return 0;
733 }
734 
735 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
736 {
737 	int i;
738 
739 	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
740 
741 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
742 		struct cmd_buf_desc *desc = &desc_list[i];
743 
744 		if (!desc->paddr_ptr)
745 			break;
746 
747 		if (snp_map_cmd_buf_desc(desc))
748 			goto err_unmap;
749 	}
750 
751 	return 0;
752 
753 err_unmap:
754 	for (i--; i >= 0; i--)
755 		snp_unmap_cmd_buf_desc(&desc_list[i]);
756 
757 	return -EFAULT;
758 }
759 
760 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
761 {
762 	int i, ret = 0;
763 
764 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
765 		struct cmd_buf_desc *desc = &desc_list[i];
766 
767 		if (!desc->paddr_ptr)
768 			break;
769 
770 		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
771 			ret = -EFAULT;
772 	}
773 
774 	return ret;
775 }
776 
777 static bool sev_cmd_buf_writable(int cmd)
778 {
779 	switch (cmd) {
780 	case SEV_CMD_PLATFORM_STATUS:
781 	case SEV_CMD_GUEST_STATUS:
782 	case SEV_CMD_LAUNCH_START:
783 	case SEV_CMD_RECEIVE_START:
784 	case SEV_CMD_LAUNCH_MEASURE:
785 	case SEV_CMD_SEND_START:
786 	case SEV_CMD_SEND_UPDATE_DATA:
787 	case SEV_CMD_SEND_UPDATE_VMSA:
788 	case SEV_CMD_PEK_CSR:
789 	case SEV_CMD_PDH_CERT_EXPORT:
790 	case SEV_CMD_GET_ID:
791 	case SEV_CMD_ATTESTATION_REPORT:
792 		return true;
793 	default:
794 		return false;
795 	}
796 }
797 
798 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
799 static bool snp_legacy_handling_needed(int cmd)
800 {
801 	struct sev_device *sev = psp_master->sev_data;
802 
803 	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
804 }
805 
806 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
807 {
808 	if (!snp_legacy_handling_needed(cmd))
809 		return 0;
810 
811 	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
812 		return -EFAULT;
813 
814 	/*
815 	 * Before command execution, the command buffer needs to be put into
816 	 * the firmware-owned state.
817 	 */
818 	if (sev_cmd_buf_writable(cmd)) {
819 		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
820 			return -EFAULT;
821 	}
822 
823 	return 0;
824 }
825 
826 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
827 {
828 	if (!snp_legacy_handling_needed(cmd))
829 		return 0;
830 
831 	/*
832 	 * After command completion, the command buffer needs to be put back
833 	 * into the hypervisor-owned state.
834 	 */
835 	if (sev_cmd_buf_writable(cmd))
836 		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
837 			return -EFAULT;
838 
839 	return 0;
840 }
841 
842 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
843 {
844 	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
845 	struct psp_device *psp = psp_master;
846 	struct sev_device *sev;
847 	unsigned int cmdbuff_hi, cmdbuff_lo;
848 	unsigned int phys_lsb, phys_msb;
849 	unsigned int reg, ret = 0;
850 	void *cmd_buf;
851 	int buf_len;
852 
853 	if (!psp || !psp->sev_data)
854 		return -ENODEV;
855 
856 	if (psp_dead)
857 		return -EBUSY;
858 
859 	sev = psp->sev_data;
860 
861 	buf_len = sev_cmd_buffer_len(cmd);
862 	if (WARN_ON_ONCE(!data != !buf_len))
863 		return -EINVAL;
864 
865 	/*
866 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
867 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
868 	 * physically contiguous.
869 	 */
870 	if (data) {
871 		/*
872 		 * Commands are generally issued one at a time and require the
873 		 * sev_cmd_mutex, but there could be recursive firmware requests
874 		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
875 		 * preparing buffers for another command. This is the only known
876 		 * case of nesting in the current code, so exactly one
877 		 * additional command buffer is available for that purpose.
878 		 */
879 		if (!sev->cmd_buf_active) {
880 			cmd_buf = sev->cmd_buf;
881 			sev->cmd_buf_active = true;
882 		} else if (!sev->cmd_buf_backup_active) {
883 			cmd_buf = sev->cmd_buf_backup;
884 			sev->cmd_buf_backup_active = true;
885 		} else {
886 			dev_err(sev->dev,
887 				"SEV: too many firmware commands in progress, no command buffers available.\n");
888 			return -EBUSY;
889 		}
890 
891 		memcpy(cmd_buf, data, buf_len);
892 
893 		/*
894 		 * The behavior of the SEV-legacy commands is altered when the
895 		 * SNP firmware is in the INIT state.
896 		 */
897 		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
898 		if (ret) {
899 			dev_err(sev->dev,
900 				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
901 				cmd, ret);
902 			return ret;
903 		}
904 	} else {
905 		cmd_buf = sev->cmd_buf;
906 	}
907 
908 	/* Get the physical address of the command buffer */
909 	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
910 	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
911 
912 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
913 		cmd, phys_msb, phys_lsb, psp_timeout);
914 
915 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
916 			     buf_len, false);
917 
918 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
919 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
920 
921 	sev->int_rcvd = 0;
922 
923 	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
924 
925 	/*
926 	 * If invoked during panic handling, local interrupts are disabled so
927 	 * the PSP command completion interrupt can't be used.
928 	 * sev_wait_cmd_ioc() already checks for interrupts disabled and
929 	 * polls for PSP command completion.  Ensure we do not request an
930 	 * interrupt from the PSP if irqs disabled.
931 	 */
932 	if (!irqs_disabled())
933 		reg |= SEV_CMDRESP_IOC;
934 
935 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
936 
937 	/* wait for command completion */
938 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
939 	if (ret) {
940 		if (psp_ret)
941 			*psp_ret = 0;
942 
943 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
944 		psp_dead = true;
945 
946 		return ret;
947 	}
948 
949 	psp_timeout = psp_cmd_timeout;
950 
951 	if (psp_ret)
952 		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
953 
954 	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
955 		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
956 			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
957 
958 		/*
959 		 * PSP firmware may report additional error information in the
960 		 * command buffer registers on error. Print contents of command
961 		 * buffer registers if they changed.
962 		 */
963 		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
964 		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
965 		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
966 			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
967 			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
968 			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
969 		}
970 		ret = -EIO;
971 	} else {
972 		ret = sev_write_init_ex_file_if_required(cmd);
973 	}
974 
975 	/*
976 	 * Copy potential output from the PSP back to data.  Do this even on
977 	 * failure in case the caller wants to glean something from the error.
978 	 */
979 	if (data) {
980 		int ret_reclaim;
981 		/*
982 		 * Restore the page state after the command completes.
983 		 */
984 		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
985 		if (ret_reclaim) {
986 			dev_err(sev->dev,
987 				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
988 				cmd, ret_reclaim);
989 			return ret_reclaim;
990 		}
991 
992 		memcpy(data, cmd_buf, buf_len);
993 
994 		if (sev->cmd_buf_backup_active)
995 			sev->cmd_buf_backup_active = false;
996 		else
997 			sev->cmd_buf_active = false;
998 
999 		if (snp_unmap_cmd_buf_desc_list(desc_list))
1000 			return -EFAULT;
1001 	}
1002 
1003 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1004 			     buf_len, false);
1005 
1006 	return ret;
1007 }
1008 
1009 int sev_do_cmd(int cmd, void *data, int *psp_ret)
1010 {
1011 	int rc;
1012 
1013 	mutex_lock(&sev_cmd_mutex);
1014 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1015 	mutex_unlock(&sev_cmd_mutex);
1016 
1017 	return rc;
1018 }
1019 EXPORT_SYMBOL_GPL(sev_do_cmd);
1020 
1021 static int __sev_init_locked(int *error)
1022 {
1023 	struct sev_data_init data;
1024 
1025 	memset(&data, 0, sizeof(data));
1026 	if (sev_es_tmr) {
1027 		/*
1028 		 * Do not include the encryption mask on the physical
1029 		 * address of the TMR (firmware should clear it anyway).
1030 		 */
1031 		data.tmr_address = __pa(sev_es_tmr);
1032 
1033 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1034 		data.tmr_len = sev_es_tmr_size;
1035 	}
1036 
1037 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1038 }
1039 
1040 static int __sev_init_ex_locked(int *error)
1041 {
1042 	struct sev_data_init_ex data;
1043 
1044 	memset(&data, 0, sizeof(data));
1045 	data.length = sizeof(data);
1046 	data.nv_address = __psp_pa(sev_init_ex_buffer);
1047 	data.nv_len = NV_LENGTH;
1048 
1049 	if (sev_es_tmr) {
1050 		/*
1051 		 * Do not include the encryption mask on the physical
1052 		 * address of the TMR (firmware should clear it anyway).
1053 		 */
1054 		data.tmr_address = __pa(sev_es_tmr);
1055 
1056 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1057 		data.tmr_len = sev_es_tmr_size;
1058 	}
1059 
1060 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1061 }
1062 
1063 static inline int __sev_do_init_locked(int *psp_ret)
1064 {
1065 	if (sev_init_ex_buffer)
1066 		return __sev_init_ex_locked(psp_ret);
1067 	else
1068 		return __sev_init_locked(psp_ret);
1069 }
1070 
1071 static void snp_set_hsave_pa(void *arg)
1072 {
1073 	wrmsrq(MSR_VM_HSAVE_PA, 0);
1074 }
1075 
1076 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1077 {
1078 	struct sev_data_range_list *range_list = arg;
1079 	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1080 	size_t size;
1081 
1082 	/*
1083 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1084 	 * do not exceed the page-sized argument buffer.
1085 	 */
1086 	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1087 	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1088 		return -E2BIG;
1089 
1090 	switch (rs->desc) {
1091 	case E820_TYPE_RESERVED:
1092 	case E820_TYPE_PMEM:
1093 	case E820_TYPE_ACPI:
1094 		range->base = rs->start & PAGE_MASK;
1095 		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1096 		range->page_count = size >> PAGE_SHIFT;
1097 		range_list->num_elements++;
1098 		break;
1099 	default:
1100 		break;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static int __sev_snp_init_locked(int *error)
1107 {
1108 	struct psp_device *psp = psp_master;
1109 	struct sev_data_snp_init_ex data;
1110 	struct sev_device *sev;
1111 	void *arg = &data;
1112 	int cmd, rc = 0;
1113 
1114 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1115 		return -ENODEV;
1116 
1117 	sev = psp->sev_data;
1118 
1119 	if (sev->snp_initialized)
1120 		return 0;
1121 
1122 	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1123 		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1124 			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1125 		return -EOPNOTSUPP;
1126 	}
1127 
1128 	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1129 	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1130 
1131 	/*
1132 	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1133 	 * of system physical address ranges to convert into HV-fixed page
1134 	 * states during the RMP initialization.  For instance, the memory that
1135 	 * UEFI reserves should be included in the that list. This allows system
1136 	 * components that occasionally write to memory (e.g. logging to UEFI
1137 	 * reserved regions) to not fail due to RMP initialization and SNP
1138 	 * enablement.
1139 	 *
1140 	 */
1141 	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1142 		/*
1143 		 * Firmware checks that the pages containing the ranges enumerated
1144 		 * in the RANGES structure are either in the default page state or in the
1145 		 * firmware page state.
1146 		 */
1147 		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1148 		if (!snp_range_list) {
1149 			dev_err(sev->dev,
1150 				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1151 			return -ENOMEM;
1152 		}
1153 
1154 		/*
1155 		 * Retrieve all reserved memory regions from the e820 memory map
1156 		 * to be setup as HV-fixed pages.
1157 		 */
1158 		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1159 					 snp_range_list, snp_filter_reserved_mem_regions);
1160 		if (rc) {
1161 			dev_err(sev->dev,
1162 				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1163 			return rc;
1164 		}
1165 
1166 		memset(&data, 0, sizeof(data));
1167 		data.init_rmp = 1;
1168 		data.list_paddr_en = 1;
1169 		data.list_paddr = __psp_pa(snp_range_list);
1170 		cmd = SEV_CMD_SNP_INIT_EX;
1171 	} else {
1172 		cmd = SEV_CMD_SNP_INIT;
1173 		arg = NULL;
1174 	}
1175 
1176 	/*
1177 	 * The following sequence must be issued before launching the first SNP
1178 	 * guest to ensure all dirty cache lines are flushed, including from
1179 	 * updates to the RMP table itself via the RMPUPDATE instruction:
1180 	 *
1181 	 * - WBINVD on all running CPUs
1182 	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1183 	 * - WBINVD on all running CPUs
1184 	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1185 	 */
1186 	wbinvd_on_all_cpus();
1187 
1188 	rc = __sev_do_cmd_locked(cmd, arg, error);
1189 	if (rc) {
1190 		dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1191 			cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1192 			rc, *error);
1193 		return rc;
1194 	}
1195 
1196 	/* Prepare for first SNP guest launch after INIT. */
1197 	wbinvd_on_all_cpus();
1198 	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1199 	if (rc) {
1200 		dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1201 			rc, *error);
1202 		return rc;
1203 	}
1204 
1205 	sev->snp_initialized = true;
1206 	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1207 
1208 	dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1209 		 sev->api_minor, sev->build);
1210 
1211 	atomic_notifier_chain_register(&panic_notifier_list,
1212 				       &snp_panic_notifier);
1213 
1214 	sev_es_tmr_size = SNP_TMR_SIZE;
1215 
1216 	return 0;
1217 }
1218 
1219 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1220 {
1221 	if (sev_es_tmr)
1222 		return;
1223 
1224 	/* Obtain the TMR memory area for SEV-ES use */
1225 	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1226 	if (sev_es_tmr) {
1227 		/* Must flush the cache before giving it to the firmware */
1228 		if (!sev->snp_initialized)
1229 			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1230 	} else {
1231 			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1232 	}
1233 }
1234 
1235 /*
1236  * If an init_ex_path is provided allocate a buffer for the file and
1237  * read in the contents. Additionally, if SNP is initialized, convert
1238  * the buffer pages to firmware pages.
1239  */
1240 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1241 {
1242 	struct page *page;
1243 	int rc;
1244 
1245 	if (!init_ex_path)
1246 		return 0;
1247 
1248 	if (sev_init_ex_buffer)
1249 		return 0;
1250 
1251 	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1252 	if (!page) {
1253 		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1254 		return -ENOMEM;
1255 	}
1256 
1257 	sev_init_ex_buffer = page_address(page);
1258 
1259 	rc = sev_read_init_ex_file();
1260 	if (rc)
1261 		return rc;
1262 
1263 	/* If SEV-SNP is initialized, transition to firmware page. */
1264 	if (sev->snp_initialized) {
1265 		unsigned long npages;
1266 
1267 		npages = 1UL << get_order(NV_LENGTH);
1268 		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1269 			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1270 			return -ENOMEM;
1271 		}
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 static int __sev_platform_init_locked(int *error)
1278 {
1279 	int rc, psp_ret = SEV_RET_NO_FW_CALL;
1280 	struct sev_device *sev;
1281 
1282 	if (!psp_master || !psp_master->sev_data)
1283 		return -ENODEV;
1284 
1285 	sev = psp_master->sev_data;
1286 
1287 	if (sev->state == SEV_STATE_INIT)
1288 		return 0;
1289 
1290 	__sev_platform_init_handle_tmr(sev);
1291 
1292 	rc = __sev_platform_init_handle_init_ex_path(sev);
1293 	if (rc)
1294 		return rc;
1295 
1296 	rc = __sev_do_init_locked(&psp_ret);
1297 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1298 		/*
1299 		 * Initialization command returned an integrity check failure
1300 		 * status code, meaning that firmware load and validation of SEV
1301 		 * related persistent data has failed. Retrying the
1302 		 * initialization function should succeed by replacing the state
1303 		 * with a reset state.
1304 		 */
1305 		dev_err(sev->dev,
1306 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1307 		rc = __sev_do_init_locked(&psp_ret);
1308 	}
1309 
1310 	if (error)
1311 		*error = psp_ret;
1312 
1313 	if (rc) {
1314 		dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1315 			sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1316 		return rc;
1317 	}
1318 
1319 	sev->state = SEV_STATE_INIT;
1320 
1321 	/* Prepare for first SEV guest launch after INIT */
1322 	wbinvd_on_all_cpus();
1323 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
1324 	if (rc) {
1325 		dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1326 			*error, rc);
1327 		return rc;
1328 	}
1329 
1330 	dev_dbg(sev->dev, "SEV firmware initialized\n");
1331 
1332 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1333 		 sev->api_minor, sev->build);
1334 
1335 	return 0;
1336 }
1337 
1338 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1339 {
1340 	struct sev_device *sev;
1341 	int rc;
1342 
1343 	if (!psp_master || !psp_master->sev_data)
1344 		return -ENODEV;
1345 
1346 	sev = psp_master->sev_data;
1347 
1348 	if (sev->state == SEV_STATE_INIT)
1349 		return 0;
1350 
1351 	rc = __sev_snp_init_locked(&args->error);
1352 	if (rc && rc != -ENODEV)
1353 		return rc;
1354 
1355 	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1356 	if (args->probe && !psp_init_on_probe)
1357 		return 0;
1358 
1359 	return __sev_platform_init_locked(&args->error);
1360 }
1361 
1362 int sev_platform_init(struct sev_platform_init_args *args)
1363 {
1364 	int rc;
1365 
1366 	mutex_lock(&sev_cmd_mutex);
1367 	rc = _sev_platform_init_locked(args);
1368 	mutex_unlock(&sev_cmd_mutex);
1369 
1370 	return rc;
1371 }
1372 EXPORT_SYMBOL_GPL(sev_platform_init);
1373 
1374 static int __sev_platform_shutdown_locked(int *error)
1375 {
1376 	struct psp_device *psp = psp_master;
1377 	struct sev_device *sev;
1378 	int ret;
1379 
1380 	if (!psp || !psp->sev_data)
1381 		return 0;
1382 
1383 	sev = psp->sev_data;
1384 
1385 	if (sev->state == SEV_STATE_UNINIT)
1386 		return 0;
1387 
1388 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1389 	if (ret) {
1390 		dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1391 			*error, ret);
1392 		return ret;
1393 	}
1394 
1395 	sev->state = SEV_STATE_UNINIT;
1396 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1397 
1398 	return ret;
1399 }
1400 
1401 static int sev_get_platform_state(int *state, int *error)
1402 {
1403 	struct sev_user_data_status data;
1404 	int rc;
1405 
1406 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1407 	if (rc)
1408 		return rc;
1409 
1410 	*state = data.state;
1411 	return rc;
1412 }
1413 
1414 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1415 {
1416 	struct sev_platform_init_args init_args = {0};
1417 	int rc;
1418 
1419 	rc = _sev_platform_init_locked(&init_args);
1420 	if (rc) {
1421 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1422 		return rc;
1423 	}
1424 
1425 	*shutdown_required = true;
1426 
1427 	return 0;
1428 }
1429 
1430 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1431 {
1432 	int error, rc;
1433 
1434 	rc = __sev_snp_init_locked(&error);
1435 	if (rc) {
1436 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1437 		return rc;
1438 	}
1439 
1440 	*shutdown_required = true;
1441 
1442 	return 0;
1443 }
1444 
1445 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1446 {
1447 	int state, rc;
1448 
1449 	if (!writable)
1450 		return -EPERM;
1451 
1452 	/*
1453 	 * The SEV spec requires that FACTORY_RESET must be issued in
1454 	 * UNINIT state. Before we go further lets check if any guest is
1455 	 * active.
1456 	 *
1457 	 * If FW is in WORKING state then deny the request otherwise issue
1458 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1459 	 *
1460 	 */
1461 	rc = sev_get_platform_state(&state, &argp->error);
1462 	if (rc)
1463 		return rc;
1464 
1465 	if (state == SEV_STATE_WORKING)
1466 		return -EBUSY;
1467 
1468 	if (state == SEV_STATE_INIT) {
1469 		rc = __sev_platform_shutdown_locked(&argp->error);
1470 		if (rc)
1471 			return rc;
1472 	}
1473 
1474 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1475 }
1476 
1477 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1478 {
1479 	struct sev_user_data_status data;
1480 	int ret;
1481 
1482 	memset(&data, 0, sizeof(data));
1483 
1484 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1485 	if (ret)
1486 		return ret;
1487 
1488 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1489 		ret = -EFAULT;
1490 
1491 	return ret;
1492 }
1493 
1494 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1495 {
1496 	struct sev_device *sev = psp_master->sev_data;
1497 	bool shutdown_required = false;
1498 	int rc;
1499 
1500 	if (!writable)
1501 		return -EPERM;
1502 
1503 	if (sev->state == SEV_STATE_UNINIT) {
1504 		rc = sev_move_to_init_state(argp, &shutdown_required);
1505 		if (rc)
1506 			return rc;
1507 	}
1508 
1509 	rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1510 
1511 	if (shutdown_required)
1512 		__sev_firmware_shutdown(sev, false);
1513 
1514 	return rc;
1515 }
1516 
1517 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1518 {
1519 	struct sev_device *sev = psp_master->sev_data;
1520 	struct sev_user_data_pek_csr input;
1521 	bool shutdown_required = false;
1522 	struct sev_data_pek_csr data;
1523 	void __user *input_address;
1524 	void *blob = NULL;
1525 	int ret;
1526 
1527 	if (!writable)
1528 		return -EPERM;
1529 
1530 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1531 		return -EFAULT;
1532 
1533 	memset(&data, 0, sizeof(data));
1534 
1535 	/* userspace wants to query CSR length */
1536 	if (!input.address || !input.length)
1537 		goto cmd;
1538 
1539 	/* allocate a physically contiguous buffer to store the CSR blob */
1540 	input_address = (void __user *)input.address;
1541 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1542 		return -EFAULT;
1543 
1544 	blob = kzalloc(input.length, GFP_KERNEL);
1545 	if (!blob)
1546 		return -ENOMEM;
1547 
1548 	data.address = __psp_pa(blob);
1549 	data.len = input.length;
1550 
1551 cmd:
1552 	if (sev->state == SEV_STATE_UNINIT) {
1553 		ret = sev_move_to_init_state(argp, &shutdown_required);
1554 		if (ret)
1555 			goto e_free_blob;
1556 	}
1557 
1558 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1559 
1560 	 /* If we query the CSR length, FW responded with expected data. */
1561 	input.length = data.len;
1562 
1563 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1564 		ret = -EFAULT;
1565 		goto e_free_blob;
1566 	}
1567 
1568 	if (blob) {
1569 		if (copy_to_user(input_address, blob, input.length))
1570 			ret = -EFAULT;
1571 	}
1572 
1573 e_free_blob:
1574 	if (shutdown_required)
1575 		__sev_firmware_shutdown(sev, false);
1576 
1577 	kfree(blob);
1578 	return ret;
1579 }
1580 
1581 void *psp_copy_user_blob(u64 uaddr, u32 len)
1582 {
1583 	if (!uaddr || !len)
1584 		return ERR_PTR(-EINVAL);
1585 
1586 	/* verify that blob length does not exceed our limit */
1587 	if (len > SEV_FW_BLOB_MAX_SIZE)
1588 		return ERR_PTR(-EINVAL);
1589 
1590 	return memdup_user((void __user *)uaddr, len);
1591 }
1592 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1593 
1594 static int sev_get_api_version(void)
1595 {
1596 	struct sev_device *sev = psp_master->sev_data;
1597 	struct sev_user_data_status status;
1598 	int error = 0, ret;
1599 
1600 	ret = sev_platform_status(&status, &error);
1601 	if (ret) {
1602 		dev_err(sev->dev,
1603 			"SEV: failed to get status. Error: %#x\n", error);
1604 		return 1;
1605 	}
1606 
1607 	sev->api_major = status.api_major;
1608 	sev->api_minor = status.api_minor;
1609 	sev->build = status.build;
1610 	sev->state = status.state;
1611 
1612 	return 0;
1613 }
1614 
1615 static int sev_get_firmware(struct device *dev,
1616 			    const struct firmware **firmware)
1617 {
1618 	char fw_name_specific[SEV_FW_NAME_SIZE];
1619 	char fw_name_subset[SEV_FW_NAME_SIZE];
1620 
1621 	snprintf(fw_name_specific, sizeof(fw_name_specific),
1622 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1623 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1624 
1625 	snprintf(fw_name_subset, sizeof(fw_name_subset),
1626 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1627 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1628 
1629 	/* Check for SEV FW for a particular model.
1630 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1631 	 *
1632 	 * or
1633 	 *
1634 	 * Check for SEV FW common to a subset of models.
1635 	 * Ex. amd_sev_fam17h_model0xh.sbin for
1636 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1637 	 *
1638 	 * or
1639 	 *
1640 	 * Fall-back to using generic name: sev.fw
1641 	 */
1642 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1643 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1644 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1645 		return 0;
1646 
1647 	return -ENOENT;
1648 }
1649 
1650 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1651 static int sev_update_firmware(struct device *dev)
1652 {
1653 	struct sev_data_download_firmware *data;
1654 	const struct firmware *firmware;
1655 	int ret, error, order;
1656 	struct page *p;
1657 	u64 data_size;
1658 
1659 	if (!sev_version_greater_or_equal(0, 15)) {
1660 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1661 		return -1;
1662 	}
1663 
1664 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1665 		dev_dbg(dev, "No SEV firmware file present\n");
1666 		return -1;
1667 	}
1668 
1669 	/*
1670 	 * SEV FW expects the physical address given to it to be 32
1671 	 * byte aligned. Memory allocated has structure placed at the
1672 	 * beginning followed by the firmware being passed to the SEV
1673 	 * FW. Allocate enough memory for data structure + alignment
1674 	 * padding + SEV FW.
1675 	 */
1676 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1677 
1678 	order = get_order(firmware->size + data_size);
1679 	p = alloc_pages(GFP_KERNEL, order);
1680 	if (!p) {
1681 		ret = -1;
1682 		goto fw_err;
1683 	}
1684 
1685 	/*
1686 	 * Copy firmware data to a kernel allocated contiguous
1687 	 * memory region.
1688 	 */
1689 	data = page_address(p);
1690 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1691 
1692 	data->address = __psp_pa(page_address(p) + data_size);
1693 	data->len = firmware->size;
1694 
1695 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1696 
1697 	/*
1698 	 * A quirk for fixing the committed TCB version, when upgrading from
1699 	 * earlier firmware version than 1.50.
1700 	 */
1701 	if (!ret && !sev_version_greater_or_equal(1, 50))
1702 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1703 
1704 	if (ret)
1705 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1706 
1707 	__free_pages(p, order);
1708 
1709 fw_err:
1710 	release_firmware(firmware);
1711 
1712 	return ret;
1713 }
1714 
1715 static int __sev_snp_shutdown_locked(int *error, bool panic)
1716 {
1717 	struct psp_device *psp = psp_master;
1718 	struct sev_device *sev;
1719 	struct sev_data_snp_shutdown_ex data;
1720 	int ret;
1721 
1722 	if (!psp || !psp->sev_data)
1723 		return 0;
1724 
1725 	sev = psp->sev_data;
1726 
1727 	if (!sev->snp_initialized)
1728 		return 0;
1729 
1730 	memset(&data, 0, sizeof(data));
1731 	data.len = sizeof(data);
1732 	data.iommu_snp_shutdown = 1;
1733 
1734 	/*
1735 	 * If invoked during panic handling, local interrupts are disabled
1736 	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1737 	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1738 	 * callback, so only a local wbinvd() is needed here.
1739 	 */
1740 	if (!panic)
1741 		wbinvd_on_all_cpus();
1742 	else
1743 		wbinvd();
1744 
1745 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1746 	/* SHUTDOWN may require DF_FLUSH */
1747 	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1748 		int dfflush_error = SEV_RET_NO_FW_CALL;
1749 
1750 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
1751 		if (ret) {
1752 			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
1753 				ret, dfflush_error);
1754 			return ret;
1755 		}
1756 		/* reissue the shutdown command */
1757 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1758 					  error);
1759 	}
1760 	if (ret) {
1761 		dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
1762 			ret, *error);
1763 		return ret;
1764 	}
1765 
1766 	/*
1767 	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1768 	 * enforcement by the IOMMU and also transitions all pages
1769 	 * associated with the IOMMU to the Reclaim state.
1770 	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1771 	 * before version 1.53. But, accounting for the number of assigned
1772 	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1773 	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1774 	 * the 2M page containing those pages during kexec boot. Hence, the
1775 	 * firmware now transitions these pages to Reclaim state and hypervisor
1776 	 * needs to transition these pages to shared state. SNP Firmware
1777 	 * version 1.53 and above are needed for kexec boot.
1778 	 */
1779 	ret = amd_iommu_snp_disable();
1780 	if (ret) {
1781 		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1782 		return ret;
1783 	}
1784 
1785 	sev->snp_initialized = false;
1786 	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1787 
1788 	atomic_notifier_chain_unregister(&panic_notifier_list,
1789 					 &snp_panic_notifier);
1790 
1791 	/* Reset TMR size back to default */
1792 	sev_es_tmr_size = SEV_TMR_SIZE;
1793 
1794 	return ret;
1795 }
1796 
1797 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1798 {
1799 	struct sev_device *sev = psp_master->sev_data;
1800 	struct sev_user_data_pek_cert_import input;
1801 	struct sev_data_pek_cert_import data;
1802 	bool shutdown_required = false;
1803 	void *pek_blob, *oca_blob;
1804 	int ret;
1805 
1806 	if (!writable)
1807 		return -EPERM;
1808 
1809 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1810 		return -EFAULT;
1811 
1812 	/* copy PEK certificate blobs from userspace */
1813 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1814 	if (IS_ERR(pek_blob))
1815 		return PTR_ERR(pek_blob);
1816 
1817 	data.reserved = 0;
1818 	data.pek_cert_address = __psp_pa(pek_blob);
1819 	data.pek_cert_len = input.pek_cert_len;
1820 
1821 	/* copy PEK certificate blobs from userspace */
1822 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1823 	if (IS_ERR(oca_blob)) {
1824 		ret = PTR_ERR(oca_blob);
1825 		goto e_free_pek;
1826 	}
1827 
1828 	data.oca_cert_address = __psp_pa(oca_blob);
1829 	data.oca_cert_len = input.oca_cert_len;
1830 
1831 	/* If platform is not in INIT state then transition it to INIT */
1832 	if (sev->state != SEV_STATE_INIT) {
1833 		ret = sev_move_to_init_state(argp, &shutdown_required);
1834 		if (ret)
1835 			goto e_free_oca;
1836 	}
1837 
1838 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1839 
1840 e_free_oca:
1841 	if (shutdown_required)
1842 		__sev_firmware_shutdown(sev, false);
1843 
1844 	kfree(oca_blob);
1845 e_free_pek:
1846 	kfree(pek_blob);
1847 	return ret;
1848 }
1849 
1850 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1851 {
1852 	struct sev_user_data_get_id2 input;
1853 	struct sev_data_get_id data;
1854 	void __user *input_address;
1855 	void *id_blob = NULL;
1856 	int ret;
1857 
1858 	/* SEV GET_ID is available from SEV API v0.16 and up */
1859 	if (!sev_version_greater_or_equal(0, 16))
1860 		return -ENOTSUPP;
1861 
1862 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1863 		return -EFAULT;
1864 
1865 	input_address = (void __user *)input.address;
1866 
1867 	if (input.address && input.length) {
1868 		/*
1869 		 * The length of the ID shouldn't be assumed by software since
1870 		 * it may change in the future.  The allocation size is limited
1871 		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1872 		 * If the allocation fails, simply return ENOMEM rather than
1873 		 * warning in the kernel log.
1874 		 */
1875 		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1876 		if (!id_blob)
1877 			return -ENOMEM;
1878 
1879 		data.address = __psp_pa(id_blob);
1880 		data.len = input.length;
1881 	} else {
1882 		data.address = 0;
1883 		data.len = 0;
1884 	}
1885 
1886 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1887 
1888 	/*
1889 	 * Firmware will return the length of the ID value (either the minimum
1890 	 * required length or the actual length written), return it to the user.
1891 	 */
1892 	input.length = data.len;
1893 
1894 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1895 		ret = -EFAULT;
1896 		goto e_free;
1897 	}
1898 
1899 	if (id_blob) {
1900 		if (copy_to_user(input_address, id_blob, data.len)) {
1901 			ret = -EFAULT;
1902 			goto e_free;
1903 		}
1904 	}
1905 
1906 e_free:
1907 	kfree(id_blob);
1908 
1909 	return ret;
1910 }
1911 
1912 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1913 {
1914 	struct sev_data_get_id *data;
1915 	u64 data_size, user_size;
1916 	void *id_blob, *mem;
1917 	int ret;
1918 
1919 	/* SEV GET_ID available from SEV API v0.16 and up */
1920 	if (!sev_version_greater_or_equal(0, 16))
1921 		return -ENOTSUPP;
1922 
1923 	/* SEV FW expects the buffer it fills with the ID to be
1924 	 * 8-byte aligned. Memory allocated should be enough to
1925 	 * hold data structure + alignment padding + memory
1926 	 * where SEV FW writes the ID.
1927 	 */
1928 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1929 	user_size = sizeof(struct sev_user_data_get_id);
1930 
1931 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
1932 	if (!mem)
1933 		return -ENOMEM;
1934 
1935 	data = mem;
1936 	id_blob = mem + data_size;
1937 
1938 	data->address = __psp_pa(id_blob);
1939 	data->len = user_size;
1940 
1941 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1942 	if (!ret) {
1943 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1944 			ret = -EFAULT;
1945 	}
1946 
1947 	kfree(mem);
1948 
1949 	return ret;
1950 }
1951 
1952 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1953 {
1954 	struct sev_device *sev = psp_master->sev_data;
1955 	struct sev_user_data_pdh_cert_export input;
1956 	void *pdh_blob = NULL, *cert_blob = NULL;
1957 	struct sev_data_pdh_cert_export data;
1958 	void __user *input_cert_chain_address;
1959 	void __user *input_pdh_cert_address;
1960 	bool shutdown_required = false;
1961 	int ret;
1962 
1963 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1964 		return -EFAULT;
1965 
1966 	memset(&data, 0, sizeof(data));
1967 
1968 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1969 	input_cert_chain_address = (void __user *)input.cert_chain_address;
1970 
1971 	/* Userspace wants to query the certificate length. */
1972 	if (!input.pdh_cert_address ||
1973 	    !input.pdh_cert_len ||
1974 	    !input.cert_chain_address)
1975 		goto cmd;
1976 
1977 	/* Allocate a physically contiguous buffer to store the PDH blob. */
1978 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1979 		return -EFAULT;
1980 
1981 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
1982 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1983 		return -EFAULT;
1984 
1985 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1986 	if (!pdh_blob)
1987 		return -ENOMEM;
1988 
1989 	data.pdh_cert_address = __psp_pa(pdh_blob);
1990 	data.pdh_cert_len = input.pdh_cert_len;
1991 
1992 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
1993 	if (!cert_blob) {
1994 		ret = -ENOMEM;
1995 		goto e_free_pdh;
1996 	}
1997 
1998 	data.cert_chain_address = __psp_pa(cert_blob);
1999 	data.cert_chain_len = input.cert_chain_len;
2000 
2001 cmd:
2002 	/* If platform is not in INIT state then transition it to INIT. */
2003 	if (sev->state != SEV_STATE_INIT) {
2004 		if (!writable) {
2005 			ret = -EPERM;
2006 			goto e_free_cert;
2007 		}
2008 		ret = sev_move_to_init_state(argp, &shutdown_required);
2009 		if (ret)
2010 			goto e_free_cert;
2011 	}
2012 
2013 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2014 
2015 	/* If we query the length, FW responded with expected data. */
2016 	input.cert_chain_len = data.cert_chain_len;
2017 	input.pdh_cert_len = data.pdh_cert_len;
2018 
2019 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2020 		ret = -EFAULT;
2021 		goto e_free_cert;
2022 	}
2023 
2024 	if (pdh_blob) {
2025 		if (copy_to_user(input_pdh_cert_address,
2026 				 pdh_blob, input.pdh_cert_len)) {
2027 			ret = -EFAULT;
2028 			goto e_free_cert;
2029 		}
2030 	}
2031 
2032 	if (cert_blob) {
2033 		if (copy_to_user(input_cert_chain_address,
2034 				 cert_blob, input.cert_chain_len))
2035 			ret = -EFAULT;
2036 	}
2037 
2038 e_free_cert:
2039 	if (shutdown_required)
2040 		__sev_firmware_shutdown(sev, false);
2041 
2042 	kfree(cert_blob);
2043 e_free_pdh:
2044 	kfree(pdh_blob);
2045 	return ret;
2046 }
2047 
2048 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2049 {
2050 	struct sev_device *sev = psp_master->sev_data;
2051 	bool shutdown_required = false;
2052 	struct sev_data_snp_addr buf;
2053 	struct page *status_page;
2054 	int ret, error;
2055 	void *data;
2056 
2057 	if (!argp->data)
2058 		return -EINVAL;
2059 
2060 	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2061 	if (!status_page)
2062 		return -ENOMEM;
2063 
2064 	data = page_address(status_page);
2065 
2066 	if (!sev->snp_initialized) {
2067 		ret = snp_move_to_init_state(argp, &shutdown_required);
2068 		if (ret)
2069 			goto cleanup;
2070 	}
2071 
2072 	/*
2073 	 * Firmware expects status page to be in firmware-owned state, otherwise
2074 	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
2075 	 */
2076 	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2077 		ret = -EFAULT;
2078 		goto cleanup;
2079 	}
2080 
2081 	buf.address = __psp_pa(data);
2082 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2083 
2084 	/*
2085 	 * Status page will be transitioned to Reclaim state upon success, or
2086 	 * left in Firmware state in failure. Use snp_reclaim_pages() to
2087 	 * transition either case back to Hypervisor-owned state.
2088 	 */
2089 	if (snp_reclaim_pages(__pa(data), 1, true))
2090 		return -EFAULT;
2091 
2092 	if (ret)
2093 		goto cleanup;
2094 
2095 	if (copy_to_user((void __user *)argp->data, data,
2096 			 sizeof(struct sev_user_data_snp_status)))
2097 		ret = -EFAULT;
2098 
2099 cleanup:
2100 	if (shutdown_required)
2101 		__sev_snp_shutdown_locked(&error, false);
2102 
2103 	__free_pages(status_page, 0);
2104 	return ret;
2105 }
2106 
2107 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2108 {
2109 	struct sev_device *sev = psp_master->sev_data;
2110 	struct sev_data_snp_commit buf;
2111 	bool shutdown_required = false;
2112 	int ret, error;
2113 
2114 	if (!sev->snp_initialized) {
2115 		ret = snp_move_to_init_state(argp, &shutdown_required);
2116 		if (ret)
2117 			return ret;
2118 	}
2119 
2120 	buf.len = sizeof(buf);
2121 
2122 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2123 
2124 	if (shutdown_required)
2125 		__sev_snp_shutdown_locked(&error, false);
2126 
2127 	return ret;
2128 }
2129 
2130 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2131 {
2132 	struct sev_device *sev = psp_master->sev_data;
2133 	struct sev_user_data_snp_config config;
2134 	bool shutdown_required = false;
2135 	int ret, error;
2136 
2137 	if (!argp->data)
2138 		return -EINVAL;
2139 
2140 	if (!writable)
2141 		return -EPERM;
2142 
2143 	if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2144 		return -EFAULT;
2145 
2146 	if (!sev->snp_initialized) {
2147 		ret = snp_move_to_init_state(argp, &shutdown_required);
2148 		if (ret)
2149 			return ret;
2150 	}
2151 
2152 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2153 
2154 	if (shutdown_required)
2155 		__sev_snp_shutdown_locked(&error, false);
2156 
2157 	return ret;
2158 }
2159 
2160 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2161 {
2162 	struct sev_device *sev = psp_master->sev_data;
2163 	struct sev_user_data_snp_vlek_load input;
2164 	bool shutdown_required = false;
2165 	int ret, error;
2166 	void *blob;
2167 
2168 	if (!argp->data)
2169 		return -EINVAL;
2170 
2171 	if (!writable)
2172 		return -EPERM;
2173 
2174 	if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2175 		return -EFAULT;
2176 
2177 	if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2178 		return -EINVAL;
2179 
2180 	blob = psp_copy_user_blob(input.vlek_wrapped_address,
2181 				  sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2182 	if (IS_ERR(blob))
2183 		return PTR_ERR(blob);
2184 
2185 	input.vlek_wrapped_address = __psp_pa(blob);
2186 
2187 	if (!sev->snp_initialized) {
2188 		ret = snp_move_to_init_state(argp, &shutdown_required);
2189 		if (ret)
2190 			goto cleanup;
2191 	}
2192 
2193 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2194 
2195 	if (shutdown_required)
2196 		__sev_snp_shutdown_locked(&error, false);
2197 
2198 cleanup:
2199 	kfree(blob);
2200 
2201 	return ret;
2202 }
2203 
2204 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2205 {
2206 	void __user *argp = (void __user *)arg;
2207 	struct sev_issue_cmd input;
2208 	int ret = -EFAULT;
2209 	bool writable = file->f_mode & FMODE_WRITE;
2210 
2211 	if (!psp_master || !psp_master->sev_data)
2212 		return -ENODEV;
2213 
2214 	if (ioctl != SEV_ISSUE_CMD)
2215 		return -EINVAL;
2216 
2217 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2218 		return -EFAULT;
2219 
2220 	if (input.cmd > SEV_MAX)
2221 		return -EINVAL;
2222 
2223 	mutex_lock(&sev_cmd_mutex);
2224 
2225 	switch (input.cmd) {
2226 
2227 	case SEV_FACTORY_RESET:
2228 		ret = sev_ioctl_do_reset(&input, writable);
2229 		break;
2230 	case SEV_PLATFORM_STATUS:
2231 		ret = sev_ioctl_do_platform_status(&input);
2232 		break;
2233 	case SEV_PEK_GEN:
2234 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2235 		break;
2236 	case SEV_PDH_GEN:
2237 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2238 		break;
2239 	case SEV_PEK_CSR:
2240 		ret = sev_ioctl_do_pek_csr(&input, writable);
2241 		break;
2242 	case SEV_PEK_CERT_IMPORT:
2243 		ret = sev_ioctl_do_pek_import(&input, writable);
2244 		break;
2245 	case SEV_PDH_CERT_EXPORT:
2246 		ret = sev_ioctl_do_pdh_export(&input, writable);
2247 		break;
2248 	case SEV_GET_ID:
2249 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2250 		ret = sev_ioctl_do_get_id(&input);
2251 		break;
2252 	case SEV_GET_ID2:
2253 		ret = sev_ioctl_do_get_id2(&input);
2254 		break;
2255 	case SNP_PLATFORM_STATUS:
2256 		ret = sev_ioctl_do_snp_platform_status(&input);
2257 		break;
2258 	case SNP_COMMIT:
2259 		ret = sev_ioctl_do_snp_commit(&input);
2260 		break;
2261 	case SNP_SET_CONFIG:
2262 		ret = sev_ioctl_do_snp_set_config(&input, writable);
2263 		break;
2264 	case SNP_VLEK_LOAD:
2265 		ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2266 		break;
2267 	default:
2268 		ret = -EINVAL;
2269 		goto out;
2270 	}
2271 
2272 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2273 		ret = -EFAULT;
2274 out:
2275 	mutex_unlock(&sev_cmd_mutex);
2276 
2277 	return ret;
2278 }
2279 
2280 static const struct file_operations sev_fops = {
2281 	.owner	= THIS_MODULE,
2282 	.unlocked_ioctl = sev_ioctl,
2283 };
2284 
2285 int sev_platform_status(struct sev_user_data_status *data, int *error)
2286 {
2287 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2288 }
2289 EXPORT_SYMBOL_GPL(sev_platform_status);
2290 
2291 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2292 {
2293 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2294 }
2295 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2296 
2297 int sev_guest_activate(struct sev_data_activate *data, int *error)
2298 {
2299 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2300 }
2301 EXPORT_SYMBOL_GPL(sev_guest_activate);
2302 
2303 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2304 {
2305 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2306 }
2307 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2308 
2309 int sev_guest_df_flush(int *error)
2310 {
2311 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2312 }
2313 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2314 
2315 static void sev_exit(struct kref *ref)
2316 {
2317 	misc_deregister(&misc_dev->misc);
2318 	kfree(misc_dev);
2319 	misc_dev = NULL;
2320 }
2321 
2322 static int sev_misc_init(struct sev_device *sev)
2323 {
2324 	struct device *dev = sev->dev;
2325 	int ret;
2326 
2327 	/*
2328 	 * SEV feature support can be detected on multiple devices but the SEV
2329 	 * FW commands must be issued on the master. During probe, we do not
2330 	 * know the master hence we create /dev/sev on the first device probe.
2331 	 * sev_do_cmd() finds the right master device to which to issue the
2332 	 * command to the firmware.
2333 	 */
2334 	if (!misc_dev) {
2335 		struct miscdevice *misc;
2336 
2337 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2338 		if (!misc_dev)
2339 			return -ENOMEM;
2340 
2341 		misc = &misc_dev->misc;
2342 		misc->minor = MISC_DYNAMIC_MINOR;
2343 		misc->name = DEVICE_NAME;
2344 		misc->fops = &sev_fops;
2345 
2346 		ret = misc_register(misc);
2347 		if (ret)
2348 			return ret;
2349 
2350 		kref_init(&misc_dev->refcount);
2351 	} else {
2352 		kref_get(&misc_dev->refcount);
2353 	}
2354 
2355 	init_waitqueue_head(&sev->int_queue);
2356 	sev->misc = misc_dev;
2357 	dev_dbg(dev, "registered SEV device\n");
2358 
2359 	return 0;
2360 }
2361 
2362 int sev_dev_init(struct psp_device *psp)
2363 {
2364 	struct device *dev = psp->dev;
2365 	struct sev_device *sev;
2366 	int ret = -ENOMEM;
2367 
2368 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2369 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2370 		return 0;
2371 	}
2372 
2373 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2374 	if (!sev)
2375 		goto e_err;
2376 
2377 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2378 	if (!sev->cmd_buf)
2379 		goto e_sev;
2380 
2381 	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2382 
2383 	psp->sev_data = sev;
2384 
2385 	sev->dev = dev;
2386 	sev->psp = psp;
2387 
2388 	sev->io_regs = psp->io_regs;
2389 
2390 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2391 	if (!sev->vdata) {
2392 		ret = -ENODEV;
2393 		dev_err(dev, "sev: missing driver data\n");
2394 		goto e_buf;
2395 	}
2396 
2397 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2398 
2399 	ret = sev_misc_init(sev);
2400 	if (ret)
2401 		goto e_irq;
2402 
2403 	dev_notice(dev, "sev enabled\n");
2404 
2405 	return 0;
2406 
2407 e_irq:
2408 	psp_clear_sev_irq_handler(psp);
2409 e_buf:
2410 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2411 e_sev:
2412 	devm_kfree(dev, sev);
2413 e_err:
2414 	psp->sev_data = NULL;
2415 
2416 	dev_notice(dev, "sev initialization failed\n");
2417 
2418 	return ret;
2419 }
2420 
2421 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2422 {
2423 	int error;
2424 
2425 	__sev_platform_shutdown_locked(NULL);
2426 
2427 	if (sev_es_tmr) {
2428 		/*
2429 		 * The TMR area was encrypted, flush it from the cache.
2430 		 *
2431 		 * If invoked during panic handling, local interrupts are
2432 		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2433 		 * can't be used. In that case, wbinvd() is done on remote CPUs
2434 		 * via the NMI callback, and done for this CPU later during
2435 		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2436 		 */
2437 		if (!panic)
2438 			wbinvd_on_all_cpus();
2439 
2440 		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2441 					  get_order(sev_es_tmr_size),
2442 					  true);
2443 		sev_es_tmr = NULL;
2444 	}
2445 
2446 	if (sev_init_ex_buffer) {
2447 		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2448 					  get_order(NV_LENGTH),
2449 					  true);
2450 		sev_init_ex_buffer = NULL;
2451 	}
2452 
2453 	if (snp_range_list) {
2454 		kfree(snp_range_list);
2455 		snp_range_list = NULL;
2456 	}
2457 
2458 	__sev_snp_shutdown_locked(&error, panic);
2459 }
2460 
2461 static void sev_firmware_shutdown(struct sev_device *sev)
2462 {
2463 	mutex_lock(&sev_cmd_mutex);
2464 	__sev_firmware_shutdown(sev, false);
2465 	mutex_unlock(&sev_cmd_mutex);
2466 }
2467 
2468 void sev_platform_shutdown(void)
2469 {
2470 	if (!psp_master || !psp_master->sev_data)
2471 		return;
2472 
2473 	sev_firmware_shutdown(psp_master->sev_data);
2474 }
2475 EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2476 
2477 void sev_dev_destroy(struct psp_device *psp)
2478 {
2479 	struct sev_device *sev = psp->sev_data;
2480 
2481 	if (!sev)
2482 		return;
2483 
2484 	sev_firmware_shutdown(sev);
2485 
2486 	if (sev->misc)
2487 		kref_put(&misc_dev->refcount, sev_exit);
2488 
2489 	psp_clear_sev_irq_handler(psp);
2490 }
2491 
2492 static int snp_shutdown_on_panic(struct notifier_block *nb,
2493 				 unsigned long reason, void *arg)
2494 {
2495 	struct sev_device *sev = psp_master->sev_data;
2496 
2497 	/*
2498 	 * If sev_cmd_mutex is already acquired, then it's likely
2499 	 * another PSP command is in flight and issuing a shutdown
2500 	 * would fail in unexpected ways. Rather than create even
2501 	 * more confusion during a panic, just bail out here.
2502 	 */
2503 	if (mutex_is_locked(&sev_cmd_mutex))
2504 		return NOTIFY_DONE;
2505 
2506 	__sev_firmware_shutdown(sev, true);
2507 
2508 	return NOTIFY_DONE;
2509 }
2510 
2511 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2512 				void *data, int *error)
2513 {
2514 	if (!filep || filep->f_op != &sev_fops)
2515 		return -EBADF;
2516 
2517 	return sev_do_cmd(cmd, data, error);
2518 }
2519 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2520 
2521 void sev_pci_init(void)
2522 {
2523 	struct sev_device *sev = psp_master->sev_data;
2524 	u8 api_major, api_minor, build;
2525 
2526 	if (!sev)
2527 		return;
2528 
2529 	psp_timeout = psp_probe_timeout;
2530 
2531 	if (sev_get_api_version())
2532 		goto err;
2533 
2534 	api_major = sev->api_major;
2535 	api_minor = sev->api_minor;
2536 	build     = sev->build;
2537 
2538 	if (sev_update_firmware(sev->dev) == 0)
2539 		sev_get_api_version();
2540 
2541 	if (api_major != sev->api_major || api_minor != sev->api_minor ||
2542 	    build != sev->build)
2543 		dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2544 			 api_major, api_minor, build,
2545 			 sev->api_major, sev->api_minor, sev->build);
2546 
2547 	return;
2548 
2549 err:
2550 	sev_dev_destroy(psp_master);
2551 
2552 	psp_master->sev_data = NULL;
2553 }
2554 
2555 void sev_pci_exit(void)
2556 {
2557 	struct sev_device *sev = psp_master->sev_data;
2558 
2559 	if (!sev)
2560 		return;
2561 
2562 	sev_firmware_shutdown(sev);
2563 }
2564