1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <linux/sched/isolation.h>
57 #include <crypto/chacha.h>
58 #include <crypto/blake2s.h>
59 #ifdef CONFIG_VDSO_GETRANDOM
60 #include <vdso/getrandom.h>
61 #include <vdso/datapage.h>
62 #include <vdso/vsyscall.h>
63 #endif
64 #include <asm/archrandom.h>
65 #include <asm/processor.h>
66 #include <asm/irq.h>
67 #include <asm/irq_regs.h>
68 #include <asm/io.h>
69 
70 /*********************************************************************
71  *
72  * Initialization and readiness waiting.
73  *
74  * Much of the RNG infrastructure is devoted to various dependencies
75  * being able to wait until the RNG has collected enough entropy and
76  * is ready for safe consumption.
77  *
78  *********************************************************************/
79 
80 /*
81  * crng_init is protected by base_crng->lock, and only increases
82  * its value (from empty->early->ready).
83  */
84 static enum {
85 	CRNG_EMPTY = 0, /* Little to no entropy collected */
86 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
87 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
88 } crng_init __read_mostly = CRNG_EMPTY;
89 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
90 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
91 /* Various types of waiters for crng_init->CRNG_READY transition. */
92 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
93 static struct fasync_struct *fasync;
94 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
95 
96 /* Control how we warn userspace. */
97 static struct ratelimit_state urandom_warning =
98 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
99 static int ratelimit_disable __read_mostly =
100 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
101 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
102 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
103 
104 /*
105  * Returns whether or not the input pool has been seeded and thus guaranteed
106  * to supply cryptographically secure random numbers. This applies to: the
107  * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
108  * u16,u32,u64,long} family of functions.
109  *
110  * Returns: true if the input pool has been seeded.
111  *          false if the input pool has not been seeded.
112  */
113 bool rng_is_initialized(void)
114 {
115 	return crng_ready();
116 }
117 EXPORT_SYMBOL(rng_is_initialized);
118 
119 static void __cold crng_set_ready(struct work_struct *work)
120 {
121 	static_branch_enable(&crng_is_ready);
122 }
123 
124 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
125 static void try_to_generate_entropy(void);
126 
127 /*
128  * Wait for the input pool to be seeded and thus guaranteed to supply
129  * cryptographically secure random numbers. This applies to: the /dev/urandom
130  * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
131  * long} family of functions. Using any of these functions without first
132  * calling this function forfeits the guarantee of security.
133  *
134  * Returns: 0 if the input pool has been seeded.
135  *          -ERESTARTSYS if the function was interrupted by a signal.
136  */
137 int wait_for_random_bytes(void)
138 {
139 	while (!crng_ready()) {
140 		int ret;
141 
142 		try_to_generate_entropy();
143 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
144 		if (ret)
145 			return ret > 0 ? 0 : ret;
146 	}
147 	return 0;
148 }
149 EXPORT_SYMBOL(wait_for_random_bytes);
150 
151 /*
152  * Add a callback function that will be invoked when the crng is initialised,
153  * or immediately if it already has been. Only use this is you are absolutely
154  * sure it is required. Most users should instead be able to test
155  * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
156  */
157 int __cold execute_with_initialized_rng(struct notifier_block *nb)
158 {
159 	unsigned long flags;
160 	int ret = 0;
161 
162 	spin_lock_irqsave(&random_ready_notifier.lock, flags);
163 	if (crng_ready())
164 		nb->notifier_call(nb, 0, NULL);
165 	else
166 		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
167 	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
168 	return ret;
169 }
170 
171 #define warn_unseeded_randomness() \
172 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
173 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
174 				__func__, (void *)_RET_IP_, crng_init)
175 
176 
177 /*********************************************************************
178  *
179  * Fast key erasure RNG, the "crng".
180  *
181  * These functions expand entropy from the entropy extractor into
182  * long streams for external consumption using the "fast key erasure"
183  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
184  *
185  * There are a few exported interfaces for use by other drivers:
186  *
187  *	void get_random_bytes(void *buf, size_t len)
188  *	u8 get_random_u8()
189  *	u16 get_random_u16()
190  *	u32 get_random_u32()
191  *	u32 get_random_u32_below(u32 ceil)
192  *	u32 get_random_u32_above(u32 floor)
193  *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
194  *	u64 get_random_u64()
195  *	unsigned long get_random_long()
196  *
197  * These interfaces will return the requested number of random bytes
198  * into the given buffer or as a return value. This is equivalent to
199  * a read from /dev/urandom. The u8, u16, u32, u64, long family of
200  * functions may be higher performance for one-off random integers,
201  * because they do a bit of buffering and do not invoke reseeding
202  * until the buffer is emptied.
203  *
204  *********************************************************************/
205 
206 enum {
207 	CRNG_RESEED_START_INTERVAL = HZ,
208 	CRNG_RESEED_INTERVAL = 60 * HZ
209 };
210 
211 static struct {
212 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
213 	unsigned long generation;
214 	spinlock_t lock;
215 } base_crng = {
216 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
217 };
218 
219 struct crng {
220 	u8 key[CHACHA_KEY_SIZE];
221 	unsigned long generation;
222 	local_lock_t lock;
223 };
224 
225 static DEFINE_PER_CPU(struct crng, crngs) = {
226 	.generation = ULONG_MAX,
227 	.lock = INIT_LOCAL_LOCK(crngs.lock),
228 };
229 
230 /*
231  * Return the interval until the next reseeding, which is normally
232  * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
233  * proportional to the uptime.
234  */
235 static unsigned int crng_reseed_interval(void)
236 {
237 	static bool early_boot = true;
238 
239 	if (unlikely(READ_ONCE(early_boot))) {
240 		time64_t uptime = ktime_get_seconds();
241 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
242 			WRITE_ONCE(early_boot, false);
243 		else
244 			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
245 				     (unsigned int)uptime / 2 * HZ);
246 	}
247 	return CRNG_RESEED_INTERVAL;
248 }
249 
250 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
251 static void extract_entropy(void *buf, size_t len);
252 
253 /* This extracts a new crng key from the input pool. */
254 static void crng_reseed(struct work_struct *work)
255 {
256 	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
257 	unsigned long flags;
258 	unsigned long next_gen;
259 	u8 key[CHACHA_KEY_SIZE];
260 
261 	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
262 	if (likely(system_unbound_wq))
263 		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
264 
265 	extract_entropy(key, sizeof(key));
266 
267 	/*
268 	 * We copy the new key into the base_crng, overwriting the old one,
269 	 * and update the generation counter. We avoid hitting ULONG_MAX,
270 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
271 	 * forces new CPUs that come online to always initialize.
272 	 */
273 	spin_lock_irqsave(&base_crng.lock, flags);
274 	memcpy(base_crng.key, key, sizeof(base_crng.key));
275 	next_gen = base_crng.generation + 1;
276 	if (next_gen == ULONG_MAX)
277 		++next_gen;
278 	WRITE_ONCE(base_crng.generation, next_gen);
279 #ifdef CONFIG_VDSO_GETRANDOM
280 	/* base_crng.generation's invalid value is ULONG_MAX, while
281 	 * vdso_k_rng_data->generation's invalid value is 0, so add one to the
282 	 * former to arrive at the latter. Use smp_store_release so that this
283 	 * is ordered with the write above to base_crng.generation. Pairs with
284 	 * the smp_rmb() before the syscall in the vDSO code.
285 	 *
286 	 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
287 	 * operations are not supported on those architectures. This is safe
288 	 * because base_crng.generation is a 32-bit value. On big-endian
289 	 * architectures it will be stored in the upper 32 bits, but that's okay
290 	 * because the vDSO side only checks whether the value changed, without
291 	 * actually using or interpreting the value.
292 	 */
293 	smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1);
294 #endif
295 	if (!static_branch_likely(&crng_is_ready))
296 		crng_init = CRNG_READY;
297 	spin_unlock_irqrestore(&base_crng.lock, flags);
298 	memzero_explicit(key, sizeof(key));
299 }
300 
301 /*
302  * This generates a ChaCha block using the provided key, and then
303  * immediately overwrites that key with half the block. It returns
304  * the resultant ChaCha state to the user, along with the second
305  * half of the block containing 32 bytes of random data that may
306  * be used; random_data_len may not be greater than 32.
307  *
308  * The returned ChaCha state contains within it a copy of the old
309  * key value, at index 4, so the state should always be zeroed out
310  * immediately after using in order to maintain forward secrecy.
311  * If the state cannot be erased in a timely manner, then it is
312  * safer to set the random_data parameter to &chacha_state->x[4]
313  * so that this function overwrites it before returning.
314  */
315 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
316 				  struct chacha_state *chacha_state,
317 				  u8 *random_data, size_t random_data_len)
318 {
319 	u8 first_block[CHACHA_BLOCK_SIZE];
320 
321 	BUG_ON(random_data_len > 32);
322 
323 	chacha_init_consts(chacha_state);
324 	memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE);
325 	memset(&chacha_state->x[12], 0, sizeof(u32) * 4);
326 	chacha20_block(chacha_state, first_block);
327 
328 	memcpy(key, first_block, CHACHA_KEY_SIZE);
329 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
330 	memzero_explicit(first_block, sizeof(first_block));
331 }
332 
333 /*
334  * This function returns a ChaCha state that you may use for generating
335  * random data. It also returns up to 32 bytes on its own of random data
336  * that may be used; random_data_len may not be greater than 32.
337  */
338 static void crng_make_state(struct chacha_state *chacha_state,
339 			    u8 *random_data, size_t random_data_len)
340 {
341 	unsigned long flags;
342 	struct crng *crng;
343 
344 	BUG_ON(random_data_len > 32);
345 
346 	/*
347 	 * For the fast path, we check whether we're ready, unlocked first, and
348 	 * then re-check once locked later. In the case where we're really not
349 	 * ready, we do fast key erasure with the base_crng directly, extracting
350 	 * when crng_init is CRNG_EMPTY.
351 	 */
352 	if (!crng_ready()) {
353 		bool ready;
354 
355 		spin_lock_irqsave(&base_crng.lock, flags);
356 		ready = crng_ready();
357 		if (!ready) {
358 			if (crng_init == CRNG_EMPTY)
359 				extract_entropy(base_crng.key, sizeof(base_crng.key));
360 			crng_fast_key_erasure(base_crng.key, chacha_state,
361 					      random_data, random_data_len);
362 		}
363 		spin_unlock_irqrestore(&base_crng.lock, flags);
364 		if (!ready)
365 			return;
366 	}
367 
368 	local_lock_irqsave(&crngs.lock, flags);
369 	crng = raw_cpu_ptr(&crngs);
370 
371 	/*
372 	 * If our per-cpu crng is older than the base_crng, then it means
373 	 * somebody reseeded the base_crng. In that case, we do fast key
374 	 * erasure on the base_crng, and use its output as the new key
375 	 * for our per-cpu crng. This brings us up to date with base_crng.
376 	 */
377 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
378 		spin_lock(&base_crng.lock);
379 		crng_fast_key_erasure(base_crng.key, chacha_state,
380 				      crng->key, sizeof(crng->key));
381 		crng->generation = base_crng.generation;
382 		spin_unlock(&base_crng.lock);
383 	}
384 
385 	/*
386 	 * Finally, when we've made it this far, our per-cpu crng has an up
387 	 * to date key, and we can do fast key erasure with it to produce
388 	 * some random data and a ChaCha state for the caller. All other
389 	 * branches of this function are "unlikely", so most of the time we
390 	 * should wind up here immediately.
391 	 */
392 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
393 	local_unlock_irqrestore(&crngs.lock, flags);
394 }
395 
396 static void _get_random_bytes(void *buf, size_t len)
397 {
398 	struct chacha_state chacha_state;
399 	u8 tmp[CHACHA_BLOCK_SIZE];
400 	size_t first_block_len;
401 
402 	if (!len)
403 		return;
404 
405 	first_block_len = min_t(size_t, 32, len);
406 	crng_make_state(&chacha_state, buf, first_block_len);
407 	len -= first_block_len;
408 	buf += first_block_len;
409 
410 	while (len) {
411 		if (len < CHACHA_BLOCK_SIZE) {
412 			chacha20_block(&chacha_state, tmp);
413 			memcpy(buf, tmp, len);
414 			memzero_explicit(tmp, sizeof(tmp));
415 			break;
416 		}
417 
418 		chacha20_block(&chacha_state, buf);
419 		if (unlikely(chacha_state.x[12] == 0))
420 			++chacha_state.x[13];
421 		len -= CHACHA_BLOCK_SIZE;
422 		buf += CHACHA_BLOCK_SIZE;
423 	}
424 
425 	chacha_zeroize_state(&chacha_state);
426 }
427 
428 /*
429  * This returns random bytes in arbitrary quantities. The quality of the
430  * random bytes is good as /dev/urandom. In order to ensure that the
431  * randomness provided by this function is okay, the function
432  * wait_for_random_bytes() should be called and return 0 at least once
433  * at any point prior.
434  */
435 void get_random_bytes(void *buf, size_t len)
436 {
437 	warn_unseeded_randomness();
438 	_get_random_bytes(buf, len);
439 }
440 EXPORT_SYMBOL(get_random_bytes);
441 
442 static ssize_t get_random_bytes_user(struct iov_iter *iter)
443 {
444 	struct chacha_state chacha_state;
445 	u8 block[CHACHA_BLOCK_SIZE];
446 	size_t ret = 0, copied;
447 
448 	if (unlikely(!iov_iter_count(iter)))
449 		return 0;
450 
451 	/*
452 	 * Immediately overwrite the ChaCha key at index 4 with random
453 	 * bytes, in case userspace causes copy_to_iter() below to sleep
454 	 * forever, so that we still retain forward secrecy in that case.
455 	 */
456 	crng_make_state(&chacha_state, (u8 *)&chacha_state.x[4],
457 			CHACHA_KEY_SIZE);
458 	/*
459 	 * However, if we're doing a read of len <= 32, we don't need to
460 	 * use chacha_state after, so we can simply return those bytes to
461 	 * the user directly.
462 	 */
463 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
464 		ret = copy_to_iter(&chacha_state.x[4], CHACHA_KEY_SIZE, iter);
465 		goto out_zero_chacha;
466 	}
467 
468 	for (;;) {
469 		chacha20_block(&chacha_state, block);
470 		if (unlikely(chacha_state.x[12] == 0))
471 			++chacha_state.x[13];
472 
473 		copied = copy_to_iter(block, sizeof(block), iter);
474 		ret += copied;
475 		if (!iov_iter_count(iter) || copied != sizeof(block))
476 			break;
477 
478 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
479 		if (ret % PAGE_SIZE == 0) {
480 			if (signal_pending(current))
481 				break;
482 			cond_resched();
483 		}
484 	}
485 
486 	memzero_explicit(block, sizeof(block));
487 out_zero_chacha:
488 	chacha_zeroize_state(&chacha_state);
489 	return ret ? ret : -EFAULT;
490 }
491 
492 /*
493  * Batched entropy returns random integers. The quality of the random
494  * number is good as /dev/urandom. In order to ensure that the randomness
495  * provided by this function is okay, the function wait_for_random_bytes()
496  * should be called and return 0 at least once at any point prior.
497  */
498 
499 #define DEFINE_BATCHED_ENTROPY(type)						\
500 struct batch_ ##type {								\
501 	/*									\
502 	 * We make this 1.5x a ChaCha block, so that we get the			\
503 	 * remaining 32 bytes from fast key erasure, plus one full		\
504 	 * block from the detached ChaCha state. We can increase		\
505 	 * the size of this later if needed so long as we keep the		\
506 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
507 	 */									\
508 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
509 	local_lock_t lock;							\
510 	unsigned long generation;						\
511 	unsigned int position;							\
512 };										\
513 										\
514 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
515 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
516 	.position = UINT_MAX							\
517 };										\
518 										\
519 type get_random_ ##type(void)							\
520 {										\
521 	type ret;								\
522 	unsigned long flags;							\
523 	struct batch_ ##type *batch;						\
524 	unsigned long next_gen;							\
525 										\
526 	warn_unseeded_randomness();						\
527 										\
528 	if  (!crng_ready()) {							\
529 		_get_random_bytes(&ret, sizeof(ret));				\
530 		return ret;							\
531 	}									\
532 										\
533 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
534 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
535 										\
536 	next_gen = READ_ONCE(base_crng.generation);				\
537 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
538 	    next_gen != batch->generation) {					\
539 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
540 		batch->position = 0;						\
541 		batch->generation = next_gen;					\
542 	}									\
543 										\
544 	ret = batch->entropy[batch->position];					\
545 	batch->entropy[batch->position] = 0;					\
546 	++batch->position;							\
547 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
548 	return ret;								\
549 }										\
550 EXPORT_SYMBOL(get_random_ ##type);
551 
552 DEFINE_BATCHED_ENTROPY(u8)
553 DEFINE_BATCHED_ENTROPY(u16)
554 DEFINE_BATCHED_ENTROPY(u32)
555 DEFINE_BATCHED_ENTROPY(u64)
556 
557 u32 __get_random_u32_below(u32 ceil)
558 {
559 	/*
560 	 * This is the slow path for variable ceil. It is still fast, most of
561 	 * the time, by doing traditional reciprocal multiplication and
562 	 * opportunistically comparing the lower half to ceil itself, before
563 	 * falling back to computing a larger bound, and then rejecting samples
564 	 * whose lower half would indicate a range indivisible by ceil. The use
565 	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
566 	 * in 32-bits.
567 	 */
568 	u32 rand = get_random_u32();
569 	u64 mult;
570 
571 	/*
572 	 * This function is technically undefined for ceil == 0, and in fact
573 	 * for the non-underscored constant version in the header, we build bug
574 	 * on that. But for the non-constant case, it's convenient to have that
575 	 * evaluate to being a straight call to get_random_u32(), so that
576 	 * get_random_u32_inclusive() can work over its whole range without
577 	 * undefined behavior.
578 	 */
579 	if (unlikely(!ceil))
580 		return rand;
581 
582 	mult = (u64)ceil * rand;
583 	if (unlikely((u32)mult < ceil)) {
584 		u32 bound = -ceil % ceil;
585 		while (unlikely((u32)mult < bound))
586 			mult = (u64)ceil * get_random_u32();
587 	}
588 	return mult >> 32;
589 }
590 EXPORT_SYMBOL(__get_random_u32_below);
591 
592 #ifdef CONFIG_SMP
593 /*
594  * This function is called when the CPU is coming up, with entry
595  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
596  */
597 int __cold random_prepare_cpu(unsigned int cpu)
598 {
599 	/*
600 	 * When the cpu comes back online, immediately invalidate both
601 	 * the per-cpu crng and all batches, so that we serve fresh
602 	 * randomness.
603 	 */
604 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
605 	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
606 	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
607 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
608 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
609 	return 0;
610 }
611 #endif
612 
613 
614 /**********************************************************************
615  *
616  * Entropy accumulation and extraction routines.
617  *
618  * Callers may add entropy via:
619  *
620  *     static void mix_pool_bytes(const void *buf, size_t len)
621  *
622  * After which, if added entropy should be credited:
623  *
624  *     static void credit_init_bits(size_t bits)
625  *
626  * Finally, extract entropy via:
627  *
628  *     static void extract_entropy(void *buf, size_t len)
629  *
630  **********************************************************************/
631 
632 enum {
633 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
634 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
635 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
636 };
637 
638 static struct {
639 	struct blake2s_state hash;
640 	spinlock_t lock;
641 	unsigned int init_bits;
642 } input_pool = {
643 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
644 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
645 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
646 	.hash.outlen = BLAKE2S_HASH_SIZE,
647 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
648 };
649 
650 static void _mix_pool_bytes(const void *buf, size_t len)
651 {
652 	blake2s_update(&input_pool.hash, buf, len);
653 }
654 
655 /*
656  * This function adds bytes into the input pool. It does not
657  * update the initialization bit counter; the caller should call
658  * credit_init_bits if this is appropriate.
659  */
660 static void mix_pool_bytes(const void *buf, size_t len)
661 {
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&input_pool.lock, flags);
665 	_mix_pool_bytes(buf, len);
666 	spin_unlock_irqrestore(&input_pool.lock, flags);
667 }
668 
669 /*
670  * This is an HKDF-like construction for using the hashed collected entropy
671  * as a PRF key, that's then expanded block-by-block.
672  */
673 static void extract_entropy(void *buf, size_t len)
674 {
675 	unsigned long flags;
676 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
677 	struct {
678 		unsigned long rdseed[32 / sizeof(long)];
679 		size_t counter;
680 	} block;
681 	size_t i, longs;
682 
683 	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
684 		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
685 		if (longs) {
686 			i += longs;
687 			continue;
688 		}
689 		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
690 		if (longs) {
691 			i += longs;
692 			continue;
693 		}
694 		block.rdseed[i++] = random_get_entropy();
695 	}
696 
697 	spin_lock_irqsave(&input_pool.lock, flags);
698 
699 	/* seed = HASHPRF(last_key, entropy_input) */
700 	blake2s_final(&input_pool.hash, seed);
701 
702 	/* next_key = HASHPRF(seed, RDSEED || 0) */
703 	block.counter = 0;
704 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
705 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
706 
707 	spin_unlock_irqrestore(&input_pool.lock, flags);
708 	memzero_explicit(next_key, sizeof(next_key));
709 
710 	while (len) {
711 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
712 		/* output = HASHPRF(seed, RDSEED || ++counter) */
713 		++block.counter;
714 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
715 		len -= i;
716 		buf += i;
717 	}
718 
719 	memzero_explicit(seed, sizeof(seed));
720 	memzero_explicit(&block, sizeof(block));
721 }
722 
723 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
724 
725 static void __cold _credit_init_bits(size_t bits)
726 {
727 	static DECLARE_WORK(set_ready, crng_set_ready);
728 	unsigned int new, orig, add;
729 	unsigned long flags;
730 	int m;
731 
732 	if (!bits)
733 		return;
734 
735 	add = min_t(size_t, bits, POOL_BITS);
736 
737 	orig = READ_ONCE(input_pool.init_bits);
738 	do {
739 		new = min_t(unsigned int, POOL_BITS, orig + add);
740 	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
741 
742 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
743 		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
744 		if (static_key_initialized && system_unbound_wq)
745 			queue_work(system_unbound_wq, &set_ready);
746 		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
747 #ifdef CONFIG_VDSO_GETRANDOM
748 		WRITE_ONCE(vdso_k_rng_data->is_ready, true);
749 #endif
750 		wake_up_interruptible(&crng_init_wait);
751 		kill_fasync(&fasync, SIGIO, POLL_IN);
752 		pr_notice("crng init done\n");
753 		m = ratelimit_state_get_miss(&urandom_warning);
754 		if (m)
755 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n", m);
756 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
757 		spin_lock_irqsave(&base_crng.lock, flags);
758 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
759 		if (crng_init == CRNG_EMPTY) {
760 			extract_entropy(base_crng.key, sizeof(base_crng.key));
761 			crng_init = CRNG_EARLY;
762 		}
763 		spin_unlock_irqrestore(&base_crng.lock, flags);
764 	}
765 }
766 
767 
768 /**********************************************************************
769  *
770  * Entropy collection routines.
771  *
772  * The following exported functions are used for pushing entropy into
773  * the above entropy accumulation routines:
774  *
775  *	void add_device_randomness(const void *buf, size_t len);
776  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
777  *	void add_bootloader_randomness(const void *buf, size_t len);
778  *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
779  *	void add_interrupt_randomness(int irq);
780  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
781  *	void add_disk_randomness(struct gendisk *disk);
782  *
783  * add_device_randomness() adds data to the input pool that
784  * is likely to differ between two devices (or possibly even per boot).
785  * This would be things like MAC addresses or serial numbers, or the
786  * read-out of the RTC. This does *not* credit any actual entropy to
787  * the pool, but it initializes the pool to different values for devices
788  * that might otherwise be identical and have very little entropy
789  * available to them (particularly common in the embedded world).
790  *
791  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
792  * entropy as specified by the caller. If the entropy pool is full it will
793  * block until more entropy is needed.
794  *
795  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
796  * and device tree, and credits its input depending on whether or not the
797  * command line option 'random.trust_bootloader'.
798  *
799  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
800  * representing the current instance of a VM to the pool, without crediting,
801  * and then force-reseeds the crng so that it takes effect immediately.
802  *
803  * add_interrupt_randomness() uses the interrupt timing as random
804  * inputs to the entropy pool. Using the cycle counters and the irq source
805  * as inputs, it feeds the input pool roughly once a second or after 64
806  * interrupts, crediting 1 bit of entropy for whichever comes first.
807  *
808  * add_input_randomness() uses the input layer interrupt timing, as well
809  * as the event type information from the hardware.
810  *
811  * add_disk_randomness() uses what amounts to the seek time of block
812  * layer request events, on a per-disk_devt basis, as input to the
813  * entropy pool. Note that high-speed solid state drives with very low
814  * seek times do not make for good sources of entropy, as their seek
815  * times are usually fairly consistent.
816  *
817  * The last two routines try to estimate how many bits of entropy
818  * to credit. They do this by keeping track of the first and second
819  * order deltas of the event timings.
820  *
821  **********************************************************************/
822 
823 static bool trust_cpu __initdata = true;
824 static bool trust_bootloader __initdata = true;
825 static int __init parse_trust_cpu(char *arg)
826 {
827 	return kstrtobool(arg, &trust_cpu);
828 }
829 static int __init parse_trust_bootloader(char *arg)
830 {
831 	return kstrtobool(arg, &trust_bootloader);
832 }
833 early_param("random.trust_cpu", parse_trust_cpu);
834 early_param("random.trust_bootloader", parse_trust_bootloader);
835 
836 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
837 {
838 	unsigned long flags, entropy = random_get_entropy();
839 
840 	/*
841 	 * Encode a representation of how long the system has been suspended,
842 	 * in a way that is distinct from prior system suspends.
843 	 */
844 	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
845 
846 	spin_lock_irqsave(&input_pool.lock, flags);
847 	_mix_pool_bytes(&action, sizeof(action));
848 	_mix_pool_bytes(stamps, sizeof(stamps));
849 	_mix_pool_bytes(&entropy, sizeof(entropy));
850 	spin_unlock_irqrestore(&input_pool.lock, flags);
851 
852 	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
853 	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
854 	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
855 		crng_reseed(NULL);
856 		pr_notice("crng reseeded on system resumption\n");
857 	}
858 	return 0;
859 }
860 
861 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
862 
863 /*
864  * This is called extremely early, before time keeping functionality is
865  * available, but arch randomness is. Interrupts are not yet enabled.
866  */
867 void __init random_init_early(const char *command_line)
868 {
869 	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
870 	size_t i, longs, arch_bits;
871 
872 #if defined(LATENT_ENTROPY_PLUGIN)
873 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
874 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
875 #endif
876 
877 	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
878 		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
879 		if (longs) {
880 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
881 			i += longs;
882 			continue;
883 		}
884 		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
885 		if (longs) {
886 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
887 			i += longs;
888 			continue;
889 		}
890 		arch_bits -= sizeof(*entropy) * 8;
891 		++i;
892 	}
893 
894 	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
895 	_mix_pool_bytes(command_line, strlen(command_line));
896 
897 	/* Reseed if already seeded by earlier phases. */
898 	if (crng_ready())
899 		crng_reseed(NULL);
900 	else if (trust_cpu)
901 		_credit_init_bits(arch_bits);
902 }
903 
904 /*
905  * This is called a little bit after the prior function, and now there is
906  * access to timestamps counters. Interrupts are not yet enabled.
907  */
908 void __init random_init(void)
909 {
910 	unsigned long entropy = random_get_entropy();
911 	ktime_t now = ktime_get_real();
912 
913 	_mix_pool_bytes(&now, sizeof(now));
914 	_mix_pool_bytes(&entropy, sizeof(entropy));
915 	add_latent_entropy();
916 
917 	/*
918 	 * If we were initialized by the cpu or bootloader before jump labels
919 	 * or workqueues are initialized, then we should enable the static
920 	 * branch here, where it's guaranteed that these have been initialized.
921 	 */
922 	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
923 		crng_set_ready(NULL);
924 
925 	/* Reseed if already seeded by earlier phases. */
926 	if (crng_ready())
927 		crng_reseed(NULL);
928 
929 	WARN_ON(register_pm_notifier(&pm_notifier));
930 
931 	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
932 		       "entropy collection will consequently suffer.");
933 }
934 
935 /*
936  * Add device- or boot-specific data to the input pool to help
937  * initialize it.
938  *
939  * None of this adds any entropy; it is meant to avoid the problem of
940  * the entropy pool having similar initial state across largely
941  * identical devices.
942  */
943 void add_device_randomness(const void *buf, size_t len)
944 {
945 	unsigned long entropy = random_get_entropy();
946 	unsigned long flags;
947 
948 	spin_lock_irqsave(&input_pool.lock, flags);
949 	_mix_pool_bytes(&entropy, sizeof(entropy));
950 	_mix_pool_bytes(buf, len);
951 	spin_unlock_irqrestore(&input_pool.lock, flags);
952 }
953 EXPORT_SYMBOL(add_device_randomness);
954 
955 /*
956  * Interface for in-kernel drivers of true hardware RNGs. Those devices
957  * may produce endless random bits, so this function will sleep for
958  * some amount of time after, if the sleep_after parameter is true.
959  */
960 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
961 {
962 	mix_pool_bytes(buf, len);
963 	credit_init_bits(entropy);
964 
965 	/*
966 	 * Throttle writing to once every reseed interval, unless we're not yet
967 	 * initialized or no entropy is credited.
968 	 */
969 	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
970 		schedule_timeout_interruptible(crng_reseed_interval());
971 }
972 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
973 
974 /*
975  * Handle random seed passed by bootloader, and credit it depending
976  * on the command line option 'random.trust_bootloader'.
977  */
978 void __init add_bootloader_randomness(const void *buf, size_t len)
979 {
980 	mix_pool_bytes(buf, len);
981 	if (trust_bootloader)
982 		credit_init_bits(len * 8);
983 }
984 
985 #if IS_ENABLED(CONFIG_VMGENID)
986 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
987 
988 /*
989  * Handle a new unique VM ID, which is unique, not secret, so we
990  * don't credit it, but we do immediately force a reseed after so
991  * that it's used by the crng posthaste.
992  */
993 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
994 {
995 	add_device_randomness(unique_vm_id, len);
996 	if (crng_ready()) {
997 		crng_reseed(NULL);
998 		pr_notice("crng reseeded due to virtual machine fork\n");
999 	}
1000 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1001 }
1002 #if IS_MODULE(CONFIG_VMGENID)
1003 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1004 #endif
1005 
1006 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1007 {
1008 	return blocking_notifier_chain_register(&vmfork_chain, nb);
1009 }
1010 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1011 
1012 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1013 {
1014 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1015 }
1016 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1017 #endif
1018 
1019 struct fast_pool {
1020 	unsigned long pool[4];
1021 	unsigned long last;
1022 	unsigned int count;
1023 	struct timer_list mix;
1024 };
1025 
1026 static void mix_interrupt_randomness(struct timer_list *work);
1027 
1028 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1029 #ifdef CONFIG_64BIT
1030 #define FASTMIX_PERM SIPHASH_PERMUTATION
1031 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1032 #else
1033 #define FASTMIX_PERM HSIPHASH_PERMUTATION
1034 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1035 #endif
1036 	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1037 };
1038 
1039 /*
1040  * This is [Half]SipHash-1-x, starting from an empty key. Because
1041  * the key is fixed, it assumes that its inputs are non-malicious,
1042  * and therefore this has no security on its own. s represents the
1043  * four-word SipHash state, while v represents a two-word input.
1044  */
1045 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1046 {
1047 	s[3] ^= v1;
1048 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1049 	s[0] ^= v1;
1050 	s[3] ^= v2;
1051 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1052 	s[0] ^= v2;
1053 }
1054 
1055 #ifdef CONFIG_SMP
1056 /*
1057  * This function is called when the CPU has just come online, with
1058  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1059  */
1060 int __cold random_online_cpu(unsigned int cpu)
1061 {
1062 	/*
1063 	 * During CPU shutdown and before CPU onlining, add_interrupt_
1064 	 * randomness() may schedule mix_interrupt_randomness(), and
1065 	 * set the MIX_INFLIGHT flag. However, because the worker can
1066 	 * be scheduled on a different CPU during this period, that
1067 	 * flag will never be cleared. For that reason, we zero out
1068 	 * the flag here, which runs just after workqueues are onlined
1069 	 * for the CPU again. This also has the effect of setting the
1070 	 * irq randomness count to zero so that new accumulated irqs
1071 	 * are fresh.
1072 	 */
1073 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1074 	return 0;
1075 }
1076 #endif
1077 
1078 static void mix_interrupt_randomness(struct timer_list *work)
1079 {
1080 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1081 	/*
1082 	 * The size of the copied stack pool is explicitly 2 longs so that we
1083 	 * only ever ingest half of the siphash output each time, retaining
1084 	 * the other half as the next "key" that carries over. The entropy is
1085 	 * supposed to be sufficiently dispersed between bits so on average
1086 	 * we don't wind up "losing" some.
1087 	 */
1088 	unsigned long pool[2];
1089 	unsigned int count;
1090 
1091 	/* Check to see if we're running on the wrong CPU due to hotplug. */
1092 	local_irq_disable();
1093 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1094 		local_irq_enable();
1095 		return;
1096 	}
1097 
1098 	/*
1099 	 * Copy the pool to the stack so that the mixer always has a
1100 	 * consistent view, before we reenable irqs again.
1101 	 */
1102 	memcpy(pool, fast_pool->pool, sizeof(pool));
1103 	count = fast_pool->count;
1104 	fast_pool->count = 0;
1105 	fast_pool->last = jiffies;
1106 	local_irq_enable();
1107 
1108 	mix_pool_bytes(pool, sizeof(pool));
1109 	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1110 
1111 	memzero_explicit(pool, sizeof(pool));
1112 }
1113 
1114 void add_interrupt_randomness(int irq)
1115 {
1116 	enum { MIX_INFLIGHT = 1U << 31 };
1117 	unsigned long entropy = random_get_entropy();
1118 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1119 	struct pt_regs *regs = get_irq_regs();
1120 	unsigned int new_count;
1121 
1122 	fast_mix(fast_pool->pool, entropy,
1123 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1124 	new_count = ++fast_pool->count;
1125 
1126 	if (new_count & MIX_INFLIGHT)
1127 		return;
1128 
1129 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1130 		return;
1131 
1132 	fast_pool->count |= MIX_INFLIGHT;
1133 	if (!timer_pending(&fast_pool->mix)) {
1134 		fast_pool->mix.expires = jiffies;
1135 		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1136 	}
1137 }
1138 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1139 
1140 /* There is one of these per entropy source */
1141 struct timer_rand_state {
1142 	unsigned long last_time;
1143 	long last_delta, last_delta2;
1144 };
1145 
1146 /*
1147  * This function adds entropy to the entropy "pool" by using timing
1148  * delays. It uses the timer_rand_state structure to make an estimate
1149  * of how many bits of entropy this call has added to the pool. The
1150  * value "num" is also added to the pool; it should somehow describe
1151  * the type of event that just happened.
1152  */
1153 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1154 {
1155 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1156 	long delta, delta2, delta3;
1157 	unsigned int bits;
1158 
1159 	/*
1160 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1161 	 * sometime after, so mix into the fast pool.
1162 	 */
1163 	if (in_hardirq()) {
1164 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1165 	} else {
1166 		spin_lock_irqsave(&input_pool.lock, flags);
1167 		_mix_pool_bytes(&entropy, sizeof(entropy));
1168 		_mix_pool_bytes(&num, sizeof(num));
1169 		spin_unlock_irqrestore(&input_pool.lock, flags);
1170 	}
1171 
1172 	if (crng_ready())
1173 		return;
1174 
1175 	/*
1176 	 * Calculate number of bits of randomness we probably added.
1177 	 * We take into account the first, second and third-order deltas
1178 	 * in order to make our estimate.
1179 	 */
1180 	delta = now - READ_ONCE(state->last_time);
1181 	WRITE_ONCE(state->last_time, now);
1182 
1183 	delta2 = delta - READ_ONCE(state->last_delta);
1184 	WRITE_ONCE(state->last_delta, delta);
1185 
1186 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1187 	WRITE_ONCE(state->last_delta2, delta2);
1188 
1189 	if (delta < 0)
1190 		delta = -delta;
1191 	if (delta2 < 0)
1192 		delta2 = -delta2;
1193 	if (delta3 < 0)
1194 		delta3 = -delta3;
1195 	if (delta > delta2)
1196 		delta = delta2;
1197 	if (delta > delta3)
1198 		delta = delta3;
1199 
1200 	/*
1201 	 * delta is now minimum absolute delta. Round down by 1 bit
1202 	 * on general principles, and limit entropy estimate to 11 bits.
1203 	 */
1204 	bits = min(fls(delta >> 1), 11);
1205 
1206 	/*
1207 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1208 	 * will run after this, which uses a different crediting scheme of 1 bit
1209 	 * per every 64 interrupts. In order to let that function do accounting
1210 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1211 	 * and then subtract one to account for the extra one added.
1212 	 */
1213 	if (in_hardirq())
1214 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1215 	else
1216 		_credit_init_bits(bits);
1217 }
1218 
1219 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1220 {
1221 	static unsigned char last_value;
1222 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1223 
1224 	/* Ignore autorepeat and the like. */
1225 	if (value == last_value)
1226 		return;
1227 
1228 	last_value = value;
1229 	add_timer_randomness(&input_timer_state,
1230 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1231 }
1232 EXPORT_SYMBOL_GPL(add_input_randomness);
1233 
1234 #ifdef CONFIG_BLOCK
1235 void add_disk_randomness(struct gendisk *disk)
1236 {
1237 	if (!disk || !disk->random)
1238 		return;
1239 	/* First major is 1, so we get >= 0x200 here. */
1240 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1241 }
1242 EXPORT_SYMBOL_GPL(add_disk_randomness);
1243 
1244 void __cold rand_initialize_disk(struct gendisk *disk)
1245 {
1246 	struct timer_rand_state *state;
1247 
1248 	/*
1249 	 * If kzalloc returns null, we just won't use that entropy
1250 	 * source.
1251 	 */
1252 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1253 	if (state) {
1254 		state->last_time = INITIAL_JIFFIES;
1255 		disk->random = state;
1256 	}
1257 }
1258 #endif
1259 
1260 struct entropy_timer_state {
1261 	unsigned long entropy;
1262 	struct timer_list timer;
1263 	atomic_t samples;
1264 	unsigned int samples_per_bit;
1265 };
1266 
1267 /*
1268  * Each time the timer fires, we expect that we got an unpredictable jump in
1269  * the cycle counter. Even if the timer is running on another CPU, the timer
1270  * activity will be touching the stack of the CPU that is generating entropy.
1271  *
1272  * Note that we don't re-arm the timer in the timer itself - we are happy to be
1273  * scheduled away, since that just makes the load more complex, but we do not
1274  * want the timer to keep ticking unless the entropy loop is running.
1275  *
1276  * So the re-arming always happens in the entropy loop itself.
1277  */
1278 static void __cold entropy_timer(struct timer_list *timer)
1279 {
1280 	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1281 	unsigned long entropy = random_get_entropy();
1282 
1283 	mix_pool_bytes(&entropy, sizeof(entropy));
1284 	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1285 		credit_init_bits(1);
1286 }
1287 
1288 /*
1289  * If we have an actual cycle counter, see if we can generate enough entropy
1290  * with timing noise.
1291  */
1292 static void __cold try_to_generate_entropy(void)
1293 {
1294 	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1295 	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1296 	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1297 	unsigned int i, num_different = 0;
1298 	unsigned long last = random_get_entropy();
1299 	int cpu = -1;
1300 
1301 	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1302 		stack->entropy = random_get_entropy();
1303 		if (stack->entropy != last)
1304 			++num_different;
1305 		last = stack->entropy;
1306 	}
1307 	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1308 	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1309 		return;
1310 
1311 	atomic_set(&stack->samples, 0);
1312 	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1313 	while (!crng_ready() && !signal_pending(current)) {
1314 		/*
1315 		 * Check !timer_pending() and then ensure that any previous callback has finished
1316 		 * executing by checking timer_delete_sync_try(), before queueing the next one.
1317 		 */
1318 		if (!timer_pending(&stack->timer) && timer_delete_sync_try(&stack->timer) >= 0) {
1319 			struct cpumask timer_cpus;
1320 			unsigned int num_cpus;
1321 
1322 			/*
1323 			 * Preemption must be disabled here, both to read the current CPU number
1324 			 * and to avoid scheduling a timer on a dead CPU.
1325 			 */
1326 			preempt_disable();
1327 
1328 			/* Only schedule callbacks on timer CPUs that are online. */
1329 			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1330 			num_cpus = cpumask_weight(&timer_cpus);
1331 			/* In very bizarre case of misconfiguration, fallback to all online. */
1332 			if (unlikely(num_cpus == 0)) {
1333 				timer_cpus = *cpu_online_mask;
1334 				num_cpus = cpumask_weight(&timer_cpus);
1335 			}
1336 
1337 			/* Basic CPU round-robin, which avoids the current CPU. */
1338 			do {
1339 				cpu = cpumask_next(cpu, &timer_cpus);
1340 				if (cpu >= nr_cpu_ids)
1341 					cpu = cpumask_first(&timer_cpus);
1342 			} while (cpu == smp_processor_id() && num_cpus > 1);
1343 
1344 			/* Expiring the timer at `jiffies` means it's the next tick. */
1345 			stack->timer.expires = jiffies;
1346 
1347 			add_timer_on(&stack->timer, cpu);
1348 
1349 			preempt_enable();
1350 		}
1351 		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1352 		schedule();
1353 		stack->entropy = random_get_entropy();
1354 	}
1355 	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1356 
1357 	timer_delete_sync(&stack->timer);
1358 	timer_destroy_on_stack(&stack->timer);
1359 }
1360 
1361 
1362 /**********************************************************************
1363  *
1364  * Userspace reader/writer interfaces.
1365  *
1366  * getrandom(2) is the primary modern interface into the RNG and should
1367  * be used in preference to anything else.
1368  *
1369  * Reading from /dev/random has the same functionality as calling
1370  * getrandom(2) with flags=0. In earlier versions, however, it had
1371  * vastly different semantics and should therefore be avoided, to
1372  * prevent backwards compatibility issues.
1373  *
1374  * Reading from /dev/urandom has the same functionality as calling
1375  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1376  * waiting for the RNG to be ready, it should not be used.
1377  *
1378  * Writing to either /dev/random or /dev/urandom adds entropy to
1379  * the input pool but does not credit it.
1380  *
1381  * Polling on /dev/random indicates when the RNG is initialized, on
1382  * the read side, and when it wants new entropy, on the write side.
1383  *
1384  * Both /dev/random and /dev/urandom have the same set of ioctls for
1385  * adding entropy, getting the entropy count, zeroing the count, and
1386  * reseeding the crng.
1387  *
1388  **********************************************************************/
1389 
1390 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1391 {
1392 	struct iov_iter iter;
1393 	int ret;
1394 
1395 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1396 		return -EINVAL;
1397 
1398 	/*
1399 	 * Requesting insecure and blocking randomness at the same time makes
1400 	 * no sense.
1401 	 */
1402 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1403 		return -EINVAL;
1404 
1405 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1406 		if (flags & GRND_NONBLOCK)
1407 			return -EAGAIN;
1408 		ret = wait_for_random_bytes();
1409 		if (unlikely(ret))
1410 			return ret;
1411 	}
1412 
1413 	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1414 	if (unlikely(ret))
1415 		return ret;
1416 	return get_random_bytes_user(&iter);
1417 }
1418 
1419 static __poll_t random_poll(struct file *file, poll_table *wait)
1420 {
1421 	poll_wait(file, &crng_init_wait, wait);
1422 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1423 }
1424 
1425 static ssize_t write_pool_user(struct iov_iter *iter)
1426 {
1427 	u8 block[BLAKE2S_BLOCK_SIZE];
1428 	ssize_t ret = 0;
1429 	size_t copied;
1430 
1431 	if (unlikely(!iov_iter_count(iter)))
1432 		return 0;
1433 
1434 	for (;;) {
1435 		copied = copy_from_iter(block, sizeof(block), iter);
1436 		ret += copied;
1437 		mix_pool_bytes(block, copied);
1438 		if (!iov_iter_count(iter) || copied != sizeof(block))
1439 			break;
1440 
1441 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1442 		if (ret % PAGE_SIZE == 0) {
1443 			if (signal_pending(current))
1444 				break;
1445 			cond_resched();
1446 		}
1447 	}
1448 
1449 	memzero_explicit(block, sizeof(block));
1450 	return ret ? ret : -EFAULT;
1451 }
1452 
1453 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1454 {
1455 	return write_pool_user(iter);
1456 }
1457 
1458 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1459 {
1460 	static int maxwarn = 10;
1461 
1462 	/*
1463 	 * Opportunistically attempt to initialize the RNG on platforms that
1464 	 * have fast cycle counters, but don't (for now) require it to succeed.
1465 	 */
1466 	if (!crng_ready())
1467 		try_to_generate_entropy();
1468 
1469 	if (!crng_ready()) {
1470 		if (!ratelimit_disable && maxwarn <= 0)
1471 			ratelimit_state_inc_miss(&urandom_warning);
1472 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1473 			--maxwarn;
1474 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1475 				  current->comm, iov_iter_count(iter));
1476 		}
1477 	}
1478 
1479 	return get_random_bytes_user(iter);
1480 }
1481 
1482 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1483 {
1484 	int ret;
1485 
1486 	if (!crng_ready() &&
1487 	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1488 	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1489 		return -EAGAIN;
1490 
1491 	ret = wait_for_random_bytes();
1492 	if (ret != 0)
1493 		return ret;
1494 	return get_random_bytes_user(iter);
1495 }
1496 
1497 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1498 {
1499 	int __user *p = (int __user *)arg;
1500 	int ent_count;
1501 
1502 	switch (cmd) {
1503 	case RNDGETENTCNT:
1504 		/* Inherently racy, no point locking. */
1505 		if (put_user(input_pool.init_bits, p))
1506 			return -EFAULT;
1507 		return 0;
1508 	case RNDADDTOENTCNT:
1509 		if (!capable(CAP_SYS_ADMIN))
1510 			return -EPERM;
1511 		if (get_user(ent_count, p))
1512 			return -EFAULT;
1513 		if (ent_count < 0)
1514 			return -EINVAL;
1515 		credit_init_bits(ent_count);
1516 		return 0;
1517 	case RNDADDENTROPY: {
1518 		struct iov_iter iter;
1519 		ssize_t ret;
1520 		int len;
1521 
1522 		if (!capable(CAP_SYS_ADMIN))
1523 			return -EPERM;
1524 		if (get_user(ent_count, p++))
1525 			return -EFAULT;
1526 		if (ent_count < 0)
1527 			return -EINVAL;
1528 		if (get_user(len, p++))
1529 			return -EFAULT;
1530 		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1531 		if (unlikely(ret))
1532 			return ret;
1533 		ret = write_pool_user(&iter);
1534 		if (unlikely(ret < 0))
1535 			return ret;
1536 		/* Since we're crediting, enforce that it was all written into the pool. */
1537 		if (unlikely(ret != len))
1538 			return -EFAULT;
1539 		credit_init_bits(ent_count);
1540 		return 0;
1541 	}
1542 	case RNDZAPENTCNT:
1543 	case RNDCLEARPOOL:
1544 		/* No longer has any effect. */
1545 		if (!capable(CAP_SYS_ADMIN))
1546 			return -EPERM;
1547 		return 0;
1548 	case RNDRESEEDCRNG:
1549 		if (!capable(CAP_SYS_ADMIN))
1550 			return -EPERM;
1551 		if (!crng_ready())
1552 			return -ENODATA;
1553 		crng_reseed(NULL);
1554 		return 0;
1555 	default:
1556 		return -EINVAL;
1557 	}
1558 }
1559 
1560 static int random_fasync(int fd, struct file *filp, int on)
1561 {
1562 	return fasync_helper(fd, filp, on, &fasync);
1563 }
1564 
1565 const struct file_operations random_fops = {
1566 	.read_iter = random_read_iter,
1567 	.write_iter = random_write_iter,
1568 	.poll = random_poll,
1569 	.unlocked_ioctl = random_ioctl,
1570 	.compat_ioctl = compat_ptr_ioctl,
1571 	.fasync = random_fasync,
1572 	.llseek = noop_llseek,
1573 	.splice_read = copy_splice_read,
1574 	.splice_write = iter_file_splice_write,
1575 };
1576 
1577 const struct file_operations urandom_fops = {
1578 	.read_iter = urandom_read_iter,
1579 	.write_iter = random_write_iter,
1580 	.unlocked_ioctl = random_ioctl,
1581 	.compat_ioctl = compat_ptr_ioctl,
1582 	.fasync = random_fasync,
1583 	.llseek = noop_llseek,
1584 	.splice_read = copy_splice_read,
1585 	.splice_write = iter_file_splice_write,
1586 };
1587 
1588 
1589 /********************************************************************
1590  *
1591  * Sysctl interface.
1592  *
1593  * These are partly unused legacy knobs with dummy values to not break
1594  * userspace and partly still useful things. They are usually accessible
1595  * in /proc/sys/kernel/random/ and are as follows:
1596  *
1597  * - boot_id - a UUID representing the current boot.
1598  *
1599  * - uuid - a random UUID, different each time the file is read.
1600  *
1601  * - poolsize - the number of bits of entropy that the input pool can
1602  *   hold, tied to the POOL_BITS constant.
1603  *
1604  * - entropy_avail - the number of bits of entropy currently in the
1605  *   input pool. Always <= poolsize.
1606  *
1607  * - write_wakeup_threshold - the amount of entropy in the input pool
1608  *   below which write polls to /dev/random will unblock, requesting
1609  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1610  *   to avoid breaking old userspaces, but writing to it does not
1611  *   change any behavior of the RNG.
1612  *
1613  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1614  *   It is writable to avoid breaking old userspaces, but writing
1615  *   to it does not change any behavior of the RNG.
1616  *
1617  ********************************************************************/
1618 
1619 #ifdef CONFIG_SYSCTL
1620 
1621 #include <linux/sysctl.h>
1622 
1623 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1624 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1625 static int sysctl_poolsize = POOL_BITS;
1626 static u8 sysctl_bootid[UUID_SIZE];
1627 
1628 /*
1629  * This function is used to return both the bootid UUID, and random
1630  * UUID. The difference is in whether table->data is NULL; if it is,
1631  * then a new UUID is generated and returned to the user.
1632  */
1633 static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1634 			size_t *lenp, loff_t *ppos)
1635 {
1636 	u8 tmp_uuid[UUID_SIZE], *uuid;
1637 	char uuid_string[UUID_STRING_LEN + 1];
1638 	struct ctl_table fake_table = {
1639 		.data = uuid_string,
1640 		.maxlen = UUID_STRING_LEN
1641 	};
1642 
1643 	if (write)
1644 		return -EPERM;
1645 
1646 	uuid = table->data;
1647 	if (!uuid) {
1648 		uuid = tmp_uuid;
1649 		generate_random_uuid(uuid);
1650 	} else {
1651 		static DEFINE_SPINLOCK(bootid_spinlock);
1652 
1653 		spin_lock(&bootid_spinlock);
1654 		if (!uuid[8])
1655 			generate_random_uuid(uuid);
1656 		spin_unlock(&bootid_spinlock);
1657 	}
1658 
1659 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1660 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1661 }
1662 
1663 /* The same as proc_dointvec, but writes don't change anything. */
1664 static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1665 			    size_t *lenp, loff_t *ppos)
1666 {
1667 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1668 }
1669 
1670 static const struct ctl_table random_table[] = {
1671 	{
1672 		.procname	= "poolsize",
1673 		.data		= &sysctl_poolsize,
1674 		.maxlen		= sizeof(int),
1675 		.mode		= 0444,
1676 		.proc_handler	= proc_dointvec,
1677 	},
1678 	{
1679 		.procname	= "entropy_avail",
1680 		.data		= &input_pool.init_bits,
1681 		.maxlen		= sizeof(int),
1682 		.mode		= 0444,
1683 		.proc_handler	= proc_dointvec,
1684 	},
1685 	{
1686 		.procname	= "write_wakeup_threshold",
1687 		.data		= &sysctl_random_write_wakeup_bits,
1688 		.maxlen		= sizeof(int),
1689 		.mode		= 0644,
1690 		.proc_handler	= proc_do_rointvec,
1691 	},
1692 	{
1693 		.procname	= "urandom_min_reseed_secs",
1694 		.data		= &sysctl_random_min_urandom_seed,
1695 		.maxlen		= sizeof(int),
1696 		.mode		= 0644,
1697 		.proc_handler	= proc_do_rointvec,
1698 	},
1699 	{
1700 		.procname	= "boot_id",
1701 		.data		= &sysctl_bootid,
1702 		.mode		= 0444,
1703 		.proc_handler	= proc_do_uuid,
1704 	},
1705 	{
1706 		.procname	= "uuid",
1707 		.mode		= 0444,
1708 		.proc_handler	= proc_do_uuid,
1709 	},
1710 };
1711 
1712 /*
1713  * random_init() is called before sysctl_init(),
1714  * so we cannot call register_sysctl_init() in random_init()
1715  */
1716 static int __init random_sysctls_init(void)
1717 {
1718 	register_sysctl_init("kernel/random", random_table);
1719 	return 0;
1720 }
1721 device_initcall(random_sysctls_init);
1722 #endif
1723