1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale Management Complex (MC) bus driver 4 * 5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * Author: German Rivera <German.Rivera@freescale.com> 8 * 9 */ 10 11 #define pr_fmt(fmt) "fsl-mc: " fmt 12 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/of_address.h> 16 #include <linux/ioport.h> 17 #include <linux/platform_device.h> 18 #include <linux/slab.h> 19 #include <linux/limits.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/acpi.h> 23 #include <linux/iommu.h> 24 #include <linux/dma-map-ops.h> 25 26 #include "fsl-mc-private.h" 27 28 /* 29 * Default DMA mask for devices on a fsl-mc bus 30 */ 31 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) 32 33 static struct fsl_mc_version mc_version; 34 35 /** 36 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device 37 * @root_mc_bus_dev: fsl-mc device representing the root DPRC 38 * @num_translation_ranges: number of entries in addr_translation_ranges 39 * @translation_ranges: array of bus to system address translation ranges 40 * @fsl_mc_regs: base address of register bank 41 */ 42 struct fsl_mc { 43 struct fsl_mc_device *root_mc_bus_dev; 44 u8 num_translation_ranges; 45 struct fsl_mc_addr_translation_range *translation_ranges; 46 void __iomem *fsl_mc_regs; 47 }; 48 49 /** 50 * struct fsl_mc_addr_translation_range - bus to system address translation 51 * range 52 * @mc_region_type: Type of MC region for the range being translated 53 * @start_mc_offset: Start MC offset of the range being translated 54 * @end_mc_offset: MC offset of the first byte after the range (last MC 55 * offset of the range is end_mc_offset - 1) 56 * @start_phys_addr: system physical address corresponding to start_mc_addr 57 */ 58 struct fsl_mc_addr_translation_range { 59 enum dprc_region_type mc_region_type; 60 u64 start_mc_offset; 61 u64 end_mc_offset; 62 phys_addr_t start_phys_addr; 63 }; 64 65 #define FSL_MC_GCR1 0x0 66 #define GCR1_P1_STOP BIT(31) 67 #define GCR1_P2_STOP BIT(30) 68 69 #define FSL_MC_FAPR 0x28 70 #define MC_FAPR_PL BIT(18) 71 #define MC_FAPR_BMT BIT(17) 72 73 static phys_addr_t mc_portal_base_phys_addr; 74 75 /** 76 * fsl_mc_bus_match - device to driver matching callback 77 * @dev: the fsl-mc device to match against 78 * @drv: the device driver to search for matching fsl-mc object type 79 * structures 80 * 81 * Returns 1 on success, 0 otherwise. 82 */ 83 static int fsl_mc_bus_match(struct device *dev, const struct device_driver *drv) 84 { 85 const struct fsl_mc_device_id *id; 86 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 87 const struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); 88 bool found = false; 89 90 /* When driver_override is set, only bind to the matching driver */ 91 if (mc_dev->driver_override) { 92 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); 93 goto out; 94 } 95 96 if (!mc_drv->match_id_table) 97 goto out; 98 99 /* 100 * If the object is not 'plugged' don't match. 101 * Only exception is the root DPRC, which is a special case. 102 */ 103 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && 104 !fsl_mc_is_root_dprc(&mc_dev->dev)) 105 goto out; 106 107 /* 108 * Traverse the match_id table of the given driver, trying to find 109 * a matching for the given device. 110 */ 111 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { 112 if (id->vendor == mc_dev->obj_desc.vendor && 113 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { 114 found = true; 115 116 break; 117 } 118 } 119 120 out: 121 dev_dbg(dev, "%smatched\n", found ? "" : "not "); 122 return found; 123 } 124 125 /* 126 * fsl_mc_bus_uevent - callback invoked when a device is added 127 */ 128 static int fsl_mc_bus_uevent(const struct device *dev, struct kobj_uevent_env *env) 129 { 130 const struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 131 132 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", 133 mc_dev->obj_desc.vendor, 134 mc_dev->obj_desc.type)) 135 return -ENOMEM; 136 137 return 0; 138 } 139 140 static int fsl_mc_dma_configure(struct device *dev) 141 { 142 const struct device_driver *drv = READ_ONCE(dev->driver); 143 struct device *dma_dev = dev; 144 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 145 u32 input_id = mc_dev->icid; 146 int ret; 147 148 while (dev_is_fsl_mc(dma_dev)) 149 dma_dev = dma_dev->parent; 150 151 if (dev_of_node(dma_dev)) 152 ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); 153 else 154 ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); 155 156 /* @drv may not be valid when we're called from the IOMMU layer */ 157 if (!ret && drv && !to_fsl_mc_driver(drv)->driver_managed_dma) { 158 ret = iommu_device_use_default_domain(dev); 159 if (ret) 160 arch_teardown_dma_ops(dev); 161 } 162 163 return ret; 164 } 165 166 static void fsl_mc_dma_cleanup(struct device *dev) 167 { 168 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 169 170 if (!mc_drv->driver_managed_dma) 171 iommu_device_unuse_default_domain(dev); 172 } 173 174 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 175 char *buf) 176 { 177 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 178 179 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, 180 mc_dev->obj_desc.type); 181 } 182 static DEVICE_ATTR_RO(modalias); 183 184 static ssize_t driver_override_store(struct device *dev, 185 struct device_attribute *attr, 186 const char *buf, size_t count) 187 { 188 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 189 int ret; 190 191 if (WARN_ON(dev->bus != &fsl_mc_bus_type)) 192 return -EINVAL; 193 194 ret = driver_set_override(dev, &mc_dev->driver_override, buf, count); 195 if (ret) 196 return ret; 197 198 return count; 199 } 200 201 static ssize_t driver_override_show(struct device *dev, 202 struct device_attribute *attr, char *buf) 203 { 204 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 205 206 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); 207 } 208 static DEVICE_ATTR_RW(driver_override); 209 210 static struct attribute *fsl_mc_dev_attrs[] = { 211 &dev_attr_modalias.attr, 212 &dev_attr_driver_override.attr, 213 NULL, 214 }; 215 216 ATTRIBUTE_GROUPS(fsl_mc_dev); 217 218 static int scan_fsl_mc_bus(struct device *dev, void *data) 219 { 220 struct fsl_mc_device *root_mc_dev; 221 struct fsl_mc_bus *root_mc_bus; 222 223 if (!fsl_mc_is_root_dprc(dev)) 224 goto exit; 225 226 root_mc_dev = to_fsl_mc_device(dev); 227 root_mc_bus = to_fsl_mc_bus(root_mc_dev); 228 mutex_lock(&root_mc_bus->scan_mutex); 229 dprc_scan_objects(root_mc_dev, false); 230 mutex_unlock(&root_mc_bus->scan_mutex); 231 232 exit: 233 return 0; 234 } 235 236 static ssize_t rescan_store(const struct bus_type *bus, 237 const char *buf, size_t count) 238 { 239 unsigned long val; 240 241 if (kstrtoul(buf, 0, &val) < 0) 242 return -EINVAL; 243 244 if (val) 245 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); 246 247 return count; 248 } 249 static BUS_ATTR_WO(rescan); 250 251 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) 252 { 253 struct fsl_mc_device *root_mc_dev; 254 unsigned long val; 255 char *buf = data; 256 257 if (!fsl_mc_is_root_dprc(dev)) 258 goto exit; 259 260 root_mc_dev = to_fsl_mc_device(dev); 261 262 if (kstrtoul(buf, 0, &val) < 0) 263 return -EINVAL; 264 265 if (val) 266 enable_dprc_irq(root_mc_dev); 267 else 268 disable_dprc_irq(root_mc_dev); 269 270 exit: 271 return 0; 272 } 273 274 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) 275 { 276 struct fsl_mc_device *root_mc_dev; 277 char *buf = data; 278 279 if (!fsl_mc_is_root_dprc(dev)) 280 goto exit; 281 282 root_mc_dev = to_fsl_mc_device(dev); 283 284 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); 285 exit: 286 return 0; 287 } 288 289 static ssize_t autorescan_store(const struct bus_type *bus, 290 const char *buf, size_t count) 291 { 292 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); 293 294 return count; 295 } 296 297 static ssize_t autorescan_show(const struct bus_type *bus, char *buf) 298 { 299 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); 300 return strlen(buf); 301 } 302 303 static BUS_ATTR_RW(autorescan); 304 305 static struct attribute *fsl_mc_bus_attrs[] = { 306 &bus_attr_rescan.attr, 307 &bus_attr_autorescan.attr, 308 NULL, 309 }; 310 311 ATTRIBUTE_GROUPS(fsl_mc_bus); 312 313 const struct bus_type fsl_mc_bus_type = { 314 .name = "fsl-mc", 315 .match = fsl_mc_bus_match, 316 .uevent = fsl_mc_bus_uevent, 317 .dma_configure = fsl_mc_dma_configure, 318 .dma_cleanup = fsl_mc_dma_cleanup, 319 .dev_groups = fsl_mc_dev_groups, 320 .bus_groups = fsl_mc_bus_groups, 321 }; 322 EXPORT_SYMBOL_GPL(fsl_mc_bus_type); 323 324 const struct device_type fsl_mc_bus_dprc_type = { 325 .name = "fsl_mc_bus_dprc" 326 }; 327 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); 328 329 const struct device_type fsl_mc_bus_dpni_type = { 330 .name = "fsl_mc_bus_dpni" 331 }; 332 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); 333 334 const struct device_type fsl_mc_bus_dpio_type = { 335 .name = "fsl_mc_bus_dpio" 336 }; 337 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); 338 339 const struct device_type fsl_mc_bus_dpsw_type = { 340 .name = "fsl_mc_bus_dpsw" 341 }; 342 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); 343 344 const struct device_type fsl_mc_bus_dpbp_type = { 345 .name = "fsl_mc_bus_dpbp" 346 }; 347 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); 348 349 const struct device_type fsl_mc_bus_dpcon_type = { 350 .name = "fsl_mc_bus_dpcon" 351 }; 352 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); 353 354 const struct device_type fsl_mc_bus_dpmcp_type = { 355 .name = "fsl_mc_bus_dpmcp" 356 }; 357 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); 358 359 const struct device_type fsl_mc_bus_dpmac_type = { 360 .name = "fsl_mc_bus_dpmac" 361 }; 362 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); 363 364 const struct device_type fsl_mc_bus_dprtc_type = { 365 .name = "fsl_mc_bus_dprtc" 366 }; 367 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); 368 369 const struct device_type fsl_mc_bus_dpseci_type = { 370 .name = "fsl_mc_bus_dpseci" 371 }; 372 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); 373 374 const struct device_type fsl_mc_bus_dpdmux_type = { 375 .name = "fsl_mc_bus_dpdmux" 376 }; 377 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); 378 379 const struct device_type fsl_mc_bus_dpdcei_type = { 380 .name = "fsl_mc_bus_dpdcei" 381 }; 382 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); 383 384 const struct device_type fsl_mc_bus_dpaiop_type = { 385 .name = "fsl_mc_bus_dpaiop" 386 }; 387 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); 388 389 const struct device_type fsl_mc_bus_dpci_type = { 390 .name = "fsl_mc_bus_dpci" 391 }; 392 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); 393 394 const struct device_type fsl_mc_bus_dpdmai_type = { 395 .name = "fsl_mc_bus_dpdmai" 396 }; 397 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); 398 399 const struct device_type fsl_mc_bus_dpdbg_type = { 400 .name = "fsl_mc_bus_dpdbg" 401 }; 402 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); 403 404 static const struct device_type *fsl_mc_get_device_type(const char *type) 405 { 406 static const struct { 407 const struct device_type *dev_type; 408 const char *type; 409 } dev_types[] = { 410 { &fsl_mc_bus_dprc_type, "dprc" }, 411 { &fsl_mc_bus_dpni_type, "dpni" }, 412 { &fsl_mc_bus_dpio_type, "dpio" }, 413 { &fsl_mc_bus_dpsw_type, "dpsw" }, 414 { &fsl_mc_bus_dpbp_type, "dpbp" }, 415 { &fsl_mc_bus_dpcon_type, "dpcon" }, 416 { &fsl_mc_bus_dpmcp_type, "dpmcp" }, 417 { &fsl_mc_bus_dpmac_type, "dpmac" }, 418 { &fsl_mc_bus_dprtc_type, "dprtc" }, 419 { &fsl_mc_bus_dpseci_type, "dpseci" }, 420 { &fsl_mc_bus_dpdmux_type, "dpdmux" }, 421 { &fsl_mc_bus_dpdcei_type, "dpdcei" }, 422 { &fsl_mc_bus_dpaiop_type, "dpaiop" }, 423 { &fsl_mc_bus_dpci_type, "dpci" }, 424 { &fsl_mc_bus_dpdmai_type, "dpdmai" }, 425 { &fsl_mc_bus_dpdbg_type, "dpdbg" }, 426 { NULL, NULL } 427 }; 428 int i; 429 430 for (i = 0; dev_types[i].dev_type; i++) 431 if (!strcmp(dev_types[i].type, type)) 432 return dev_types[i].dev_type; 433 434 return NULL; 435 } 436 437 static int fsl_mc_driver_probe(struct device *dev) 438 { 439 struct fsl_mc_driver *mc_drv; 440 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 441 int error; 442 443 mc_drv = to_fsl_mc_driver(dev->driver); 444 445 error = mc_drv->probe(mc_dev); 446 if (error < 0) { 447 if (error != -EPROBE_DEFER) 448 dev_err(dev, "%s failed: %d\n", __func__, error); 449 return error; 450 } 451 452 return 0; 453 } 454 455 static int fsl_mc_driver_remove(struct device *dev) 456 { 457 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 458 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 459 460 mc_drv->remove(mc_dev); 461 462 return 0; 463 } 464 465 static void fsl_mc_driver_shutdown(struct device *dev) 466 { 467 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 468 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 469 470 mc_drv->shutdown(mc_dev); 471 } 472 473 /* 474 * __fsl_mc_driver_register - registers a child device driver with the 475 * MC bus 476 * 477 * This function is implicitly invoked from the registration function of 478 * fsl_mc device drivers, which is generated by the 479 * module_fsl_mc_driver() macro. 480 */ 481 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, 482 struct module *owner) 483 { 484 int error; 485 486 mc_driver->driver.owner = owner; 487 mc_driver->driver.bus = &fsl_mc_bus_type; 488 489 if (mc_driver->probe) 490 mc_driver->driver.probe = fsl_mc_driver_probe; 491 492 if (mc_driver->remove) 493 mc_driver->driver.remove = fsl_mc_driver_remove; 494 495 if (mc_driver->shutdown) 496 mc_driver->driver.shutdown = fsl_mc_driver_shutdown; 497 498 error = driver_register(&mc_driver->driver); 499 if (error < 0) { 500 pr_err("driver_register() failed for %s: %d\n", 501 mc_driver->driver.name, error); 502 return error; 503 } 504 505 return 0; 506 } 507 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); 508 509 /* 510 * fsl_mc_driver_unregister - unregisters a device driver from the 511 * MC bus 512 */ 513 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) 514 { 515 driver_unregister(&mc_driver->driver); 516 } 517 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); 518 519 /** 520 * mc_get_version() - Retrieves the Management Complex firmware 521 * version information 522 * @mc_io: Pointer to opaque I/O object 523 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' 524 * @mc_ver_info: Returned version information structure 525 * 526 * Return: '0' on Success; Error code otherwise. 527 */ 528 static int mc_get_version(struct fsl_mc_io *mc_io, 529 u32 cmd_flags, 530 struct fsl_mc_version *mc_ver_info) 531 { 532 struct fsl_mc_command cmd = { 0 }; 533 struct dpmng_rsp_get_version *rsp_params; 534 int err; 535 536 /* prepare command */ 537 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, 538 cmd_flags, 539 0); 540 541 /* send command to mc*/ 542 err = mc_send_command(mc_io, &cmd); 543 if (err) 544 return err; 545 546 /* retrieve response parameters */ 547 rsp_params = (struct dpmng_rsp_get_version *)cmd.params; 548 mc_ver_info->revision = le32_to_cpu(rsp_params->revision); 549 mc_ver_info->major = le32_to_cpu(rsp_params->version_major); 550 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); 551 552 return 0; 553 } 554 555 /** 556 * fsl_mc_get_version - function to retrieve the MC f/w version information 557 * 558 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. 559 */ 560 struct fsl_mc_version *fsl_mc_get_version(void) 561 { 562 if (mc_version.major) 563 return &mc_version; 564 565 return NULL; 566 } 567 EXPORT_SYMBOL_GPL(fsl_mc_get_version); 568 569 /* 570 * fsl_mc_get_root_dprc - function to traverse to the root dprc 571 */ 572 void fsl_mc_get_root_dprc(struct device *dev, 573 struct device **root_dprc_dev) 574 { 575 if (!dev) { 576 *root_dprc_dev = NULL; 577 } else if (!dev_is_fsl_mc(dev)) { 578 *root_dprc_dev = NULL; 579 } else { 580 *root_dprc_dev = dev; 581 while (dev_is_fsl_mc((*root_dprc_dev)->parent)) 582 *root_dprc_dev = (*root_dprc_dev)->parent; 583 } 584 } 585 586 static int get_dprc_attr(struct fsl_mc_io *mc_io, 587 int container_id, struct dprc_attributes *attr) 588 { 589 u16 dprc_handle; 590 int error; 591 592 error = dprc_open(mc_io, 0, container_id, &dprc_handle); 593 if (error < 0) { 594 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); 595 return error; 596 } 597 598 memset(attr, 0, sizeof(struct dprc_attributes)); 599 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); 600 if (error < 0) { 601 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", 602 error); 603 goto common_cleanup; 604 } 605 606 error = 0; 607 608 common_cleanup: 609 (void)dprc_close(mc_io, 0, dprc_handle); 610 return error; 611 } 612 613 static int get_dprc_icid(struct fsl_mc_io *mc_io, 614 int container_id, u32 *icid) 615 { 616 struct dprc_attributes attr; 617 int error; 618 619 error = get_dprc_attr(mc_io, container_id, &attr); 620 if (error == 0) 621 *icid = attr.icid; 622 623 return error; 624 } 625 626 static int translate_mc_addr(struct fsl_mc_device *mc_dev, 627 enum dprc_region_type mc_region_type, 628 u64 mc_offset, phys_addr_t *phys_addr) 629 { 630 int i; 631 struct device *root_dprc_dev; 632 struct fsl_mc *mc; 633 634 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); 635 mc = dev_get_drvdata(root_dprc_dev->parent); 636 637 if (mc->num_translation_ranges == 0) { 638 /* 639 * Do identity mapping: 640 */ 641 *phys_addr = mc_offset; 642 return 0; 643 } 644 645 for (i = 0; i < mc->num_translation_ranges; i++) { 646 struct fsl_mc_addr_translation_range *range = 647 &mc->translation_ranges[i]; 648 649 if (mc_region_type == range->mc_region_type && 650 mc_offset >= range->start_mc_offset && 651 mc_offset < range->end_mc_offset) { 652 *phys_addr = range->start_phys_addr + 653 (mc_offset - range->start_mc_offset); 654 return 0; 655 } 656 } 657 658 return -EFAULT; 659 } 660 661 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, 662 struct fsl_mc_device *mc_bus_dev) 663 { 664 int i; 665 int error; 666 struct resource *regions; 667 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; 668 struct device *parent_dev = mc_dev->dev.parent; 669 enum dprc_region_type mc_region_type; 670 671 if (is_fsl_mc_bus_dprc(mc_dev) || 672 is_fsl_mc_bus_dpmcp(mc_dev)) { 673 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; 674 } else if (is_fsl_mc_bus_dpio(mc_dev)) { 675 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; 676 } else { 677 /* 678 * This function should not have been called for this MC object 679 * type, as this object type is not supposed to have MMIO 680 * regions 681 */ 682 return -EINVAL; 683 } 684 685 regions = kmalloc_array(obj_desc->region_count, 686 sizeof(regions[0]), GFP_KERNEL); 687 if (!regions) 688 return -ENOMEM; 689 690 for (i = 0; i < obj_desc->region_count; i++) { 691 struct dprc_region_desc region_desc; 692 693 error = dprc_get_obj_region(mc_bus_dev->mc_io, 694 0, 695 mc_bus_dev->mc_handle, 696 obj_desc->type, 697 obj_desc->id, i, ®ion_desc); 698 if (error < 0) { 699 dev_err(parent_dev, 700 "dprc_get_obj_region() failed: %d\n", error); 701 goto error_cleanup_regions; 702 } 703 /* 704 * Older MC only returned region offset and no base address 705 * If base address is in the region_desc use it otherwise 706 * revert to old mechanism 707 */ 708 if (region_desc.base_address) { 709 regions[i].start = region_desc.base_address + 710 region_desc.base_offset; 711 } else { 712 error = translate_mc_addr(mc_dev, mc_region_type, 713 region_desc.base_offset, 714 ®ions[i].start); 715 716 /* 717 * Some versions of the MC firmware wrongly report 718 * 0 for register base address of the DPMCP associated 719 * with child DPRC objects thus rendering them unusable. 720 * This is particularly troublesome in ACPI boot 721 * scenarios where the legacy way of extracting this 722 * base address from the device tree does not apply. 723 * Given that DPMCPs share the same base address, 724 * workaround this by using the base address extracted 725 * from the root DPRC container. 726 */ 727 if (is_fsl_mc_bus_dprc(mc_dev) && 728 regions[i].start == region_desc.base_offset) 729 regions[i].start += mc_portal_base_phys_addr; 730 } 731 732 if (error < 0) { 733 dev_err(parent_dev, 734 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", 735 region_desc.base_offset, 736 obj_desc->type, obj_desc->id, i); 737 goto error_cleanup_regions; 738 } 739 740 regions[i].end = regions[i].start + region_desc.size - 1; 741 regions[i].name = "fsl-mc object MMIO region"; 742 regions[i].flags = region_desc.flags & IORESOURCE_BITS; 743 regions[i].flags |= IORESOURCE_MEM; 744 } 745 746 mc_dev->regions = regions; 747 return 0; 748 749 error_cleanup_regions: 750 kfree(regions); 751 return error; 752 } 753 754 /* 755 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc 756 */ 757 bool fsl_mc_is_root_dprc(struct device *dev) 758 { 759 struct device *root_dprc_dev; 760 761 fsl_mc_get_root_dprc(dev, &root_dprc_dev); 762 if (!root_dprc_dev) 763 return false; 764 return dev == root_dprc_dev; 765 } 766 767 static void fsl_mc_device_release(struct device *dev) 768 { 769 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 770 771 kfree(mc_dev->regions); 772 773 if (is_fsl_mc_bus_dprc(mc_dev)) 774 kfree(to_fsl_mc_bus(mc_dev)); 775 else 776 kfree(mc_dev); 777 } 778 779 /* 780 * Add a newly discovered fsl-mc device to be visible in Linux 781 */ 782 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, 783 struct fsl_mc_io *mc_io, 784 struct device *parent_dev, 785 struct fsl_mc_device **new_mc_dev) 786 { 787 int error; 788 struct fsl_mc_device *mc_dev = NULL; 789 struct fsl_mc_bus *mc_bus = NULL; 790 struct fsl_mc_device *parent_mc_dev; 791 792 if (dev_is_fsl_mc(parent_dev)) 793 parent_mc_dev = to_fsl_mc_device(parent_dev); 794 else 795 parent_mc_dev = NULL; 796 797 if (strcmp(obj_desc->type, "dprc") == 0) { 798 /* 799 * Allocate an MC bus device object: 800 */ 801 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); 802 if (!mc_bus) 803 return -ENOMEM; 804 805 mutex_init(&mc_bus->scan_mutex); 806 mc_dev = &mc_bus->mc_dev; 807 } else { 808 /* 809 * Allocate a regular fsl_mc_device object: 810 */ 811 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); 812 if (!mc_dev) 813 return -ENOMEM; 814 } 815 816 mc_dev->obj_desc = *obj_desc; 817 mc_dev->mc_io = mc_io; 818 device_initialize(&mc_dev->dev); 819 mc_dev->dev.parent = parent_dev; 820 mc_dev->dev.bus = &fsl_mc_bus_type; 821 mc_dev->dev.release = fsl_mc_device_release; 822 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); 823 if (!mc_dev->dev.type) { 824 error = -ENODEV; 825 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); 826 goto error_cleanup_dev; 827 } 828 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); 829 830 if (strcmp(obj_desc->type, "dprc") == 0) { 831 struct fsl_mc_io *mc_io2; 832 833 mc_dev->flags |= FSL_MC_IS_DPRC; 834 835 /* 836 * To get the DPRC's ICID, we need to open the DPRC 837 * in get_dprc_icid(). For child DPRCs, we do so using the 838 * parent DPRC's MC portal instead of the child DPRC's MC 839 * portal, in case the child DPRC is already opened with 840 * its own portal (e.g., the DPRC used by AIOP). 841 * 842 * NOTE: There cannot be more than one active open for a 843 * given MC object, using the same MC portal. 844 */ 845 if (parent_mc_dev) { 846 /* 847 * device being added is a child DPRC device 848 */ 849 mc_io2 = parent_mc_dev->mc_io; 850 } else { 851 /* 852 * device being added is the root DPRC device 853 */ 854 if (!mc_io) { 855 error = -EINVAL; 856 goto error_cleanup_dev; 857 } 858 859 mc_io2 = mc_io; 860 } 861 862 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); 863 if (error < 0) 864 goto error_cleanup_dev; 865 } else { 866 /* 867 * A non-DPRC object has to be a child of a DPRC, use the 868 * parent's ICID and interrupt domain. 869 */ 870 mc_dev->icid = parent_mc_dev->icid; 871 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; 872 mc_dev->dev.dma_mask = &mc_dev->dma_mask; 873 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; 874 dev_set_msi_domain(&mc_dev->dev, 875 dev_get_msi_domain(&parent_mc_dev->dev)); 876 } 877 878 /* 879 * Get MMIO regions for the device from the MC: 880 * 881 * NOTE: the root DPRC is a special case as its MMIO region is 882 * obtained from the device tree 883 */ 884 if (parent_mc_dev && obj_desc->region_count != 0) { 885 error = fsl_mc_device_get_mmio_regions(mc_dev, 886 parent_mc_dev); 887 if (error < 0) 888 goto error_cleanup_dev; 889 } 890 891 /* 892 * The device-specific probe callback will get invoked by device_add() 893 */ 894 error = device_add(&mc_dev->dev); 895 if (error < 0) { 896 dev_err(parent_dev, 897 "device_add() failed for device %s: %d\n", 898 dev_name(&mc_dev->dev), error); 899 goto error_cleanup_dev; 900 } 901 902 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); 903 904 *new_mc_dev = mc_dev; 905 return 0; 906 907 error_cleanup_dev: 908 kfree(mc_dev->regions); 909 if (mc_bus) 910 kfree(mc_bus); 911 else 912 kfree(mc_dev); 913 914 return error; 915 } 916 EXPORT_SYMBOL_GPL(fsl_mc_device_add); 917 918 static struct notifier_block fsl_mc_nb; 919 920 /** 921 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to 922 * Linux 923 * 924 * @mc_dev: Pointer to an fsl-mc device 925 */ 926 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) 927 { 928 kfree(mc_dev->driver_override); 929 mc_dev->driver_override = NULL; 930 931 /* 932 * The device-specific remove callback will get invoked by device_del() 933 */ 934 device_del(&mc_dev->dev); 935 put_device(&mc_dev->dev); 936 } 937 EXPORT_SYMBOL_GPL(fsl_mc_device_remove); 938 939 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, 940 u16 if_id) 941 { 942 struct fsl_mc_device *mc_bus_dev, *endpoint; 943 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; 944 struct dprc_endpoint endpoint1 = {{ 0 }}; 945 struct dprc_endpoint endpoint2 = {{ 0 }}; 946 int state, err; 947 948 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); 949 strcpy(endpoint1.type, mc_dev->obj_desc.type); 950 endpoint1.id = mc_dev->obj_desc.id; 951 endpoint1.if_id = if_id; 952 953 err = dprc_get_connection(mc_bus_dev->mc_io, 0, 954 mc_bus_dev->mc_handle, 955 &endpoint1, &endpoint2, 956 &state); 957 958 if (err == -ENOTCONN || state == -1) 959 return ERR_PTR(-ENOTCONN); 960 961 if (err < 0) { 962 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); 963 return ERR_PTR(err); 964 } 965 966 strcpy(endpoint_desc.type, endpoint2.type); 967 endpoint_desc.id = endpoint2.id; 968 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 969 970 /* 971 * We know that the device has an endpoint because we verified by 972 * interrogating the firmware. This is the case when the device was not 973 * yet discovered by the fsl-mc bus, thus the lookup returned NULL. 974 * Force a rescan of the devices in this container and retry the lookup. 975 */ 976 if (!endpoint) { 977 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); 978 979 if (mutex_trylock(&mc_bus->scan_mutex)) { 980 err = dprc_scan_objects(mc_bus_dev, true); 981 mutex_unlock(&mc_bus->scan_mutex); 982 } 983 984 if (err < 0) 985 return ERR_PTR(err); 986 } 987 988 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 989 /* 990 * This means that the endpoint might reside in a different isolation 991 * context (DPRC/container). Not much to do, so return a permssion 992 * error. 993 */ 994 if (!endpoint) 995 return ERR_PTR(-EPERM); 996 997 return endpoint; 998 } 999 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); 1000 1001 static int get_mc_addr_translation_ranges(struct device *dev, 1002 struct fsl_mc_addr_translation_range 1003 **ranges, 1004 u8 *num_ranges) 1005 { 1006 struct fsl_mc_addr_translation_range *r; 1007 struct of_range_parser parser; 1008 struct of_range range; 1009 1010 of_range_parser_init(&parser, dev->of_node); 1011 *num_ranges = of_range_count(&parser); 1012 if (!*num_ranges) { 1013 /* 1014 * Missing or empty ranges property ("ranges;") for the 1015 * 'fsl,qoriq-mc' node. In this case, identity mapping 1016 * will be used. 1017 */ 1018 *ranges = NULL; 1019 return 0; 1020 } 1021 1022 *ranges = devm_kcalloc(dev, *num_ranges, 1023 sizeof(struct fsl_mc_addr_translation_range), 1024 GFP_KERNEL); 1025 if (!(*ranges)) 1026 return -ENOMEM; 1027 1028 r = *ranges; 1029 for_each_of_range(&parser, &range) { 1030 r->mc_region_type = range.flags; 1031 r->start_mc_offset = range.bus_addr; 1032 r->end_mc_offset = range.bus_addr + range.size; 1033 r->start_phys_addr = range.cpu_addr; 1034 r++; 1035 } 1036 1037 return 0; 1038 } 1039 1040 /* 1041 * fsl_mc_bus_probe - callback invoked when the root MC bus is being 1042 * added 1043 */ 1044 static int fsl_mc_bus_probe(struct platform_device *pdev) 1045 { 1046 struct fsl_mc_obj_desc obj_desc; 1047 int error; 1048 struct fsl_mc *mc; 1049 struct fsl_mc_device *mc_bus_dev = NULL; 1050 struct fsl_mc_io *mc_io = NULL; 1051 int container_id; 1052 phys_addr_t mc_portal_phys_addr; 1053 u32 mc_portal_size, mc_stream_id; 1054 struct resource *plat_res; 1055 1056 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 1057 if (!mc) 1058 return -ENOMEM; 1059 1060 platform_set_drvdata(pdev, mc); 1061 1062 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1063 if (plat_res) { 1064 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); 1065 if (IS_ERR(mc->fsl_mc_regs)) 1066 return PTR_ERR(mc->fsl_mc_regs); 1067 } 1068 1069 if (mc->fsl_mc_regs) { 1070 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { 1071 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); 1072 /* 1073 * HW ORs the PL and BMT bit, places the result in bit 1074 * 14 of the StreamID and ORs in the ICID. Calculate it 1075 * accordingly. 1076 */ 1077 mc_stream_id = (mc_stream_id & 0xffff) | 1078 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? 1079 BIT(14) : 0); 1080 error = acpi_dma_configure_id(&pdev->dev, 1081 DEV_DMA_COHERENT, 1082 &mc_stream_id); 1083 if (error == -EPROBE_DEFER) 1084 return error; 1085 if (error) 1086 dev_warn(&pdev->dev, 1087 "failed to configure dma: %d.\n", 1088 error); 1089 } 1090 1091 /* 1092 * Some bootloaders pause the MC firmware before booting the 1093 * kernel so that MC will not cause faults as soon as the 1094 * SMMU probes due to the fact that there's no configuration 1095 * in place for MC. 1096 * At this point MC should have all its SMMU setup done so make 1097 * sure it is resumed. 1098 */ 1099 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & 1100 (~(GCR1_P1_STOP | GCR1_P2_STOP)), 1101 mc->fsl_mc_regs + FSL_MC_GCR1); 1102 } 1103 1104 /* 1105 * Get physical address of MC portal for the root DPRC: 1106 */ 1107 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1108 mc_portal_phys_addr = plat_res->start; 1109 mc_portal_size = resource_size(plat_res); 1110 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff; 1111 1112 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, 1113 mc_portal_size, NULL, 1114 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); 1115 if (error < 0) 1116 return error; 1117 1118 error = mc_get_version(mc_io, 0, &mc_version); 1119 if (error != 0) { 1120 dev_err(&pdev->dev, 1121 "mc_get_version() failed with error %d\n", error); 1122 goto error_cleanup_mc_io; 1123 } 1124 1125 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", 1126 mc_version.major, mc_version.minor, mc_version.revision); 1127 1128 if (dev_of_node(&pdev->dev)) { 1129 error = get_mc_addr_translation_ranges(&pdev->dev, 1130 &mc->translation_ranges, 1131 &mc->num_translation_ranges); 1132 if (error < 0) 1133 goto error_cleanup_mc_io; 1134 } 1135 1136 error = dprc_get_container_id(mc_io, 0, &container_id); 1137 if (error < 0) { 1138 dev_err(&pdev->dev, 1139 "dprc_get_container_id() failed: %d\n", error); 1140 goto error_cleanup_mc_io; 1141 } 1142 1143 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); 1144 error = dprc_get_api_version(mc_io, 0, 1145 &obj_desc.ver_major, 1146 &obj_desc.ver_minor); 1147 if (error < 0) 1148 goto error_cleanup_mc_io; 1149 1150 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; 1151 strcpy(obj_desc.type, "dprc"); 1152 obj_desc.id = container_id; 1153 obj_desc.irq_count = 1; 1154 obj_desc.region_count = 0; 1155 1156 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); 1157 if (error < 0) 1158 goto error_cleanup_mc_io; 1159 1160 mc->root_mc_bus_dev = mc_bus_dev; 1161 mc_bus_dev->dev.fwnode = pdev->dev.fwnode; 1162 return 0; 1163 1164 error_cleanup_mc_io: 1165 fsl_destroy_mc_io(mc_io); 1166 return error; 1167 } 1168 1169 /* 1170 * fsl_mc_bus_remove - callback invoked when the root MC bus is being 1171 * removed 1172 */ 1173 static void fsl_mc_bus_remove(struct platform_device *pdev) 1174 { 1175 struct fsl_mc *mc = platform_get_drvdata(pdev); 1176 struct fsl_mc_io *mc_io; 1177 1178 mc_io = mc->root_mc_bus_dev->mc_io; 1179 fsl_mc_device_remove(mc->root_mc_bus_dev); 1180 fsl_destroy_mc_io(mc_io); 1181 1182 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb); 1183 1184 if (mc->fsl_mc_regs) { 1185 /* 1186 * Pause the MC firmware so that it doesn't crash in certain 1187 * scenarios, such as kexec. 1188 */ 1189 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) | 1190 (GCR1_P1_STOP | GCR1_P2_STOP), 1191 mc->fsl_mc_regs + FSL_MC_GCR1); 1192 } 1193 } 1194 1195 static const struct of_device_id fsl_mc_bus_match_table[] = { 1196 {.compatible = "fsl,qoriq-mc",}, 1197 {}, 1198 }; 1199 1200 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); 1201 1202 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { 1203 {"NXP0008", 0 }, 1204 { } 1205 }; 1206 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); 1207 1208 static struct platform_driver fsl_mc_bus_driver = { 1209 .driver = { 1210 .name = "fsl_mc_bus", 1211 .pm = NULL, 1212 .of_match_table = fsl_mc_bus_match_table, 1213 .acpi_match_table = fsl_mc_bus_acpi_match_table, 1214 }, 1215 .probe = fsl_mc_bus_probe, 1216 .remove = fsl_mc_bus_remove, 1217 .shutdown = fsl_mc_bus_remove, 1218 }; 1219 1220 static int fsl_mc_bus_notifier(struct notifier_block *nb, 1221 unsigned long action, void *data) 1222 { 1223 struct device *dev = data; 1224 struct resource *res; 1225 void __iomem *fsl_mc_regs; 1226 1227 if (action != BUS_NOTIFY_ADD_DEVICE) 1228 return 0; 1229 1230 if (!of_match_device(fsl_mc_bus_match_table, dev) && 1231 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev)) 1232 return 0; 1233 1234 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1); 1235 if (!res) 1236 return 0; 1237 1238 fsl_mc_regs = ioremap(res->start, resource_size(res)); 1239 if (!fsl_mc_regs) 1240 return 0; 1241 1242 /* 1243 * Make sure that the MC firmware is paused before the IOMMU setup for 1244 * it is done or otherwise the firmware will crash right after the SMMU 1245 * gets probed and enabled. 1246 */ 1247 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), 1248 fsl_mc_regs + FSL_MC_GCR1); 1249 iounmap(fsl_mc_regs); 1250 1251 return 0; 1252 } 1253 1254 static struct notifier_block fsl_mc_nb = { 1255 .notifier_call = fsl_mc_bus_notifier, 1256 }; 1257 1258 static int __init fsl_mc_bus_driver_init(void) 1259 { 1260 int error; 1261 1262 error = bus_register(&fsl_mc_bus_type); 1263 if (error < 0) { 1264 pr_err("bus type registration failed: %d\n", error); 1265 goto error_cleanup_cache; 1266 } 1267 1268 error = platform_driver_register(&fsl_mc_bus_driver); 1269 if (error < 0) { 1270 pr_err("platform_driver_register() failed: %d\n", error); 1271 goto error_cleanup_bus; 1272 } 1273 1274 error = dprc_driver_init(); 1275 if (error < 0) 1276 goto error_cleanup_driver; 1277 1278 error = fsl_mc_allocator_driver_init(); 1279 if (error < 0) 1280 goto error_cleanup_dprc_driver; 1281 1282 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb); 1283 1284 error_cleanup_dprc_driver: 1285 dprc_driver_exit(); 1286 1287 error_cleanup_driver: 1288 platform_driver_unregister(&fsl_mc_bus_driver); 1289 1290 error_cleanup_bus: 1291 bus_unregister(&fsl_mc_bus_type); 1292 1293 error_cleanup_cache: 1294 return error; 1295 } 1296 postcore_initcall(fsl_mc_bus_driver_init); 1297