1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel PCIe devices
5  *
6  *  Copyright (C) 2024  Intel Corporation
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/firmware.h>
12 #include <linux/pci.h>
13 #include <linux/wait.h>
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 
17 #include <linux/unaligned.h>
18 
19 #include <net/bluetooth/bluetooth.h>
20 #include <net/bluetooth/hci_core.h>
21 
22 #include "btintel.h"
23 #include "btintel_pcie.h"
24 
25 #define VERSION "0.1"
26 
27 #define BTINTEL_PCI_DEVICE(dev, subdev)	\
28 	.vendor = PCI_VENDOR_ID_INTEL,	\
29 	.device = (dev),		\
30 	.subvendor = PCI_ANY_ID,	\
31 	.subdevice = (subdev),		\
32 	.driver_data = 0
33 
34 #define POLL_INTERVAL_US	10
35 
36 /* Intel Bluetooth PCIe device id table */
37 static const struct pci_device_id btintel_pcie_table[] = {
38 	{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
39 	{ BTINTEL_PCI_DEVICE(0xE476, PCI_ANY_ID) },
40 	{ 0 }
41 };
42 MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
43 
44 /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
45 #define BTINTEL_PCIE_HCI_TYPE_LEN	4
46 #define BTINTEL_PCIE_HCI_CMD_PKT	0x00000001
47 #define BTINTEL_PCIE_HCI_ACL_PKT	0x00000002
48 #define BTINTEL_PCIE_HCI_SCO_PKT	0x00000003
49 #define BTINTEL_PCIE_HCI_EVT_PKT	0x00000004
50 #define BTINTEL_PCIE_HCI_ISO_PKT	0x00000005
51 
52 #define BTINTEL_PCIE_MAGIC_NUM    0xA5A5A5A5
53 
54 #define BTINTEL_PCIE_BLZR_HWEXP_SIZE		1024
55 #define BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR	0xB00A7C00
56 
57 #define BTINTEL_PCIE_SCP_HWEXP_SIZE		4096
58 #define BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR		0xB030F800
59 
60 #define BTINTEL_PCIE_MAGIC_NUM	0xA5A5A5A5
61 
62 #define BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER	0x17A2
63 #define BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT		0x1E61
64 
65 /* Alive interrupt context */
66 enum {
67 	BTINTEL_PCIE_ROM,
68 	BTINTEL_PCIE_FW_DL,
69 	BTINTEL_PCIE_HCI_RESET,
70 	BTINTEL_PCIE_INTEL_HCI_RESET1,
71 	BTINTEL_PCIE_INTEL_HCI_RESET2,
72 	BTINTEL_PCIE_D0,
73 	BTINTEL_PCIE_D3
74 };
75 
76 /* Structure for dbgc fragment buffer
77  * @buf_addr_lsb: LSB of the buffer's physical address
78  * @buf_addr_msb: MSB of the buffer's physical address
79  * @buf_size: Total size of the buffer
80  */
81 struct btintel_pcie_dbgc_ctxt_buf {
82 	u32	buf_addr_lsb;
83 	u32	buf_addr_msb;
84 	u32	buf_size;
85 };
86 
87 /* Structure for dbgc fragment
88  * @magic_num: 0XA5A5A5A5
89  * @ver: For Driver-FW compatibility
90  * @total_size: Total size of the payload debug info
91  * @num_buf: Num of allocated debug bufs
92  * @bufs: All buffer's addresses and sizes
93  */
94 struct btintel_pcie_dbgc_ctxt {
95 	u32	magic_num;
96 	u32     ver;
97 	u32     total_size;
98 	u32     num_buf;
99 	struct btintel_pcie_dbgc_ctxt_buf bufs[BTINTEL_PCIE_DBGC_BUFFER_COUNT];
100 };
101 
102 /* This function initializes the memory for DBGC buffers and formats the
103  * DBGC fragment which consists header info and DBGC buffer's LSB, MSB and
104  * size as the payload
105  */
106 static int btintel_pcie_setup_dbgc(struct btintel_pcie_data *data)
107 {
108 	struct btintel_pcie_dbgc_ctxt db_frag;
109 	struct data_buf *buf;
110 	int i;
111 
112 	data->dbgc.count = BTINTEL_PCIE_DBGC_BUFFER_COUNT;
113 	data->dbgc.bufs = devm_kcalloc(&data->pdev->dev, data->dbgc.count,
114 				       sizeof(*buf), GFP_KERNEL);
115 	if (!data->dbgc.bufs)
116 		return -ENOMEM;
117 
118 	data->dbgc.buf_v_addr = dmam_alloc_coherent(&data->pdev->dev,
119 						    data->dbgc.count *
120 						    BTINTEL_PCIE_DBGC_BUFFER_SIZE,
121 						    &data->dbgc.buf_p_addr,
122 						    GFP_KERNEL | __GFP_NOWARN);
123 	if (!data->dbgc.buf_v_addr)
124 		return -ENOMEM;
125 
126 	data->dbgc.frag_v_addr = dmam_alloc_coherent(&data->pdev->dev,
127 						     sizeof(struct btintel_pcie_dbgc_ctxt),
128 						     &data->dbgc.frag_p_addr,
129 						     GFP_KERNEL | __GFP_NOWARN);
130 	if (!data->dbgc.frag_v_addr)
131 		return -ENOMEM;
132 
133 	data->dbgc.frag_size = sizeof(struct btintel_pcie_dbgc_ctxt);
134 
135 	db_frag.magic_num = BTINTEL_PCIE_MAGIC_NUM;
136 	db_frag.ver = BTINTEL_PCIE_DBGC_FRAG_VERSION;
137 	db_frag.total_size = BTINTEL_PCIE_DBGC_FRAG_PAYLOAD_SIZE;
138 	db_frag.num_buf = BTINTEL_PCIE_DBGC_FRAG_BUFFER_COUNT;
139 
140 	for (i = 0; i < data->dbgc.count; i++) {
141 		buf = &data->dbgc.bufs[i];
142 		buf->data_p_addr = data->dbgc.buf_p_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
143 		buf->data = data->dbgc.buf_v_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
144 		db_frag.bufs[i].buf_addr_lsb = lower_32_bits(buf->data_p_addr);
145 		db_frag.bufs[i].buf_addr_msb = upper_32_bits(buf->data_p_addr);
146 		db_frag.bufs[i].buf_size = BTINTEL_PCIE_DBGC_BUFFER_SIZE;
147 	}
148 
149 	memcpy(data->dbgc.frag_v_addr, &db_frag, sizeof(db_frag));
150 	return 0;
151 }
152 
153 static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
154 				     u16 queue_num)
155 {
156 	bt_dev_dbg(hdev, "IA: %s: tr-h:%02u  tr-t:%02u  cr-h:%02u  cr-t:%02u",
157 		   queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
158 		   ia->tr_hia[queue_num], ia->tr_tia[queue_num],
159 		   ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
160 }
161 
162 static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
163 				   u16 index)
164 {
165 	bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
166 		   index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
167 }
168 
169 static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
170 {
171 	u8 queue = entry->entry;
172 	struct msix_entry *entries = entry - queue;
173 
174 	return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
175 }
176 
177 /* Set the doorbell for TXQ to notify the device that @index (actually index-1)
178  * of the TFD is updated and ready to transmit.
179  */
180 static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
181 {
182 	u32 val;
183 
184 	val = index;
185 	val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
186 
187 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
188 }
189 
190 /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
191  * descriptor) with the data length and the DMA address of the data buffer.
192  */
193 static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
194 				    struct sk_buff *skb)
195 {
196 	struct data_buf *buf;
197 	struct tfd *tfd;
198 
199 	tfd = &txq->tfds[tfd_index];
200 	memset(tfd, 0, sizeof(*tfd));
201 
202 	buf = &txq->bufs[tfd_index];
203 
204 	tfd->size = skb->len;
205 	tfd->addr = buf->data_p_addr;
206 
207 	/* Copy the outgoing data to DMA buffer */
208 	memcpy(buf->data, skb->data, tfd->size);
209 }
210 
211 static inline void btintel_pcie_dump_debug_registers(struct hci_dev *hdev)
212 {
213 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
214 	u16 cr_hia, cr_tia;
215 	u32 reg, mbox_reg;
216 	struct sk_buff *skb;
217 	u8 buf[80];
218 
219 	skb = alloc_skb(1024, GFP_ATOMIC);
220 	if (!skb)
221 		return;
222 
223 	snprintf(buf, sizeof(buf), "%s", "---- Dump of debug registers ---");
224 	bt_dev_dbg(hdev, "%s", buf);
225 	skb_put_data(skb, buf, strlen(buf));
226 
227 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
228 	snprintf(buf, sizeof(buf), "boot stage: 0x%8.8x", reg);
229 	bt_dev_dbg(hdev, "%s", buf);
230 	skb_put_data(skb, buf, strlen(buf));
231 	data->boot_stage_cache = reg;
232 
233 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_STATUS_REG);
234 	snprintf(buf, sizeof(buf), "ipc status: 0x%8.8x", reg);
235 	skb_put_data(skb, buf, strlen(buf));
236 	bt_dev_dbg(hdev, "%s", buf);
237 
238 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_CONTROL_REG);
239 	snprintf(buf, sizeof(buf), "ipc control: 0x%8.8x", reg);
240 	skb_put_data(skb, buf, strlen(buf));
241 	bt_dev_dbg(hdev, "%s", buf);
242 
243 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG);
244 	snprintf(buf, sizeof(buf), "ipc sleep control: 0x%8.8x", reg);
245 	skb_put_data(skb, buf, strlen(buf));
246 	bt_dev_dbg(hdev, "%s", buf);
247 
248 	/*Read the Mail box status and registers*/
249 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MBOX_STATUS_REG);
250 	snprintf(buf, sizeof(buf), "mbox status: 0x%8.8x", reg);
251 	skb_put_data(skb, buf, strlen(buf));
252 	if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX1) {
253 		mbox_reg = btintel_pcie_rd_reg32(data,
254 						 BTINTEL_PCIE_CSR_MBOX_1_REG);
255 		snprintf(buf, sizeof(buf), "mbox_1: 0x%8.8x", mbox_reg);
256 		skb_put_data(skb, buf, strlen(buf));
257 		bt_dev_dbg(hdev, "%s", buf);
258 	}
259 
260 	if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX2) {
261 		mbox_reg = btintel_pcie_rd_reg32(data,
262 						 BTINTEL_PCIE_CSR_MBOX_2_REG);
263 		snprintf(buf, sizeof(buf), "mbox_2: 0x%8.8x", mbox_reg);
264 		skb_put_data(skb, buf, strlen(buf));
265 		bt_dev_dbg(hdev, "%s", buf);
266 	}
267 
268 	if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX3) {
269 		mbox_reg = btintel_pcie_rd_reg32(data,
270 						 BTINTEL_PCIE_CSR_MBOX_3_REG);
271 		snprintf(buf, sizeof(buf), "mbox_3: 0x%8.8x", mbox_reg);
272 		skb_put_data(skb, buf, strlen(buf));
273 		bt_dev_dbg(hdev, "%s", buf);
274 	}
275 
276 	if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX4) {
277 		mbox_reg = btintel_pcie_rd_reg32(data,
278 						 BTINTEL_PCIE_CSR_MBOX_4_REG);
279 		snprintf(buf, sizeof(buf), "mbox_4: 0x%8.8x", mbox_reg);
280 		skb_put_data(skb, buf, strlen(buf));
281 		bt_dev_dbg(hdev, "%s", buf);
282 	}
283 
284 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
285 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
286 	snprintf(buf, sizeof(buf), "rxq: cr_tia: %u cr_hia: %u", cr_tia, cr_hia);
287 	skb_put_data(skb, buf, strlen(buf));
288 	bt_dev_dbg(hdev, "%s", buf);
289 
290 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
291 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
292 	snprintf(buf, sizeof(buf), "txq: cr_tia: %u cr_hia: %u", cr_tia, cr_hia);
293 	skb_put_data(skb, buf, strlen(buf));
294 	bt_dev_dbg(hdev, "%s", buf);
295 	snprintf(buf, sizeof(buf), "--------------------------------");
296 	bt_dev_dbg(hdev, "%s", buf);
297 
298 	hci_recv_diag(hdev, skb);
299 }
300 
301 static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
302 				  struct sk_buff *skb)
303 {
304 	int ret;
305 	u16 tfd_index;
306 	struct txq *txq = &data->txq;
307 
308 	tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
309 
310 	if (tfd_index > txq->count)
311 		return -ERANGE;
312 
313 	/* Prepare for TX. It updates the TFD with the length of data and
314 	 * address of the DMA buffer, and copy the data to the DMA buffer
315 	 */
316 	btintel_pcie_prepare_tx(txq, tfd_index, skb);
317 
318 	tfd_index = (tfd_index + 1) % txq->count;
319 	data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
320 
321 	/* Arm wait event condition */
322 	data->tx_wait_done = false;
323 
324 	/* Set the doorbell to notify the device */
325 	btintel_pcie_set_tx_db(data, tfd_index);
326 
327 	/* Wait for the complete interrupt - URBD0 */
328 	ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
329 				 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
330 	if (!ret) {
331 		bt_dev_err(data->hdev, "tx completion timeout");
332 		btintel_pcie_dump_debug_registers(data->hdev);
333 		return -ETIME;
334 	}
335 
336 	return 0;
337 }
338 
339 /* Set the doorbell for RXQ to notify the device that @index (actually index-1)
340  * is available to receive the data
341  */
342 static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
343 {
344 	u32 val;
345 
346 	val = index;
347 	val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
348 
349 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
350 }
351 
352 /* Update the FRBD (free buffer descriptor) with the @frbd_index and the
353  * DMA address of the free buffer.
354  */
355 static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
356 {
357 	struct data_buf *buf;
358 	struct frbd *frbd;
359 
360 	/* Get the buffer of the FRBD for DMA */
361 	buf = &rxq->bufs[frbd_index];
362 
363 	frbd = &rxq->frbds[frbd_index];
364 	memset(frbd, 0, sizeof(*frbd));
365 
366 	/* Update FRBD */
367 	frbd->tag = frbd_index;
368 	frbd->addr = buf->data_p_addr;
369 }
370 
371 static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
372 {
373 	u16 frbd_index;
374 	struct rxq *rxq = &data->rxq;
375 
376 	frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
377 
378 	if (frbd_index > rxq->count)
379 		return -ERANGE;
380 
381 	/* Prepare for RX submit. It updates the FRBD with the address of DMA
382 	 * buffer
383 	 */
384 	btintel_pcie_prepare_rx(rxq, frbd_index);
385 
386 	frbd_index = (frbd_index + 1) % rxq->count;
387 	data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
388 	ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
389 
390 	/* Set the doorbell to notify the device */
391 	btintel_pcie_set_rx_db(data, frbd_index);
392 
393 	return 0;
394 }
395 
396 static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
397 {
398 	int i, ret;
399 
400 	for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
401 		ret = btintel_pcie_submit_rx(data);
402 		if (ret)
403 			return ret;
404 	}
405 
406 	return 0;
407 }
408 
409 static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
410 {
411 	memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
412 	memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
413 	memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
414 	memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
415 }
416 
417 static int btintel_pcie_reset_bt(struct btintel_pcie_data *data)
418 {
419 	u32 reg;
420 	int retry = 3;
421 
422 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
423 
424 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
425 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
426 			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
427 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON;
428 
429 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
430 
431 	do {
432 		reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
433 		if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_STS)
434 			break;
435 		usleep_range(10000, 12000);
436 
437 	} while (--retry > 0);
438 	usleep_range(10000, 12000);
439 
440 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
441 
442 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
443 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
444 			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
445 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET;
446 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
447 	usleep_range(10000, 12000);
448 
449 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
450 	bt_dev_dbg(data->hdev, "csr register after reset: 0x%8.8x", reg);
451 
452 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
453 
454 	/* If shared hardware reset is success then boot stage register shall be
455 	 * set to 0
456 	 */
457 	return reg == 0 ? 0 : -ENODEV;
458 }
459 
460 static void btintel_pcie_mac_init(struct btintel_pcie_data *data)
461 {
462 	u32 reg;
463 
464 	/* Set MAC_INIT bit to start primary bootloader */
465 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
466 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
467 			BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
468 			BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
469 	reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
470 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
471 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
472 }
473 
474 static int btintel_pcie_add_dmp_data(struct hci_dev *hdev, const void *data, int size)
475 {
476 	struct sk_buff *skb;
477 	int err;
478 
479 	skb = alloc_skb(size, GFP_ATOMIC);
480 	if (!skb)
481 		return -ENOMEM;
482 
483 	skb_put_data(skb, data, size);
484 	err = hci_devcd_append(hdev, skb);
485 	if (err) {
486 		bt_dev_err(hdev, "Failed to append data in the coredump");
487 		return err;
488 	}
489 
490 	return 0;
491 }
492 
493 static int btintel_pcie_get_mac_access(struct btintel_pcie_data *data)
494 {
495 	u32 reg;
496 	int retry = 15;
497 
498 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
499 
500 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS;
501 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ;
502 	if ((reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS) == 0)
503 		reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ;
504 
505 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
506 
507 	do {
508 		reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
509 		if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS)
510 			return 0;
511 		/* Need delay here for Target Access harwdware to settle down*/
512 		usleep_range(1000, 1200);
513 
514 	} while (--retry > 0);
515 
516 	return -ETIME;
517 }
518 
519 static void btintel_pcie_release_mac_access(struct btintel_pcie_data *data)
520 {
521 	u32 reg;
522 
523 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
524 
525 	if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ)
526 		reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ;
527 
528 	if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS)
529 		reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS;
530 
531 	if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ)
532 		reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ;
533 
534 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
535 }
536 
537 static void btintel_pcie_copy_tlv(struct sk_buff *skb, enum btintel_pcie_tlv_type type,
538 				  void *data, int size)
539 {
540 	struct intel_tlv *tlv;
541 
542 	tlv = skb_put(skb, sizeof(*tlv) + size);
543 	tlv->type = type;
544 	tlv->len = size;
545 	memcpy(tlv->val, data, tlv->len);
546 }
547 
548 static int btintel_pcie_read_dram_buffers(struct btintel_pcie_data *data)
549 {
550 	u32 offset, prev_size, wr_ptr_status, dump_size, i;
551 	struct btintel_pcie_dbgc *dbgc = &data->dbgc;
552 	u8 buf_idx, dump_time_len, fw_build;
553 	struct hci_dev *hdev = data->hdev;
554 	struct intel_tlv *tlv;
555 	struct timespec64 now;
556 	struct sk_buff *skb;
557 	struct tm tm_now;
558 	char buf[256];
559 	u16 hdr_len;
560 	int ret;
561 
562 	wr_ptr_status = btintel_pcie_rd_dev_mem(data, BTINTEL_PCIE_DBGC_CUR_DBGBUFF_STATUS);
563 	offset = wr_ptr_status & BTINTEL_PCIE_DBG_OFFSET_BIT_MASK;
564 
565 	buf_idx = BTINTEL_PCIE_DBGC_DBG_BUF_IDX(wr_ptr_status);
566 	if (buf_idx > dbgc->count) {
567 		bt_dev_warn(hdev, "Buffer index is invalid");
568 		return -EINVAL;
569 	}
570 
571 	prev_size = buf_idx * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
572 	if (prev_size + offset >= prev_size)
573 		data->dmp_hdr.write_ptr = prev_size + offset;
574 	else
575 		return -EINVAL;
576 
577 	ktime_get_real_ts64(&now);
578 	time64_to_tm(now.tv_sec, 0, &tm_now);
579 	dump_time_len = snprintf(buf, sizeof(buf), "Dump Time: %02d-%02d-%04ld %02d:%02d:%02d",
580 				 tm_now.tm_mday, tm_now.tm_mon + 1, tm_now.tm_year + 1900,
581 				 tm_now.tm_hour, tm_now.tm_min, tm_now.tm_sec);
582 
583 	fw_build = snprintf(buf + dump_time_len, sizeof(buf) - dump_time_len,
584 			    "Firmware Timestamp: Year %u WW %02u buildtype %u build %u",
585 			    2000 + (data->dmp_hdr.fw_timestamp >> 8),
586 			    data->dmp_hdr.fw_timestamp & 0xff, data->dmp_hdr.fw_build_type,
587 			    data->dmp_hdr.fw_build_num);
588 
589 	hdr_len = sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_bt) +
590 		  sizeof(*tlv) + sizeof(data->dmp_hdr.write_ptr) +
591 		  sizeof(*tlv) + sizeof(data->dmp_hdr.wrap_ctr) +
592 		  sizeof(*tlv) + sizeof(data->dmp_hdr.trigger_reason) +
593 		  sizeof(*tlv) + sizeof(data->dmp_hdr.fw_git_sha1) +
594 		  sizeof(*tlv) + sizeof(data->dmp_hdr.cnvr_top) +
595 		  sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_top) +
596 		  sizeof(*tlv) + dump_time_len +
597 		  sizeof(*tlv) + fw_build;
598 
599 	dump_size = hdr_len + sizeof(hdr_len);
600 
601 	skb = alloc_skb(dump_size, GFP_KERNEL);
602 	if (!skb)
603 		return -ENOMEM;
604 
605 	/* Add debug buffers data length to dump size */
606 	dump_size += BTINTEL_PCIE_DBGC_BUFFER_SIZE * dbgc->count;
607 
608 	ret = hci_devcd_init(hdev, dump_size);
609 	if (ret) {
610 		bt_dev_err(hdev, "Failed to init devcoredump, err %d", ret);
611 		kfree_skb(skb);
612 		return ret;
613 	}
614 
615 	skb_put_data(skb, &hdr_len, sizeof(hdr_len));
616 
617 	btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_BT, &data->dmp_hdr.cnvi_bt,
618 			      sizeof(data->dmp_hdr.cnvi_bt));
619 
620 	btintel_pcie_copy_tlv(skb, BTINTEL_WRITE_PTR, &data->dmp_hdr.write_ptr,
621 			      sizeof(data->dmp_hdr.write_ptr));
622 
623 	data->dmp_hdr.wrap_ctr = btintel_pcie_rd_dev_mem(data,
624 							 BTINTEL_PCIE_DBGC_DBGBUFF_WRAP_ARND);
625 
626 	btintel_pcie_copy_tlv(skb, BTINTEL_WRAP_CTR, &data->dmp_hdr.wrap_ctr,
627 			      sizeof(data->dmp_hdr.wrap_ctr));
628 
629 	btintel_pcie_copy_tlv(skb, BTINTEL_TRIGGER_REASON, &data->dmp_hdr.trigger_reason,
630 			      sizeof(data->dmp_hdr.trigger_reason));
631 
632 	btintel_pcie_copy_tlv(skb, BTINTEL_FW_SHA, &data->dmp_hdr.fw_git_sha1,
633 			      sizeof(data->dmp_hdr.fw_git_sha1));
634 
635 	btintel_pcie_copy_tlv(skb, BTINTEL_CNVR_TOP, &data->dmp_hdr.cnvr_top,
636 			      sizeof(data->dmp_hdr.cnvr_top));
637 
638 	btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_TOP, &data->dmp_hdr.cnvi_top,
639 			      sizeof(data->dmp_hdr.cnvi_top));
640 
641 	btintel_pcie_copy_tlv(skb, BTINTEL_DUMP_TIME, buf, dump_time_len);
642 
643 	btintel_pcie_copy_tlv(skb, BTINTEL_FW_BUILD, buf + dump_time_len, fw_build);
644 
645 	ret = hci_devcd_append(hdev, skb);
646 	if (ret)
647 		goto exit_err;
648 
649 	for (i = 0; i < dbgc->count; i++) {
650 		ret = btintel_pcie_add_dmp_data(hdev, dbgc->bufs[i].data,
651 						BTINTEL_PCIE_DBGC_BUFFER_SIZE);
652 		if (ret)
653 			break;
654 	}
655 
656 exit_err:
657 	hci_devcd_complete(hdev);
658 	return ret;
659 }
660 
661 static void btintel_pcie_dump_traces(struct hci_dev *hdev)
662 {
663 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
664 	int ret = 0;
665 
666 	ret = btintel_pcie_get_mac_access(data);
667 	if (ret) {
668 		bt_dev_err(hdev, "Failed to get mac access: (%d)", ret);
669 		return;
670 	}
671 
672 	ret = btintel_pcie_read_dram_buffers(data);
673 
674 	btintel_pcie_release_mac_access(data);
675 
676 	if (ret)
677 		bt_dev_err(hdev, "Failed to dump traces: (%d)", ret);
678 }
679 
680 static void btintel_pcie_dump_hdr(struct hci_dev *hdev, struct sk_buff *skb)
681 {
682 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
683 	u16 len = skb->len;
684 	u16 *hdrlen_ptr;
685 	char buf[80];
686 
687 	hdrlen_ptr = skb_put_zero(skb, sizeof(len));
688 
689 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
690 		 INTEL_HW_VARIANT(data->dmp_hdr.cnvi_bt));
691 	skb_put_data(skb, buf, strlen(buf));
692 
693 	snprintf(buf, sizeof(buf), "Firmware Build Number: %u\n",
694 		 data->dmp_hdr.fw_build_num);
695 	skb_put_data(skb, buf, strlen(buf));
696 
697 	snprintf(buf, sizeof(buf), "Driver: %s\n", data->dmp_hdr.driver_name);
698 	skb_put_data(skb, buf, strlen(buf));
699 
700 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
701 	skb_put_data(skb, buf, strlen(buf));
702 
703 	*hdrlen_ptr = skb->len - len;
704 }
705 
706 static void btintel_pcie_dump_notify(struct hci_dev *hdev, int state)
707 {
708 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
709 
710 	switch (state) {
711 	case HCI_DEVCOREDUMP_IDLE:
712 		data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE;
713 		break;
714 	case HCI_DEVCOREDUMP_ACTIVE:
715 		data->dmp_hdr.state = HCI_DEVCOREDUMP_ACTIVE;
716 		break;
717 	case HCI_DEVCOREDUMP_TIMEOUT:
718 	case HCI_DEVCOREDUMP_ABORT:
719 	case HCI_DEVCOREDUMP_DONE:
720 		data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE;
721 		break;
722 	}
723 }
724 
725 /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
726  * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
727  * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
728  * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
729  * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
730  */
731 static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
732 {
733 	int err;
734 	u32 reg;
735 
736 	data->gp0_received = false;
737 
738 	/* Update the DMA address of CI struct to CSR */
739 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
740 			      data->ci_p_addr & 0xffffffff);
741 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
742 			      (u64)data->ci_p_addr >> 32);
743 
744 	/* Reset the cached value of boot stage. it is updated by the MSI-X
745 	 * gp0 interrupt handler.
746 	 */
747 	data->boot_stage_cache = 0x0;
748 
749 	/* Set MAC_INIT bit to start primary bootloader */
750 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
751 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
752 			BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
753 			BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
754 	reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
755 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
756 
757 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
758 
759 	/* MAC is ready. Enable BT FUNC */
760 	btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
761 				  BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
762 
763 	btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
764 
765 	/* wait for interrupt from the device after booting up to primary
766 	 * bootloader.
767 	 */
768 	data->alive_intr_ctxt = BTINTEL_PCIE_ROM;
769 	err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
770 				 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
771 	if (!err)
772 		return -ETIME;
773 
774 	/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
775 	if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
776 		return -ENODEV;
777 
778 	return 0;
779 }
780 
781 static inline bool btintel_pcie_in_op(struct btintel_pcie_data *data)
782 {
783 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW;
784 }
785 
786 static inline bool btintel_pcie_in_iml(struct btintel_pcie_data *data)
787 {
788 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML &&
789 		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW);
790 }
791 
792 static inline bool btintel_pcie_in_d3(struct btintel_pcie_data *data)
793 {
794 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY;
795 }
796 
797 static inline bool btintel_pcie_in_d0(struct btintel_pcie_data *data)
798 {
799 	return !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY);
800 }
801 
802 static void btintel_pcie_wr_sleep_cntrl(struct btintel_pcie_data *data,
803 					u32 dxstate)
804 {
805 	bt_dev_dbg(data->hdev, "writing sleep_ctl_reg: 0x%8.8x", dxstate);
806 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG, dxstate);
807 }
808 
809 static inline char *btintel_pcie_alivectxt_state2str(u32 alive_intr_ctxt)
810 {
811 	switch (alive_intr_ctxt) {
812 	case BTINTEL_PCIE_ROM:
813 		return "rom";
814 	case BTINTEL_PCIE_FW_DL:
815 		return "fw_dl";
816 	case BTINTEL_PCIE_D0:
817 		return "d0";
818 	case BTINTEL_PCIE_D3:
819 		return "d3";
820 	case BTINTEL_PCIE_HCI_RESET:
821 		return "hci_reset";
822 	case BTINTEL_PCIE_INTEL_HCI_RESET1:
823 		return "intel_reset1";
824 	case BTINTEL_PCIE_INTEL_HCI_RESET2:
825 		return "intel_reset2";
826 	default:
827 		return "unknown";
828 	}
829 }
830 
831 static int btintel_pcie_read_device_mem(struct btintel_pcie_data *data,
832 					void *buf, u32 dev_addr, int len)
833 {
834 	int err;
835 	u32 *val = buf;
836 
837 	/* Get device mac access */
838 	err = btintel_pcie_get_mac_access(data);
839 	if (err) {
840 		bt_dev_err(data->hdev, "Failed to get mac access %d", err);
841 		return err;
842 	}
843 
844 	for (; len > 0; len -= 4, dev_addr += 4, val++)
845 		*val = btintel_pcie_rd_dev_mem(data, dev_addr);
846 
847 	btintel_pcie_release_mac_access(data);
848 
849 	return 0;
850 }
851 
852 static inline bool btintel_pcie_in_lockdown(struct btintel_pcie_data *data)
853 {
854 	return (data->boot_stage_cache &
855 		BTINTEL_PCIE_CSR_BOOT_STAGE_ROM_LOCKDOWN) ||
856 		(data->boot_stage_cache &
857 		 BTINTEL_PCIE_CSR_BOOT_STAGE_IML_LOCKDOWN);
858 }
859 
860 static inline bool btintel_pcie_in_error(struct btintel_pcie_data *data)
861 {
862 	return (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_DEVICE_ERR) ||
863 		(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ABORT_HANDLER);
864 }
865 
866 static void btintel_pcie_msix_gp1_handler(struct btintel_pcie_data *data)
867 {
868 	bt_dev_err(data->hdev, "Received gp1 mailbox interrupt");
869 	btintel_pcie_dump_debug_registers(data->hdev);
870 }
871 
872 /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
873  * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
874  */
875 static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
876 {
877 	bool submit_rx, signal_waitq;
878 	u32 reg, old_ctxt;
879 
880 	/* This interrupt is for three different causes and it is not easy to
881 	 * know what causes the interrupt. So, it compares each register value
882 	 * with cached value and update it before it wake up the queue.
883 	 */
884 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
885 	if (reg != data->boot_stage_cache)
886 		data->boot_stage_cache = reg;
887 
888 	bt_dev_dbg(data->hdev, "Alive context: %s old_boot_stage: 0x%8.8x new_boot_stage: 0x%8.8x",
889 		   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt),
890 		   data->boot_stage_cache, reg);
891 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
892 	if (reg != data->img_resp_cache)
893 		data->img_resp_cache = reg;
894 
895 	if (btintel_pcie_in_error(data)) {
896 		bt_dev_err(data->hdev, "Controller in error state");
897 		btintel_pcie_dump_debug_registers(data->hdev);
898 		return;
899 	}
900 
901 	if (btintel_pcie_in_lockdown(data)) {
902 		bt_dev_err(data->hdev, "Controller in lockdown state");
903 		btintel_pcie_dump_debug_registers(data->hdev);
904 		return;
905 	}
906 
907 	data->gp0_received = true;
908 
909 	old_ctxt = data->alive_intr_ctxt;
910 	submit_rx = false;
911 	signal_waitq = false;
912 
913 	switch (data->alive_intr_ctxt) {
914 	case BTINTEL_PCIE_ROM:
915 		data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
916 		signal_waitq = true;
917 		break;
918 	case BTINTEL_PCIE_FW_DL:
919 		/* Error case is already handled. Ideally control shall not
920 		 * reach here
921 		 */
922 		break;
923 	case BTINTEL_PCIE_INTEL_HCI_RESET1:
924 		if (btintel_pcie_in_op(data)) {
925 			submit_rx = true;
926 			break;
927 		}
928 
929 		if (btintel_pcie_in_iml(data)) {
930 			submit_rx = true;
931 			data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
932 			break;
933 		}
934 		break;
935 	case BTINTEL_PCIE_INTEL_HCI_RESET2:
936 		if (btintel_test_and_clear_flag(data->hdev, INTEL_WAIT_FOR_D0)) {
937 			btintel_wake_up_flag(data->hdev, INTEL_WAIT_FOR_D0);
938 			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
939 		}
940 		break;
941 	case BTINTEL_PCIE_D0:
942 		if (btintel_pcie_in_d3(data)) {
943 			data->alive_intr_ctxt = BTINTEL_PCIE_D3;
944 			signal_waitq = true;
945 			break;
946 		}
947 		break;
948 	case BTINTEL_PCIE_D3:
949 		if (btintel_pcie_in_d0(data)) {
950 			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
951 			submit_rx = true;
952 			signal_waitq = true;
953 			break;
954 		}
955 		break;
956 	case BTINTEL_PCIE_HCI_RESET:
957 		data->alive_intr_ctxt = BTINTEL_PCIE_D0;
958 		submit_rx = true;
959 		signal_waitq = true;
960 		break;
961 	default:
962 		bt_dev_err(data->hdev, "Unknown state: 0x%2.2x",
963 			   data->alive_intr_ctxt);
964 		break;
965 	}
966 
967 	if (submit_rx) {
968 		btintel_pcie_reset_ia(data);
969 		btintel_pcie_start_rx(data);
970 	}
971 
972 	if (signal_waitq) {
973 		bt_dev_dbg(data->hdev, "wake up gp0 wait_q");
974 		wake_up(&data->gp0_wait_q);
975 	}
976 
977 	if (old_ctxt != data->alive_intr_ctxt)
978 		bt_dev_dbg(data->hdev, "alive context changed: %s  ->  %s",
979 			   btintel_pcie_alivectxt_state2str(old_ctxt),
980 			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
981 }
982 
983 /* This function handles the MSX-X interrupt for rx queue 0 which is for TX
984  */
985 static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
986 {
987 	u16 cr_tia, cr_hia;
988 	struct txq *txq;
989 	struct urbd0 *urbd0;
990 
991 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
992 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
993 
994 	if (cr_tia == cr_hia)
995 		return;
996 
997 	txq = &data->txq;
998 
999 	while (cr_tia != cr_hia) {
1000 		data->tx_wait_done = true;
1001 		wake_up(&data->tx_wait_q);
1002 
1003 		urbd0 = &txq->urbd0s[cr_tia];
1004 
1005 		if (urbd0->tfd_index > txq->count)
1006 			return;
1007 
1008 		cr_tia = (cr_tia + 1) % txq->count;
1009 		data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
1010 		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
1011 	}
1012 }
1013 
1014 static int btintel_pcie_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1015 {
1016 	struct hci_event_hdr *hdr = (void *)skb->data;
1017 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1018 
1019 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
1020 	    hdr->plen > 0) {
1021 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
1022 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
1023 
1024 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1025 			switch (skb->data[2]) {
1026 			case 0x02:
1027 				/* When switching to the operational firmware
1028 				 * the device sends a vendor specific event
1029 				 * indicating that the bootup completed.
1030 				 */
1031 				btintel_bootup(hdev, ptr, len);
1032 
1033 				/* If bootup event is from operational image,
1034 				 * driver needs to write sleep control register to
1035 				 * move into D0 state
1036 				 */
1037 				if (btintel_pcie_in_op(data)) {
1038 					btintel_pcie_wr_sleep_cntrl(data, BTINTEL_PCIE_STATE_D0);
1039 					data->alive_intr_ctxt = BTINTEL_PCIE_INTEL_HCI_RESET2;
1040 					kfree_skb(skb);
1041 					return 0;
1042 				}
1043 
1044 				if (btintel_pcie_in_iml(data)) {
1045 					/* In case of IML, there is no concept
1046 					 * of D0 transition. Just mimic as if
1047 					 * IML moved to D0 by clearing INTEL_WAIT_FOR_D0
1048 					 * bit and waking up the task waiting on
1049 					 * INTEL_WAIT_FOR_D0. This is required
1050 					 * as intel_boot() is common function for
1051 					 * both IML and OP image loading.
1052 					 */
1053 					if (btintel_test_and_clear_flag(data->hdev,
1054 									INTEL_WAIT_FOR_D0))
1055 						btintel_wake_up_flag(data->hdev,
1056 								     INTEL_WAIT_FOR_D0);
1057 				}
1058 				kfree_skb(skb);
1059 				return 0;
1060 			case 0x06:
1061 				/* When the firmware loading completes the
1062 				 * device sends out a vendor specific event
1063 				 * indicating the result of the firmware
1064 				 * loading.
1065 				 */
1066 				btintel_secure_send_result(hdev, ptr, len);
1067 				kfree_skb(skb);
1068 				return 0;
1069 			}
1070 		}
1071 
1072 		/* This is a debug event that comes from IML and OP image when it
1073 		 * starts execution. There is no need pass this event to stack.
1074 		 */
1075 		if (skb->data[2] == 0x97) {
1076 			hci_recv_diag(hdev, skb);
1077 			return 0;
1078 		}
1079 	}
1080 
1081 	return hci_recv_frame(hdev, skb);
1082 }
1083 /* Process the received rx data
1084  * It check the frame header to identify the data type and create skb
1085  * and calling HCI API
1086  */
1087 static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
1088 				       struct sk_buff *skb)
1089 {
1090 	int ret;
1091 	u8 pkt_type;
1092 	u16 plen;
1093 	u32 pcie_pkt_type;
1094 	void *pdata;
1095 	struct hci_dev *hdev = data->hdev;
1096 
1097 	spin_lock(&data->hci_rx_lock);
1098 
1099 	/* The first 4 bytes indicates the Intel PCIe specific packet type */
1100 	pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
1101 	if (!pdata) {
1102 		bt_dev_err(hdev, "Corrupted packet received");
1103 		ret = -EILSEQ;
1104 		goto exit_error;
1105 	}
1106 
1107 	pcie_pkt_type = get_unaligned_le32(pdata);
1108 
1109 	switch (pcie_pkt_type) {
1110 	case BTINTEL_PCIE_HCI_ACL_PKT:
1111 		if (skb->len >= HCI_ACL_HDR_SIZE) {
1112 			plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
1113 			pkt_type = HCI_ACLDATA_PKT;
1114 		} else {
1115 			bt_dev_err(hdev, "ACL packet is too short");
1116 			ret = -EILSEQ;
1117 			goto exit_error;
1118 		}
1119 		break;
1120 
1121 	case BTINTEL_PCIE_HCI_SCO_PKT:
1122 		if (skb->len >= HCI_SCO_HDR_SIZE) {
1123 			plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
1124 			pkt_type = HCI_SCODATA_PKT;
1125 		} else {
1126 			bt_dev_err(hdev, "SCO packet is too short");
1127 			ret = -EILSEQ;
1128 			goto exit_error;
1129 		}
1130 		break;
1131 
1132 	case BTINTEL_PCIE_HCI_EVT_PKT:
1133 		if (skb->len >= HCI_EVENT_HDR_SIZE) {
1134 			plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
1135 			pkt_type = HCI_EVENT_PKT;
1136 		} else {
1137 			bt_dev_err(hdev, "Event packet is too short");
1138 			ret = -EILSEQ;
1139 			goto exit_error;
1140 		}
1141 		break;
1142 
1143 	case BTINTEL_PCIE_HCI_ISO_PKT:
1144 		if (skb->len >= HCI_ISO_HDR_SIZE) {
1145 			plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen);
1146 			pkt_type = HCI_ISODATA_PKT;
1147 		} else {
1148 			bt_dev_err(hdev, "ISO packet is too short");
1149 			ret = -EILSEQ;
1150 			goto exit_error;
1151 		}
1152 		break;
1153 
1154 	default:
1155 		bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
1156 			   pcie_pkt_type);
1157 		ret = -EINVAL;
1158 		goto exit_error;
1159 	}
1160 
1161 	if (skb->len < plen) {
1162 		bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
1163 			   pkt_type);
1164 		ret = -EILSEQ;
1165 		goto exit_error;
1166 	}
1167 
1168 	bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
1169 
1170 	hci_skb_pkt_type(skb) = pkt_type;
1171 	hdev->stat.byte_rx += plen;
1172 	skb_trim(skb, plen);
1173 
1174 	if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
1175 		ret = btintel_pcie_recv_event(hdev, skb);
1176 	else
1177 		ret = hci_recv_frame(hdev, skb);
1178 	skb = NULL; /* skb is freed in the callee  */
1179 
1180 exit_error:
1181 	if (skb)
1182 		kfree_skb(skb);
1183 
1184 	if (ret)
1185 		hdev->stat.err_rx++;
1186 
1187 	spin_unlock(&data->hci_rx_lock);
1188 
1189 	return ret;
1190 }
1191 
1192 static void btintel_pcie_read_hwexp(struct btintel_pcie_data *data)
1193 {
1194 	int len, err, offset, pending;
1195 	struct sk_buff *skb;
1196 	u8 *buf, prefix[64];
1197 	u32 addr, val;
1198 	u16 pkt_len;
1199 
1200 	struct tlv {
1201 		u8	type;
1202 		__le16	len;
1203 		u8	val[];
1204 	} __packed;
1205 
1206 	struct tlv *tlv;
1207 
1208 	switch (data->dmp_hdr.cnvi_top & 0xfff) {
1209 	case BTINTEL_CNVI_BLAZARI:
1210 	case BTINTEL_CNVI_BLAZARIW:
1211 		/* only from step B0 onwards */
1212 		if (INTEL_CNVX_TOP_STEP(data->dmp_hdr.cnvi_top) != 0x01)
1213 			return;
1214 		len = BTINTEL_PCIE_BLZR_HWEXP_SIZE; /* exception data length */
1215 		addr = BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR;
1216 	break;
1217 	case BTINTEL_CNVI_SCP:
1218 		len = BTINTEL_PCIE_SCP_HWEXP_SIZE;
1219 		addr = BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR;
1220 	break;
1221 	default:
1222 		bt_dev_err(data->hdev, "Unsupported cnvi 0x%8.8x", data->dmp_hdr.cnvi_top);
1223 		return;
1224 	}
1225 
1226 	buf = kzalloc(len, GFP_KERNEL);
1227 	if (!buf)
1228 		goto exit_on_error;
1229 
1230 	btintel_pcie_mac_init(data);
1231 
1232 	err = btintel_pcie_read_device_mem(data, buf, addr, len);
1233 	if (err)
1234 		goto exit_on_error;
1235 
1236 	val = get_unaligned_le32(buf);
1237 	if (val != BTINTEL_PCIE_MAGIC_NUM) {
1238 		bt_dev_err(data->hdev, "Invalid exception dump signature: 0x%8.8x",
1239 			   val);
1240 		goto exit_on_error;
1241 	}
1242 
1243 	snprintf(prefix, sizeof(prefix), "Bluetooth: %s: ", bt_dev_name(data->hdev));
1244 
1245 	offset = 4;
1246 	do {
1247 		pending = len - offset;
1248 		if (pending < sizeof(*tlv))
1249 			break;
1250 		tlv = (struct tlv *)(buf + offset);
1251 
1252 		/* If type == 0, then there are no more TLVs to be parsed */
1253 		if (!tlv->type) {
1254 			bt_dev_dbg(data->hdev, "Invalid TLV type 0");
1255 			break;
1256 		}
1257 		pkt_len = le16_to_cpu(tlv->len);
1258 		offset += sizeof(*tlv);
1259 		pending = len - offset;
1260 		if (pkt_len > pending)
1261 			break;
1262 
1263 		offset += pkt_len;
1264 
1265 		 /* Only TLVs of type == 1 are HCI events, no need to process other
1266 		  * TLVs
1267 		  */
1268 		if (tlv->type != 1)
1269 			continue;
1270 
1271 		bt_dev_dbg(data->hdev, "TLV packet length: %u", pkt_len);
1272 		if (pkt_len > HCI_MAX_EVENT_SIZE)
1273 			break;
1274 		skb = bt_skb_alloc(pkt_len, GFP_KERNEL);
1275 		if (!skb)
1276 			goto exit_on_error;
1277 		hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1278 		skb_put_data(skb, tlv->val, pkt_len);
1279 
1280 		/* copy Intel specific pcie packet type */
1281 		val = BTINTEL_PCIE_HCI_EVT_PKT;
1282 		memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &val,
1283 		       BTINTEL_PCIE_HCI_TYPE_LEN);
1284 
1285 		print_hex_dump(KERN_DEBUG, prefix, DUMP_PREFIX_OFFSET, 16, 1,
1286 			       tlv->val, pkt_len, false);
1287 
1288 		btintel_pcie_recv_frame(data, skb);
1289 	} while (offset < len);
1290 
1291 exit_on_error:
1292 	kfree(buf);
1293 }
1294 
1295 static void btintel_pcie_msix_hw_exp_handler(struct btintel_pcie_data *data)
1296 {
1297 	bt_dev_err(data->hdev, "Received hw exception interrupt");
1298 
1299 	if (test_and_set_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags))
1300 		return;
1301 
1302 	if (test_and_set_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags))
1303 		return;
1304 
1305 	/* Trigger device core dump when there is HW  exception */
1306 	if (!test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags))
1307 		data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT;
1308 
1309 	queue_work(data->workqueue, &data->rx_work);
1310 }
1311 
1312 static void btintel_pcie_rx_work(struct work_struct *work)
1313 {
1314 	struct btintel_pcie_data *data = container_of(work,
1315 					struct btintel_pcie_data, rx_work);
1316 	struct sk_buff *skb;
1317 
1318 	if (test_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags)) {
1319 		/* Unlike usb products, controller will not send hardware
1320 		 * exception event on exception. Instead controller writes the
1321 		 * hardware event to device memory along with optional debug
1322 		 * events, raises MSIX and halts. Driver shall read the
1323 		 * exception event from device memory and passes it stack for
1324 		 * further processing.
1325 		 */
1326 		btintel_pcie_read_hwexp(data);
1327 		clear_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags);
1328 	}
1329 
1330 	if (test_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) {
1331 		btintel_pcie_dump_traces(data->hdev);
1332 		clear_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags);
1333 	}
1334 
1335 	/* Process the sk_buf in queue and send to the HCI layer */
1336 	while ((skb = skb_dequeue(&data->rx_skb_q))) {
1337 		btintel_pcie_recv_frame(data, skb);
1338 	}
1339 }
1340 
1341 /* create sk_buff with data and save it to queue and start RX work */
1342 static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
1343 				       void *buf)
1344 {
1345 	int ret, len;
1346 	struct rfh_hdr *rfh_hdr;
1347 	struct sk_buff *skb;
1348 
1349 	rfh_hdr = buf;
1350 
1351 	len = rfh_hdr->packet_len;
1352 	if (len <= 0) {
1353 		ret = -EINVAL;
1354 		goto resubmit;
1355 	}
1356 
1357 	/* Remove RFH header */
1358 	buf += sizeof(*rfh_hdr);
1359 
1360 	skb = alloc_skb(len, GFP_ATOMIC);
1361 	if (!skb)
1362 		goto resubmit;
1363 
1364 	skb_put_data(skb, buf, len);
1365 	skb_queue_tail(&data->rx_skb_q, skb);
1366 	queue_work(data->workqueue, &data->rx_work);
1367 
1368 resubmit:
1369 	ret = btintel_pcie_submit_rx(data);
1370 
1371 	return ret;
1372 }
1373 
1374 /* Handles the MSI-X interrupt for rx queue 1 which is for RX */
1375 static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
1376 {
1377 	u16 cr_hia, cr_tia;
1378 	struct rxq *rxq;
1379 	struct urbd1 *urbd1;
1380 	struct data_buf *buf;
1381 	int ret;
1382 	struct hci_dev *hdev = data->hdev;
1383 
1384 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
1385 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
1386 
1387 	bt_dev_dbg(hdev, "RXQ: cr_hia: %u  cr_tia: %u", cr_hia, cr_tia);
1388 
1389 	/* Check CR_TIA and CR_HIA for change */
1390 	if (cr_tia == cr_hia)
1391 		return;
1392 
1393 	rxq = &data->rxq;
1394 
1395 	/* The firmware sends multiple CD in a single MSI-X and it needs to
1396 	 * process all received CDs in this interrupt.
1397 	 */
1398 	while (cr_tia != cr_hia) {
1399 		urbd1 = &rxq->urbd1s[cr_tia];
1400 		ipc_print_urbd1(data->hdev, urbd1, cr_tia);
1401 
1402 		buf = &rxq->bufs[urbd1->frbd_tag];
1403 		if (!buf) {
1404 			bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
1405 				   urbd1->frbd_tag);
1406 			return;
1407 		}
1408 
1409 		ret = btintel_pcie_submit_rx_work(data, urbd1->status,
1410 						  buf->data);
1411 		if (ret) {
1412 			bt_dev_err(hdev, "RXQ: failed to submit rx request");
1413 			return;
1414 		}
1415 
1416 		cr_tia = (cr_tia + 1) % rxq->count;
1417 		data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
1418 		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
1419 	}
1420 }
1421 
1422 static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
1423 {
1424 	return IRQ_WAKE_THREAD;
1425 }
1426 
1427 static inline bool btintel_pcie_is_rxq_empty(struct btintel_pcie_data *data)
1428 {
1429 	return data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM] == data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
1430 }
1431 
1432 static inline bool btintel_pcie_is_txackq_empty(struct btintel_pcie_data *data)
1433 {
1434 	return data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] == data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
1435 }
1436 
1437 static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
1438 {
1439 	struct msix_entry *entry = dev_id;
1440 	struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
1441 	u32 intr_fh, intr_hw;
1442 
1443 	spin_lock(&data->irq_lock);
1444 	intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
1445 	intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
1446 
1447 	/* Clear causes registers to avoid being handling the same cause */
1448 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
1449 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
1450 	spin_unlock(&data->irq_lock);
1451 
1452 	if (unlikely(!(intr_fh | intr_hw))) {
1453 		/* Ignore interrupt, inta == 0 */
1454 		return IRQ_NONE;
1455 	}
1456 
1457 	/* This interrupt is raised when there is an hardware exception */
1458 	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP)
1459 		btintel_pcie_msix_hw_exp_handler(data);
1460 
1461 	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP1)
1462 		btintel_pcie_msix_gp1_handler(data);
1463 
1464 	/* This interrupt is triggered by the firmware after updating
1465 	 * boot_stage register and image_response register
1466 	 */
1467 	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
1468 		btintel_pcie_msix_gp0_handler(data);
1469 
1470 	/* For TX */
1471 	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) {
1472 		btintel_pcie_msix_tx_handle(data);
1473 		if (!btintel_pcie_is_rxq_empty(data))
1474 			btintel_pcie_msix_rx_handle(data);
1475 	}
1476 
1477 	/* For RX */
1478 	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) {
1479 		btintel_pcie_msix_rx_handle(data);
1480 		if (!btintel_pcie_is_txackq_empty(data))
1481 			btintel_pcie_msix_tx_handle(data);
1482 	}
1483 
1484 	/*
1485 	 * Before sending the interrupt the HW disables it to prevent a nested
1486 	 * interrupt. This is done by writing 1 to the corresponding bit in
1487 	 * the mask register. After handling the interrupt, it should be
1488 	 * re-enabled by clearing this bit. This register is defined as write 1
1489 	 * clear (W1C) register, meaning that it's cleared by writing 1
1490 	 * to the bit.
1491 	 */
1492 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
1493 			      BIT(entry->entry));
1494 
1495 	return IRQ_HANDLED;
1496 }
1497 
1498 /* This function requests the irq for MSI-X and registers the handlers per irq.
1499  * Currently, it requests only 1 irq for all interrupt causes.
1500  */
1501 static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
1502 {
1503 	int err;
1504 	int num_irqs, i;
1505 
1506 	for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
1507 		data->msix_entries[i].entry = i;
1508 
1509 	num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
1510 					 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
1511 	if (num_irqs < 0)
1512 		return num_irqs;
1513 
1514 	data->alloc_vecs = num_irqs;
1515 	data->msix_enabled = 1;
1516 	data->def_irq = 0;
1517 
1518 	/* setup irq handler */
1519 	for (i = 0; i < data->alloc_vecs; i++) {
1520 		struct msix_entry *msix_entry;
1521 
1522 		msix_entry = &data->msix_entries[i];
1523 		msix_entry->vector = pci_irq_vector(data->pdev, i);
1524 
1525 		err = devm_request_threaded_irq(&data->pdev->dev,
1526 						msix_entry->vector,
1527 						btintel_pcie_msix_isr,
1528 						btintel_pcie_irq_msix_handler,
1529 						IRQF_SHARED,
1530 						KBUILD_MODNAME,
1531 						msix_entry);
1532 		if (err) {
1533 			pci_free_irq_vectors(data->pdev);
1534 			data->alloc_vecs = 0;
1535 			return err;
1536 		}
1537 	}
1538 	return 0;
1539 }
1540 
1541 struct btintel_pcie_causes_list {
1542 	u32 cause;
1543 	u32 mask_reg;
1544 	u8 cause_num;
1545 };
1546 
1547 static struct btintel_pcie_causes_list causes_list[] = {
1548 	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x00 },
1549 	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x01 },
1550 	{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0,	BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK,	0x20 },
1551 	{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK,	0x23 },
1552 };
1553 
1554 /* This function configures the interrupt masks for both HW_INT_CAUSES and
1555  * FH_INT_CAUSES which are meaningful to us.
1556  *
1557  * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
1558  * need to call this function again to configure since the masks
1559  * are reset to 0xFFFFFFFF after reset.
1560  */
1561 static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
1562 {
1563 	int i;
1564 	int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
1565 
1566 	/* Set Non Auto Clear Cause */
1567 	for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
1568 		btintel_pcie_wr_reg8(data,
1569 				     BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
1570 				     val);
1571 		btintel_pcie_clr_reg_bits(data,
1572 					  causes_list[i].mask_reg,
1573 					  causes_list[i].cause);
1574 	}
1575 
1576 	/* Save the initial interrupt mask */
1577 	data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
1578 	data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
1579 }
1580 
1581 static int btintel_pcie_config_pcie(struct pci_dev *pdev,
1582 				    struct btintel_pcie_data *data)
1583 {
1584 	int err;
1585 
1586 	err = pcim_enable_device(pdev);
1587 	if (err)
1588 		return err;
1589 
1590 	pci_set_master(pdev);
1591 
1592 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1593 	if (err) {
1594 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1595 		if (err)
1596 			return err;
1597 	}
1598 
1599 	data->base_addr = pcim_iomap_region(pdev, 0, KBUILD_MODNAME);
1600 	if (IS_ERR(data->base_addr))
1601 		return PTR_ERR(data->base_addr);
1602 
1603 	err = btintel_pcie_setup_irq(data);
1604 	if (err)
1605 		return err;
1606 
1607 	/* Configure MSI-X with causes list */
1608 	btintel_pcie_config_msix(data);
1609 
1610 	return 0;
1611 }
1612 
1613 static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
1614 				 struct ctx_info *ci)
1615 {
1616 	ci->version = 0x1;
1617 	ci->size = sizeof(*ci);
1618 	ci->config = 0x0000;
1619 	ci->addr_cr_hia = data->ia.cr_hia_p_addr;
1620 	ci->addr_tr_tia = data->ia.tr_tia_p_addr;
1621 	ci->addr_cr_tia = data->ia.cr_tia_p_addr;
1622 	ci->addr_tr_hia = data->ia.tr_hia_p_addr;
1623 	ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
1624 	ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
1625 	ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
1626 	ci->addr_tfdq = data->txq.tfds_p_addr;
1627 	ci->num_tfdq = data->txq.count;
1628 	ci->num_urbdq0 = data->txq.count;
1629 	ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
1630 	ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
1631 	ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
1632 	ci->addr_frbdq = data->rxq.frbds_p_addr;
1633 	ci->num_frbdq = data->rxq.count;
1634 	ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1635 	ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
1636 	ci->num_urbdq1 = data->rxq.count;
1637 	ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1638 
1639 	ci->dbg_output_mode = 0x01;
1640 	ci->dbgc_addr = data->dbgc.frag_p_addr;
1641 	ci->dbgc_size = data->dbgc.frag_size;
1642 	ci->dbg_preset = 0x00;
1643 }
1644 
1645 static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
1646 				       struct txq *txq)
1647 {
1648 	/* Free data buffers first */
1649 	dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1650 			  txq->buf_v_addr, txq->buf_p_addr);
1651 	kfree(txq->bufs);
1652 }
1653 
1654 static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
1655 				       struct txq *txq)
1656 {
1657 	int i;
1658 	struct data_buf *buf;
1659 
1660 	/* Allocate the same number of buffers as the descriptor */
1661 	txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
1662 	if (!txq->bufs)
1663 		return -ENOMEM;
1664 
1665 	/* Allocate full chunk of data buffer for DMA first and do indexing and
1666 	 * initialization next, so it can be freed easily
1667 	 */
1668 	txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1669 					     txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1670 					     &txq->buf_p_addr,
1671 					     GFP_KERNEL | __GFP_NOWARN);
1672 	if (!txq->buf_v_addr) {
1673 		kfree(txq->bufs);
1674 		return -ENOMEM;
1675 	}
1676 
1677 	/* Setup the allocated DMA buffer to bufs. Each data_buf should
1678 	 * have virtual address and physical address
1679 	 */
1680 	for (i = 0; i < txq->count; i++) {
1681 		buf = &txq->bufs[i];
1682 		buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1683 		buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
1690 				       struct rxq *rxq)
1691 {
1692 	/* Free data buffers first */
1693 	dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1694 			  rxq->buf_v_addr, rxq->buf_p_addr);
1695 	kfree(rxq->bufs);
1696 }
1697 
1698 static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
1699 				       struct rxq *rxq)
1700 {
1701 	int i;
1702 	struct data_buf *buf;
1703 
1704 	/* Allocate the same number of buffers as the descriptor */
1705 	rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
1706 	if (!rxq->bufs)
1707 		return -ENOMEM;
1708 
1709 	/* Allocate full chunk of data buffer for DMA first and do indexing and
1710 	 * initialization next, so it can be freed easily
1711 	 */
1712 	rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1713 					     rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1714 					     &rxq->buf_p_addr,
1715 					     GFP_KERNEL | __GFP_NOWARN);
1716 	if (!rxq->buf_v_addr) {
1717 		kfree(rxq->bufs);
1718 		return -ENOMEM;
1719 	}
1720 
1721 	/* Setup the allocated DMA buffer to bufs. Each data_buf should
1722 	 * have virtual address and physical address
1723 	 */
1724 	for (i = 0; i < rxq->count; i++) {
1725 		buf = &rxq->bufs[i];
1726 		buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1727 		buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
1734 				  dma_addr_t p_addr, void *v_addr,
1735 				  struct ia *ia)
1736 {
1737 	/* TR Head Index Array */
1738 	ia->tr_hia_p_addr = p_addr;
1739 	ia->tr_hia = v_addr;
1740 
1741 	/* TR Tail Index Array */
1742 	ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1743 	ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1744 
1745 	/* CR Head index Array */
1746 	ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1747 	ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1748 
1749 	/* CR Tail Index Array */
1750 	ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1751 	ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1752 }
1753 
1754 static void btintel_pcie_free(struct btintel_pcie_data *data)
1755 {
1756 	btintel_pcie_free_rxq_bufs(data, &data->rxq);
1757 	btintel_pcie_free_txq_bufs(data, &data->txq);
1758 
1759 	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1760 	dma_pool_destroy(data->dma_pool);
1761 }
1762 
1763 /* Allocate tx and rx queues, any related data structures and buffers.
1764  */
1765 static int btintel_pcie_alloc(struct btintel_pcie_data *data)
1766 {
1767 	int err = 0;
1768 	size_t total;
1769 	dma_addr_t p_addr;
1770 	void *v_addr;
1771 
1772 	/* Allocate the chunk of DMA memory for descriptors, index array, and
1773 	 * context information, instead of allocating individually.
1774 	 * The DMA memory for data buffer is allocated while setting up the
1775 	 * each queue.
1776 	 *
1777 	 * Total size is sum of the following
1778 	 *  + size of TFD * Number of descriptors in queue
1779 	 *  + size of URBD0 * Number of descriptors in queue
1780 	 *  + size of FRBD * Number of descriptors in queue
1781 	 *  + size of URBD1 * Number of descriptors in queue
1782 	 *  + size of index * Number of queues(2) * type of index array(4)
1783 	 *  + size of context information
1784 	 */
1785 	total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
1786 		+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
1787 
1788 	/* Add the sum of size of index array and size of ci struct */
1789 	total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
1790 
1791 	/* Allocate DMA Pool */
1792 	data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
1793 					 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
1794 	if (!data->dma_pool) {
1795 		err = -ENOMEM;
1796 		goto exit_error;
1797 	}
1798 
1799 	v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
1800 				 &p_addr);
1801 	if (!v_addr) {
1802 		dma_pool_destroy(data->dma_pool);
1803 		err = -ENOMEM;
1804 		goto exit_error;
1805 	}
1806 
1807 	data->dma_p_addr = p_addr;
1808 	data->dma_v_addr = v_addr;
1809 
1810 	/* Setup descriptor count */
1811 	data->txq.count = BTINTEL_DESCS_COUNT;
1812 	data->rxq.count = BTINTEL_DESCS_COUNT;
1813 
1814 	/* Setup tfds */
1815 	data->txq.tfds_p_addr = p_addr;
1816 	data->txq.tfds = v_addr;
1817 
1818 	p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
1819 	v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
1820 
1821 	/* Setup urbd0 */
1822 	data->txq.urbd0s_p_addr = p_addr;
1823 	data->txq.urbd0s = v_addr;
1824 
1825 	p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
1826 	v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
1827 
1828 	/* Setup FRBD*/
1829 	data->rxq.frbds_p_addr = p_addr;
1830 	data->rxq.frbds = v_addr;
1831 
1832 	p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
1833 	v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
1834 
1835 	/* Setup urbd1 */
1836 	data->rxq.urbd1s_p_addr = p_addr;
1837 	data->rxq.urbd1s = v_addr;
1838 
1839 	p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
1840 	v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
1841 
1842 	/* Setup data buffers for txq */
1843 	err = btintel_pcie_setup_txq_bufs(data, &data->txq);
1844 	if (err)
1845 		goto exit_error_pool;
1846 
1847 	/* Setup data buffers for rxq */
1848 	err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
1849 	if (err)
1850 		goto exit_error_txq;
1851 
1852 	/* Setup Index Array */
1853 	btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
1854 
1855 	/* Setup data buffers for dbgc */
1856 	err = btintel_pcie_setup_dbgc(data);
1857 	if (err)
1858 		goto exit_error_txq;
1859 
1860 	/* Setup Context Information */
1861 	p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1862 	v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1863 
1864 	data->ci = v_addr;
1865 	data->ci_p_addr = p_addr;
1866 
1867 	/* Initialize the CI */
1868 	btintel_pcie_init_ci(data, data->ci);
1869 
1870 	return 0;
1871 
1872 exit_error_txq:
1873 	btintel_pcie_free_txq_bufs(data, &data->txq);
1874 exit_error_pool:
1875 	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1876 	dma_pool_destroy(data->dma_pool);
1877 exit_error:
1878 	return err;
1879 }
1880 
1881 static int btintel_pcie_open(struct hci_dev *hdev)
1882 {
1883 	bt_dev_dbg(hdev, "");
1884 
1885 	return 0;
1886 }
1887 
1888 static int btintel_pcie_close(struct hci_dev *hdev)
1889 {
1890 	bt_dev_dbg(hdev, "");
1891 
1892 	return 0;
1893 }
1894 
1895 static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1896 {
1897 	struct sk_buff *skb;
1898 	struct hci_event_hdr *hdr;
1899 	struct hci_ev_cmd_complete *evt;
1900 
1901 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
1902 	if (!skb)
1903 		return -ENOMEM;
1904 
1905 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
1906 	hdr->evt = HCI_EV_CMD_COMPLETE;
1907 	hdr->plen = sizeof(*evt) + 1;
1908 
1909 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
1910 	evt->ncmd = 0x01;
1911 	evt->opcode = cpu_to_le16(opcode);
1912 
1913 	*(u8 *)skb_put(skb, 1) = 0x00;
1914 
1915 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1916 
1917 	return hci_recv_frame(hdev, skb);
1918 }
1919 
1920 static int btintel_pcie_send_frame(struct hci_dev *hdev,
1921 				       struct sk_buff *skb)
1922 {
1923 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1924 	struct hci_command_hdr *cmd;
1925 	__u16 opcode = ~0;
1926 	int ret;
1927 	u32 type;
1928 	u32 old_ctxt;
1929 
1930 	/* Due to the fw limitation, the type header of the packet should be
1931 	 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read
1932 	 * the first byte to get the packet type and redirect the rest of data
1933 	 * packet to the right handler.
1934 	 *
1935 	 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
1936 	 * from DMA memory and by the time it reads the first 4 bytes, it has
1937 	 * already consumed some part of packet. Thus the packet type indicator
1938 	 * for iBT PCIe is 4 bytes.
1939 	 *
1940 	 * Luckily, when HCI core creates the skb, it allocates 8 bytes of
1941 	 * head room for profile and driver use, and before sending the data
1942 	 * to the device, append the iBT PCIe packet type in the front.
1943 	 */
1944 	switch (hci_skb_pkt_type(skb)) {
1945 	case HCI_COMMAND_PKT:
1946 		type = BTINTEL_PCIE_HCI_CMD_PKT;
1947 		cmd = (void *)skb->data;
1948 		opcode = le16_to_cpu(cmd->opcode);
1949 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1950 			struct hci_command_hdr *cmd = (void *)skb->data;
1951 			__u16 opcode = le16_to_cpu(cmd->opcode);
1952 
1953 			/* When the 0xfc01 command is issued to boot into
1954 			 * the operational firmware, it will actually not
1955 			 * send a command complete event. To keep the flow
1956 			 * control working inject that event here.
1957 			 */
1958 			if (opcode == 0xfc01)
1959 				btintel_pcie_inject_cmd_complete(hdev, opcode);
1960 		}
1961 		/* Firmware raises alive interrupt on HCI_OP_RESET */
1962 		if (opcode == HCI_OP_RESET)
1963 			data->gp0_received = false;
1964 
1965 		hdev->stat.cmd_tx++;
1966 		break;
1967 	case HCI_ACLDATA_PKT:
1968 		type = BTINTEL_PCIE_HCI_ACL_PKT;
1969 		hdev->stat.acl_tx++;
1970 		break;
1971 	case HCI_SCODATA_PKT:
1972 		type = BTINTEL_PCIE_HCI_SCO_PKT;
1973 		hdev->stat.sco_tx++;
1974 		break;
1975 	case HCI_ISODATA_PKT:
1976 		type = BTINTEL_PCIE_HCI_ISO_PKT;
1977 		break;
1978 	default:
1979 		bt_dev_err(hdev, "Unknown HCI packet type");
1980 		return -EILSEQ;
1981 	}
1982 	memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type,
1983 	       BTINTEL_PCIE_HCI_TYPE_LEN);
1984 
1985 	ret = btintel_pcie_send_sync(data, skb);
1986 	if (ret) {
1987 		hdev->stat.err_tx++;
1988 		bt_dev_err(hdev, "Failed to send frame (%d)", ret);
1989 		goto exit_error;
1990 	}
1991 
1992 	if (type == BTINTEL_PCIE_HCI_CMD_PKT &&
1993 	    (opcode == HCI_OP_RESET || opcode == 0xfc01)) {
1994 		old_ctxt = data->alive_intr_ctxt;
1995 		data->alive_intr_ctxt =
1996 			(opcode == 0xfc01 ? BTINTEL_PCIE_INTEL_HCI_RESET1 :
1997 				BTINTEL_PCIE_HCI_RESET);
1998 		bt_dev_dbg(data->hdev, "sent cmd: 0x%4.4x alive context changed: %s  ->  %s",
1999 			   opcode, btintel_pcie_alivectxt_state2str(old_ctxt),
2000 			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
2001 		if (opcode == HCI_OP_RESET) {
2002 			ret = wait_event_timeout(data->gp0_wait_q,
2003 						 data->gp0_received,
2004 						 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
2005 			if (!ret) {
2006 				hdev->stat.err_tx++;
2007 				bt_dev_err(hdev, "No alive interrupt received for %s",
2008 					   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
2009 				ret = -ETIME;
2010 				goto exit_error;
2011 			}
2012 		}
2013 	}
2014 	hdev->stat.byte_tx += skb->len;
2015 	kfree_skb(skb);
2016 
2017 exit_error:
2018 	return ret;
2019 }
2020 
2021 static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
2022 {
2023 	struct hci_dev *hdev;
2024 
2025 	hdev = data->hdev;
2026 	hci_unregister_dev(hdev);
2027 	hci_free_dev(hdev);
2028 	data->hdev = NULL;
2029 }
2030 
2031 static int btintel_pcie_setup_internal(struct hci_dev *hdev)
2032 {
2033 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
2034 	const u8 param[1] = { 0xFF };
2035 	struct intel_version_tlv ver_tlv;
2036 	struct sk_buff *skb;
2037 	int err;
2038 
2039 	BT_DBG("%s", hdev->name);
2040 
2041 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2042 	if (IS_ERR(skb)) {
2043 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2044 			   PTR_ERR(skb));
2045 		return PTR_ERR(skb);
2046 	}
2047 
2048 	/* Check the status */
2049 	if (skb->data[0]) {
2050 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2051 			   skb->data[0]);
2052 		err = -EIO;
2053 		goto exit_error;
2054 	}
2055 
2056 	/* Apply the common HCI quirks for Intel device */
2057 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2058 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
2059 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
2060 
2061 	/* Set up the quality report callback for Intel devices */
2062 	hdev->set_quality_report = btintel_set_quality_report;
2063 
2064 	memset(&ver_tlv, 0, sizeof(ver_tlv));
2065 	/* For TLV type device, parse the tlv data */
2066 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2067 	if (err) {
2068 		bt_dev_err(hdev, "Failed to parse TLV version information");
2069 		goto exit_error;
2070 	}
2071 
2072 	switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
2073 	case 0x37:
2074 		break;
2075 	default:
2076 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
2077 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
2078 		err = -EINVAL;
2079 		goto exit_error;
2080 	}
2081 
2082 	/* Check for supported iBT hardware variants of this firmware
2083 	 * loading method.
2084 	 *
2085 	 * This check has been put in place to ensure correct forward
2086 	 * compatibility options when newer hardware variants come
2087 	 * along.
2088 	 */
2089 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
2090 	case 0x1e:	/* BzrI */
2091 	case 0x1f:	/* ScP  */
2092 		/* Display version information of TLV type */
2093 		btintel_version_info_tlv(hdev, &ver_tlv);
2094 
2095 		/* Apply the device specific HCI quirks for TLV based devices
2096 		 *
2097 		 * All TLV based devices support WBS
2098 		 */
2099 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2100 
2101 		/* Setup MSFT Extension support */
2102 		btintel_set_msft_opcode(hdev,
2103 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2104 
2105 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
2106 		if (err)
2107 			goto exit_error;
2108 		break;
2109 	default:
2110 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2111 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2112 		err = -EINVAL;
2113 		goto exit_error;
2114 		break;
2115 	}
2116 
2117 	data->dmp_hdr.cnvi_top = ver_tlv.cnvi_top;
2118 	data->dmp_hdr.cnvr_top = ver_tlv.cnvr_top;
2119 	data->dmp_hdr.fw_timestamp = ver_tlv.timestamp;
2120 	data->dmp_hdr.fw_build_type = ver_tlv.build_type;
2121 	data->dmp_hdr.fw_build_num = ver_tlv.build_num;
2122 	data->dmp_hdr.cnvi_bt = ver_tlv.cnvi_bt;
2123 
2124 	if (ver_tlv.img_type == 0x02 || ver_tlv.img_type == 0x03)
2125 		data->dmp_hdr.fw_git_sha1 = ver_tlv.git_sha1;
2126 
2127 	err = hci_devcd_register(hdev, btintel_pcie_dump_traces, btintel_pcie_dump_hdr,
2128 				 btintel_pcie_dump_notify);
2129 	if (err) {
2130 		bt_dev_err(hdev, "Failed to register coredump (%d)", err);
2131 		goto exit_error;
2132 	}
2133 
2134 	btintel_print_fseq_info(hdev);
2135 exit_error:
2136 	kfree_skb(skb);
2137 
2138 	return err;
2139 }
2140 
2141 static int btintel_pcie_setup(struct hci_dev *hdev)
2142 {
2143 	int err, fw_dl_retry = 0;
2144 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
2145 
2146 	while ((err = btintel_pcie_setup_internal(hdev)) && fw_dl_retry++ < 1) {
2147 		bt_dev_err(hdev, "Firmware download retry count: %d",
2148 			   fw_dl_retry);
2149 		btintel_pcie_dump_debug_registers(hdev);
2150 		err = btintel_pcie_reset_bt(data);
2151 		if (err) {
2152 			bt_dev_err(hdev, "Failed to do shr reset: %d", err);
2153 			break;
2154 		}
2155 		usleep_range(10000, 12000);
2156 		btintel_pcie_reset_ia(data);
2157 		btintel_pcie_config_msix(data);
2158 		err = btintel_pcie_enable_bt(data);
2159 		if (err) {
2160 			bt_dev_err(hdev, "Failed to enable hardware: %d", err);
2161 			break;
2162 		}
2163 		btintel_pcie_start_rx(data);
2164 	}
2165 	return err;
2166 }
2167 
2168 static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
2169 {
2170 	int err;
2171 	struct hci_dev *hdev;
2172 
2173 	hdev = hci_alloc_dev_priv(sizeof(struct btintel_data));
2174 	if (!hdev)
2175 		return -ENOMEM;
2176 
2177 	hdev->bus = HCI_PCI;
2178 	hci_set_drvdata(hdev, data);
2179 
2180 	data->hdev = hdev;
2181 	SET_HCIDEV_DEV(hdev, &data->pdev->dev);
2182 
2183 	hdev->manufacturer = 2;
2184 	hdev->open = btintel_pcie_open;
2185 	hdev->close = btintel_pcie_close;
2186 	hdev->send = btintel_pcie_send_frame;
2187 	hdev->setup = btintel_pcie_setup;
2188 	hdev->shutdown = btintel_shutdown_combined;
2189 	hdev->hw_error = btintel_hw_error;
2190 	hdev->set_diag = btintel_set_diag;
2191 	hdev->set_bdaddr = btintel_set_bdaddr;
2192 
2193 	err = hci_register_dev(hdev);
2194 	if (err < 0) {
2195 		BT_ERR("Failed to register to hdev (%d)", err);
2196 		goto exit_error;
2197 	}
2198 
2199 	data->dmp_hdr.driver_name = KBUILD_MODNAME;
2200 	return 0;
2201 
2202 exit_error:
2203 	hci_free_dev(hdev);
2204 	return err;
2205 }
2206 
2207 static int btintel_pcie_probe(struct pci_dev *pdev,
2208 			      const struct pci_device_id *ent)
2209 {
2210 	int err;
2211 	struct btintel_pcie_data *data;
2212 
2213 	if (!pdev)
2214 		return -ENODEV;
2215 
2216 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
2217 	if (!data)
2218 		return -ENOMEM;
2219 
2220 	data->pdev = pdev;
2221 
2222 	spin_lock_init(&data->irq_lock);
2223 	spin_lock_init(&data->hci_rx_lock);
2224 
2225 	init_waitqueue_head(&data->gp0_wait_q);
2226 	data->gp0_received = false;
2227 
2228 	init_waitqueue_head(&data->tx_wait_q);
2229 	data->tx_wait_done = false;
2230 
2231 	data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
2232 	if (!data->workqueue)
2233 		return -ENOMEM;
2234 
2235 	skb_queue_head_init(&data->rx_skb_q);
2236 	INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
2237 
2238 	data->boot_stage_cache = 0x00;
2239 	data->img_resp_cache = 0x00;
2240 
2241 	err = btintel_pcie_config_pcie(pdev, data);
2242 	if (err)
2243 		goto exit_error;
2244 
2245 	pci_set_drvdata(pdev, data);
2246 
2247 	err = btintel_pcie_alloc(data);
2248 	if (err)
2249 		goto exit_error;
2250 
2251 	err = btintel_pcie_enable_bt(data);
2252 	if (err)
2253 		goto exit_error;
2254 
2255 	/* CNV information (CNVi and CNVr) is in CSR */
2256 	data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
2257 
2258 	data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
2259 
2260 	err = btintel_pcie_start_rx(data);
2261 	if (err)
2262 		goto exit_error;
2263 
2264 	err = btintel_pcie_setup_hdev(data);
2265 	if (err)
2266 		goto exit_error;
2267 
2268 	bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
2269 		   data->cnvr);
2270 	return 0;
2271 
2272 exit_error:
2273 	/* reset device before exit */
2274 	btintel_pcie_reset_bt(data);
2275 
2276 	pci_clear_master(pdev);
2277 
2278 	pci_set_drvdata(pdev, NULL);
2279 
2280 	return err;
2281 }
2282 
2283 static void btintel_pcie_remove(struct pci_dev *pdev)
2284 {
2285 	struct btintel_pcie_data *data;
2286 
2287 	data = pci_get_drvdata(pdev);
2288 
2289 	btintel_pcie_reset_bt(data);
2290 	for (int i = 0; i < data->alloc_vecs; i++) {
2291 		struct msix_entry *msix_entry;
2292 
2293 		msix_entry = &data->msix_entries[i];
2294 		free_irq(msix_entry->vector, msix_entry);
2295 	}
2296 
2297 	pci_free_irq_vectors(pdev);
2298 
2299 	btintel_pcie_release_hdev(data);
2300 
2301 	flush_work(&data->rx_work);
2302 
2303 	destroy_workqueue(data->workqueue);
2304 
2305 	btintel_pcie_free(data);
2306 
2307 	pci_clear_master(pdev);
2308 
2309 	pci_set_drvdata(pdev, NULL);
2310 }
2311 
2312 #ifdef CONFIG_DEV_COREDUMP
2313 static void btintel_pcie_coredump(struct device *dev)
2314 {
2315 	struct  pci_dev *pdev = to_pci_dev(dev);
2316 	struct btintel_pcie_data *data = pci_get_drvdata(pdev);
2317 
2318 	if (test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags))
2319 		return;
2320 
2321 	data->dmp_hdr.trigger_reason  = BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER;
2322 	queue_work(data->workqueue, &data->rx_work);
2323 }
2324 #endif
2325 
2326 static struct pci_driver btintel_pcie_driver = {
2327 	.name = KBUILD_MODNAME,
2328 	.id_table = btintel_pcie_table,
2329 	.probe = btintel_pcie_probe,
2330 	.remove = btintel_pcie_remove,
2331 #ifdef CONFIG_DEV_COREDUMP
2332 	.driver.coredump = btintel_pcie_coredump
2333 #endif
2334 };
2335 module_pci_driver(btintel_pcie_driver);
2336 
2337 MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
2338 MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
2339 MODULE_VERSION(VERSION);
2340 MODULE_LICENSE("GPL");
2341