1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_freelist; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->vm_start + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 unsigned long user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 133 while (n) { 134 buffer = rb_entry(n, struct binder_buffer, rb_node); 135 BUG_ON(buffer->free); 136 137 if (user_ptr < buffer->user_data) { 138 n = n->rb_left; 139 } else if (user_ptr > buffer->user_data) { 140 n = n->rb_right; 141 } else { 142 /* 143 * Guard against user threads attempting to 144 * free the buffer when in use by kernel or 145 * after it's already been freed. 146 */ 147 if (!buffer->allow_user_free) 148 return ERR_PTR(-EPERM); 149 buffer->allow_user_free = 0; 150 return buffer; 151 } 152 } 153 return NULL; 154 } 155 156 /** 157 * binder_alloc_prepare_to_free() - get buffer given user ptr 158 * @alloc: binder_alloc for this proc 159 * @user_ptr: User pointer to buffer data 160 * 161 * Validate userspace pointer to buffer data and return buffer corresponding to 162 * that user pointer. Search the rb tree for buffer that matches user data 163 * pointer. 164 * 165 * Return: Pointer to buffer or NULL 166 */ 167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 168 unsigned long user_ptr) 169 { 170 struct binder_buffer *buffer; 171 172 mutex_lock(&alloc->mutex); 173 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 174 mutex_unlock(&alloc->mutex); 175 return buffer; 176 } 177 178 static inline void 179 binder_set_installed_page(struct binder_alloc *alloc, 180 unsigned long index, 181 struct page *page) 182 { 183 /* Pairs with acquire in binder_get_installed_page() */ 184 smp_store_release(&alloc->pages[index], page); 185 } 186 187 static inline struct page * 188 binder_get_installed_page(struct binder_alloc *alloc, unsigned long index) 189 { 190 /* Pairs with release in binder_set_installed_page() */ 191 return smp_load_acquire(&alloc->pages[index]); 192 } 193 194 static void binder_lru_freelist_add(struct binder_alloc *alloc, 195 unsigned long start, unsigned long end) 196 { 197 unsigned long page_addr; 198 struct page *page; 199 200 trace_binder_update_page_range(alloc, false, start, end); 201 202 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 203 size_t index; 204 int ret; 205 206 index = (page_addr - alloc->vm_start) / PAGE_SIZE; 207 page = binder_get_installed_page(alloc, index); 208 if (!page) 209 continue; 210 211 trace_binder_free_lru_start(alloc, index); 212 213 ret = list_lru_add(&binder_freelist, 214 page_to_lru(page), 215 page_to_nid(page), 216 NULL); 217 WARN_ON(!ret); 218 219 trace_binder_free_lru_end(alloc, index); 220 } 221 } 222 223 static inline 224 void binder_alloc_set_mapped(struct binder_alloc *alloc, bool state) 225 { 226 /* pairs with smp_load_acquire in binder_alloc_is_mapped() */ 227 smp_store_release(&alloc->mapped, state); 228 } 229 230 static inline bool binder_alloc_is_mapped(struct binder_alloc *alloc) 231 { 232 /* pairs with smp_store_release in binder_alloc_set_mapped() */ 233 return smp_load_acquire(&alloc->mapped); 234 } 235 236 static struct page *binder_page_lookup(struct binder_alloc *alloc, 237 unsigned long addr) 238 { 239 struct mm_struct *mm = alloc->mm; 240 struct page *page; 241 long npages = 0; 242 243 /* 244 * Find an existing page in the remote mm. If missing, 245 * don't attempt to fault-in just propagate an error. 246 */ 247 mmap_read_lock(mm); 248 if (binder_alloc_is_mapped(alloc)) 249 npages = get_user_pages_remote(mm, addr, 1, FOLL_NOFAULT, 250 &page, NULL); 251 mmap_read_unlock(mm); 252 253 return npages > 0 ? page : NULL; 254 } 255 256 static int binder_page_insert(struct binder_alloc *alloc, 257 unsigned long addr, 258 struct page *page) 259 { 260 struct mm_struct *mm = alloc->mm; 261 struct vm_area_struct *vma; 262 int ret = -ESRCH; 263 264 /* attempt per-vma lock first */ 265 vma = lock_vma_under_rcu(mm, addr); 266 if (vma) { 267 if (binder_alloc_is_mapped(alloc)) 268 ret = vm_insert_page(vma, addr, page); 269 vma_end_read(vma); 270 return ret; 271 } 272 273 /* fall back to mmap_lock */ 274 mmap_read_lock(mm); 275 vma = vma_lookup(mm, addr); 276 if (vma && binder_alloc_is_mapped(alloc)) 277 ret = vm_insert_page(vma, addr, page); 278 mmap_read_unlock(mm); 279 280 return ret; 281 } 282 283 static struct page *binder_page_alloc(struct binder_alloc *alloc, 284 unsigned long index) 285 { 286 struct binder_shrinker_mdata *mdata; 287 struct page *page; 288 289 page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 290 if (!page) 291 return NULL; 292 293 /* allocate and install shrinker metadata under page->private */ 294 mdata = kzalloc(sizeof(*mdata), GFP_KERNEL); 295 if (!mdata) { 296 __free_page(page); 297 return NULL; 298 } 299 300 mdata->alloc = alloc; 301 mdata->page_index = index; 302 INIT_LIST_HEAD(&mdata->lru); 303 set_page_private(page, (unsigned long)mdata); 304 305 return page; 306 } 307 308 static void binder_free_page(struct page *page) 309 { 310 kfree((struct binder_shrinker_mdata *)page_private(page)); 311 __free_page(page); 312 } 313 314 static int binder_install_single_page(struct binder_alloc *alloc, 315 unsigned long index, 316 unsigned long addr) 317 { 318 struct page *page; 319 int ret; 320 321 if (!mmget_not_zero(alloc->mm)) 322 return -ESRCH; 323 324 page = binder_page_alloc(alloc, index); 325 if (!page) { 326 ret = -ENOMEM; 327 goto out; 328 } 329 330 ret = binder_page_insert(alloc, addr, page); 331 switch (ret) { 332 case -EBUSY: 333 /* 334 * EBUSY is ok. Someone installed the pte first but the 335 * alloc->pages[index] has not been updated yet. Discard 336 * our page and look up the one already installed. 337 */ 338 ret = 0; 339 binder_free_page(page); 340 page = binder_page_lookup(alloc, addr); 341 if (!page) { 342 pr_err("%d: failed to find page at offset %lx\n", 343 alloc->pid, addr - alloc->vm_start); 344 ret = -ESRCH; 345 break; 346 } 347 fallthrough; 348 case 0: 349 /* Mark page installation complete and safe to use */ 350 binder_set_installed_page(alloc, index, page); 351 break; 352 default: 353 binder_free_page(page); 354 pr_err("%d: %s failed to insert page at offset %lx with %d\n", 355 alloc->pid, __func__, addr - alloc->vm_start, ret); 356 break; 357 } 358 out: 359 mmput_async(alloc->mm); 360 return ret; 361 } 362 363 static int binder_install_buffer_pages(struct binder_alloc *alloc, 364 struct binder_buffer *buffer, 365 size_t size) 366 { 367 unsigned long start, final; 368 unsigned long page_addr; 369 370 start = buffer->user_data & PAGE_MASK; 371 final = PAGE_ALIGN(buffer->user_data + size); 372 373 for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) { 374 unsigned long index; 375 int ret; 376 377 index = (page_addr - alloc->vm_start) / PAGE_SIZE; 378 if (binder_get_installed_page(alloc, index)) 379 continue; 380 381 trace_binder_alloc_page_start(alloc, index); 382 383 ret = binder_install_single_page(alloc, index, page_addr); 384 if (ret) 385 return ret; 386 387 trace_binder_alloc_page_end(alloc, index); 388 } 389 390 return 0; 391 } 392 393 /* The range of pages should exclude those shared with other buffers */ 394 static void binder_lru_freelist_del(struct binder_alloc *alloc, 395 unsigned long start, unsigned long end) 396 { 397 unsigned long page_addr; 398 struct page *page; 399 400 trace_binder_update_page_range(alloc, true, start, end); 401 402 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 403 unsigned long index; 404 bool on_lru; 405 406 index = (page_addr - alloc->vm_start) / PAGE_SIZE; 407 page = binder_get_installed_page(alloc, index); 408 409 if (page) { 410 trace_binder_alloc_lru_start(alloc, index); 411 412 on_lru = list_lru_del(&binder_freelist, 413 page_to_lru(page), 414 page_to_nid(page), 415 NULL); 416 WARN_ON(!on_lru); 417 418 trace_binder_alloc_lru_end(alloc, index); 419 continue; 420 } 421 422 if (index + 1 > alloc->pages_high) 423 alloc->pages_high = index + 1; 424 } 425 } 426 427 static void debug_no_space_locked(struct binder_alloc *alloc) 428 { 429 size_t largest_alloc_size = 0; 430 struct binder_buffer *buffer; 431 size_t allocated_buffers = 0; 432 size_t largest_free_size = 0; 433 size_t total_alloc_size = 0; 434 size_t total_free_size = 0; 435 size_t free_buffers = 0; 436 size_t buffer_size; 437 struct rb_node *n; 438 439 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 440 buffer = rb_entry(n, struct binder_buffer, rb_node); 441 buffer_size = binder_alloc_buffer_size(alloc, buffer); 442 allocated_buffers++; 443 total_alloc_size += buffer_size; 444 if (buffer_size > largest_alloc_size) 445 largest_alloc_size = buffer_size; 446 } 447 448 for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) { 449 buffer = rb_entry(n, struct binder_buffer, rb_node); 450 buffer_size = binder_alloc_buffer_size(alloc, buffer); 451 free_buffers++; 452 total_free_size += buffer_size; 453 if (buffer_size > largest_free_size) 454 largest_free_size = buffer_size; 455 } 456 457 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 458 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 459 total_alloc_size, allocated_buffers, 460 largest_alloc_size, total_free_size, 461 free_buffers, largest_free_size); 462 } 463 464 static bool debug_low_async_space_locked(struct binder_alloc *alloc) 465 { 466 /* 467 * Find the amount and size of buffers allocated by the current caller; 468 * The idea is that once we cross the threshold, whoever is responsible 469 * for the low async space is likely to try to send another async txn, 470 * and at some point we'll catch them in the act. This is more efficient 471 * than keeping a map per pid. 472 */ 473 struct binder_buffer *buffer; 474 size_t total_alloc_size = 0; 475 int pid = current->tgid; 476 size_t num_buffers = 0; 477 struct rb_node *n; 478 479 /* 480 * Only start detecting spammers once we have less than 20% of async 481 * space left (which is less than 10% of total buffer size). 482 */ 483 if (alloc->free_async_space >= alloc->buffer_size / 10) { 484 alloc->oneway_spam_detected = false; 485 return false; 486 } 487 488 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 489 n = rb_next(n)) { 490 buffer = rb_entry(n, struct binder_buffer, rb_node); 491 if (buffer->pid != pid) 492 continue; 493 if (!buffer->async_transaction) 494 continue; 495 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 496 num_buffers++; 497 } 498 499 /* 500 * Warn if this pid has more than 50 transactions, or more than 50% of 501 * async space (which is 25% of total buffer size). Oneway spam is only 502 * detected when the threshold is exceeded. 503 */ 504 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 505 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 506 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 507 alloc->pid, pid, num_buffers, total_alloc_size); 508 if (!alloc->oneway_spam_detected) { 509 alloc->oneway_spam_detected = true; 510 return true; 511 } 512 } 513 return false; 514 } 515 516 /* Callers preallocate @new_buffer, it is freed by this function if unused */ 517 static struct binder_buffer *binder_alloc_new_buf_locked( 518 struct binder_alloc *alloc, 519 struct binder_buffer *new_buffer, 520 size_t size, 521 int is_async) 522 { 523 struct rb_node *n = alloc->free_buffers.rb_node; 524 struct rb_node *best_fit = NULL; 525 struct binder_buffer *buffer; 526 unsigned long next_used_page; 527 unsigned long curr_last_page; 528 size_t buffer_size; 529 530 if (is_async && alloc->free_async_space < size) { 531 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 532 "%d: binder_alloc_buf size %zd failed, no async space left\n", 533 alloc->pid, size); 534 buffer = ERR_PTR(-ENOSPC); 535 goto out; 536 } 537 538 while (n) { 539 buffer = rb_entry(n, struct binder_buffer, rb_node); 540 BUG_ON(!buffer->free); 541 buffer_size = binder_alloc_buffer_size(alloc, buffer); 542 543 if (size < buffer_size) { 544 best_fit = n; 545 n = n->rb_left; 546 } else if (size > buffer_size) { 547 n = n->rb_right; 548 } else { 549 best_fit = n; 550 break; 551 } 552 } 553 554 if (unlikely(!best_fit)) { 555 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 556 "%d: binder_alloc_buf size %zd failed, no address space\n", 557 alloc->pid, size); 558 debug_no_space_locked(alloc); 559 buffer = ERR_PTR(-ENOSPC); 560 goto out; 561 } 562 563 if (buffer_size != size) { 564 /* Found an oversized buffer and needs to be split */ 565 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 566 buffer_size = binder_alloc_buffer_size(alloc, buffer); 567 568 WARN_ON(n || buffer_size == size); 569 new_buffer->user_data = buffer->user_data + size; 570 list_add(&new_buffer->entry, &buffer->entry); 571 new_buffer->free = 1; 572 binder_insert_free_buffer(alloc, new_buffer); 573 new_buffer = NULL; 574 } 575 576 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 577 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 578 alloc->pid, size, buffer, buffer_size); 579 580 /* 581 * Now we remove the pages from the freelist. A clever calculation 582 * with buffer_size determines if the last page is shared with an 583 * adjacent in-use buffer. In such case, the page has been already 584 * removed from the freelist so we trim our range short. 585 */ 586 next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK; 587 curr_last_page = PAGE_ALIGN(buffer->user_data + size); 588 binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data), 589 min(next_used_page, curr_last_page)); 590 591 rb_erase(&buffer->rb_node, &alloc->free_buffers); 592 buffer->free = 0; 593 buffer->allow_user_free = 0; 594 binder_insert_allocated_buffer_locked(alloc, buffer); 595 buffer->async_transaction = is_async; 596 buffer->oneway_spam_suspect = false; 597 if (is_async) { 598 alloc->free_async_space -= size; 599 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 600 "%d: binder_alloc_buf size %zd async free %zd\n", 601 alloc->pid, size, alloc->free_async_space); 602 if (debug_low_async_space_locked(alloc)) 603 buffer->oneway_spam_suspect = true; 604 } 605 606 out: 607 /* Discard possibly unused new_buffer */ 608 kfree(new_buffer); 609 return buffer; 610 } 611 612 /* Calculate the sanitized total size, returns 0 for invalid request */ 613 static inline size_t sanitized_size(size_t data_size, 614 size_t offsets_size, 615 size_t extra_buffers_size) 616 { 617 size_t total, tmp; 618 619 /* Align to pointer size and check for overflows */ 620 tmp = ALIGN(data_size, sizeof(void *)) + 621 ALIGN(offsets_size, sizeof(void *)); 622 if (tmp < data_size || tmp < offsets_size) 623 return 0; 624 total = tmp + ALIGN(extra_buffers_size, sizeof(void *)); 625 if (total < tmp || total < extra_buffers_size) 626 return 0; 627 628 /* Pad 0-sized buffers so they get a unique address */ 629 total = max(total, sizeof(void *)); 630 631 return total; 632 } 633 634 /** 635 * binder_alloc_new_buf() - Allocate a new binder buffer 636 * @alloc: binder_alloc for this proc 637 * @data_size: size of user data buffer 638 * @offsets_size: user specified buffer offset 639 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 640 * @is_async: buffer for async transaction 641 * 642 * Allocate a new buffer given the requested sizes. Returns 643 * the kernel version of the buffer pointer. The size allocated 644 * is the sum of the three given sizes (each rounded up to 645 * pointer-sized boundary) 646 * 647 * Return: The allocated buffer or %ERR_PTR(-errno) if error 648 */ 649 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 650 size_t data_size, 651 size_t offsets_size, 652 size_t extra_buffers_size, 653 int is_async) 654 { 655 struct binder_buffer *buffer, *next; 656 size_t size; 657 int ret; 658 659 /* Check binder_alloc is fully initialized */ 660 if (!binder_alloc_is_mapped(alloc)) { 661 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 662 "%d: binder_alloc_buf, no vma\n", 663 alloc->pid); 664 return ERR_PTR(-ESRCH); 665 } 666 667 size = sanitized_size(data_size, offsets_size, extra_buffers_size); 668 if (unlikely(!size)) { 669 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 670 "%d: got transaction with invalid size %zd-%zd-%zd\n", 671 alloc->pid, data_size, offsets_size, 672 extra_buffers_size); 673 return ERR_PTR(-EINVAL); 674 } 675 676 /* Preallocate the next buffer */ 677 next = kzalloc(sizeof(*next), GFP_KERNEL); 678 if (!next) 679 return ERR_PTR(-ENOMEM); 680 681 mutex_lock(&alloc->mutex); 682 buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async); 683 if (IS_ERR(buffer)) { 684 mutex_unlock(&alloc->mutex); 685 goto out; 686 } 687 688 buffer->data_size = data_size; 689 buffer->offsets_size = offsets_size; 690 buffer->extra_buffers_size = extra_buffers_size; 691 buffer->pid = current->tgid; 692 mutex_unlock(&alloc->mutex); 693 694 ret = binder_install_buffer_pages(alloc, buffer, size); 695 if (ret) { 696 binder_alloc_free_buf(alloc, buffer); 697 buffer = ERR_PTR(ret); 698 } 699 out: 700 return buffer; 701 } 702 703 static unsigned long buffer_start_page(struct binder_buffer *buffer) 704 { 705 return buffer->user_data & PAGE_MASK; 706 } 707 708 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer) 709 { 710 return (buffer->user_data - 1) & PAGE_MASK; 711 } 712 713 static void binder_delete_free_buffer(struct binder_alloc *alloc, 714 struct binder_buffer *buffer) 715 { 716 struct binder_buffer *prev, *next; 717 718 if (PAGE_ALIGNED(buffer->user_data)) 719 goto skip_freelist; 720 721 BUG_ON(alloc->buffers.next == &buffer->entry); 722 prev = binder_buffer_prev(buffer); 723 BUG_ON(!prev->free); 724 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) 725 goto skip_freelist; 726 727 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 728 next = binder_buffer_next(buffer); 729 if (buffer_start_page(next) == buffer_start_page(buffer)) 730 goto skip_freelist; 731 } 732 733 binder_lru_freelist_add(alloc, buffer_start_page(buffer), 734 buffer_start_page(buffer) + PAGE_SIZE); 735 skip_freelist: 736 list_del(&buffer->entry); 737 kfree(buffer); 738 } 739 740 static void binder_free_buf_locked(struct binder_alloc *alloc, 741 struct binder_buffer *buffer) 742 { 743 size_t size, buffer_size; 744 745 buffer_size = binder_alloc_buffer_size(alloc, buffer); 746 747 size = ALIGN(buffer->data_size, sizeof(void *)) + 748 ALIGN(buffer->offsets_size, sizeof(void *)) + 749 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 750 751 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 752 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 753 alloc->pid, buffer, size, buffer_size); 754 755 BUG_ON(buffer->free); 756 BUG_ON(size > buffer_size); 757 BUG_ON(buffer->transaction != NULL); 758 BUG_ON(buffer->user_data < alloc->vm_start); 759 BUG_ON(buffer->user_data > alloc->vm_start + alloc->buffer_size); 760 761 if (buffer->async_transaction) { 762 alloc->free_async_space += buffer_size; 763 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 764 "%d: binder_free_buf size %zd async free %zd\n", 765 alloc->pid, size, alloc->free_async_space); 766 } 767 768 binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data), 769 (buffer->user_data + buffer_size) & PAGE_MASK); 770 771 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 772 buffer->free = 1; 773 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 774 struct binder_buffer *next = binder_buffer_next(buffer); 775 776 if (next->free) { 777 rb_erase(&next->rb_node, &alloc->free_buffers); 778 binder_delete_free_buffer(alloc, next); 779 } 780 } 781 if (alloc->buffers.next != &buffer->entry) { 782 struct binder_buffer *prev = binder_buffer_prev(buffer); 783 784 if (prev->free) { 785 binder_delete_free_buffer(alloc, buffer); 786 rb_erase(&prev->rb_node, &alloc->free_buffers); 787 buffer = prev; 788 } 789 } 790 binder_insert_free_buffer(alloc, buffer); 791 } 792 793 /** 794 * binder_alloc_get_page() - get kernel pointer for given buffer offset 795 * @alloc: binder_alloc for this proc 796 * @buffer: binder buffer to be accessed 797 * @buffer_offset: offset into @buffer data 798 * @pgoffp: address to copy final page offset to 799 * 800 * Lookup the struct page corresponding to the address 801 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 802 * NULL, the byte-offset into the page is written there. 803 * 804 * The caller is responsible to ensure that the offset points 805 * to a valid address within the @buffer and that @buffer is 806 * not freeable by the user. Since it can't be freed, we are 807 * guaranteed that the corresponding elements of @alloc->pages[] 808 * cannot change. 809 * 810 * Return: struct page 811 */ 812 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 813 struct binder_buffer *buffer, 814 binder_size_t buffer_offset, 815 pgoff_t *pgoffp) 816 { 817 binder_size_t buffer_space_offset = buffer_offset + 818 (buffer->user_data - alloc->vm_start); 819 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 820 size_t index = buffer_space_offset >> PAGE_SHIFT; 821 822 *pgoffp = pgoff; 823 824 return alloc->pages[index]; 825 } 826 827 /** 828 * binder_alloc_clear_buf() - zero out buffer 829 * @alloc: binder_alloc for this proc 830 * @buffer: binder buffer to be cleared 831 * 832 * memset the given buffer to 0 833 */ 834 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 835 struct binder_buffer *buffer) 836 { 837 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 838 binder_size_t buffer_offset = 0; 839 840 while (bytes) { 841 unsigned long size; 842 struct page *page; 843 pgoff_t pgoff; 844 845 page = binder_alloc_get_page(alloc, buffer, 846 buffer_offset, &pgoff); 847 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 848 memset_page(page, pgoff, 0, size); 849 bytes -= size; 850 buffer_offset += size; 851 } 852 } 853 854 /** 855 * binder_alloc_free_buf() - free a binder buffer 856 * @alloc: binder_alloc for this proc 857 * @buffer: kernel pointer to buffer 858 * 859 * Free the buffer allocated via binder_alloc_new_buf() 860 */ 861 void binder_alloc_free_buf(struct binder_alloc *alloc, 862 struct binder_buffer *buffer) 863 { 864 /* 865 * We could eliminate the call to binder_alloc_clear_buf() 866 * from binder_alloc_deferred_release() by moving this to 867 * binder_free_buf_locked(). However, that could 868 * increase contention for the alloc mutex if clear_on_free 869 * is used frequently for large buffers. The mutex is not 870 * needed for correctness here. 871 */ 872 if (buffer->clear_on_free) { 873 binder_alloc_clear_buf(alloc, buffer); 874 buffer->clear_on_free = false; 875 } 876 mutex_lock(&alloc->mutex); 877 binder_free_buf_locked(alloc, buffer); 878 mutex_unlock(&alloc->mutex); 879 } 880 881 /** 882 * binder_alloc_mmap_handler() - map virtual address space for proc 883 * @alloc: alloc structure for this proc 884 * @vma: vma passed to mmap() 885 * 886 * Called by binder_mmap() to initialize the space specified in 887 * vma for allocating binder buffers 888 * 889 * Return: 890 * 0 = success 891 * -EBUSY = address space already mapped 892 * -ENOMEM = failed to map memory to given address space 893 */ 894 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 895 struct vm_area_struct *vma) 896 { 897 struct binder_buffer *buffer; 898 const char *failure_string; 899 int ret; 900 901 if (unlikely(vma->vm_mm != alloc->mm)) { 902 ret = -EINVAL; 903 failure_string = "invalid vma->vm_mm"; 904 goto err_invalid_mm; 905 } 906 907 mutex_lock(&binder_alloc_mmap_lock); 908 if (alloc->buffer_size) { 909 ret = -EBUSY; 910 failure_string = "already mapped"; 911 goto err_already_mapped; 912 } 913 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 914 SZ_4M); 915 mutex_unlock(&binder_alloc_mmap_lock); 916 917 alloc->vm_start = vma->vm_start; 918 919 alloc->pages = kvcalloc(alloc->buffer_size / PAGE_SIZE, 920 sizeof(alloc->pages[0]), 921 GFP_KERNEL); 922 if (!alloc->pages) { 923 ret = -ENOMEM; 924 failure_string = "alloc page array"; 925 goto err_alloc_pages_failed; 926 } 927 928 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 929 if (!buffer) { 930 ret = -ENOMEM; 931 failure_string = "alloc buffer struct"; 932 goto err_alloc_buf_struct_failed; 933 } 934 935 buffer->user_data = alloc->vm_start; 936 list_add(&buffer->entry, &alloc->buffers); 937 buffer->free = 1; 938 binder_insert_free_buffer(alloc, buffer); 939 alloc->free_async_space = alloc->buffer_size / 2; 940 941 /* Signal binder_alloc is fully initialized */ 942 binder_alloc_set_mapped(alloc, true); 943 944 return 0; 945 946 err_alloc_buf_struct_failed: 947 kvfree(alloc->pages); 948 alloc->pages = NULL; 949 err_alloc_pages_failed: 950 alloc->vm_start = 0; 951 mutex_lock(&binder_alloc_mmap_lock); 952 alloc->buffer_size = 0; 953 err_already_mapped: 954 mutex_unlock(&binder_alloc_mmap_lock); 955 err_invalid_mm: 956 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 957 "%s: %d %lx-%lx %s failed %d\n", __func__, 958 alloc->pid, vma->vm_start, vma->vm_end, 959 failure_string, ret); 960 return ret; 961 } 962 963 964 void binder_alloc_deferred_release(struct binder_alloc *alloc) 965 { 966 struct rb_node *n; 967 int buffers, page_count; 968 struct binder_buffer *buffer; 969 970 buffers = 0; 971 mutex_lock(&alloc->mutex); 972 BUG_ON(alloc->mapped); 973 974 while ((n = rb_first(&alloc->allocated_buffers))) { 975 buffer = rb_entry(n, struct binder_buffer, rb_node); 976 977 /* Transaction should already have been freed */ 978 BUG_ON(buffer->transaction); 979 980 if (buffer->clear_on_free) { 981 binder_alloc_clear_buf(alloc, buffer); 982 buffer->clear_on_free = false; 983 } 984 binder_free_buf_locked(alloc, buffer); 985 buffers++; 986 } 987 988 while (!list_empty(&alloc->buffers)) { 989 buffer = list_first_entry(&alloc->buffers, 990 struct binder_buffer, entry); 991 WARN_ON(!buffer->free); 992 993 list_del(&buffer->entry); 994 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 995 kfree(buffer); 996 } 997 998 page_count = 0; 999 if (alloc->pages) { 1000 int i; 1001 1002 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 1003 struct page *page; 1004 bool on_lru; 1005 1006 page = binder_get_installed_page(alloc, i); 1007 if (!page) 1008 continue; 1009 1010 on_lru = list_lru_del(&binder_freelist, 1011 page_to_lru(page), 1012 page_to_nid(page), 1013 NULL); 1014 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 1015 "%s: %d: page %d %s\n", 1016 __func__, alloc->pid, i, 1017 on_lru ? "on lru" : "active"); 1018 binder_free_page(page); 1019 page_count++; 1020 } 1021 } 1022 mutex_unlock(&alloc->mutex); 1023 kvfree(alloc->pages); 1024 if (alloc->mm) 1025 mmdrop(alloc->mm); 1026 1027 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 1028 "%s: %d buffers %d, pages %d\n", 1029 __func__, alloc->pid, buffers, page_count); 1030 } 1031 1032 /** 1033 * binder_alloc_print_allocated() - print buffer info 1034 * @m: seq_file for output via seq_printf() 1035 * @alloc: binder_alloc for this proc 1036 * 1037 * Prints information about every buffer associated with 1038 * the binder_alloc state to the given seq_file 1039 */ 1040 void binder_alloc_print_allocated(struct seq_file *m, 1041 struct binder_alloc *alloc) 1042 { 1043 struct binder_buffer *buffer; 1044 struct rb_node *n; 1045 1046 mutex_lock(&alloc->mutex); 1047 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 1048 buffer = rb_entry(n, struct binder_buffer, rb_node); 1049 seq_printf(m, " buffer %d: %lx size %zd:%zd:%zd %s\n", 1050 buffer->debug_id, 1051 buffer->user_data - alloc->vm_start, 1052 buffer->data_size, buffer->offsets_size, 1053 buffer->extra_buffers_size, 1054 buffer->transaction ? "active" : "delivered"); 1055 } 1056 mutex_unlock(&alloc->mutex); 1057 } 1058 1059 /** 1060 * binder_alloc_print_pages() - print page usage 1061 * @m: seq_file for output via seq_printf() 1062 * @alloc: binder_alloc for this proc 1063 */ 1064 void binder_alloc_print_pages(struct seq_file *m, 1065 struct binder_alloc *alloc) 1066 { 1067 struct page *page; 1068 int i; 1069 int active = 0; 1070 int lru = 0; 1071 int free = 0; 1072 1073 mutex_lock(&alloc->mutex); 1074 /* 1075 * Make sure the binder_alloc is fully initialized, otherwise we might 1076 * read inconsistent state. 1077 */ 1078 if (binder_alloc_is_mapped(alloc)) { 1079 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 1080 page = binder_get_installed_page(alloc, i); 1081 if (!page) 1082 free++; 1083 else if (list_empty(page_to_lru(page))) 1084 active++; 1085 else 1086 lru++; 1087 } 1088 } 1089 mutex_unlock(&alloc->mutex); 1090 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 1091 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 1092 } 1093 1094 /** 1095 * binder_alloc_get_allocated_count() - return count of buffers 1096 * @alloc: binder_alloc for this proc 1097 * 1098 * Return: count of allocated buffers 1099 */ 1100 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 1101 { 1102 struct rb_node *n; 1103 int count = 0; 1104 1105 mutex_lock(&alloc->mutex); 1106 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 1107 count++; 1108 mutex_unlock(&alloc->mutex); 1109 return count; 1110 } 1111 1112 1113 /** 1114 * binder_alloc_vma_close() - invalidate address space 1115 * @alloc: binder_alloc for this proc 1116 * 1117 * Called from binder_vma_close() when releasing address space. 1118 * Clears alloc->mapped to prevent new incoming transactions from 1119 * allocating more buffers. 1120 */ 1121 void binder_alloc_vma_close(struct binder_alloc *alloc) 1122 { 1123 binder_alloc_set_mapped(alloc, false); 1124 } 1125 1126 /** 1127 * binder_alloc_free_page() - shrinker callback to free pages 1128 * @item: item to free 1129 * @lru: list_lru instance of the item 1130 * @cb_arg: callback argument 1131 * 1132 * Called from list_lru_walk() in binder_shrink_scan() to free 1133 * up pages when the system is under memory pressure. 1134 */ 1135 enum lru_status binder_alloc_free_page(struct list_head *item, 1136 struct list_lru_one *lru, 1137 void *cb_arg) 1138 __must_hold(&lru->lock) 1139 { 1140 struct binder_shrinker_mdata *mdata = container_of(item, typeof(*mdata), lru); 1141 struct binder_alloc *alloc = mdata->alloc; 1142 struct mm_struct *mm = alloc->mm; 1143 struct vm_area_struct *vma; 1144 struct page *page_to_free; 1145 unsigned long page_addr; 1146 int mm_locked = 0; 1147 size_t index; 1148 1149 if (!mmget_not_zero(mm)) 1150 goto err_mmget; 1151 1152 index = mdata->page_index; 1153 page_addr = alloc->vm_start + index * PAGE_SIZE; 1154 1155 /* attempt per-vma lock first */ 1156 vma = lock_vma_under_rcu(mm, page_addr); 1157 if (!vma) { 1158 /* fall back to mmap_lock */ 1159 if (!mmap_read_trylock(mm)) 1160 goto err_mmap_read_lock_failed; 1161 mm_locked = 1; 1162 vma = vma_lookup(mm, page_addr); 1163 } 1164 1165 if (!mutex_trylock(&alloc->mutex)) 1166 goto err_get_alloc_mutex_failed; 1167 1168 /* 1169 * Since a binder_alloc can only be mapped once, we ensure 1170 * the vma corresponds to this mapping by checking whether 1171 * the binder_alloc is still mapped. 1172 */ 1173 if (vma && !binder_alloc_is_mapped(alloc)) 1174 goto err_invalid_vma; 1175 1176 trace_binder_unmap_kernel_start(alloc, index); 1177 1178 page_to_free = alloc->pages[index]; 1179 binder_set_installed_page(alloc, index, NULL); 1180 1181 trace_binder_unmap_kernel_end(alloc, index); 1182 1183 list_lru_isolate(lru, item); 1184 spin_unlock(&lru->lock); 1185 1186 if (vma) { 1187 trace_binder_unmap_user_start(alloc, index); 1188 1189 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1190 1191 trace_binder_unmap_user_end(alloc, index); 1192 } 1193 1194 mutex_unlock(&alloc->mutex); 1195 if (mm_locked) 1196 mmap_read_unlock(mm); 1197 else 1198 vma_end_read(vma); 1199 mmput_async(mm); 1200 binder_free_page(page_to_free); 1201 1202 return LRU_REMOVED_RETRY; 1203 1204 err_invalid_vma: 1205 mutex_unlock(&alloc->mutex); 1206 err_get_alloc_mutex_failed: 1207 if (mm_locked) 1208 mmap_read_unlock(mm); 1209 else 1210 vma_end_read(vma); 1211 err_mmap_read_lock_failed: 1212 mmput_async(mm); 1213 err_mmget: 1214 return LRU_SKIP; 1215 } 1216 1217 static unsigned long 1218 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1219 { 1220 return list_lru_count(&binder_freelist); 1221 } 1222 1223 static unsigned long 1224 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1225 { 1226 return list_lru_walk(&binder_freelist, binder_alloc_free_page, 1227 NULL, sc->nr_to_scan); 1228 } 1229 1230 static struct shrinker *binder_shrinker; 1231 1232 /** 1233 * binder_alloc_init() - called by binder_open() for per-proc initialization 1234 * @alloc: binder_alloc for this proc 1235 * 1236 * Called from binder_open() to initialize binder_alloc fields for 1237 * new binder proc 1238 */ 1239 void binder_alloc_init(struct binder_alloc *alloc) 1240 { 1241 alloc->pid = current->group_leader->pid; 1242 alloc->mm = current->mm; 1243 mmgrab(alloc->mm); 1244 mutex_init(&alloc->mutex); 1245 INIT_LIST_HEAD(&alloc->buffers); 1246 } 1247 1248 int binder_alloc_shrinker_init(void) 1249 { 1250 int ret; 1251 1252 ret = list_lru_init(&binder_freelist); 1253 if (ret) 1254 return ret; 1255 1256 binder_shrinker = shrinker_alloc(0, "android-binder"); 1257 if (!binder_shrinker) { 1258 list_lru_destroy(&binder_freelist); 1259 return -ENOMEM; 1260 } 1261 1262 binder_shrinker->count_objects = binder_shrink_count; 1263 binder_shrinker->scan_objects = binder_shrink_scan; 1264 1265 shrinker_register(binder_shrinker); 1266 1267 return 0; 1268 } 1269 1270 void binder_alloc_shrinker_exit(void) 1271 { 1272 shrinker_free(binder_shrinker); 1273 list_lru_destroy(&binder_freelist); 1274 } 1275 1276 /** 1277 * check_buffer() - verify that buffer/offset is safe to access 1278 * @alloc: binder_alloc for this proc 1279 * @buffer: binder buffer to be accessed 1280 * @offset: offset into @buffer data 1281 * @bytes: bytes to access from offset 1282 * 1283 * Check that the @offset/@bytes are within the size of the given 1284 * @buffer and that the buffer is currently active and not freeable. 1285 * Offsets must also be multiples of sizeof(u32). The kernel is 1286 * allowed to touch the buffer in two cases: 1287 * 1288 * 1) when the buffer is being created: 1289 * (buffer->free == 0 && buffer->allow_user_free == 0) 1290 * 2) when the buffer is being torn down: 1291 * (buffer->free == 0 && buffer->transaction == NULL). 1292 * 1293 * Return: true if the buffer is safe to access 1294 */ 1295 static inline bool check_buffer(struct binder_alloc *alloc, 1296 struct binder_buffer *buffer, 1297 binder_size_t offset, size_t bytes) 1298 { 1299 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1300 1301 return buffer_size >= bytes && 1302 offset <= buffer_size - bytes && 1303 IS_ALIGNED(offset, sizeof(u32)) && 1304 !buffer->free && 1305 (!buffer->allow_user_free || !buffer->transaction); 1306 } 1307 1308 /** 1309 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1310 * @alloc: binder_alloc for this proc 1311 * @buffer: binder buffer to be accessed 1312 * @buffer_offset: offset into @buffer data 1313 * @from: userspace pointer to source buffer 1314 * @bytes: bytes to copy 1315 * 1316 * Copy bytes from source userspace to target buffer. 1317 * 1318 * Return: bytes remaining to be copied 1319 */ 1320 unsigned long 1321 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1322 struct binder_buffer *buffer, 1323 binder_size_t buffer_offset, 1324 const void __user *from, 1325 size_t bytes) 1326 { 1327 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1328 return bytes; 1329 1330 while (bytes) { 1331 unsigned long size; 1332 unsigned long ret; 1333 struct page *page; 1334 pgoff_t pgoff; 1335 void *kptr; 1336 1337 page = binder_alloc_get_page(alloc, buffer, 1338 buffer_offset, &pgoff); 1339 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1340 kptr = kmap_local_page(page) + pgoff; 1341 ret = copy_from_user(kptr, from, size); 1342 kunmap_local(kptr); 1343 if (ret) 1344 return bytes - size + ret; 1345 bytes -= size; 1346 from += size; 1347 buffer_offset += size; 1348 } 1349 return 0; 1350 } 1351 1352 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1353 bool to_buffer, 1354 struct binder_buffer *buffer, 1355 binder_size_t buffer_offset, 1356 void *ptr, 1357 size_t bytes) 1358 { 1359 /* All copies must be 32-bit aligned and 32-bit size */ 1360 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1361 return -EINVAL; 1362 1363 while (bytes) { 1364 unsigned long size; 1365 struct page *page; 1366 pgoff_t pgoff; 1367 1368 page = binder_alloc_get_page(alloc, buffer, 1369 buffer_offset, &pgoff); 1370 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1371 if (to_buffer) 1372 memcpy_to_page(page, pgoff, ptr, size); 1373 else 1374 memcpy_from_page(ptr, page, pgoff, size); 1375 bytes -= size; 1376 pgoff = 0; 1377 ptr = ptr + size; 1378 buffer_offset += size; 1379 } 1380 return 0; 1381 } 1382 1383 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1384 struct binder_buffer *buffer, 1385 binder_size_t buffer_offset, 1386 void *src, 1387 size_t bytes) 1388 { 1389 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1390 src, bytes); 1391 } 1392 1393 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1394 void *dest, 1395 struct binder_buffer *buffer, 1396 binder_size_t buffer_offset, 1397 size_t bytes) 1398 { 1399 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1400 dest, bytes); 1401 } 1402