1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * menu.c - the menu idle governor
4  *
5  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
6  * Copyright (C) 2009 Intel Corporation
7  * Author:
8  *        Arjan van de Ven <arjan@linux.intel.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/cpuidle.h>
13 #include <linux/time.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/sched/stat.h>
18 #include <linux/math64.h>
19 
20 #include "gov.h"
21 
22 #define BUCKETS 6
23 #define INTERVAL_SHIFT 3
24 #define INTERVALS (1UL << INTERVAL_SHIFT)
25 #define RESOLUTION 1024
26 #define DECAY 8
27 #define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28 
29 /*
30  * Concepts and ideas behind the menu governor
31  *
32  * For the menu governor, there are 2 decision factors for picking a C
33  * state:
34  * 1) Energy break even point
35  * 2) Latency tolerance (from pmqos infrastructure)
36  * These two factors are treated independently.
37  *
38  * Energy break even point
39  * -----------------------
40  * C state entry and exit have an energy cost, and a certain amount of time in
41  * the  C state is required to actually break even on this cost. CPUIDLE
42  * provides us this duration in the "target_residency" field. So all that we
43  * need is a good prediction of how long we'll be idle. Like the traditional
44  * menu governor, we take the actual known "next timer event" time.
45  *
46  * Since there are other source of wakeups (interrupts for example) than
47  * the next timer event, this estimation is rather optimistic. To get a
48  * more realistic estimate, a correction factor is applied to the estimate,
49  * that is based on historic behavior. For example, if in the past the actual
50  * duration always was 50% of the next timer tick, the correction factor will
51  * be 0.5.
52  *
53  * menu uses a running average for this correction factor, but it uses a set of
54  * factors, not just a single factor. This stems from the realization that the
55  * ratio is dependent on the order of magnitude of the expected duration; if we
56  * expect 500 milliseconds of idle time the likelihood of getting an interrupt
57  * very early is much higher than if we expect 50 micro seconds of idle time.
58  * For this reason, menu keeps an array of 6 independent factors, that gets
59  * indexed based on the magnitude of the expected duration.
60  *
61  * Repeatable-interval-detector
62  * ----------------------------
63  * There are some cases where "next timer" is a completely unusable predictor:
64  * Those cases where the interval is fixed, for example due to hardware
65  * interrupt mitigation, but also due to fixed transfer rate devices like mice.
66  * For this, we use a different predictor: We track the duration of the last 8
67  * intervals and use them to estimate the duration of the next one.
68  */
69 
70 struct menu_device {
71 	int             needs_update;
72 	int             tick_wakeup;
73 
74 	u64		next_timer_ns;
75 	unsigned int	bucket;
76 	unsigned int	correction_factor[BUCKETS];
77 	unsigned int	intervals[INTERVALS];
78 	int		interval_ptr;
79 };
80 
81 static inline int which_bucket(u64 duration_ns)
82 {
83 	int bucket = 0;
84 
85 	if (duration_ns < 10ULL * NSEC_PER_USEC)
86 		return bucket;
87 	if (duration_ns < 100ULL * NSEC_PER_USEC)
88 		return bucket + 1;
89 	if (duration_ns < 1000ULL * NSEC_PER_USEC)
90 		return bucket + 2;
91 	if (duration_ns < 10000ULL * NSEC_PER_USEC)
92 		return bucket + 3;
93 	if (duration_ns < 100000ULL * NSEC_PER_USEC)
94 		return bucket + 4;
95 	return bucket + 5;
96 }
97 
98 static DEFINE_PER_CPU(struct menu_device, menu_devices);
99 
100 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
101 
102 /*
103  * Try detecting repeating patterns by keeping track of the last 8
104  * intervals, and checking if the standard deviation of that set
105  * of points is below a threshold. If it is... then use the
106  * average of these 8 points as the estimated value.
107  */
108 static unsigned int get_typical_interval(struct menu_device *data)
109 {
110 	s64 value, min_thresh = -1, max_thresh = UINT_MAX;
111 	unsigned int max, min, divisor;
112 	u64 avg, variance, avg_sq;
113 	int i;
114 
115 again:
116 	/* Compute the average and variance of past intervals. */
117 	max = 0;
118 	min = UINT_MAX;
119 	avg = 0;
120 	variance = 0;
121 	divisor = 0;
122 	for (i = 0; i < INTERVALS; i++) {
123 		value = data->intervals[i];
124 		/*
125 		 * Discard the samples outside the interval between the min and
126 		 * max thresholds.
127 		 */
128 		if (value <= min_thresh || value >= max_thresh)
129 			continue;
130 
131 		divisor++;
132 
133 		avg += value;
134 		variance += value * value;
135 
136 		if (value > max)
137 			max = value;
138 
139 		if (value < min)
140 			min = value;
141 	}
142 
143 	if (!max)
144 		return UINT_MAX;
145 
146 	if (divisor == INTERVALS) {
147 		avg >>= INTERVAL_SHIFT;
148 		variance >>= INTERVAL_SHIFT;
149 	} else {
150 		do_div(avg, divisor);
151 		do_div(variance, divisor);
152 	}
153 
154 	avg_sq = avg * avg;
155 	variance -= avg_sq;
156 
157 	/*
158 	 * The typical interval is obtained when standard deviation is
159 	 * small (stddev <= 20 us, variance <= 400 us^2) or standard
160 	 * deviation is small compared to the average interval (avg >
161 	 * 6*stddev, avg^2 > 36*variance). The average is smaller than
162 	 * UINT_MAX aka U32_MAX, so computing its square does not
163 	 * overflow a u64. We simply reject this candidate average if
164 	 * the standard deviation is greater than 715 s (which is
165 	 * rather unlikely).
166 	 *
167 	 * Use this result only if there is no timer to wake us up sooner.
168 	 */
169 	if (likely(variance <= U64_MAX/36)) {
170 		if ((avg_sq > variance * 36 && divisor * 4 >= INTERVALS * 3) ||
171 		    variance <= 400)
172 			return avg;
173 	}
174 
175 	/*
176 	 * If there are outliers, discard them by setting thresholds to exclude
177 	 * data points at a large enough distance from the average, then
178 	 * calculate the average and standard deviation again. Once we get
179 	 * down to the last 3/4 of our samples, stop excluding samples.
180 	 *
181 	 * This can deal with workloads that have long pauses interspersed
182 	 * with sporadic activity with a bunch of short pauses.
183 	 */
184 	if (divisor * 4 <= INTERVALS * 3) {
185 		/*
186 		 * If there are sufficiently many data points still under
187 		 * consideration after the outliers have been eliminated,
188 		 * returning without a prediction would be a mistake because it
189 		 * is likely that the next interval will not exceed the current
190 		 * maximum, so return the latter in that case.
191 		 */
192 		if (divisor >= INTERVALS / 2)
193 			return max;
194 
195 		return UINT_MAX;
196 	}
197 
198 	/* Update the thresholds for the next round. */
199 	if (avg - min > max - avg)
200 		min_thresh = min;
201 	else
202 		max_thresh = max;
203 
204 	goto again;
205 }
206 
207 /**
208  * menu_select - selects the next idle state to enter
209  * @drv: cpuidle driver containing state data
210  * @dev: the CPU
211  * @stop_tick: indication on whether or not to stop the tick
212  */
213 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
214 		       bool *stop_tick)
215 {
216 	struct menu_device *data = this_cpu_ptr(&menu_devices);
217 	s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
218 	u64 predicted_ns;
219 	ktime_t delta, delta_tick;
220 	int i, idx;
221 
222 	if (data->needs_update) {
223 		menu_update(drv, dev);
224 		data->needs_update = 0;
225 	}
226 
227 	/* Find the shortest expected idle interval. */
228 	predicted_ns = get_typical_interval(data) * NSEC_PER_USEC;
229 	if (predicted_ns > RESIDENCY_THRESHOLD_NS) {
230 		unsigned int timer_us;
231 
232 		/* Determine the time till the closest timer. */
233 		delta = tick_nohz_get_sleep_length(&delta_tick);
234 		if (unlikely(delta < 0)) {
235 			delta = 0;
236 			delta_tick = 0;
237 		}
238 
239 		data->next_timer_ns = delta;
240 		data->bucket = which_bucket(data->next_timer_ns);
241 
242 		/* Round up the result for half microseconds. */
243 		timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 +
244 					data->next_timer_ns *
245 						data->correction_factor[data->bucket],
246 				   RESOLUTION * DECAY * NSEC_PER_USEC);
247 		/* Use the lowest expected idle interval to pick the idle state. */
248 		predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns);
249 	} else {
250 		/*
251 		 * Because the next timer event is not going to be determined
252 		 * in this case, assume that without the tick the closest timer
253 		 * will be in distant future and that the closest tick will occur
254 		 * after 1/2 of the tick period.
255 		 */
256 		data->next_timer_ns = KTIME_MAX;
257 		delta_tick = TICK_NSEC / 2;
258 		data->bucket = BUCKETS - 1;
259 	}
260 
261 	if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
262 	    ((data->next_timer_ns < drv->states[1].target_residency_ns ||
263 	      latency_req < drv->states[1].exit_latency_ns) &&
264 	     !dev->states_usage[0].disable)) {
265 		/*
266 		 * In this case state[0] will be used no matter what, so return
267 		 * it right away and keep the tick running if state[0] is a
268 		 * polling one.
269 		 */
270 		*stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
271 		return 0;
272 	}
273 
274 	if (tick_nohz_tick_stopped()) {
275 		/*
276 		 * If the tick is already stopped, the cost of possible short
277 		 * idle duration misprediction is much higher, because the CPU
278 		 * may be stuck in a shallow idle state for a long time as a
279 		 * result of it.  In that case say we might mispredict and use
280 		 * the known time till the closest timer event for the idle
281 		 * state selection.
282 		 */
283 		if (predicted_ns < TICK_NSEC)
284 			predicted_ns = data->next_timer_ns;
285 	} else if (latency_req > predicted_ns) {
286 		latency_req = predicted_ns;
287 	}
288 
289 	/*
290 	 * Find the idle state with the lowest power while satisfying
291 	 * our constraints.
292 	 */
293 	idx = -1;
294 	for (i = 0; i < drv->state_count; i++) {
295 		struct cpuidle_state *s = &drv->states[i];
296 
297 		if (dev->states_usage[i].disable)
298 			continue;
299 
300 		if (idx == -1)
301 			idx = i; /* first enabled state */
302 
303 		if (s->target_residency_ns > predicted_ns) {
304 			/*
305 			 * Use a physical idle state, not busy polling, unless
306 			 * a timer is going to trigger soon enough.
307 			 */
308 			if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
309 			    s->exit_latency_ns <= latency_req &&
310 			    s->target_residency_ns <= data->next_timer_ns) {
311 				predicted_ns = s->target_residency_ns;
312 				idx = i;
313 				break;
314 			}
315 			if (predicted_ns < TICK_NSEC)
316 				break;
317 
318 			if (!tick_nohz_tick_stopped()) {
319 				/*
320 				 * If the state selected so far is shallow,
321 				 * waking up early won't hurt, so retain the
322 				 * tick in that case and let the governor run
323 				 * again in the next iteration of the loop.
324 				 */
325 				predicted_ns = drv->states[idx].target_residency_ns;
326 				break;
327 			}
328 
329 			/*
330 			 * If the state selected so far is shallow and this
331 			 * state's target residency matches the time till the
332 			 * closest timer event, select this one to avoid getting
333 			 * stuck in the shallow one for too long.
334 			 */
335 			if (drv->states[idx].target_residency_ns < TICK_NSEC &&
336 			    s->target_residency_ns <= delta_tick)
337 				idx = i;
338 
339 			return idx;
340 		}
341 		if (s->exit_latency_ns > latency_req)
342 			break;
343 
344 		idx = i;
345 	}
346 
347 	if (idx == -1)
348 		idx = 0; /* No states enabled. Must use 0. */
349 
350 	/*
351 	 * Don't stop the tick if the selected state is a polling one or if the
352 	 * expected idle duration is shorter than the tick period length.
353 	 */
354 	if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
355 	     predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
356 		*stop_tick = false;
357 
358 		if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) {
359 			/*
360 			 * The tick is not going to be stopped and the target
361 			 * residency of the state to be returned is not within
362 			 * the time until the next timer event including the
363 			 * tick, so try to correct that.
364 			 */
365 			for (i = idx - 1; i >= 0; i--) {
366 				if (dev->states_usage[i].disable)
367 					continue;
368 
369 				idx = i;
370 				if (drv->states[i].target_residency_ns <= delta_tick)
371 					break;
372 			}
373 		}
374 	}
375 
376 	return idx;
377 }
378 
379 /**
380  * menu_reflect - records that data structures need update
381  * @dev: the CPU
382  * @index: the index of actual entered state
383  *
384  * NOTE: it's important to be fast here because this operation will add to
385  *       the overall exit latency.
386  */
387 static void menu_reflect(struct cpuidle_device *dev, int index)
388 {
389 	struct menu_device *data = this_cpu_ptr(&menu_devices);
390 
391 	dev->last_state_idx = index;
392 	data->needs_update = 1;
393 	data->tick_wakeup = tick_nohz_idle_got_tick();
394 }
395 
396 /**
397  * menu_update - attempts to guess what happened after entry
398  * @drv: cpuidle driver containing state data
399  * @dev: the CPU
400  */
401 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
402 {
403 	struct menu_device *data = this_cpu_ptr(&menu_devices);
404 	int last_idx = dev->last_state_idx;
405 	struct cpuidle_state *target = &drv->states[last_idx];
406 	u64 measured_ns;
407 	unsigned int new_factor;
408 
409 	/*
410 	 * Try to figure out how much time passed between entry to low
411 	 * power state and occurrence of the wakeup event.
412 	 *
413 	 * If the entered idle state didn't support residency measurements,
414 	 * we use them anyway if they are short, and if long,
415 	 * truncate to the whole expected time.
416 	 *
417 	 * Any measured amount of time will include the exit latency.
418 	 * Since we are interested in when the wakeup begun, not when it
419 	 * was completed, we must subtract the exit latency. However, if
420 	 * the measured amount of time is less than the exit latency,
421 	 * assume the state was never reached and the exit latency is 0.
422 	 */
423 
424 	if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
425 		/*
426 		 * The nohz code said that there wouldn't be any events within
427 		 * the tick boundary (if the tick was stopped), but the idle
428 		 * duration predictor had a differing opinion.  Since the CPU
429 		 * was woken up by a tick (that wasn't stopped after all), the
430 		 * predictor was not quite right, so assume that the CPU could
431 		 * have been idle long (but not forever) to help the idle
432 		 * duration predictor do a better job next time.
433 		 */
434 		measured_ns = 9 * MAX_INTERESTING / 10;
435 	} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
436 		   dev->poll_time_limit) {
437 		/*
438 		 * The CPU exited the "polling" state due to a time limit, so
439 		 * the idle duration prediction leading to the selection of that
440 		 * state was inaccurate.  If a better prediction had been made,
441 		 * the CPU might have been woken up from idle by the next timer.
442 		 * Assume that to be the case.
443 		 */
444 		measured_ns = data->next_timer_ns;
445 	} else {
446 		/* measured value */
447 		measured_ns = dev->last_residency_ns;
448 
449 		/* Deduct exit latency */
450 		if (measured_ns > 2 * target->exit_latency_ns)
451 			measured_ns -= target->exit_latency_ns;
452 		else
453 			measured_ns /= 2;
454 	}
455 
456 	/* Make sure our coefficients do not exceed unity */
457 	if (measured_ns > data->next_timer_ns)
458 		measured_ns = data->next_timer_ns;
459 
460 	/* Update our correction ratio */
461 	new_factor = data->correction_factor[data->bucket];
462 	new_factor -= new_factor / DECAY;
463 
464 	if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
465 		new_factor += div64_u64(RESOLUTION * measured_ns,
466 					data->next_timer_ns);
467 	else
468 		/*
469 		 * we were idle so long that we count it as a perfect
470 		 * prediction
471 		 */
472 		new_factor += RESOLUTION;
473 
474 	/*
475 	 * We don't want 0 as factor; we always want at least
476 	 * a tiny bit of estimated time. Fortunately, due to rounding,
477 	 * new_factor will stay nonzero regardless of measured_us values
478 	 * and the compiler can eliminate this test as long as DECAY > 1.
479 	 */
480 	if (DECAY == 1 && unlikely(new_factor == 0))
481 		new_factor = 1;
482 
483 	data->correction_factor[data->bucket] = new_factor;
484 
485 	/* update the repeating-pattern data */
486 	data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns);
487 	if (data->interval_ptr >= INTERVALS)
488 		data->interval_ptr = 0;
489 }
490 
491 /**
492  * menu_enable_device - scans a CPU's states and does setup
493  * @drv: cpuidle driver
494  * @dev: the CPU
495  */
496 static int menu_enable_device(struct cpuidle_driver *drv,
497 				struct cpuidle_device *dev)
498 {
499 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
500 	int i;
501 
502 	memset(data, 0, sizeof(struct menu_device));
503 
504 	/*
505 	 * if the correction factor is 0 (eg first time init or cpu hotplug
506 	 * etc), we actually want to start out with a unity factor.
507 	 */
508 	for(i = 0; i < BUCKETS; i++)
509 		data->correction_factor[i] = RESOLUTION * DECAY;
510 
511 	return 0;
512 }
513 
514 static struct cpuidle_governor menu_governor = {
515 	.name =		"menu",
516 	.rating =	20,
517 	.enable =	menu_enable_device,
518 	.select =	menu_select,
519 	.reflect =	menu_reflect,
520 };
521 
522 /**
523  * init_menu - initializes the governor
524  */
525 static int __init init_menu(void)
526 {
527 	return cpuidle_register_governor(&menu_governor);
528 }
529 
530 postcore_initcall(init_menu);
531