1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2006 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/module.h> 19 #include <linux/libata.h> 20 #include <linux/highmem.h> 21 #include <trace/events/libata.h> 22 #include "libata.h" 23 24 static struct workqueue_struct *ata_sff_wq; 25 26 const struct ata_port_operations ata_sff_port_ops = { 27 .inherits = &ata_base_port_ops, 28 29 .qc_issue = ata_sff_qc_issue, 30 .qc_fill_rtf = ata_sff_qc_fill_rtf, 31 32 .freeze = ata_sff_freeze, 33 .thaw = ata_sff_thaw, 34 .prereset = ata_sff_prereset, 35 .softreset = ata_sff_softreset, 36 .hardreset = sata_sff_hardreset, 37 .postreset = ata_sff_postreset, 38 .error_handler = ata_sff_error_handler, 39 40 .sff_dev_select = ata_sff_dev_select, 41 .sff_check_status = ata_sff_check_status, 42 .sff_tf_load = ata_sff_tf_load, 43 .sff_tf_read = ata_sff_tf_read, 44 .sff_exec_command = ata_sff_exec_command, 45 .sff_data_xfer = ata_sff_data_xfer, 46 .sff_drain_fifo = ata_sff_drain_fifo, 47 48 .lost_interrupt = ata_sff_lost_interrupt, 49 }; 50 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 51 52 /** 53 * ata_sff_check_status - Read device status reg & clear interrupt 54 * @ap: port where the device is 55 * 56 * Reads ATA taskfile status register for currently-selected device 57 * and return its value. This also clears pending interrupts 58 * from this device 59 * 60 * LOCKING: 61 * Inherited from caller. 62 */ 63 u8 ata_sff_check_status(struct ata_port *ap) 64 { 65 return ioread8(ap->ioaddr.status_addr); 66 } 67 EXPORT_SYMBOL_GPL(ata_sff_check_status); 68 69 /** 70 * ata_sff_altstatus - Read device alternate status reg 71 * @ap: port where the device is 72 * @status: pointer to a status value 73 * 74 * Reads ATA alternate status register for currently-selected device 75 * and return its value. 76 * 77 * RETURN: 78 * true if the register exists, false if not. 79 * 80 * LOCKING: 81 * Inherited from caller. 82 */ 83 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status) 84 { 85 u8 tmp; 86 87 if (ap->ops->sff_check_altstatus) { 88 tmp = ap->ops->sff_check_altstatus(ap); 89 goto read; 90 } 91 if (ap->ioaddr.altstatus_addr) { 92 tmp = ioread8(ap->ioaddr.altstatus_addr); 93 goto read; 94 } 95 return false; 96 97 read: 98 if (status) 99 *status = tmp; 100 return true; 101 } 102 103 /** 104 * ata_sff_irq_status - Check if the device is busy 105 * @ap: port where the device is 106 * 107 * Determine if the port is currently busy. Uses altstatus 108 * if available in order to avoid clearing shared IRQ status 109 * when finding an IRQ source. Non ctl capable devices don't 110 * share interrupt lines fortunately for us. 111 * 112 * LOCKING: 113 * Inherited from caller. 114 */ 115 static u8 ata_sff_irq_status(struct ata_port *ap) 116 { 117 u8 status; 118 119 /* Not us: We are busy */ 120 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY)) 121 return status; 122 /* Clear INTRQ latch */ 123 status = ap->ops->sff_check_status(ap); 124 return status; 125 } 126 127 /** 128 * ata_sff_sync - Flush writes 129 * @ap: Port to wait for. 130 * 131 * CAUTION: 132 * If we have an mmio device with no ctl and no altstatus 133 * method this will fail. No such devices are known to exist. 134 * 135 * LOCKING: 136 * Inherited from caller. 137 */ 138 139 static void ata_sff_sync(struct ata_port *ap) 140 { 141 ata_sff_altstatus(ap, NULL); 142 } 143 144 /** 145 * ata_sff_pause - Flush writes and wait 400nS 146 * @ap: Port to pause for. 147 * 148 * CAUTION: 149 * If we have an mmio device with no ctl and no altstatus 150 * method this will fail. No such devices are known to exist. 151 * 152 * LOCKING: 153 * Inherited from caller. 154 */ 155 156 void ata_sff_pause(struct ata_port *ap) 157 { 158 ata_sff_sync(ap); 159 ndelay(400); 160 } 161 EXPORT_SYMBOL_GPL(ata_sff_pause); 162 163 /** 164 * ata_sff_dma_pause - Pause before commencing DMA 165 * @ap: Port to pause for. 166 * 167 * Perform I/O fencing and ensure sufficient cycle delays occur 168 * for the HDMA1:0 transition 169 */ 170 171 void ata_sff_dma_pause(struct ata_port *ap) 172 { 173 /* 174 * An altstatus read will cause the needed delay without 175 * messing up the IRQ status 176 */ 177 if (ata_sff_altstatus(ap, NULL)) 178 return; 179 /* There are no DMA controllers without ctl. BUG here to ensure 180 we never violate the HDMA1:0 transition timing and risk 181 corruption. */ 182 BUG(); 183 } 184 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 185 186 static int ata_sff_check_ready(struct ata_link *link) 187 { 188 u8 status = link->ap->ops->sff_check_status(link->ap); 189 190 return ata_check_ready(status); 191 } 192 193 /** 194 * ata_sff_wait_ready - sleep until BSY clears, or timeout 195 * @link: SFF link to wait ready status for 196 * @deadline: deadline jiffies for the operation 197 * 198 * Sleep until ATA Status register bit BSY clears, or timeout 199 * occurs. 200 * 201 * LOCKING: 202 * Kernel thread context (may sleep). 203 * 204 * RETURNS: 205 * 0 on success, -errno otherwise. 206 */ 207 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 208 { 209 return ata_wait_ready(link, deadline, ata_sff_check_ready); 210 } 211 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 212 213 /** 214 * ata_sff_set_devctl - Write device control reg 215 * @ap: port where the device is 216 * @ctl: value to write 217 * 218 * Writes ATA device control register. 219 * 220 * RETURN: 221 * true if the register exists, false if not. 222 * 223 * LOCKING: 224 * Inherited from caller. 225 */ 226 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 227 { 228 if (ap->ops->sff_set_devctl) { 229 ap->ops->sff_set_devctl(ap, ctl); 230 return true; 231 } 232 if (ap->ioaddr.ctl_addr) { 233 iowrite8(ctl, ap->ioaddr.ctl_addr); 234 return true; 235 } 236 237 return false; 238 } 239 240 /** 241 * ata_sff_dev_select - Select device 0/1 on ATA bus 242 * @ap: ATA channel to manipulate 243 * @device: ATA device (numbered from zero) to select 244 * 245 * Use the method defined in the ATA specification to 246 * make either device 0, or device 1, active on the 247 * ATA channel. Works with both PIO and MMIO. 248 * 249 * May be used as the dev_select() entry in ata_port_operations. 250 * 251 * LOCKING: 252 * caller. 253 */ 254 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 255 { 256 u8 tmp; 257 258 if (device == 0) 259 tmp = ATA_DEVICE_OBS; 260 else 261 tmp = ATA_DEVICE_OBS | ATA_DEV1; 262 263 iowrite8(tmp, ap->ioaddr.device_addr); 264 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 265 } 266 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 267 268 /** 269 * ata_dev_select - Select device 0/1 on ATA bus 270 * @ap: ATA channel to manipulate 271 * @device: ATA device (numbered from zero) to select 272 * @wait: non-zero to wait for Status register BSY bit to clear 273 * @can_sleep: non-zero if context allows sleeping 274 * 275 * Use the method defined in the ATA specification to 276 * make either device 0, or device 1, active on the 277 * ATA channel. 278 * 279 * This is a high-level version of ata_sff_dev_select(), which 280 * additionally provides the services of inserting the proper 281 * pauses and status polling, where needed. 282 * 283 * LOCKING: 284 * caller. 285 */ 286 static void ata_dev_select(struct ata_port *ap, unsigned int device, 287 unsigned int wait, unsigned int can_sleep) 288 { 289 if (wait) 290 ata_wait_idle(ap); 291 292 ap->ops->sff_dev_select(ap, device); 293 294 if (wait) { 295 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 296 ata_msleep(ap, 150); 297 ata_wait_idle(ap); 298 } 299 } 300 301 /** 302 * ata_sff_irq_on - Enable interrupts on a port. 303 * @ap: Port on which interrupts are enabled. 304 * 305 * Enable interrupts on a legacy IDE device using MMIO or PIO, 306 * wait for idle, clear any pending interrupts. 307 * 308 * Note: may NOT be used as the sff_irq_on() entry in 309 * ata_port_operations. 310 * 311 * LOCKING: 312 * Inherited from caller. 313 */ 314 void ata_sff_irq_on(struct ata_port *ap) 315 { 316 if (ap->ops->sff_irq_on) { 317 ap->ops->sff_irq_on(ap); 318 return; 319 } 320 321 ap->ctl &= ~ATA_NIEN; 322 ap->last_ctl = ap->ctl; 323 324 ata_sff_set_devctl(ap, ap->ctl); 325 ata_wait_idle(ap); 326 327 if (ap->ops->sff_irq_clear) 328 ap->ops->sff_irq_clear(ap); 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 331 332 /** 333 * ata_sff_tf_load - send taskfile registers to host controller 334 * @ap: Port to which output is sent 335 * @tf: ATA taskfile register set 336 * 337 * Outputs ATA taskfile to standard ATA host controller. 338 * 339 * LOCKING: 340 * Inherited from caller. 341 */ 342 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 343 { 344 struct ata_ioports *ioaddr = &ap->ioaddr; 345 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 346 347 if (tf->ctl != ap->last_ctl) { 348 if (ioaddr->ctl_addr) 349 iowrite8(tf->ctl, ioaddr->ctl_addr); 350 ap->last_ctl = tf->ctl; 351 ata_wait_idle(ap); 352 } 353 354 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 355 WARN_ON_ONCE(!ioaddr->ctl_addr); 356 iowrite8(tf->hob_feature, ioaddr->feature_addr); 357 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 358 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 359 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 360 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 361 } 362 363 if (is_addr) { 364 iowrite8(tf->feature, ioaddr->feature_addr); 365 iowrite8(tf->nsect, ioaddr->nsect_addr); 366 iowrite8(tf->lbal, ioaddr->lbal_addr); 367 iowrite8(tf->lbam, ioaddr->lbam_addr); 368 iowrite8(tf->lbah, ioaddr->lbah_addr); 369 } 370 371 if (tf->flags & ATA_TFLAG_DEVICE) 372 iowrite8(tf->device, ioaddr->device_addr); 373 374 ata_wait_idle(ap); 375 } 376 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 377 378 /** 379 * ata_sff_tf_read - input device's ATA taskfile shadow registers 380 * @ap: Port from which input is read 381 * @tf: ATA taskfile register set for storing input 382 * 383 * Reads ATA taskfile registers for currently-selected device 384 * into @tf. Assumes the device has a fully SFF compliant task file 385 * layout and behaviour. If you device does not (eg has a different 386 * status method) then you will need to provide a replacement tf_read 387 * 388 * LOCKING: 389 * Inherited from caller. 390 */ 391 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 392 { 393 struct ata_ioports *ioaddr = &ap->ioaddr; 394 395 tf->status = ata_sff_check_status(ap); 396 tf->error = ioread8(ioaddr->error_addr); 397 tf->nsect = ioread8(ioaddr->nsect_addr); 398 tf->lbal = ioread8(ioaddr->lbal_addr); 399 tf->lbam = ioread8(ioaddr->lbam_addr); 400 tf->lbah = ioread8(ioaddr->lbah_addr); 401 tf->device = ioread8(ioaddr->device_addr); 402 403 if (tf->flags & ATA_TFLAG_LBA48) { 404 if (likely(ioaddr->ctl_addr)) { 405 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 406 tf->hob_feature = ioread8(ioaddr->error_addr); 407 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 408 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 409 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 410 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 411 iowrite8(tf->ctl, ioaddr->ctl_addr); 412 ap->last_ctl = tf->ctl; 413 } else 414 WARN_ON_ONCE(1); 415 } 416 } 417 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 418 419 /** 420 * ata_sff_exec_command - issue ATA command to host controller 421 * @ap: port to which command is being issued 422 * @tf: ATA taskfile register set 423 * 424 * Issues ATA command, with proper synchronization with interrupt 425 * handler / other threads. 426 * 427 * LOCKING: 428 * spin_lock_irqsave(host lock) 429 */ 430 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 431 { 432 iowrite8(tf->command, ap->ioaddr.command_addr); 433 ata_sff_pause(ap); 434 } 435 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 436 437 /** 438 * ata_tf_to_host - issue ATA taskfile to host controller 439 * @ap: port to which command is being issued 440 * @tf: ATA taskfile register set 441 * @tag: tag of the associated command 442 * 443 * Issues ATA taskfile register set to ATA host controller, 444 * with proper synchronization with interrupt handler and 445 * other threads. 446 * 447 * LOCKING: 448 * spin_lock_irqsave(host lock) 449 */ 450 static inline void ata_tf_to_host(struct ata_port *ap, 451 const struct ata_taskfile *tf, 452 unsigned int tag) 453 { 454 trace_ata_tf_load(ap, tf); 455 ap->ops->sff_tf_load(ap, tf); 456 trace_ata_exec_command(ap, tf, tag); 457 ap->ops->sff_exec_command(ap, tf); 458 } 459 460 /** 461 * ata_sff_data_xfer - Transfer data by PIO 462 * @qc: queued command 463 * @buf: data buffer 464 * @buflen: buffer length 465 * @rw: read/write 466 * 467 * Transfer data from/to the device data register by PIO. 468 * 469 * LOCKING: 470 * Inherited from caller. 471 * 472 * RETURNS: 473 * Bytes consumed. 474 */ 475 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 476 unsigned int buflen, int rw) 477 { 478 struct ata_port *ap = qc->dev->link->ap; 479 void __iomem *data_addr = ap->ioaddr.data_addr; 480 unsigned int words = buflen >> 1; 481 482 /* Transfer multiple of 2 bytes */ 483 if (rw == READ) 484 ioread16_rep(data_addr, buf, words); 485 else 486 iowrite16_rep(data_addr, buf, words); 487 488 /* Transfer trailing byte, if any. */ 489 if (unlikely(buflen & 0x01)) { 490 unsigned char pad[2] = { }; 491 492 /* Point buf to the tail of buffer */ 493 buf += buflen - 1; 494 495 /* 496 * Use io*16_rep() accessors here as well to avoid pointlessly 497 * swapping bytes to and from on the big endian machines... 498 */ 499 if (rw == READ) { 500 ioread16_rep(data_addr, pad, 1); 501 *buf = pad[0]; 502 } else { 503 pad[0] = *buf; 504 iowrite16_rep(data_addr, pad, 1); 505 } 506 words++; 507 } 508 509 return words << 1; 510 } 511 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 512 513 /** 514 * ata_sff_data_xfer32 - Transfer data by PIO 515 * @qc: queued command 516 * @buf: data buffer 517 * @buflen: buffer length 518 * @rw: read/write 519 * 520 * Transfer data from/to the device data register by PIO using 32bit 521 * I/O operations. 522 * 523 * LOCKING: 524 * Inherited from caller. 525 * 526 * RETURNS: 527 * Bytes consumed. 528 */ 529 530 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 531 unsigned int buflen, int rw) 532 { 533 struct ata_device *dev = qc->dev; 534 struct ata_port *ap = dev->link->ap; 535 void __iomem *data_addr = ap->ioaddr.data_addr; 536 unsigned int words = buflen >> 2; 537 int slop = buflen & 3; 538 539 if (!(ap->pflags & ATA_PFLAG_PIO32)) 540 return ata_sff_data_xfer(qc, buf, buflen, rw); 541 542 /* Transfer multiple of 4 bytes */ 543 if (rw == READ) 544 ioread32_rep(data_addr, buf, words); 545 else 546 iowrite32_rep(data_addr, buf, words); 547 548 /* Transfer trailing bytes, if any */ 549 if (unlikely(slop)) { 550 unsigned char pad[4] = { }; 551 552 /* Point buf to the tail of buffer */ 553 buf += buflen - slop; 554 555 /* 556 * Use io*_rep() accessors here as well to avoid pointlessly 557 * swapping bytes to and from on the big endian machines... 558 */ 559 if (rw == READ) { 560 if (slop < 3) 561 ioread16_rep(data_addr, pad, 1); 562 else 563 ioread32_rep(data_addr, pad, 1); 564 memcpy(buf, pad, slop); 565 } else { 566 memcpy(pad, buf, slop); 567 if (slop < 3) 568 iowrite16_rep(data_addr, pad, 1); 569 else 570 iowrite32_rep(data_addr, pad, 1); 571 } 572 } 573 return (buflen + 1) & ~1; 574 } 575 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 576 577 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, 578 unsigned int offset, size_t xfer_size) 579 { 580 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 581 unsigned char *buf; 582 583 buf = kmap_atomic(page); 584 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); 585 kunmap_atomic(buf); 586 587 if (!do_write && !PageSlab(page)) 588 flush_dcache_page(page); 589 } 590 591 /** 592 * ata_pio_sector - Transfer a sector of data. 593 * @qc: Command on going 594 * 595 * Transfer qc->sect_size bytes of data from/to the ATA device. 596 * 597 * LOCKING: 598 * Inherited from caller. 599 */ 600 static void ata_pio_sector(struct ata_queued_cmd *qc) 601 { 602 struct ata_port *ap = qc->ap; 603 struct page *page; 604 unsigned int offset, count; 605 606 if (!qc->cursg) { 607 qc->curbytes = qc->nbytes; 608 return; 609 } 610 if (qc->curbytes == qc->nbytes - qc->sect_size) 611 ap->hsm_task_state = HSM_ST_LAST; 612 613 page = sg_page(qc->cursg); 614 offset = qc->cursg->offset + qc->cursg_ofs; 615 616 /* get the current page and offset */ 617 page = nth_page(page, (offset >> PAGE_SHIFT)); 618 offset %= PAGE_SIZE; 619 620 /* don't overrun current sg */ 621 count = min(qc->cursg->length - qc->cursg_ofs, qc->sect_size); 622 623 trace_ata_sff_pio_transfer_data(qc, offset, count); 624 625 /* 626 * Split the transfer when it splits a page boundary. Note that the 627 * split still has to be dword aligned like all ATA data transfers. 628 */ 629 WARN_ON_ONCE(offset % 4); 630 if (offset + count > PAGE_SIZE) { 631 unsigned int split_len = PAGE_SIZE - offset; 632 633 ata_pio_xfer(qc, page, offset, split_len); 634 ata_pio_xfer(qc, nth_page(page, 1), 0, count - split_len); 635 } else { 636 ata_pio_xfer(qc, page, offset, count); 637 } 638 639 qc->curbytes += count; 640 qc->cursg_ofs += count; 641 642 if (qc->cursg_ofs == qc->cursg->length) { 643 qc->cursg = sg_next(qc->cursg); 644 if (!qc->cursg) 645 ap->hsm_task_state = HSM_ST_LAST; 646 qc->cursg_ofs = 0; 647 } 648 } 649 650 /** 651 * ata_pio_sectors - Transfer one or many sectors. 652 * @qc: Command on going 653 * 654 * Transfer one or many sectors of data from/to the 655 * ATA device for the DRQ request. 656 * 657 * LOCKING: 658 * Inherited from caller. 659 */ 660 static void ata_pio_sectors(struct ata_queued_cmd *qc) 661 { 662 if (is_multi_taskfile(&qc->tf)) { 663 /* READ/WRITE MULTIPLE */ 664 unsigned int nsect; 665 666 WARN_ON_ONCE(qc->dev->multi_count == 0); 667 668 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 669 qc->dev->multi_count); 670 while (nsect--) 671 ata_pio_sector(qc); 672 } else 673 ata_pio_sector(qc); 674 675 ata_sff_sync(qc->ap); /* flush */ 676 } 677 678 /** 679 * atapi_send_cdb - Write CDB bytes to hardware 680 * @ap: Port to which ATAPI device is attached. 681 * @qc: Taskfile currently active 682 * 683 * When device has indicated its readiness to accept 684 * a CDB, this function is called. Send the CDB. 685 * 686 * LOCKING: 687 * caller. 688 */ 689 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 690 { 691 /* send SCSI cdb */ 692 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); 693 WARN_ON_ONCE(qc->dev->cdb_len < 12); 694 695 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 696 ata_sff_sync(ap); 697 /* FIXME: If the CDB is for DMA do we need to do the transition delay 698 or is bmdma_start guaranteed to do it ? */ 699 switch (qc->tf.protocol) { 700 case ATAPI_PROT_PIO: 701 ap->hsm_task_state = HSM_ST; 702 break; 703 case ATAPI_PROT_NODATA: 704 ap->hsm_task_state = HSM_ST_LAST; 705 break; 706 #ifdef CONFIG_ATA_BMDMA 707 case ATAPI_PROT_DMA: 708 ap->hsm_task_state = HSM_ST_LAST; 709 /* initiate bmdma */ 710 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 711 ap->ops->bmdma_start(qc); 712 break; 713 #endif /* CONFIG_ATA_BMDMA */ 714 default: 715 BUG(); 716 } 717 } 718 719 /** 720 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 721 * @qc: Command on going 722 * @bytes: number of bytes 723 * 724 * Transfer data from/to the ATAPI device. 725 * 726 * LOCKING: 727 * Inherited from caller. 728 * 729 */ 730 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 731 { 732 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 733 struct ata_port *ap = qc->ap; 734 struct ata_device *dev = qc->dev; 735 struct ata_eh_info *ehi = &dev->link->eh_info; 736 struct scatterlist *sg; 737 struct page *page; 738 unsigned char *buf; 739 unsigned int offset, count, consumed; 740 741 next_sg: 742 sg = qc->cursg; 743 if (unlikely(!sg)) { 744 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 745 "buf=%u cur=%u bytes=%u", 746 qc->nbytes, qc->curbytes, bytes); 747 return -1; 748 } 749 750 page = sg_page(sg); 751 offset = sg->offset + qc->cursg_ofs; 752 753 /* get the current page and offset */ 754 page = nth_page(page, (offset >> PAGE_SHIFT)); 755 offset %= PAGE_SIZE; 756 757 /* don't overrun current sg */ 758 count = min(sg->length - qc->cursg_ofs, bytes); 759 760 /* don't cross page boundaries */ 761 count = min(count, (unsigned int)PAGE_SIZE - offset); 762 763 trace_atapi_pio_transfer_data(qc, offset, count); 764 765 /* do the actual data transfer */ 766 buf = kmap_atomic(page); 767 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 768 kunmap_atomic(buf); 769 770 bytes -= min(bytes, consumed); 771 qc->curbytes += count; 772 qc->cursg_ofs += count; 773 774 if (qc->cursg_ofs == sg->length) { 775 qc->cursg = sg_next(qc->cursg); 776 qc->cursg_ofs = 0; 777 } 778 779 /* 780 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 781 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 782 * check correctly as it doesn't know if it is the last request being 783 * made. Somebody should implement a proper sanity check. 784 */ 785 if (bytes) 786 goto next_sg; 787 return 0; 788 } 789 790 /** 791 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 792 * @qc: Command on going 793 * 794 * Transfer Transfer data from/to the ATAPI device. 795 * 796 * LOCKING: 797 * Inherited from caller. 798 */ 799 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 800 { 801 struct ata_port *ap = qc->ap; 802 struct ata_device *dev = qc->dev; 803 struct ata_eh_info *ehi = &dev->link->eh_info; 804 unsigned int ireason, bc_lo, bc_hi, bytes; 805 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 806 807 /* Abuse qc->result_tf for temp storage of intermediate TF 808 * here to save some kernel stack usage. 809 * For normal completion, qc->result_tf is not relevant. For 810 * error, qc->result_tf is later overwritten by ata_qc_complete(). 811 * So, the correctness of qc->result_tf is not affected. 812 */ 813 ap->ops->sff_tf_read(ap, &qc->result_tf); 814 ireason = qc->result_tf.nsect; 815 bc_lo = qc->result_tf.lbam; 816 bc_hi = qc->result_tf.lbah; 817 bytes = (bc_hi << 8) | bc_lo; 818 819 /* shall be cleared to zero, indicating xfer of data */ 820 if (unlikely(ireason & ATAPI_COD)) 821 goto atapi_check; 822 823 /* make sure transfer direction matches expected */ 824 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 825 if (unlikely(do_write != i_write)) 826 goto atapi_check; 827 828 if (unlikely(!bytes)) 829 goto atapi_check; 830 831 if (unlikely(__atapi_pio_bytes(qc, bytes))) 832 goto err_out; 833 ata_sff_sync(ap); /* flush */ 834 835 return; 836 837 atapi_check: 838 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 839 ireason, bytes); 840 err_out: 841 qc->err_mask |= AC_ERR_HSM; 842 ap->hsm_task_state = HSM_ST_ERR; 843 } 844 845 /** 846 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 847 * @ap: the target ata_port 848 * @qc: qc on going 849 * 850 * RETURNS: 851 * 1 if ok in workqueue, 0 otherwise. 852 */ 853 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 854 struct ata_queued_cmd *qc) 855 { 856 if (qc->tf.flags & ATA_TFLAG_POLLING) 857 return 1; 858 859 if (ap->hsm_task_state == HSM_ST_FIRST) { 860 if (qc->tf.protocol == ATA_PROT_PIO && 861 (qc->tf.flags & ATA_TFLAG_WRITE)) 862 return 1; 863 864 if (ata_is_atapi(qc->tf.protocol) && 865 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 866 return 1; 867 } 868 869 return 0; 870 } 871 872 /** 873 * ata_hsm_qc_complete - finish a qc running on standard HSM 874 * @qc: Command to complete 875 * @in_wq: 1 if called from workqueue, 0 otherwise 876 * 877 * Finish @qc which is running on standard HSM. 878 * 879 * LOCKING: 880 * If @in_wq is zero, spin_lock_irqsave(host lock). 881 * Otherwise, none on entry and grabs host lock. 882 */ 883 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 884 { 885 struct ata_port *ap = qc->ap; 886 887 if (in_wq) { 888 /* EH might have kicked in while host lock is released. */ 889 qc = ata_qc_from_tag(ap, qc->tag); 890 if (qc) { 891 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 892 ata_sff_irq_on(ap); 893 ata_qc_complete(qc); 894 } else 895 ata_port_freeze(ap); 896 } 897 } else { 898 if (likely(!(qc->err_mask & AC_ERR_HSM))) 899 ata_qc_complete(qc); 900 else 901 ata_port_freeze(ap); 902 } 903 } 904 905 /** 906 * ata_sff_hsm_move - move the HSM to the next state. 907 * @ap: the target ata_port 908 * @qc: qc on going 909 * @status: current device status 910 * @in_wq: 1 if called from workqueue, 0 otherwise 911 * 912 * RETURNS: 913 * 1 when poll next status needed, 0 otherwise. 914 */ 915 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 916 u8 status, int in_wq) 917 { 918 struct ata_link *link = qc->dev->link; 919 struct ata_eh_info *ehi = &link->eh_info; 920 int poll_next; 921 922 lockdep_assert_held(ap->lock); 923 924 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 925 926 /* Make sure ata_sff_qc_issue() does not throw things 927 * like DMA polling into the workqueue. Notice that 928 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 929 */ 930 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 931 932 fsm_start: 933 trace_ata_sff_hsm_state(qc, status); 934 935 switch (ap->hsm_task_state) { 936 case HSM_ST_FIRST: 937 /* Send first data block or PACKET CDB */ 938 939 /* If polling, we will stay in the work queue after 940 * sending the data. Otherwise, interrupt handler 941 * takes over after sending the data. 942 */ 943 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 944 945 /* check device status */ 946 if (unlikely((status & ATA_DRQ) == 0)) { 947 /* handle BSY=0, DRQ=0 as error */ 948 if (likely(status & (ATA_ERR | ATA_DF))) 949 /* device stops HSM for abort/error */ 950 qc->err_mask |= AC_ERR_DEV; 951 else { 952 /* HSM violation. Let EH handle this */ 953 ata_ehi_push_desc(ehi, 954 "ST_FIRST: !(DRQ|ERR|DF)"); 955 qc->err_mask |= AC_ERR_HSM; 956 } 957 958 ap->hsm_task_state = HSM_ST_ERR; 959 goto fsm_start; 960 } 961 962 /* Device should not ask for data transfer (DRQ=1) 963 * when it finds something wrong. 964 * We ignore DRQ here and stop the HSM by 965 * changing hsm_task_state to HSM_ST_ERR and 966 * let the EH abort the command or reset the device. 967 */ 968 if (unlikely(status & (ATA_ERR | ATA_DF))) { 969 /* Some ATAPI tape drives forget to clear the ERR bit 970 * when doing the next command (mostly request sense). 971 * We ignore ERR here to workaround and proceed sending 972 * the CDB. 973 */ 974 if (!(qc->dev->quirks & ATA_QUIRK_STUCK_ERR)) { 975 ata_ehi_push_desc(ehi, "ST_FIRST: " 976 "DRQ=1 with device error, " 977 "dev_stat 0x%X", status); 978 qc->err_mask |= AC_ERR_HSM; 979 ap->hsm_task_state = HSM_ST_ERR; 980 goto fsm_start; 981 } 982 } 983 984 if (qc->tf.protocol == ATA_PROT_PIO) { 985 /* PIO data out protocol. 986 * send first data block. 987 */ 988 989 /* ata_pio_sectors() might change the state 990 * to HSM_ST_LAST. so, the state is changed here 991 * before ata_pio_sectors(). 992 */ 993 ap->hsm_task_state = HSM_ST; 994 ata_pio_sectors(qc); 995 } else 996 /* send CDB */ 997 atapi_send_cdb(ap, qc); 998 999 /* if polling, ata_sff_pio_task() handles the rest. 1000 * otherwise, interrupt handler takes over from here. 1001 */ 1002 break; 1003 1004 case HSM_ST: 1005 /* complete command or read/write the data register */ 1006 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1007 /* ATAPI PIO protocol */ 1008 if ((status & ATA_DRQ) == 0) { 1009 /* No more data to transfer or device error. 1010 * Device error will be tagged in HSM_ST_LAST. 1011 */ 1012 ap->hsm_task_state = HSM_ST_LAST; 1013 goto fsm_start; 1014 } 1015 1016 /* Device should not ask for data transfer (DRQ=1) 1017 * when it finds something wrong. 1018 * We ignore DRQ here and stop the HSM by 1019 * changing hsm_task_state to HSM_ST_ERR and 1020 * let the EH abort the command or reset the device. 1021 */ 1022 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1023 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1024 "DRQ=1 with device error, " 1025 "dev_stat 0x%X", status); 1026 qc->err_mask |= AC_ERR_HSM; 1027 ap->hsm_task_state = HSM_ST_ERR; 1028 goto fsm_start; 1029 } 1030 1031 atapi_pio_bytes(qc); 1032 1033 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1034 /* bad ireason reported by device */ 1035 goto fsm_start; 1036 1037 } else { 1038 /* ATA PIO protocol */ 1039 if (unlikely((status & ATA_DRQ) == 0)) { 1040 /* handle BSY=0, DRQ=0 as error */ 1041 if (likely(status & (ATA_ERR | ATA_DF))) { 1042 /* device stops HSM for abort/error */ 1043 qc->err_mask |= AC_ERR_DEV; 1044 1045 /* If diagnostic failed and this is 1046 * IDENTIFY, it's likely a phantom 1047 * device. Mark hint. 1048 */ 1049 if (qc->dev->quirks & 1050 ATA_QUIRK_DIAGNOSTIC) 1051 qc->err_mask |= 1052 AC_ERR_NODEV_HINT; 1053 } else { 1054 /* HSM violation. Let EH handle this. 1055 * Phantom devices also trigger this 1056 * condition. Mark hint. 1057 */ 1058 ata_ehi_push_desc(ehi, "ST-ATA: " 1059 "DRQ=0 without device error, " 1060 "dev_stat 0x%X", status); 1061 qc->err_mask |= AC_ERR_HSM | 1062 AC_ERR_NODEV_HINT; 1063 } 1064 1065 ap->hsm_task_state = HSM_ST_ERR; 1066 goto fsm_start; 1067 } 1068 1069 /* For PIO reads, some devices may ask for 1070 * data transfer (DRQ=1) alone with ERR=1. 1071 * We respect DRQ here and transfer one 1072 * block of junk data before changing the 1073 * hsm_task_state to HSM_ST_ERR. 1074 * 1075 * For PIO writes, ERR=1 DRQ=1 doesn't make 1076 * sense since the data block has been 1077 * transferred to the device. 1078 */ 1079 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1080 /* data might be corrputed */ 1081 qc->err_mask |= AC_ERR_DEV; 1082 1083 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1084 ata_pio_sectors(qc); 1085 status = ata_wait_idle(ap); 1086 } 1087 1088 if (status & (ATA_BUSY | ATA_DRQ)) { 1089 ata_ehi_push_desc(ehi, "ST-ATA: " 1090 "BUSY|DRQ persists on ERR|DF, " 1091 "dev_stat 0x%X", status); 1092 qc->err_mask |= AC_ERR_HSM; 1093 } 1094 1095 /* There are oddball controllers with 1096 * status register stuck at 0x7f and 1097 * lbal/m/h at zero which makes it 1098 * pass all other presence detection 1099 * mechanisms we have. Set NODEV_HINT 1100 * for it. Kernel bz#7241. 1101 */ 1102 if (status == 0x7f) 1103 qc->err_mask |= AC_ERR_NODEV_HINT; 1104 1105 /* ata_pio_sectors() might change the 1106 * state to HSM_ST_LAST. so, the state 1107 * is changed after ata_pio_sectors(). 1108 */ 1109 ap->hsm_task_state = HSM_ST_ERR; 1110 goto fsm_start; 1111 } 1112 1113 ata_pio_sectors(qc); 1114 1115 if (ap->hsm_task_state == HSM_ST_LAST && 1116 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1117 /* all data read */ 1118 status = ata_wait_idle(ap); 1119 goto fsm_start; 1120 } 1121 } 1122 1123 poll_next = 1; 1124 break; 1125 1126 case HSM_ST_LAST: 1127 if (unlikely(!ata_ok(status))) { 1128 qc->err_mask |= __ac_err_mask(status); 1129 ap->hsm_task_state = HSM_ST_ERR; 1130 goto fsm_start; 1131 } 1132 1133 /* no more data to transfer */ 1134 trace_ata_sff_hsm_command_complete(qc, status); 1135 1136 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1137 1138 ap->hsm_task_state = HSM_ST_IDLE; 1139 1140 /* complete taskfile transaction */ 1141 ata_hsm_qc_complete(qc, in_wq); 1142 1143 poll_next = 0; 1144 break; 1145 1146 case HSM_ST_ERR: 1147 ap->hsm_task_state = HSM_ST_IDLE; 1148 1149 /* complete taskfile transaction */ 1150 ata_hsm_qc_complete(qc, in_wq); 1151 1152 poll_next = 0; 1153 break; 1154 default: 1155 poll_next = 0; 1156 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1157 ap->print_id, ap->hsm_task_state); 1158 } 1159 1160 return poll_next; 1161 } 1162 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1163 1164 void ata_sff_queue_work(struct work_struct *work) 1165 { 1166 queue_work(ata_sff_wq, work); 1167 } 1168 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1169 1170 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1171 { 1172 queue_delayed_work(ata_sff_wq, dwork, delay); 1173 } 1174 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1175 1176 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1177 { 1178 struct ata_port *ap = link->ap; 1179 1180 WARN_ON((ap->sff_pio_task_link != NULL) && 1181 (ap->sff_pio_task_link != link)); 1182 ap->sff_pio_task_link = link; 1183 1184 /* may fail if ata_sff_flush_pio_task() in progress */ 1185 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1186 } 1187 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1188 1189 void ata_sff_flush_pio_task(struct ata_port *ap) 1190 { 1191 trace_ata_sff_flush_pio_task(ap); 1192 1193 cancel_delayed_work_sync(&ap->sff_pio_task); 1194 1195 /* 1196 * We wanna reset the HSM state to IDLE. If we do so without 1197 * grabbing the port lock, critical sections protected by it which 1198 * expect the HSM state to stay stable may get surprised. For 1199 * example, we may set IDLE in between the time 1200 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1201 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1202 */ 1203 spin_lock_irq(ap->lock); 1204 ap->hsm_task_state = HSM_ST_IDLE; 1205 spin_unlock_irq(ap->lock); 1206 1207 ap->sff_pio_task_link = NULL; 1208 } 1209 1210 static void ata_sff_pio_task(struct work_struct *work) 1211 { 1212 struct ata_port *ap = 1213 container_of(work, struct ata_port, sff_pio_task.work); 1214 struct ata_link *link = ap->sff_pio_task_link; 1215 struct ata_queued_cmd *qc; 1216 u8 status; 1217 int poll_next; 1218 1219 spin_lock_irq(ap->lock); 1220 1221 BUG_ON(ap->sff_pio_task_link == NULL); 1222 /* qc can be NULL if timeout occurred */ 1223 qc = ata_qc_from_tag(ap, link->active_tag); 1224 if (!qc) { 1225 ap->sff_pio_task_link = NULL; 1226 goto out_unlock; 1227 } 1228 1229 fsm_start: 1230 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1231 1232 /* 1233 * This is purely heuristic. This is a fast path. 1234 * Sometimes when we enter, BSY will be cleared in 1235 * a chk-status or two. If not, the drive is probably seeking 1236 * or something. Snooze for a couple msecs, then 1237 * chk-status again. If still busy, queue delayed work. 1238 */ 1239 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1240 if (status & ATA_BUSY) { 1241 spin_unlock_irq(ap->lock); 1242 ata_msleep(ap, 2); 1243 spin_lock_irq(ap->lock); 1244 1245 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1246 if (status & ATA_BUSY) { 1247 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1248 goto out_unlock; 1249 } 1250 } 1251 1252 /* 1253 * hsm_move() may trigger another command to be processed. 1254 * clean the link beforehand. 1255 */ 1256 ap->sff_pio_task_link = NULL; 1257 /* move the HSM */ 1258 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1259 1260 /* another command or interrupt handler 1261 * may be running at this point. 1262 */ 1263 if (poll_next) 1264 goto fsm_start; 1265 out_unlock: 1266 spin_unlock_irq(ap->lock); 1267 } 1268 1269 /** 1270 * ata_sff_qc_issue - issue taskfile to a SFF controller 1271 * @qc: command to issue to device 1272 * 1273 * This function issues a PIO or NODATA command to a SFF 1274 * controller. 1275 * 1276 * LOCKING: 1277 * spin_lock_irqsave(host lock) 1278 * 1279 * RETURNS: 1280 * Zero on success, AC_ERR_* mask on failure 1281 */ 1282 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1283 { 1284 struct ata_port *ap = qc->ap; 1285 struct ata_link *link = qc->dev->link; 1286 1287 /* Use polling pio if the LLD doesn't handle 1288 * interrupt driven pio and atapi CDB interrupt. 1289 */ 1290 if (ap->flags & ATA_FLAG_PIO_POLLING) 1291 qc->tf.flags |= ATA_TFLAG_POLLING; 1292 1293 /* select the device */ 1294 ata_dev_select(ap, qc->dev->devno, 1, 0); 1295 1296 /* start the command */ 1297 switch (qc->tf.protocol) { 1298 case ATA_PROT_NODATA: 1299 if (qc->tf.flags & ATA_TFLAG_POLLING) 1300 ata_qc_set_polling(qc); 1301 1302 ata_tf_to_host(ap, &qc->tf, qc->tag); 1303 ap->hsm_task_state = HSM_ST_LAST; 1304 1305 if (qc->tf.flags & ATA_TFLAG_POLLING) 1306 ata_sff_queue_pio_task(link, 0); 1307 1308 break; 1309 1310 case ATA_PROT_PIO: 1311 if (qc->tf.flags & ATA_TFLAG_POLLING) 1312 ata_qc_set_polling(qc); 1313 1314 ata_tf_to_host(ap, &qc->tf, qc->tag); 1315 1316 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1317 /* PIO data out protocol */ 1318 ap->hsm_task_state = HSM_ST_FIRST; 1319 ata_sff_queue_pio_task(link, 0); 1320 1321 /* always send first data block using the 1322 * ata_sff_pio_task() codepath. 1323 */ 1324 } else { 1325 /* PIO data in protocol */ 1326 ap->hsm_task_state = HSM_ST; 1327 1328 if (qc->tf.flags & ATA_TFLAG_POLLING) 1329 ata_sff_queue_pio_task(link, 0); 1330 1331 /* if polling, ata_sff_pio_task() handles the 1332 * rest. otherwise, interrupt handler takes 1333 * over from here. 1334 */ 1335 } 1336 1337 break; 1338 1339 case ATAPI_PROT_PIO: 1340 case ATAPI_PROT_NODATA: 1341 if (qc->tf.flags & ATA_TFLAG_POLLING) 1342 ata_qc_set_polling(qc); 1343 1344 ata_tf_to_host(ap, &qc->tf, qc->tag); 1345 1346 ap->hsm_task_state = HSM_ST_FIRST; 1347 1348 /* send cdb by polling if no cdb interrupt */ 1349 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1350 (qc->tf.flags & ATA_TFLAG_POLLING)) 1351 ata_sff_queue_pio_task(link, 0); 1352 break; 1353 1354 default: 1355 return AC_ERR_SYSTEM; 1356 } 1357 1358 return 0; 1359 } 1360 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1361 1362 /** 1363 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1364 * @qc: qc to fill result TF for 1365 * 1366 * @qc is finished and result TF needs to be filled. Fill it 1367 * using ->sff_tf_read. 1368 * 1369 * LOCKING: 1370 * spin_lock_irqsave(host lock) 1371 */ 1372 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1373 { 1374 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1375 } 1376 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1377 1378 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1379 { 1380 ap->stats.idle_irq++; 1381 1382 #ifdef ATA_IRQ_TRAP 1383 if ((ap->stats.idle_irq % 1000) == 0) { 1384 ap->ops->sff_check_status(ap); 1385 if (ap->ops->sff_irq_clear) 1386 ap->ops->sff_irq_clear(ap); 1387 ata_port_warn(ap, "irq trap\n"); 1388 return 1; 1389 } 1390 #endif 1391 return 0; /* irq not handled */ 1392 } 1393 1394 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1395 struct ata_queued_cmd *qc, 1396 bool hsmv_on_idle) 1397 { 1398 u8 status; 1399 1400 trace_ata_sff_port_intr(qc, hsmv_on_idle); 1401 1402 /* Check whether we are expecting interrupt in this state */ 1403 switch (ap->hsm_task_state) { 1404 case HSM_ST_FIRST: 1405 /* Some pre-ATAPI-4 devices assert INTRQ 1406 * at this state when ready to receive CDB. 1407 */ 1408 1409 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1410 * The flag was turned on only for atapi devices. No 1411 * need to check ata_is_atapi(qc->tf.protocol) again. 1412 */ 1413 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1414 return ata_sff_idle_irq(ap); 1415 break; 1416 case HSM_ST_IDLE: 1417 return ata_sff_idle_irq(ap); 1418 default: 1419 break; 1420 } 1421 1422 /* check main status, clearing INTRQ if needed */ 1423 status = ata_sff_irq_status(ap); 1424 if (status & ATA_BUSY) { 1425 if (hsmv_on_idle) { 1426 /* BMDMA engine is already stopped, we're screwed */ 1427 qc->err_mask |= AC_ERR_HSM; 1428 ap->hsm_task_state = HSM_ST_ERR; 1429 } else 1430 return ata_sff_idle_irq(ap); 1431 } 1432 1433 /* clear irq events */ 1434 if (ap->ops->sff_irq_clear) 1435 ap->ops->sff_irq_clear(ap); 1436 1437 ata_sff_hsm_move(ap, qc, status, 0); 1438 1439 return 1; /* irq handled */ 1440 } 1441 1442 /** 1443 * ata_sff_port_intr - Handle SFF port interrupt 1444 * @ap: Port on which interrupt arrived (possibly...) 1445 * @qc: Taskfile currently active in engine 1446 * 1447 * Handle port interrupt for given queued command. 1448 * 1449 * LOCKING: 1450 * spin_lock_irqsave(host lock) 1451 * 1452 * RETURNS: 1453 * One if interrupt was handled, zero if not (shared irq). 1454 */ 1455 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1456 { 1457 return __ata_sff_port_intr(ap, qc, false); 1458 } 1459 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1460 1461 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1462 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1463 { 1464 struct ata_host *host = dev_instance; 1465 bool retried = false; 1466 unsigned int i; 1467 unsigned int handled, idle, polling; 1468 unsigned long flags; 1469 1470 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1471 spin_lock_irqsave(&host->lock, flags); 1472 1473 retry: 1474 handled = idle = polling = 0; 1475 for (i = 0; i < host->n_ports; i++) { 1476 struct ata_port *ap = host->ports[i]; 1477 struct ata_queued_cmd *qc; 1478 1479 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1480 if (qc) { 1481 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1482 handled |= port_intr(ap, qc); 1483 else 1484 polling |= 1 << i; 1485 } else 1486 idle |= 1 << i; 1487 } 1488 1489 /* 1490 * If no port was expecting IRQ but the controller is actually 1491 * asserting IRQ line, nobody cared will ensue. Check IRQ 1492 * pending status if available and clear spurious IRQ. 1493 */ 1494 if (!handled && !retried) { 1495 bool retry = false; 1496 1497 for (i = 0; i < host->n_ports; i++) { 1498 struct ata_port *ap = host->ports[i]; 1499 1500 if (polling & (1 << i)) 1501 continue; 1502 1503 if (!ap->ops->sff_irq_check || 1504 !ap->ops->sff_irq_check(ap)) 1505 continue; 1506 1507 if (idle & (1 << i)) { 1508 ap->ops->sff_check_status(ap); 1509 if (ap->ops->sff_irq_clear) 1510 ap->ops->sff_irq_clear(ap); 1511 } else { 1512 /* clear INTRQ and check if BUSY cleared */ 1513 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1514 retry |= true; 1515 /* 1516 * With command in flight, we can't do 1517 * sff_irq_clear() w/o racing with completion. 1518 */ 1519 } 1520 } 1521 1522 if (retry) { 1523 retried = true; 1524 goto retry; 1525 } 1526 } 1527 1528 spin_unlock_irqrestore(&host->lock, flags); 1529 1530 return IRQ_RETVAL(handled); 1531 } 1532 1533 /** 1534 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1535 * @irq: irq line (unused) 1536 * @dev_instance: pointer to our ata_host information structure 1537 * 1538 * Default interrupt handler for PCI IDE devices. Calls 1539 * ata_sff_port_intr() for each port that is not disabled. 1540 * 1541 * LOCKING: 1542 * Obtains host lock during operation. 1543 * 1544 * RETURNS: 1545 * IRQ_NONE or IRQ_HANDLED. 1546 */ 1547 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1548 { 1549 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1550 } 1551 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1552 1553 /** 1554 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1555 * @ap: port that appears to have timed out 1556 * 1557 * Called from the libata error handlers when the core code suspects 1558 * an interrupt has been lost. If it has complete anything we can and 1559 * then return. Interface must support altstatus for this faster 1560 * recovery to occur. 1561 * 1562 * Locking: 1563 * Caller holds host lock 1564 */ 1565 1566 void ata_sff_lost_interrupt(struct ata_port *ap) 1567 { 1568 u8 status = 0; 1569 struct ata_queued_cmd *qc; 1570 1571 /* Only one outstanding command per SFF channel */ 1572 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1573 /* We cannot lose an interrupt on a non-existent or polled command */ 1574 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1575 return; 1576 /* See if the controller thinks it is still busy - if so the command 1577 isn't a lost IRQ but is still in progress */ 1578 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status))) 1579 return; 1580 if (status & ATA_BUSY) 1581 return; 1582 1583 /* There was a command running, we are no longer busy and we have 1584 no interrupt. */ 1585 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status); 1586 /* Run the host interrupt logic as if the interrupt had not been 1587 lost */ 1588 ata_sff_port_intr(ap, qc); 1589 } 1590 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1591 1592 /** 1593 * ata_sff_freeze - Freeze SFF controller port 1594 * @ap: port to freeze 1595 * 1596 * Freeze SFF controller port. 1597 * 1598 * LOCKING: 1599 * Inherited from caller. 1600 */ 1601 void ata_sff_freeze(struct ata_port *ap) 1602 { 1603 ap->ctl |= ATA_NIEN; 1604 ap->last_ctl = ap->ctl; 1605 1606 ata_sff_set_devctl(ap, ap->ctl); 1607 1608 /* Under certain circumstances, some controllers raise IRQ on 1609 * ATA_NIEN manipulation. Also, many controllers fail to mask 1610 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1611 */ 1612 ap->ops->sff_check_status(ap); 1613 1614 if (ap->ops->sff_irq_clear) 1615 ap->ops->sff_irq_clear(ap); 1616 } 1617 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1618 1619 /** 1620 * ata_sff_thaw - Thaw SFF controller port 1621 * @ap: port to thaw 1622 * 1623 * Thaw SFF controller port. 1624 * 1625 * LOCKING: 1626 * Inherited from caller. 1627 */ 1628 void ata_sff_thaw(struct ata_port *ap) 1629 { 1630 /* clear & re-enable interrupts */ 1631 ap->ops->sff_check_status(ap); 1632 if (ap->ops->sff_irq_clear) 1633 ap->ops->sff_irq_clear(ap); 1634 ata_sff_irq_on(ap); 1635 } 1636 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1637 1638 /** 1639 * ata_sff_prereset - prepare SFF link for reset 1640 * @link: SFF link to be reset 1641 * @deadline: deadline jiffies for the operation 1642 * 1643 * SFF link @link is about to be reset. Initialize it. It first 1644 * calls ata_std_prereset() and wait for !BSY if the port is 1645 * being softreset. 1646 * 1647 * LOCKING: 1648 * Kernel thread context (may sleep) 1649 * 1650 * RETURNS: 1651 * Always 0. 1652 */ 1653 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1654 { 1655 struct ata_eh_context *ehc = &link->eh_context; 1656 int rc; 1657 1658 /* The standard prereset is best-effort and always returns 0 */ 1659 ata_std_prereset(link, deadline); 1660 1661 /* if we're about to do hardreset, nothing more to do */ 1662 if (ehc->i.action & ATA_EH_HARDRESET) 1663 return 0; 1664 1665 /* wait for !BSY if we don't know that no device is attached */ 1666 if (!ata_link_offline(link)) { 1667 rc = ata_sff_wait_ready(link, deadline); 1668 if (rc && rc != -ENODEV) { 1669 ata_link_warn(link, 1670 "device not ready (errno=%d), forcing hardreset\n", 1671 rc); 1672 ehc->i.action |= ATA_EH_HARDRESET; 1673 } 1674 } 1675 1676 return 0; 1677 } 1678 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1679 1680 /** 1681 * ata_devchk - PATA device presence detection 1682 * @ap: ATA channel to examine 1683 * @device: Device to examine (starting at zero) 1684 * 1685 * This technique was originally described in 1686 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1687 * later found its way into the ATA/ATAPI spec. 1688 * 1689 * Write a pattern to the ATA shadow registers, 1690 * and if a device is present, it will respond by 1691 * correctly storing and echoing back the 1692 * ATA shadow register contents. 1693 * 1694 * RETURN: 1695 * true if device is present, false if not. 1696 * 1697 * LOCKING: 1698 * caller. 1699 */ 1700 static bool ata_devchk(struct ata_port *ap, unsigned int device) 1701 { 1702 struct ata_ioports *ioaddr = &ap->ioaddr; 1703 u8 nsect, lbal; 1704 1705 ap->ops->sff_dev_select(ap, device); 1706 1707 iowrite8(0x55, ioaddr->nsect_addr); 1708 iowrite8(0xaa, ioaddr->lbal_addr); 1709 1710 iowrite8(0xaa, ioaddr->nsect_addr); 1711 iowrite8(0x55, ioaddr->lbal_addr); 1712 1713 iowrite8(0x55, ioaddr->nsect_addr); 1714 iowrite8(0xaa, ioaddr->lbal_addr); 1715 1716 nsect = ioread8(ioaddr->nsect_addr); 1717 lbal = ioread8(ioaddr->lbal_addr); 1718 1719 if ((nsect == 0x55) && (lbal == 0xaa)) 1720 return true; /* we found a device */ 1721 1722 return false; /* nothing found */ 1723 } 1724 1725 /** 1726 * ata_sff_dev_classify - Parse returned ATA device signature 1727 * @dev: ATA device to classify (starting at zero) 1728 * @present: device seems present 1729 * @r_err: Value of error register on completion 1730 * 1731 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1732 * an ATA/ATAPI-defined set of values is placed in the ATA 1733 * shadow registers, indicating the results of device detection 1734 * and diagnostics. 1735 * 1736 * Select the ATA device, and read the values from the ATA shadow 1737 * registers. Then parse according to the Error register value, 1738 * and the spec-defined values examined by ata_dev_classify(). 1739 * 1740 * LOCKING: 1741 * caller. 1742 * 1743 * RETURNS: 1744 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1745 */ 1746 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1747 u8 *r_err) 1748 { 1749 struct ata_port *ap = dev->link->ap; 1750 struct ata_taskfile tf; 1751 unsigned int class; 1752 u8 err; 1753 1754 ap->ops->sff_dev_select(ap, dev->devno); 1755 1756 memset(&tf, 0, sizeof(tf)); 1757 1758 ap->ops->sff_tf_read(ap, &tf); 1759 err = tf.error; 1760 if (r_err) 1761 *r_err = err; 1762 1763 /* see if device passed diags: continue and warn later */ 1764 if (err == 0) 1765 /* diagnostic fail : do nothing _YET_ */ 1766 dev->quirks |= ATA_QUIRK_DIAGNOSTIC; 1767 else if (err == 1) 1768 /* do nothing */ ; 1769 else if ((dev->devno == 0) && (err == 0x81)) 1770 /* do nothing */ ; 1771 else 1772 return ATA_DEV_NONE; 1773 1774 /* determine if device is ATA or ATAPI */ 1775 class = ata_port_classify(ap, &tf); 1776 switch (class) { 1777 case ATA_DEV_UNKNOWN: 1778 /* 1779 * If the device failed diagnostic, it's likely to 1780 * have reported incorrect device signature too. 1781 * Assume ATA device if the device seems present but 1782 * device signature is invalid with diagnostic 1783 * failure. 1784 */ 1785 if (present && (dev->quirks & ATA_QUIRK_DIAGNOSTIC)) 1786 class = ATA_DEV_ATA; 1787 else 1788 class = ATA_DEV_NONE; 1789 break; 1790 case ATA_DEV_ATA: 1791 if (ap->ops->sff_check_status(ap) == 0) 1792 class = ATA_DEV_NONE; 1793 break; 1794 } 1795 return class; 1796 } 1797 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1798 1799 /** 1800 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1801 * @link: SFF link which is just reset 1802 * @devmask: mask of present devices 1803 * @deadline: deadline jiffies for the operation 1804 * 1805 * Wait devices attached to SFF @link to become ready after 1806 * reset. It contains preceding 150ms wait to avoid accessing TF 1807 * status register too early. 1808 * 1809 * LOCKING: 1810 * Kernel thread context (may sleep). 1811 * 1812 * RETURNS: 1813 * 0 on success, -ENODEV if some or all of devices in @devmask 1814 * don't seem to exist. -errno on other errors. 1815 */ 1816 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1817 unsigned long deadline) 1818 { 1819 struct ata_port *ap = link->ap; 1820 struct ata_ioports *ioaddr = &ap->ioaddr; 1821 unsigned int dev0 = devmask & (1 << 0); 1822 unsigned int dev1 = devmask & (1 << 1); 1823 int rc, ret = 0; 1824 1825 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1826 1827 /* always check readiness of the master device */ 1828 rc = ata_sff_wait_ready(link, deadline); 1829 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1830 * and TF status is 0xff, bail out on it too. 1831 */ 1832 if (rc) 1833 return rc; 1834 1835 /* if device 1 was found in ata_devchk, wait for register 1836 * access briefly, then wait for BSY to clear. 1837 */ 1838 if (dev1) { 1839 int i; 1840 1841 ap->ops->sff_dev_select(ap, 1); 1842 1843 /* Wait for register access. Some ATAPI devices fail 1844 * to set nsect/lbal after reset, so don't waste too 1845 * much time on it. We're gonna wait for !BSY anyway. 1846 */ 1847 for (i = 0; i < 2; i++) { 1848 u8 nsect, lbal; 1849 1850 nsect = ioread8(ioaddr->nsect_addr); 1851 lbal = ioread8(ioaddr->lbal_addr); 1852 if ((nsect == 1) && (lbal == 1)) 1853 break; 1854 ata_msleep(ap, 50); /* give drive a breather */ 1855 } 1856 1857 rc = ata_sff_wait_ready(link, deadline); 1858 if (rc) { 1859 if (rc != -ENODEV) 1860 return rc; 1861 ret = rc; 1862 } 1863 } 1864 1865 /* is all this really necessary? */ 1866 ap->ops->sff_dev_select(ap, 0); 1867 if (dev1) 1868 ap->ops->sff_dev_select(ap, 1); 1869 if (dev0) 1870 ap->ops->sff_dev_select(ap, 0); 1871 1872 return ret; 1873 } 1874 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1875 1876 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1877 unsigned long deadline) 1878 { 1879 struct ata_ioports *ioaddr = &ap->ioaddr; 1880 1881 if (ap->ioaddr.ctl_addr) { 1882 /* software reset. causes dev0 to be selected */ 1883 iowrite8(ap->ctl, ioaddr->ctl_addr); 1884 udelay(20); /* FIXME: flush */ 1885 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1886 udelay(20); /* FIXME: flush */ 1887 iowrite8(ap->ctl, ioaddr->ctl_addr); 1888 ap->last_ctl = ap->ctl; 1889 } 1890 1891 /* wait the port to become ready */ 1892 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1893 } 1894 1895 /** 1896 * ata_sff_softreset - reset host port via ATA SRST 1897 * @link: ATA link to reset 1898 * @classes: resulting classes of attached devices 1899 * @deadline: deadline jiffies for the operation 1900 * 1901 * Reset host port using ATA SRST. 1902 * 1903 * LOCKING: 1904 * Kernel thread context (may sleep) 1905 * 1906 * RETURNS: 1907 * 0 on success, -errno otherwise. 1908 */ 1909 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1910 unsigned long deadline) 1911 { 1912 struct ata_port *ap = link->ap; 1913 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1914 unsigned int devmask = 0; 1915 int rc; 1916 u8 err; 1917 1918 /* determine if device 0/1 are present */ 1919 if (ata_devchk(ap, 0)) 1920 devmask |= (1 << 0); 1921 if (slave_possible && ata_devchk(ap, 1)) 1922 devmask |= (1 << 1); 1923 1924 /* select device 0 again */ 1925 ap->ops->sff_dev_select(ap, 0); 1926 1927 /* issue bus reset */ 1928 rc = ata_bus_softreset(ap, devmask, deadline); 1929 /* if link is occupied, -ENODEV too is an error */ 1930 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1931 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 1932 return rc; 1933 } 1934 1935 /* determine by signature whether we have ATA or ATAPI devices */ 1936 classes[0] = ata_sff_dev_classify(&link->device[0], 1937 devmask & (1 << 0), &err); 1938 if (slave_possible && err != 0x81) 1939 classes[1] = ata_sff_dev_classify(&link->device[1], 1940 devmask & (1 << 1), &err); 1941 1942 return 0; 1943 } 1944 EXPORT_SYMBOL_GPL(ata_sff_softreset); 1945 1946 /** 1947 * sata_sff_hardreset - reset host port via SATA phy reset 1948 * @link: link to reset 1949 * @class: resulting class of attached device 1950 * @deadline: deadline jiffies for the operation 1951 * 1952 * SATA phy-reset host port using DET bits of SControl register, 1953 * wait for !BSY and classify the attached device. 1954 * 1955 * LOCKING: 1956 * Kernel thread context (may sleep) 1957 * 1958 * RETURNS: 1959 * 0 on success, -errno otherwise. 1960 */ 1961 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 1962 unsigned long deadline) 1963 { 1964 struct ata_eh_context *ehc = &link->eh_context; 1965 const unsigned int *timing = sata_ehc_deb_timing(ehc); 1966 bool online; 1967 int rc; 1968 1969 rc = sata_link_hardreset(link, timing, deadline, &online, 1970 ata_sff_check_ready); 1971 if (online) 1972 *class = ata_sff_dev_classify(link->device, 1, NULL); 1973 1974 return rc; 1975 } 1976 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 1977 1978 /** 1979 * ata_sff_postreset - SFF postreset callback 1980 * @link: the target SFF ata_link 1981 * @classes: classes of attached devices 1982 * 1983 * This function is invoked after a successful reset. It first 1984 * calls ata_std_postreset() and performs SFF specific postreset 1985 * processing. 1986 * 1987 * LOCKING: 1988 * Kernel thread context (may sleep) 1989 */ 1990 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 1991 { 1992 struct ata_port *ap = link->ap; 1993 1994 ata_std_postreset(link, classes); 1995 1996 /* is double-select really necessary? */ 1997 if (classes[0] != ATA_DEV_NONE) 1998 ap->ops->sff_dev_select(ap, 1); 1999 if (classes[1] != ATA_DEV_NONE) 2000 ap->ops->sff_dev_select(ap, 0); 2001 2002 /* bail out if no device is present */ 2003 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) 2004 return; 2005 2006 /* set up device control */ 2007 if (ata_sff_set_devctl(ap, ap->ctl)) 2008 ap->last_ctl = ap->ctl; 2009 } 2010 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2011 2012 /** 2013 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2014 * @qc: command 2015 * 2016 * Drain the FIFO and device of any stuck data following a command 2017 * failing to complete. In some cases this is necessary before a 2018 * reset will recover the device. 2019 * 2020 */ 2021 2022 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2023 { 2024 int count; 2025 struct ata_port *ap; 2026 2027 /* We only need to flush incoming data when a command was running */ 2028 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2029 return; 2030 2031 ap = qc->ap; 2032 /* Drain up to 64K of data before we give up this recovery method */ 2033 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2034 && count < 65536; count += 2) 2035 ioread16(ap->ioaddr.data_addr); 2036 2037 if (count) 2038 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2039 2040 } 2041 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2042 2043 /** 2044 * ata_sff_error_handler - Stock error handler for SFF controller 2045 * @ap: port to handle error for 2046 * 2047 * Stock error handler for SFF controller. It can handle both 2048 * PATA and SATA controllers. Many controllers should be able to 2049 * use this EH as-is or with some added handling before and 2050 * after. 2051 * 2052 * LOCKING: 2053 * Kernel thread context (may sleep) 2054 */ 2055 void ata_sff_error_handler(struct ata_port *ap) 2056 { 2057 ata_reset_fn_t softreset = ap->ops->softreset; 2058 ata_reset_fn_t hardreset = ap->ops->hardreset; 2059 struct ata_queued_cmd *qc; 2060 unsigned long flags; 2061 2062 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2063 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2064 qc = NULL; 2065 2066 spin_lock_irqsave(ap->lock, flags); 2067 2068 /* 2069 * We *MUST* do FIFO draining before we issue a reset as 2070 * several devices helpfully clear their internal state and 2071 * will lock solid if we touch the data port post reset. Pass 2072 * qc in case anyone wants to do different PIO/DMA recovery or 2073 * has per command fixups 2074 */ 2075 if (ap->ops->sff_drain_fifo) 2076 ap->ops->sff_drain_fifo(qc); 2077 2078 spin_unlock_irqrestore(ap->lock, flags); 2079 2080 /* ignore built-in hardresets if SCR access is not available */ 2081 if ((hardreset == sata_std_hardreset || 2082 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2083 hardreset = NULL; 2084 2085 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2086 ap->ops->postreset); 2087 } 2088 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2089 2090 /** 2091 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2092 * @ioaddr: IO address structure to be initialized 2093 * 2094 * Utility function which initializes data_addr, error_addr, 2095 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2096 * device_addr, status_addr, and command_addr to standard offsets 2097 * relative to cmd_addr. 2098 * 2099 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2100 */ 2101 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2102 { 2103 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2104 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2105 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2106 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2107 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2108 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2109 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2110 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2111 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2112 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2113 } 2114 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2115 2116 #ifdef CONFIG_PCI 2117 2118 static bool ata_resources_present(struct pci_dev *pdev, int port) 2119 { 2120 int i; 2121 2122 /* Check the PCI resources for this channel are enabled */ 2123 port *= 2; 2124 for (i = 0; i < 2; i++) { 2125 if (pci_resource_start(pdev, port + i) == 0 || 2126 pci_resource_len(pdev, port + i) == 0) 2127 return false; 2128 } 2129 return true; 2130 } 2131 2132 /** 2133 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2134 * @host: target ATA host 2135 * 2136 * Acquire native PCI ATA resources for @host and initialize the 2137 * first two ports of @host accordingly. Ports marked dummy are 2138 * skipped and allocation failure makes the port dummy. 2139 * 2140 * Note that native PCI resources are valid even for legacy hosts 2141 * as we fix up pdev resources array early in boot, so this 2142 * function can be used for both native and legacy SFF hosts. 2143 * 2144 * LOCKING: 2145 * Inherited from calling layer (may sleep). 2146 * 2147 * RETURNS: 2148 * 0 if at least one port is initialized, -ENODEV if no port is 2149 * available. 2150 */ 2151 int ata_pci_sff_init_host(struct ata_host *host) 2152 { 2153 struct device *gdev = host->dev; 2154 struct pci_dev *pdev = to_pci_dev(gdev); 2155 unsigned int mask = 0; 2156 int i, rc; 2157 2158 /* request, iomap BARs and init port addresses accordingly */ 2159 for (i = 0; i < 2; i++) { 2160 struct ata_port *ap = host->ports[i]; 2161 int base = i * 2; 2162 void __iomem * const *iomap; 2163 2164 if (ata_port_is_dummy(ap)) 2165 continue; 2166 2167 /* Discard disabled ports. Some controllers show 2168 * their unused channels this way. Disabled ports are 2169 * made dummy. 2170 */ 2171 if (!ata_resources_present(pdev, i)) { 2172 ap->ops = &ata_dummy_port_ops; 2173 continue; 2174 } 2175 2176 rc = pcim_iomap_regions(pdev, 0x3 << base, 2177 dev_driver_string(gdev)); 2178 if (rc) { 2179 dev_warn(gdev, 2180 "failed to request/iomap BARs for port %d (errno=%d)\n", 2181 i, rc); 2182 if (rc == -EBUSY) 2183 pcim_pin_device(pdev); 2184 ap->ops = &ata_dummy_port_ops; 2185 continue; 2186 } 2187 host->iomap = iomap = pcim_iomap_table(pdev); 2188 2189 ap->ioaddr.cmd_addr = iomap[base]; 2190 ap->ioaddr.altstatus_addr = 2191 ap->ioaddr.ctl_addr = (void __iomem *) 2192 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2193 ata_sff_std_ports(&ap->ioaddr); 2194 2195 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2196 (unsigned long long)pci_resource_start(pdev, base), 2197 (unsigned long long)pci_resource_start(pdev, base + 1)); 2198 2199 mask |= 1 << i; 2200 } 2201 2202 if (!mask) { 2203 dev_err(gdev, "no available native port\n"); 2204 return -ENODEV; 2205 } 2206 2207 return 0; 2208 } 2209 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2210 2211 /** 2212 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2213 * @pdev: target PCI device 2214 * @ppi: array of port_info, must be enough for two ports 2215 * @r_host: out argument for the initialized ATA host 2216 * 2217 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2218 * all PCI resources and initialize it accordingly in one go. 2219 * 2220 * LOCKING: 2221 * Inherited from calling layer (may sleep). 2222 * 2223 * RETURNS: 2224 * 0 on success, -errno otherwise. 2225 */ 2226 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2227 const struct ata_port_info * const *ppi, 2228 struct ata_host **r_host) 2229 { 2230 struct ata_host *host; 2231 int rc; 2232 2233 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2234 return -ENOMEM; 2235 2236 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2237 if (!host) { 2238 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2239 rc = -ENOMEM; 2240 goto err_out; 2241 } 2242 2243 rc = ata_pci_sff_init_host(host); 2244 if (rc) 2245 goto err_out; 2246 2247 devres_remove_group(&pdev->dev, NULL); 2248 *r_host = host; 2249 return 0; 2250 2251 err_out: 2252 devres_release_group(&pdev->dev, NULL); 2253 return rc; 2254 } 2255 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2256 2257 /** 2258 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2259 * @host: target SFF ATA host 2260 * @irq_handler: irq_handler used when requesting IRQ(s) 2261 * @sht: scsi_host_template to use when registering the host 2262 * 2263 * This is the counterpart of ata_host_activate() for SFF ATA 2264 * hosts. This separate helper is necessary because SFF hosts 2265 * use two separate interrupts in legacy mode. 2266 * 2267 * LOCKING: 2268 * Inherited from calling layer (may sleep). 2269 * 2270 * RETURNS: 2271 * 0 on success, -errno otherwise. 2272 */ 2273 int ata_pci_sff_activate_host(struct ata_host *host, 2274 irq_handler_t irq_handler, 2275 const struct scsi_host_template *sht) 2276 { 2277 struct device *dev = host->dev; 2278 struct pci_dev *pdev = to_pci_dev(dev); 2279 const char *drv_name = dev_driver_string(host->dev); 2280 int legacy_mode = 0, rc; 2281 2282 rc = ata_host_start(host); 2283 if (rc) 2284 return rc; 2285 2286 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2287 u8 tmp8, mask = 0; 2288 2289 /* 2290 * ATA spec says we should use legacy mode when one 2291 * port is in legacy mode, but disabled ports on some 2292 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2293 * on which the secondary port is not wired, so 2294 * ignore ports that are marked as 'dummy' during 2295 * this check 2296 */ 2297 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2298 if (!ata_port_is_dummy(host->ports[0])) 2299 mask |= (1 << 0); 2300 if (!ata_port_is_dummy(host->ports[1])) 2301 mask |= (1 << 2); 2302 if ((tmp8 & mask) != mask) 2303 legacy_mode = 1; 2304 } 2305 2306 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2307 return -ENOMEM; 2308 2309 if (!legacy_mode && pdev->irq) { 2310 int i; 2311 2312 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2313 IRQF_SHARED, drv_name, host); 2314 if (rc) 2315 goto out; 2316 2317 for (i = 0; i < 2; i++) { 2318 if (ata_port_is_dummy(host->ports[i])) 2319 continue; 2320 ata_port_desc_misc(host->ports[i], pdev->irq); 2321 } 2322 } else if (legacy_mode) { 2323 if (!ata_port_is_dummy(host->ports[0])) { 2324 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2325 irq_handler, IRQF_SHARED, 2326 drv_name, host); 2327 if (rc) 2328 goto out; 2329 2330 ata_port_desc_misc(host->ports[0], 2331 ATA_PRIMARY_IRQ(pdev)); 2332 } 2333 2334 if (!ata_port_is_dummy(host->ports[1])) { 2335 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2336 irq_handler, IRQF_SHARED, 2337 drv_name, host); 2338 if (rc) 2339 goto out; 2340 2341 ata_port_desc_misc(host->ports[1], 2342 ATA_SECONDARY_IRQ(pdev)); 2343 } 2344 } 2345 2346 rc = ata_host_register(host, sht); 2347 out: 2348 if (rc == 0) 2349 devres_remove_group(dev, NULL); 2350 else 2351 devres_release_group(dev, NULL); 2352 2353 return rc; 2354 } 2355 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2356 2357 static const struct ata_port_info *ata_sff_find_valid_pi( 2358 const struct ata_port_info * const *ppi) 2359 { 2360 int i; 2361 2362 /* look up the first valid port_info */ 2363 for (i = 0; i < 2 && ppi[i]; i++) 2364 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2365 return ppi[i]; 2366 2367 return NULL; 2368 } 2369 2370 static int ata_pci_init_one(struct pci_dev *pdev, 2371 const struct ata_port_info * const *ppi, 2372 const struct scsi_host_template *sht, void *host_priv, 2373 int hflags, bool bmdma) 2374 { 2375 struct device *dev = &pdev->dev; 2376 const struct ata_port_info *pi; 2377 struct ata_host *host = NULL; 2378 int rc; 2379 2380 pi = ata_sff_find_valid_pi(ppi); 2381 if (!pi) { 2382 dev_err(&pdev->dev, "no valid port_info specified\n"); 2383 return -EINVAL; 2384 } 2385 2386 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2387 return -ENOMEM; 2388 2389 rc = pcim_enable_device(pdev); 2390 if (rc) 2391 goto out; 2392 2393 #ifdef CONFIG_ATA_BMDMA 2394 if (bmdma) 2395 /* prepare and activate BMDMA host */ 2396 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2397 else 2398 #endif 2399 /* prepare and activate SFF host */ 2400 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2401 if (rc) 2402 goto out; 2403 host->private_data = host_priv; 2404 host->flags |= hflags; 2405 2406 #ifdef CONFIG_ATA_BMDMA 2407 if (bmdma) { 2408 pci_set_master(pdev); 2409 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2410 } else 2411 #endif 2412 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2413 out: 2414 if (rc == 0) 2415 devres_remove_group(&pdev->dev, NULL); 2416 else 2417 devres_release_group(&pdev->dev, NULL); 2418 2419 return rc; 2420 } 2421 2422 /** 2423 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2424 * @pdev: Controller to be initialized 2425 * @ppi: array of port_info, must be enough for two ports 2426 * @sht: scsi_host_template to use when registering the host 2427 * @host_priv: host private_data 2428 * @hflag: host flags 2429 * 2430 * This is a helper function which can be called from a driver's 2431 * xxx_init_one() probe function if the hardware uses traditional 2432 * IDE taskfile registers and is PIO only. 2433 * 2434 * ASSUMPTION: 2435 * Nobody makes a single channel controller that appears solely as 2436 * the secondary legacy port on PCI. 2437 * 2438 * LOCKING: 2439 * Inherited from PCI layer (may sleep). 2440 * 2441 * RETURNS: 2442 * Zero on success, negative on errno-based value on error. 2443 */ 2444 int ata_pci_sff_init_one(struct pci_dev *pdev, 2445 const struct ata_port_info * const *ppi, 2446 const struct scsi_host_template *sht, void *host_priv, int hflag) 2447 { 2448 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2449 } 2450 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2451 2452 #endif /* CONFIG_PCI */ 2453 2454 /* 2455 * BMDMA support 2456 */ 2457 2458 #ifdef CONFIG_ATA_BMDMA 2459 2460 const struct ata_port_operations ata_bmdma_port_ops = { 2461 .inherits = &ata_sff_port_ops, 2462 2463 .error_handler = ata_bmdma_error_handler, 2464 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2465 2466 .qc_prep = ata_bmdma_qc_prep, 2467 .qc_issue = ata_bmdma_qc_issue, 2468 2469 .sff_irq_clear = ata_bmdma_irq_clear, 2470 .bmdma_setup = ata_bmdma_setup, 2471 .bmdma_start = ata_bmdma_start, 2472 .bmdma_stop = ata_bmdma_stop, 2473 .bmdma_status = ata_bmdma_status, 2474 2475 .port_start = ata_bmdma_port_start, 2476 }; 2477 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2478 2479 const struct ata_port_operations ata_bmdma32_port_ops = { 2480 .inherits = &ata_bmdma_port_ops, 2481 2482 .sff_data_xfer = ata_sff_data_xfer32, 2483 .port_start = ata_bmdma_port_start32, 2484 }; 2485 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2486 2487 /** 2488 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2489 * @qc: Metadata associated with taskfile to be transferred 2490 * 2491 * Fill PCI IDE PRD (scatter-gather) table with segments 2492 * associated with the current disk command. 2493 * 2494 * LOCKING: 2495 * spin_lock_irqsave(host lock) 2496 * 2497 */ 2498 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2499 { 2500 struct ata_port *ap = qc->ap; 2501 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2502 struct scatterlist *sg; 2503 unsigned int si, pi; 2504 2505 pi = 0; 2506 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2507 u32 addr, offset; 2508 u32 sg_len, len; 2509 2510 /* determine if physical DMA addr spans 64K boundary. 2511 * Note h/w doesn't support 64-bit, so we unconditionally 2512 * truncate dma_addr_t to u32. 2513 */ 2514 addr = (u32) sg_dma_address(sg); 2515 sg_len = sg_dma_len(sg); 2516 2517 while (sg_len) { 2518 offset = addr & 0xffff; 2519 len = sg_len; 2520 if ((offset + sg_len) > 0x10000) 2521 len = 0x10000 - offset; 2522 2523 prd[pi].addr = cpu_to_le32(addr); 2524 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2525 2526 pi++; 2527 sg_len -= len; 2528 addr += len; 2529 } 2530 } 2531 2532 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2533 } 2534 2535 /** 2536 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2537 * @qc: Metadata associated with taskfile to be transferred 2538 * 2539 * Fill PCI IDE PRD (scatter-gather) table with segments 2540 * associated with the current disk command. Perform the fill 2541 * so that we avoid writing any length 64K records for 2542 * controllers that don't follow the spec. 2543 * 2544 * LOCKING: 2545 * spin_lock_irqsave(host lock) 2546 * 2547 */ 2548 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2549 { 2550 struct ata_port *ap = qc->ap; 2551 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2552 struct scatterlist *sg; 2553 unsigned int si, pi; 2554 2555 pi = 0; 2556 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2557 u32 addr, offset; 2558 u32 sg_len, len, blen; 2559 2560 /* determine if physical DMA addr spans 64K boundary. 2561 * Note h/w doesn't support 64-bit, so we unconditionally 2562 * truncate dma_addr_t to u32. 2563 */ 2564 addr = (u32) sg_dma_address(sg); 2565 sg_len = sg_dma_len(sg); 2566 2567 while (sg_len) { 2568 offset = addr & 0xffff; 2569 len = sg_len; 2570 if ((offset + sg_len) > 0x10000) 2571 len = 0x10000 - offset; 2572 2573 blen = len & 0xffff; 2574 prd[pi].addr = cpu_to_le32(addr); 2575 if (blen == 0) { 2576 /* Some PATA chipsets like the CS5530 can't 2577 cope with 0x0000 meaning 64K as the spec 2578 says */ 2579 prd[pi].flags_len = cpu_to_le32(0x8000); 2580 blen = 0x8000; 2581 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2582 } 2583 prd[pi].flags_len = cpu_to_le32(blen); 2584 2585 pi++; 2586 sg_len -= len; 2587 addr += len; 2588 } 2589 } 2590 2591 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2592 } 2593 2594 /** 2595 * ata_bmdma_qc_prep - Prepare taskfile for submission 2596 * @qc: Metadata associated with taskfile to be prepared 2597 * 2598 * Prepare ATA taskfile for submission. 2599 * 2600 * LOCKING: 2601 * spin_lock_irqsave(host lock) 2602 */ 2603 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2604 { 2605 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2606 return AC_ERR_OK; 2607 2608 ata_bmdma_fill_sg(qc); 2609 2610 return AC_ERR_OK; 2611 } 2612 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2613 2614 /** 2615 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2616 * @qc: Metadata associated with taskfile to be prepared 2617 * 2618 * Prepare ATA taskfile for submission. 2619 * 2620 * LOCKING: 2621 * spin_lock_irqsave(host lock) 2622 */ 2623 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2624 { 2625 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2626 return AC_ERR_OK; 2627 2628 ata_bmdma_fill_sg_dumb(qc); 2629 2630 return AC_ERR_OK; 2631 } 2632 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2633 2634 /** 2635 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2636 * @qc: command to issue to device 2637 * 2638 * This function issues a PIO, NODATA or DMA command to a 2639 * SFF/BMDMA controller. PIO and NODATA are handled by 2640 * ata_sff_qc_issue(). 2641 * 2642 * LOCKING: 2643 * spin_lock_irqsave(host lock) 2644 * 2645 * RETURNS: 2646 * Zero on success, AC_ERR_* mask on failure 2647 */ 2648 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2649 { 2650 struct ata_port *ap = qc->ap; 2651 struct ata_link *link = qc->dev->link; 2652 2653 /* defer PIO handling to sff_qc_issue */ 2654 if (!ata_is_dma(qc->tf.protocol)) 2655 return ata_sff_qc_issue(qc); 2656 2657 /* select the device */ 2658 ata_dev_select(ap, qc->dev->devno, 1, 0); 2659 2660 /* start the command */ 2661 switch (qc->tf.protocol) { 2662 case ATA_PROT_DMA: 2663 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2664 2665 trace_ata_tf_load(ap, &qc->tf); 2666 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2667 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2668 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2669 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 2670 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2671 ap->hsm_task_state = HSM_ST_LAST; 2672 break; 2673 2674 case ATAPI_PROT_DMA: 2675 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2676 2677 trace_ata_tf_load(ap, &qc->tf); 2678 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2679 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2680 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2681 ap->hsm_task_state = HSM_ST_FIRST; 2682 2683 /* send cdb by polling if no cdb interrupt */ 2684 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2685 ata_sff_queue_pio_task(link, 0); 2686 break; 2687 2688 default: 2689 WARN_ON(1); 2690 return AC_ERR_SYSTEM; 2691 } 2692 2693 return 0; 2694 } 2695 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2696 2697 /** 2698 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2699 * @ap: Port on which interrupt arrived (possibly...) 2700 * @qc: Taskfile currently active in engine 2701 * 2702 * Handle port interrupt for given queued command. 2703 * 2704 * LOCKING: 2705 * spin_lock_irqsave(host lock) 2706 * 2707 * RETURNS: 2708 * One if interrupt was handled, zero if not (shared irq). 2709 */ 2710 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2711 { 2712 struct ata_eh_info *ehi = &ap->link.eh_info; 2713 u8 host_stat = 0; 2714 bool bmdma_stopped = false; 2715 unsigned int handled; 2716 2717 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2718 /* check status of DMA engine */ 2719 host_stat = ap->ops->bmdma_status(ap); 2720 trace_ata_bmdma_status(ap, host_stat); 2721 2722 /* if it's not our irq... */ 2723 if (!(host_stat & ATA_DMA_INTR)) 2724 return ata_sff_idle_irq(ap); 2725 2726 /* before we do anything else, clear DMA-Start bit */ 2727 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2728 ap->ops->bmdma_stop(qc); 2729 bmdma_stopped = true; 2730 2731 if (unlikely(host_stat & ATA_DMA_ERR)) { 2732 /* error when transferring data to/from memory */ 2733 qc->err_mask |= AC_ERR_HOST_BUS; 2734 ap->hsm_task_state = HSM_ST_ERR; 2735 } 2736 } 2737 2738 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2739 2740 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2741 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2742 2743 return handled; 2744 } 2745 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2746 2747 /** 2748 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2749 * @irq: irq line (unused) 2750 * @dev_instance: pointer to our ata_host information structure 2751 * 2752 * Default interrupt handler for PCI IDE devices. Calls 2753 * ata_bmdma_port_intr() for each port that is not disabled. 2754 * 2755 * LOCKING: 2756 * Obtains host lock during operation. 2757 * 2758 * RETURNS: 2759 * IRQ_NONE or IRQ_HANDLED. 2760 */ 2761 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2762 { 2763 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2764 } 2765 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2766 2767 /** 2768 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2769 * @ap: port to handle error for 2770 * 2771 * Stock error handler for BMDMA controller. It can handle both 2772 * PATA and SATA controllers. Most BMDMA controllers should be 2773 * able to use this EH as-is or with some added handling before 2774 * and after. 2775 * 2776 * LOCKING: 2777 * Kernel thread context (may sleep) 2778 */ 2779 void ata_bmdma_error_handler(struct ata_port *ap) 2780 { 2781 struct ata_queued_cmd *qc; 2782 unsigned long flags; 2783 bool thaw = false; 2784 2785 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2786 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2787 qc = NULL; 2788 2789 /* reset PIO HSM and stop DMA engine */ 2790 spin_lock_irqsave(ap->lock, flags); 2791 2792 if (qc && ata_is_dma(qc->tf.protocol)) { 2793 u8 host_stat; 2794 2795 host_stat = ap->ops->bmdma_status(ap); 2796 trace_ata_bmdma_status(ap, host_stat); 2797 2798 /* BMDMA controllers indicate host bus error by 2799 * setting DMA_ERR bit and timing out. As it wasn't 2800 * really a timeout event, adjust error mask and 2801 * cancel frozen state. 2802 */ 2803 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2804 qc->err_mask = AC_ERR_HOST_BUS; 2805 thaw = true; 2806 } 2807 2808 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2809 ap->ops->bmdma_stop(qc); 2810 2811 /* if we're gonna thaw, make sure IRQ is clear */ 2812 if (thaw) { 2813 ap->ops->sff_check_status(ap); 2814 if (ap->ops->sff_irq_clear) 2815 ap->ops->sff_irq_clear(ap); 2816 } 2817 } 2818 2819 spin_unlock_irqrestore(ap->lock, flags); 2820 2821 if (thaw) 2822 ata_eh_thaw_port(ap); 2823 2824 ata_sff_error_handler(ap); 2825 } 2826 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2827 2828 /** 2829 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2830 * @qc: internal command to clean up 2831 * 2832 * LOCKING: 2833 * Kernel thread context (may sleep) 2834 */ 2835 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2836 { 2837 struct ata_port *ap = qc->ap; 2838 unsigned long flags; 2839 2840 if (ata_is_dma(qc->tf.protocol)) { 2841 spin_lock_irqsave(ap->lock, flags); 2842 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2843 ap->ops->bmdma_stop(qc); 2844 spin_unlock_irqrestore(ap->lock, flags); 2845 } 2846 } 2847 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2848 2849 /** 2850 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2851 * @ap: Port associated with this ATA transaction. 2852 * 2853 * Clear interrupt and error flags in DMA status register. 2854 * 2855 * May be used as the irq_clear() entry in ata_port_operations. 2856 * 2857 * LOCKING: 2858 * spin_lock_irqsave(host lock) 2859 */ 2860 void ata_bmdma_irq_clear(struct ata_port *ap) 2861 { 2862 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2863 2864 if (!mmio) 2865 return; 2866 2867 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2868 } 2869 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2870 2871 /** 2872 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2873 * @qc: Info associated with this ATA transaction. 2874 * 2875 * LOCKING: 2876 * spin_lock_irqsave(host lock) 2877 */ 2878 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2879 { 2880 struct ata_port *ap = qc->ap; 2881 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2882 u8 dmactl; 2883 2884 /* load PRD table addr. */ 2885 mb(); /* make sure PRD table writes are visible to controller */ 2886 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2887 2888 /* specify data direction, triple-check start bit is clear */ 2889 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2890 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2891 if (!rw) 2892 dmactl |= ATA_DMA_WR; 2893 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2894 2895 /* issue r/w command */ 2896 ap->ops->sff_exec_command(ap, &qc->tf); 2897 } 2898 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2899 2900 /** 2901 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2902 * @qc: Info associated with this ATA transaction. 2903 * 2904 * LOCKING: 2905 * spin_lock_irqsave(host lock) 2906 */ 2907 void ata_bmdma_start(struct ata_queued_cmd *qc) 2908 { 2909 struct ata_port *ap = qc->ap; 2910 u8 dmactl; 2911 2912 /* start host DMA transaction */ 2913 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2914 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2915 2916 /* Strictly, one may wish to issue an ioread8() here, to 2917 * flush the mmio write. However, control also passes 2918 * to the hardware at this point, and it will interrupt 2919 * us when we are to resume control. So, in effect, 2920 * we don't care when the mmio write flushes. 2921 * Further, a read of the DMA status register _immediately_ 2922 * following the write may not be what certain flaky hardware 2923 * is expected, so I think it is best to not add a readb() 2924 * without first all the MMIO ATA cards/mobos. 2925 * Or maybe I'm just being paranoid. 2926 * 2927 * FIXME: The posting of this write means I/O starts are 2928 * unnecessarily delayed for MMIO 2929 */ 2930 } 2931 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2932 2933 /** 2934 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2935 * @qc: Command we are ending DMA for 2936 * 2937 * Clears the ATA_DMA_START flag in the dma control register 2938 * 2939 * May be used as the bmdma_stop() entry in ata_port_operations. 2940 * 2941 * LOCKING: 2942 * spin_lock_irqsave(host lock) 2943 */ 2944 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2945 { 2946 struct ata_port *ap = qc->ap; 2947 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2948 2949 /* clear start/stop bit */ 2950 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2951 mmio + ATA_DMA_CMD); 2952 2953 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2954 ata_sff_dma_pause(ap); 2955 } 2956 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2957 2958 /** 2959 * ata_bmdma_status - Read PCI IDE BMDMA status 2960 * @ap: Port associated with this ATA transaction. 2961 * 2962 * Read and return BMDMA status register. 2963 * 2964 * May be used as the bmdma_status() entry in ata_port_operations. 2965 * 2966 * LOCKING: 2967 * spin_lock_irqsave(host lock) 2968 */ 2969 u8 ata_bmdma_status(struct ata_port *ap) 2970 { 2971 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2972 } 2973 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2974 2975 2976 /** 2977 * ata_bmdma_port_start - Set port up for bmdma. 2978 * @ap: Port to initialize 2979 * 2980 * Called just after data structures for each port are 2981 * initialized. Allocates space for PRD table. 2982 * 2983 * May be used as the port_start() entry in ata_port_operations. 2984 * 2985 * LOCKING: 2986 * Inherited from caller. 2987 */ 2988 int ata_bmdma_port_start(struct ata_port *ap) 2989 { 2990 if (ap->mwdma_mask || ap->udma_mask) { 2991 ap->bmdma_prd = 2992 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 2993 &ap->bmdma_prd_dma, GFP_KERNEL); 2994 if (!ap->bmdma_prd) 2995 return -ENOMEM; 2996 } 2997 2998 return 0; 2999 } 3000 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3001 3002 /** 3003 * ata_bmdma_port_start32 - Set port up for dma. 3004 * @ap: Port to initialize 3005 * 3006 * Called just after data structures for each port are 3007 * initialized. Enables 32bit PIO and allocates space for PRD 3008 * table. 3009 * 3010 * May be used as the port_start() entry in ata_port_operations for 3011 * devices that are capable of 32bit PIO. 3012 * 3013 * LOCKING: 3014 * Inherited from caller. 3015 */ 3016 int ata_bmdma_port_start32(struct ata_port *ap) 3017 { 3018 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3019 return ata_bmdma_port_start(ap); 3020 } 3021 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3022 3023 #ifdef CONFIG_PCI 3024 3025 /** 3026 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3027 * @pdev: PCI device 3028 * 3029 * Some PCI ATA devices report simplex mode but in fact can be told to 3030 * enter non simplex mode. This implements the necessary logic to 3031 * perform the task on such devices. Calling it on other devices will 3032 * have -undefined- behaviour. 3033 */ 3034 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3035 { 3036 #ifdef CONFIG_HAS_IOPORT 3037 unsigned long bmdma = pci_resource_start(pdev, 4); 3038 u8 simplex; 3039 3040 if (bmdma == 0) 3041 return -ENOENT; 3042 3043 simplex = inb(bmdma + 0x02); 3044 outb(simplex & 0x60, bmdma + 0x02); 3045 simplex = inb(bmdma + 0x02); 3046 if (simplex & 0x80) 3047 return -EOPNOTSUPP; 3048 return 0; 3049 #else 3050 return -ENOENT; 3051 #endif /* CONFIG_HAS_IOPORT */ 3052 } 3053 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3054 3055 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3056 { 3057 int i; 3058 3059 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3060 3061 for (i = 0; i < 2; i++) { 3062 host->ports[i]->mwdma_mask = 0; 3063 host->ports[i]->udma_mask = 0; 3064 } 3065 } 3066 3067 /** 3068 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3069 * @host: target ATA host 3070 * 3071 * Acquire PCI BMDMA resources and initialize @host accordingly. 3072 * 3073 * LOCKING: 3074 * Inherited from calling layer (may sleep). 3075 */ 3076 void ata_pci_bmdma_init(struct ata_host *host) 3077 { 3078 struct device *gdev = host->dev; 3079 struct pci_dev *pdev = to_pci_dev(gdev); 3080 int i, rc; 3081 3082 /* No BAR4 allocation: No DMA */ 3083 if (pci_resource_start(pdev, 4) == 0) { 3084 ata_bmdma_nodma(host, "BAR4 is zero"); 3085 return; 3086 } 3087 3088 /* 3089 * Some controllers require BMDMA region to be initialized 3090 * even if DMA is not in use to clear IRQ status via 3091 * ->sff_irq_clear method. Try to initialize bmdma_addr 3092 * regardless of dma masks. 3093 */ 3094 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); 3095 if (rc) 3096 ata_bmdma_nodma(host, "failed to set dma mask"); 3097 3098 /* request and iomap DMA region */ 3099 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3100 if (rc) { 3101 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3102 return; 3103 } 3104 host->iomap = pcim_iomap_table(pdev); 3105 3106 for (i = 0; i < 2; i++) { 3107 struct ata_port *ap = host->ports[i]; 3108 void __iomem *bmdma = host->iomap[4] + 8 * i; 3109 3110 if (ata_port_is_dummy(ap)) 3111 continue; 3112 3113 ap->ioaddr.bmdma_addr = bmdma; 3114 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3115 (ioread8(bmdma + 2) & 0x80)) 3116 host->flags |= ATA_HOST_SIMPLEX; 3117 3118 ata_port_desc(ap, "bmdma 0x%llx", 3119 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3120 } 3121 } 3122 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3123 3124 /** 3125 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3126 * @pdev: target PCI device 3127 * @ppi: array of port_info, must be enough for two ports 3128 * @r_host: out argument for the initialized ATA host 3129 * 3130 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3131 * resources and initialize it accordingly in one go. 3132 * 3133 * LOCKING: 3134 * Inherited from calling layer (may sleep). 3135 * 3136 * RETURNS: 3137 * 0 on success, -errno otherwise. 3138 */ 3139 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3140 const struct ata_port_info * const * ppi, 3141 struct ata_host **r_host) 3142 { 3143 int rc; 3144 3145 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3146 if (rc) 3147 return rc; 3148 3149 ata_pci_bmdma_init(*r_host); 3150 return 0; 3151 } 3152 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3153 3154 /** 3155 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3156 * @pdev: Controller to be initialized 3157 * @ppi: array of port_info, must be enough for two ports 3158 * @sht: scsi_host_template to use when registering the host 3159 * @host_priv: host private_data 3160 * @hflags: host flags 3161 * 3162 * This function is similar to ata_pci_sff_init_one() but also 3163 * takes care of BMDMA initialization. 3164 * 3165 * LOCKING: 3166 * Inherited from PCI layer (may sleep). 3167 * 3168 * RETURNS: 3169 * Zero on success, negative on errno-based value on error. 3170 */ 3171 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3172 const struct ata_port_info * const * ppi, 3173 const struct scsi_host_template *sht, void *host_priv, 3174 int hflags) 3175 { 3176 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3177 } 3178 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3179 3180 #endif /* CONFIG_PCI */ 3181 #endif /* CONFIG_ATA_BMDMA */ 3182 3183 /** 3184 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3185 * @ap: Port to initialize 3186 * 3187 * Called on port allocation to initialize SFF/BMDMA specific 3188 * fields. 3189 * 3190 * LOCKING: 3191 * None. 3192 */ 3193 void ata_sff_port_init(struct ata_port *ap) 3194 { 3195 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3196 ap->ctl = ATA_DEVCTL_OBS; 3197 ap->last_ctl = 0xFF; 3198 } 3199 3200 int __init ata_sff_init(void) 3201 { 3202 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3203 if (!ata_sff_wq) 3204 return -ENOMEM; 3205 3206 return 0; 3207 } 3208 3209 void ata_sff_exit(void) 3210 { 3211 destroy_workqueue(ata_sff_wq); 3212 } 3213