1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 #include <linux/dma-direct.h> 24 25 #include "internal.h" 26 #include "sleep.h" 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 void acpi_scan_lock_acquire(void) 53 { 54 mutex_lock(&acpi_scan_lock); 55 } 56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 57 58 void acpi_scan_lock_release(void) 59 { 60 mutex_unlock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 63 64 void acpi_lock_hp_context(void) 65 { 66 mutex_lock(&acpi_hp_context_lock); 67 } 68 69 void acpi_unlock_hp_context(void) 70 { 71 mutex_unlock(&acpi_hp_context_lock); 72 } 73 74 void acpi_initialize_hp_context(struct acpi_device *adev, 75 struct acpi_hotplug_context *hp, 76 acpi_hp_notify notify, acpi_hp_uevent uevent) 77 { 78 acpi_lock_hp_context(); 79 hp->notify = notify; 80 hp->uevent = uevent; 81 acpi_set_hp_context(adev, hp); 82 acpi_unlock_hp_context(); 83 } 84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 85 86 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 87 { 88 if (!handler) 89 return -EINVAL; 90 91 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 92 return 0; 93 } 94 95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 96 const char *hotplug_profile_name) 97 { 98 int error; 99 100 error = acpi_scan_add_handler(handler); 101 if (error) 102 return error; 103 104 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 105 return 0; 106 } 107 108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 109 { 110 struct acpi_device_physical_node *pn; 111 bool offline = true; 112 char *envp[] = { "EVENT=offline", NULL }; 113 114 /* 115 * acpi_container_offline() calls this for all of the container's 116 * children under the container's physical_node_lock lock. 117 */ 118 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 119 120 list_for_each_entry(pn, &adev->physical_node_list, node) 121 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 122 if (uevent) 123 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 124 125 offline = false; 126 break; 127 } 128 129 mutex_unlock(&adev->physical_node_lock); 130 return offline; 131 } 132 133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 134 void **ret_p) 135 { 136 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 137 struct acpi_device_physical_node *pn; 138 bool second_pass = (bool)data; 139 acpi_status status = AE_OK; 140 141 if (!device) 142 return AE_OK; 143 144 if (device->handler && !device->handler->hotplug.enabled) { 145 *ret_p = &device->dev; 146 return AE_SUPPORT; 147 } 148 149 mutex_lock(&device->physical_node_lock); 150 151 list_for_each_entry(pn, &device->physical_node_list, node) { 152 int ret; 153 154 if (second_pass) { 155 /* Skip devices offlined by the first pass. */ 156 if (pn->put_online) 157 continue; 158 } else { 159 pn->put_online = false; 160 } 161 ret = device_offline(pn->dev); 162 if (ret >= 0) { 163 pn->put_online = !ret; 164 } else { 165 *ret_p = pn->dev; 166 if (second_pass) { 167 status = AE_ERROR; 168 break; 169 } 170 } 171 } 172 173 mutex_unlock(&device->physical_node_lock); 174 175 return status; 176 } 177 178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 179 void **ret_p) 180 { 181 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 182 struct acpi_device_physical_node *pn; 183 184 if (!device) 185 return AE_OK; 186 187 mutex_lock(&device->physical_node_lock); 188 189 list_for_each_entry(pn, &device->physical_node_list, node) 190 if (pn->put_online) { 191 device_online(pn->dev); 192 pn->put_online = false; 193 } 194 195 mutex_unlock(&device->physical_node_lock); 196 197 return AE_OK; 198 } 199 200 static int acpi_scan_try_to_offline(struct acpi_device *device) 201 { 202 acpi_handle handle = device->handle; 203 struct device *errdev = NULL; 204 acpi_status status; 205 206 /* 207 * Carry out two passes here and ignore errors in the first pass, 208 * because if the devices in question are memory blocks and 209 * CONFIG_MEMCG is set, one of the blocks may hold data structures 210 * that the other blocks depend on, but it is not known in advance which 211 * block holds them. 212 * 213 * If the first pass is successful, the second one isn't needed, though. 214 */ 215 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 216 NULL, acpi_bus_offline, (void *)false, 217 (void **)&errdev); 218 if (status == AE_SUPPORT) { 219 dev_warn(errdev, "Offline disabled.\n"); 220 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 221 acpi_bus_online, NULL, NULL, NULL); 222 return -EPERM; 223 } 224 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 225 if (errdev) { 226 errdev = NULL; 227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 228 NULL, acpi_bus_offline, (void *)true, 229 (void **)&errdev); 230 if (!errdev) 231 acpi_bus_offline(handle, 0, (void *)true, 232 (void **)&errdev); 233 234 if (errdev) { 235 dev_warn(errdev, "Offline failed.\n"); 236 acpi_bus_online(handle, 0, NULL, NULL); 237 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 238 ACPI_UINT32_MAX, acpi_bus_online, 239 NULL, NULL, NULL); 240 return -EBUSY; 241 } 242 } 243 return 0; 244 } 245 246 #define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0) 247 #define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1) 248 249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p) 250 { 251 struct acpi_scan_handler *handler = adev->handler; 252 uintptr_t flags = (uintptr_t)p; 253 254 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p); 255 256 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) { 257 acpi_bus_get_status(adev); 258 /* 259 * Skip devices that are still there and take the enabled 260 * flag into account. 261 */ 262 if (acpi_device_is_enabled(adev)) 263 return 0; 264 265 /* Skip device that have not been enumerated. */ 266 if (!acpi_device_enumerated(adev)) { 267 dev_dbg(&adev->dev, "Still not enumerated\n"); 268 return 0; 269 } 270 } 271 272 adev->flags.match_driver = false; 273 if (handler) { 274 if (handler->detach) 275 handler->detach(adev); 276 } else { 277 device_release_driver(&adev->dev); 278 } 279 /* 280 * Most likely, the device is going away, so put it into D3cold before 281 * that. 282 */ 283 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 284 adev->flags.initialized = false; 285 286 /* For eject this is deferred to acpi_bus_post_eject() */ 287 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) { 288 adev->handler = NULL; 289 acpi_device_clear_enumerated(adev); 290 } 291 return 0; 292 } 293 294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used) 295 { 296 struct acpi_scan_handler *handler = adev->handler; 297 298 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL); 299 300 if (handler) { 301 if (handler->post_eject) 302 handler->post_eject(adev); 303 304 adev->handler = NULL; 305 } 306 307 acpi_device_clear_enumerated(adev); 308 309 return 0; 310 } 311 312 static void acpi_scan_check_subtree(struct acpi_device *adev) 313 { 314 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS; 315 316 acpi_scan_check_and_detach(adev, (void *)flags); 317 } 318 319 static int acpi_scan_hot_remove(struct acpi_device *device) 320 { 321 acpi_handle handle = device->handle; 322 unsigned long long sta; 323 acpi_status status; 324 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT; 325 326 if (device->handler && device->handler->hotplug.demand_offline) { 327 if (!acpi_scan_is_offline(device, true)) 328 return -EBUSY; 329 } else { 330 int error = acpi_scan_try_to_offline(device); 331 if (error) 332 return error; 333 } 334 335 acpi_handle_debug(handle, "Ejecting\n"); 336 337 acpi_scan_check_and_detach(device, (void *)flags); 338 339 acpi_evaluate_lck(handle, 0); 340 /* 341 * TBD: _EJD support. 342 */ 343 status = acpi_evaluate_ej0(handle); 344 if (status == AE_NOT_FOUND) 345 return -ENODEV; 346 else if (ACPI_FAILURE(status)) 347 return -EIO; 348 349 /* 350 * Verify if eject was indeed successful. If not, log an error 351 * message. No need to call _OST since _EJ0 call was made OK. 352 */ 353 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 354 if (ACPI_FAILURE(status)) { 355 acpi_handle_warn(handle, 356 "Status check after eject failed (0x%x)\n", status); 357 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 358 acpi_handle_warn(handle, 359 "Eject incomplete - status 0x%llx\n", sta); 360 } else { 361 acpi_bus_post_eject(device, NULL); 362 } 363 364 return 0; 365 } 366 367 static int acpi_scan_rescan_bus(struct acpi_device *adev) 368 { 369 struct acpi_scan_handler *handler = adev->handler; 370 int ret; 371 372 if (handler && handler->hotplug.scan_dependent) 373 ret = handler->hotplug.scan_dependent(adev); 374 else 375 ret = acpi_bus_scan(adev->handle); 376 377 if (ret) 378 dev_info(&adev->dev, "Namespace scan failure\n"); 379 380 return ret; 381 } 382 383 static int acpi_scan_device_check(struct acpi_device *adev) 384 { 385 struct acpi_device *parent; 386 387 acpi_scan_check_subtree(adev); 388 389 if (!acpi_device_is_present(adev)) 390 return 0; 391 392 /* 393 * This function is only called for device objects for which matching 394 * scan handlers exist. The only situation in which the scan handler 395 * is not attached to this device object yet is when the device has 396 * just appeared (either it wasn't present at all before or it was 397 * removed and then added again). 398 */ 399 if (adev->handler) { 400 dev_dbg(&adev->dev, "Already enumerated\n"); 401 return 0; 402 } 403 404 parent = acpi_dev_parent(adev); 405 if (!parent) 406 parent = adev; 407 408 return acpi_scan_rescan_bus(parent); 409 } 410 411 static int acpi_scan_bus_check(struct acpi_device *adev) 412 { 413 acpi_scan_check_subtree(adev); 414 415 return acpi_scan_rescan_bus(adev); 416 } 417 418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 419 { 420 switch (type) { 421 case ACPI_NOTIFY_BUS_CHECK: 422 return acpi_scan_bus_check(adev); 423 case ACPI_NOTIFY_DEVICE_CHECK: 424 return acpi_scan_device_check(adev); 425 case ACPI_NOTIFY_EJECT_REQUEST: 426 case ACPI_OST_EC_OSPM_EJECT: 427 if (adev->handler && !adev->handler->hotplug.enabled) { 428 dev_info(&adev->dev, "Eject disabled\n"); 429 return -EPERM; 430 } 431 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 432 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 433 return acpi_scan_hot_remove(adev); 434 } 435 return -EINVAL; 436 } 437 438 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 439 { 440 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 441 int error = -ENODEV; 442 443 lock_device_hotplug(); 444 mutex_lock(&acpi_scan_lock); 445 446 /* 447 * The device object's ACPI handle cannot become invalid as long as we 448 * are holding acpi_scan_lock, but it might have become invalid before 449 * that lock was acquired. 450 */ 451 if (adev->handle == INVALID_ACPI_HANDLE) 452 goto err_out; 453 454 if (adev->flags.is_dock_station) { 455 error = dock_notify(adev, src); 456 } else if (adev->flags.hotplug_notify) { 457 error = acpi_generic_hotplug_event(adev, src); 458 } else { 459 acpi_hp_notify notify; 460 461 acpi_lock_hp_context(); 462 notify = adev->hp ? adev->hp->notify : NULL; 463 acpi_unlock_hp_context(); 464 /* 465 * There may be additional notify handlers for device objects 466 * without the .event() callback, so ignore them here. 467 */ 468 if (notify) 469 error = notify(adev, src); 470 else 471 goto out; 472 } 473 switch (error) { 474 case 0: 475 ost_code = ACPI_OST_SC_SUCCESS; 476 break; 477 case -EPERM: 478 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 479 break; 480 case -EBUSY: 481 ost_code = ACPI_OST_SC_DEVICE_BUSY; 482 break; 483 default: 484 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 485 break; 486 } 487 488 err_out: 489 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 490 491 out: 492 acpi_put_acpi_dev(adev); 493 mutex_unlock(&acpi_scan_lock); 494 unlock_device_hotplug(); 495 } 496 497 static void acpi_free_power_resources_lists(struct acpi_device *device) 498 { 499 int i; 500 501 if (device->wakeup.flags.valid) 502 acpi_power_resources_list_free(&device->wakeup.resources); 503 504 if (!device->power.flags.power_resources) 505 return; 506 507 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 508 struct acpi_device_power_state *ps = &device->power.states[i]; 509 acpi_power_resources_list_free(&ps->resources); 510 } 511 } 512 513 static void acpi_device_release(struct device *dev) 514 { 515 struct acpi_device *acpi_dev = to_acpi_device(dev); 516 517 acpi_free_properties(acpi_dev); 518 acpi_free_pnp_ids(&acpi_dev->pnp); 519 acpi_free_power_resources_lists(acpi_dev); 520 kfree(acpi_dev); 521 } 522 523 static void acpi_device_del(struct acpi_device *device) 524 { 525 struct acpi_device_bus_id *acpi_device_bus_id; 526 527 mutex_lock(&acpi_device_lock); 528 529 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 530 if (!strcmp(acpi_device_bus_id->bus_id, 531 acpi_device_hid(device))) { 532 ida_free(&acpi_device_bus_id->instance_ida, 533 device->pnp.instance_no); 534 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 535 list_del(&acpi_device_bus_id->node); 536 kfree_const(acpi_device_bus_id->bus_id); 537 kfree(acpi_device_bus_id); 538 } 539 break; 540 } 541 542 list_del(&device->wakeup_list); 543 544 mutex_unlock(&acpi_device_lock); 545 546 acpi_power_add_remove_device(device, false); 547 acpi_device_remove_files(device); 548 if (device->remove) 549 device->remove(device); 550 551 device_del(&device->dev); 552 } 553 554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 555 556 static LIST_HEAD(acpi_device_del_list); 557 static DEFINE_MUTEX(acpi_device_del_lock); 558 559 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 560 { 561 for (;;) { 562 struct acpi_device *adev; 563 564 mutex_lock(&acpi_device_del_lock); 565 566 if (list_empty(&acpi_device_del_list)) { 567 mutex_unlock(&acpi_device_del_lock); 568 break; 569 } 570 adev = list_first_entry(&acpi_device_del_list, 571 struct acpi_device, del_list); 572 list_del(&adev->del_list); 573 574 mutex_unlock(&acpi_device_del_lock); 575 576 blocking_notifier_call_chain(&acpi_reconfig_chain, 577 ACPI_RECONFIG_DEVICE_REMOVE, adev); 578 579 acpi_device_del(adev); 580 /* 581 * Drop references to all power resources that might have been 582 * used by the device. 583 */ 584 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 585 acpi_dev_put(adev); 586 } 587 } 588 589 /** 590 * acpi_scan_drop_device - Drop an ACPI device object. 591 * @handle: Handle of an ACPI namespace node, not used. 592 * @context: Address of the ACPI device object to drop. 593 * 594 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 595 * namespace node the device object pointed to by @context is attached to. 596 * 597 * The unregistration is carried out asynchronously to avoid running 598 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 599 * ensure the correct ordering (the device objects must be unregistered in the 600 * same order in which the corresponding namespace nodes are deleted). 601 */ 602 static void acpi_scan_drop_device(acpi_handle handle, void *context) 603 { 604 static DECLARE_WORK(work, acpi_device_del_work_fn); 605 struct acpi_device *adev = context; 606 607 mutex_lock(&acpi_device_del_lock); 608 609 /* 610 * Use the ACPI hotplug workqueue which is ordered, so this work item 611 * won't run after any hotplug work items submitted subsequently. That 612 * prevents attempts to register device objects identical to those being 613 * deleted from happening concurrently (such attempts result from 614 * hotplug events handled via the ACPI hotplug workqueue). It also will 615 * run after all of the work items submitted previously, which helps 616 * those work items to ensure that they are not accessing stale device 617 * objects. 618 */ 619 if (list_empty(&acpi_device_del_list)) 620 acpi_queue_hotplug_work(&work); 621 622 list_add_tail(&adev->del_list, &acpi_device_del_list); 623 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 624 adev->handle = INVALID_ACPI_HANDLE; 625 626 mutex_unlock(&acpi_device_del_lock); 627 } 628 629 static struct acpi_device *handle_to_device(acpi_handle handle, 630 void (*callback)(void *)) 631 { 632 struct acpi_device *adev = NULL; 633 acpi_status status; 634 635 status = acpi_get_data_full(handle, acpi_scan_drop_device, 636 (void **)&adev, callback); 637 if (ACPI_FAILURE(status) || !adev) { 638 acpi_handle_debug(handle, "No context!\n"); 639 return NULL; 640 } 641 return adev; 642 } 643 644 /** 645 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 646 * @handle: ACPI handle associated with the requested ACPI device object. 647 * 648 * Return a pointer to the ACPI device object associated with @handle, if 649 * present, or NULL otherwise. 650 */ 651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 652 { 653 return handle_to_device(handle, NULL); 654 } 655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 656 657 static void get_acpi_device(void *dev) 658 { 659 acpi_dev_get(dev); 660 } 661 662 /** 663 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 664 * @handle: ACPI handle associated with the requested ACPI device object. 665 * 666 * Return a pointer to the ACPI device object associated with @handle and bump 667 * up that object's reference counter (under the ACPI Namespace lock), if 668 * present, or return NULL otherwise. 669 * 670 * The ACPI device object reference acquired by this function needs to be 671 * dropped via acpi_dev_put(). 672 */ 673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 674 { 675 return handle_to_device(handle, get_acpi_device); 676 } 677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 678 679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 680 { 681 struct acpi_device_bus_id *acpi_device_bus_id; 682 683 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 684 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 685 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 686 return acpi_device_bus_id; 687 } 688 return NULL; 689 } 690 691 static int acpi_device_set_name(struct acpi_device *device, 692 struct acpi_device_bus_id *acpi_device_bus_id) 693 { 694 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 695 int result; 696 697 result = ida_alloc(instance_ida, GFP_KERNEL); 698 if (result < 0) 699 return result; 700 701 device->pnp.instance_no = result; 702 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 703 return 0; 704 } 705 706 int acpi_tie_acpi_dev(struct acpi_device *adev) 707 { 708 acpi_handle handle = adev->handle; 709 acpi_status status; 710 711 if (!handle) 712 return 0; 713 714 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 715 if (ACPI_FAILURE(status)) { 716 acpi_handle_err(handle, "Unable to attach device data\n"); 717 return -ENODEV; 718 } 719 720 return 0; 721 } 722 723 static void acpi_store_pld_crc(struct acpi_device *adev) 724 { 725 struct acpi_pld_info *pld; 726 727 if (!acpi_get_physical_device_location(adev->handle, &pld)) 728 return; 729 730 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 731 ACPI_FREE(pld); 732 } 733 734 int acpi_device_add(struct acpi_device *device) 735 { 736 struct acpi_device_bus_id *acpi_device_bus_id; 737 int result; 738 739 /* 740 * Linkage 741 * ------- 742 * Link this device to its parent and siblings. 743 */ 744 INIT_LIST_HEAD(&device->wakeup_list); 745 INIT_LIST_HEAD(&device->physical_node_list); 746 INIT_LIST_HEAD(&device->del_list); 747 mutex_init(&device->physical_node_lock); 748 749 mutex_lock(&acpi_device_lock); 750 751 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 752 if (acpi_device_bus_id) { 753 result = acpi_device_set_name(device, acpi_device_bus_id); 754 if (result) 755 goto err_unlock; 756 } else { 757 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 758 GFP_KERNEL); 759 if (!acpi_device_bus_id) { 760 result = -ENOMEM; 761 goto err_unlock; 762 } 763 acpi_device_bus_id->bus_id = 764 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 765 if (!acpi_device_bus_id->bus_id) { 766 kfree(acpi_device_bus_id); 767 result = -ENOMEM; 768 goto err_unlock; 769 } 770 771 ida_init(&acpi_device_bus_id->instance_ida); 772 773 result = acpi_device_set_name(device, acpi_device_bus_id); 774 if (result) { 775 kfree_const(acpi_device_bus_id->bus_id); 776 kfree(acpi_device_bus_id); 777 goto err_unlock; 778 } 779 780 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 781 } 782 783 if (device->wakeup.flags.valid) 784 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 785 786 acpi_store_pld_crc(device); 787 788 mutex_unlock(&acpi_device_lock); 789 790 result = device_add(&device->dev); 791 if (result) { 792 dev_err(&device->dev, "Error registering device\n"); 793 goto err; 794 } 795 796 acpi_device_setup_files(device); 797 798 return 0; 799 800 err: 801 mutex_lock(&acpi_device_lock); 802 803 list_del(&device->wakeup_list); 804 805 err_unlock: 806 mutex_unlock(&acpi_device_lock); 807 808 acpi_detach_data(device->handle, acpi_scan_drop_device); 809 810 return result; 811 } 812 813 /* -------------------------------------------------------------------------- 814 Device Enumeration 815 -------------------------------------------------------------------------- */ 816 static bool acpi_info_matches_ids(struct acpi_device_info *info, 817 const char * const ids[]) 818 { 819 struct acpi_pnp_device_id_list *cid_list = NULL; 820 int i, index; 821 822 if (!(info->valid & ACPI_VALID_HID)) 823 return false; 824 825 index = match_string(ids, -1, info->hardware_id.string); 826 if (index >= 0) 827 return true; 828 829 if (info->valid & ACPI_VALID_CID) 830 cid_list = &info->compatible_id_list; 831 832 if (!cid_list) 833 return false; 834 835 for (i = 0; i < cid_list->count; i++) { 836 index = match_string(ids, -1, cid_list->ids[i].string); 837 if (index >= 0) 838 return true; 839 } 840 841 return false; 842 } 843 844 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 845 static const char * const acpi_ignore_dep_ids[] = { 846 "PNP0D80", /* Windows-compatible System Power Management Controller */ 847 "INT33BD", /* Intel Baytrail Mailbox Device */ 848 "LATT2021", /* Lattice FW Update Client Driver */ 849 NULL 850 }; 851 852 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 853 static const char * const acpi_honor_dep_ids[] = { 854 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 855 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */ 856 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */ 857 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */ 858 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */ 859 "RSCV0001", /* RISC-V PLIC */ 860 "RSCV0002", /* RISC-V APLIC */ 861 "PNP0C0F", /* PCI Link Device */ 862 NULL 863 }; 864 865 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 866 { 867 struct acpi_device *adev; 868 869 /* 870 * Fixed hardware devices do not appear in the namespace and do not 871 * have handles, but we fabricate acpi_devices for them, so we have 872 * to deal with them specially. 873 */ 874 if (!handle) 875 return acpi_root; 876 877 do { 878 acpi_status status; 879 880 status = acpi_get_parent(handle, &handle); 881 if (ACPI_FAILURE(status)) { 882 if (status != AE_NULL_ENTRY) 883 return acpi_root; 884 885 return NULL; 886 } 887 adev = acpi_fetch_acpi_dev(handle); 888 } while (!adev); 889 return adev; 890 } 891 892 acpi_status 893 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 894 { 895 acpi_status status; 896 acpi_handle tmp; 897 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 898 union acpi_object *obj; 899 900 status = acpi_get_handle(handle, "_EJD", &tmp); 901 if (ACPI_FAILURE(status)) 902 return status; 903 904 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 905 if (ACPI_SUCCESS(status)) { 906 obj = buffer.pointer; 907 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 908 ejd); 909 kfree(buffer.pointer); 910 } 911 return status; 912 } 913 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 914 915 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 916 { 917 acpi_handle handle = dev->handle; 918 struct acpi_device_wakeup *wakeup = &dev->wakeup; 919 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 920 union acpi_object *package = NULL; 921 union acpi_object *element = NULL; 922 acpi_status status; 923 int err = -ENODATA; 924 925 INIT_LIST_HEAD(&wakeup->resources); 926 927 /* _PRW */ 928 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 929 if (ACPI_FAILURE(status)) { 930 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 931 acpi_format_exception(status)); 932 return err; 933 } 934 935 package = (union acpi_object *)buffer.pointer; 936 937 if (!package || package->package.count < 2) 938 goto out; 939 940 element = &(package->package.elements[0]); 941 if (!element) 942 goto out; 943 944 if (element->type == ACPI_TYPE_PACKAGE) { 945 if ((element->package.count < 2) || 946 (element->package.elements[0].type != 947 ACPI_TYPE_LOCAL_REFERENCE) 948 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 949 goto out; 950 951 wakeup->gpe_device = 952 element->package.elements[0].reference.handle; 953 wakeup->gpe_number = 954 (u32) element->package.elements[1].integer.value; 955 } else if (element->type == ACPI_TYPE_INTEGER) { 956 wakeup->gpe_device = NULL; 957 wakeup->gpe_number = element->integer.value; 958 } else { 959 goto out; 960 } 961 962 element = &(package->package.elements[1]); 963 if (element->type != ACPI_TYPE_INTEGER) 964 goto out; 965 966 wakeup->sleep_state = element->integer.value; 967 968 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 969 if (err) 970 goto out; 971 972 if (!list_empty(&wakeup->resources)) { 973 int sleep_state; 974 975 err = acpi_power_wakeup_list_init(&wakeup->resources, 976 &sleep_state); 977 if (err) { 978 acpi_handle_warn(handle, "Retrieving current states " 979 "of wakeup power resources failed\n"); 980 acpi_power_resources_list_free(&wakeup->resources); 981 goto out; 982 } 983 if (sleep_state < wakeup->sleep_state) { 984 acpi_handle_warn(handle, "Overriding _PRW sleep state " 985 "(S%d) by S%d from power resources\n", 986 (int)wakeup->sleep_state, sleep_state); 987 wakeup->sleep_state = sleep_state; 988 } 989 } 990 991 out: 992 kfree(buffer.pointer); 993 return err; 994 } 995 996 /* Do not use a button for S5 wakeup */ 997 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0) 998 999 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 1000 { 1001 static const struct acpi_device_id button_device_ids[] = { 1002 {"PNP0C0C", 0}, /* Power button */ 1003 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */ 1004 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */ 1005 {"", 0}, 1006 }; 1007 struct acpi_device_wakeup *wakeup = &device->wakeup; 1008 const struct acpi_device_id *match; 1009 acpi_status status; 1010 1011 wakeup->flags.notifier_present = 0; 1012 1013 /* Power button, Lid switch always enable wakeup */ 1014 match = acpi_match_acpi_device(button_device_ids, device); 1015 if (match) { 1016 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) && 1017 wakeup->sleep_state == ACPI_STATE_S5) 1018 wakeup->sleep_state = ACPI_STATE_S4; 1019 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 1020 device_set_wakeup_capable(&device->dev, true); 1021 return true; 1022 } 1023 1024 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 1025 wakeup->gpe_number); 1026 return ACPI_SUCCESS(status); 1027 } 1028 1029 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 1030 { 1031 int err; 1032 1033 /* Presence of _PRW indicates wake capable */ 1034 if (!acpi_has_method(device->handle, "_PRW")) 1035 return; 1036 1037 err = acpi_bus_extract_wakeup_device_power_package(device); 1038 if (err) { 1039 dev_err(&device->dev, "Unable to extract wakeup power resources"); 1040 return; 1041 } 1042 1043 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 1044 device->wakeup.prepare_count = 0; 1045 /* 1046 * Call _PSW/_DSW object to disable its ability to wake the sleeping 1047 * system for the ACPI device with the _PRW object. 1048 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1049 * So it is necessary to call _DSW object first. Only when it is not 1050 * present will the _PSW object used. 1051 */ 1052 err = acpi_device_sleep_wake(device, 0, 0, 0); 1053 if (err) 1054 pr_debug("error in _DSW or _PSW evaluation\n"); 1055 } 1056 1057 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1058 { 1059 struct acpi_device_power_state *ps = &device->power.states[state]; 1060 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1061 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1062 acpi_status status; 1063 1064 INIT_LIST_HEAD(&ps->resources); 1065 1066 /* Evaluate "_PRx" to get referenced power resources */ 1067 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1068 if (ACPI_SUCCESS(status)) { 1069 union acpi_object *package = buffer.pointer; 1070 1071 if (buffer.length && package 1072 && package->type == ACPI_TYPE_PACKAGE 1073 && package->package.count) 1074 acpi_extract_power_resources(package, 0, &ps->resources); 1075 1076 ACPI_FREE(buffer.pointer); 1077 } 1078 1079 /* Evaluate "_PSx" to see if we can do explicit sets */ 1080 pathname[2] = 'S'; 1081 if (acpi_has_method(device->handle, pathname)) 1082 ps->flags.explicit_set = 1; 1083 1084 /* State is valid if there are means to put the device into it. */ 1085 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1086 ps->flags.valid = 1; 1087 1088 ps->power = -1; /* Unknown - driver assigned */ 1089 ps->latency = -1; /* Unknown - driver assigned */ 1090 } 1091 1092 static void acpi_bus_get_power_flags(struct acpi_device *device) 1093 { 1094 unsigned long long dsc = ACPI_STATE_D0; 1095 u32 i; 1096 1097 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1098 if (!acpi_has_method(device->handle, "_PS0") && 1099 !acpi_has_method(device->handle, "_PR0")) 1100 return; 1101 1102 device->flags.power_manageable = 1; 1103 1104 /* 1105 * Power Management Flags 1106 */ 1107 if (acpi_has_method(device->handle, "_PSC")) 1108 device->power.flags.explicit_get = 1; 1109 1110 if (acpi_has_method(device->handle, "_IRC")) 1111 device->power.flags.inrush_current = 1; 1112 1113 if (acpi_has_method(device->handle, "_DSW")) 1114 device->power.flags.dsw_present = 1; 1115 1116 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1117 device->power.state_for_enumeration = dsc; 1118 1119 /* 1120 * Enumerate supported power management states 1121 */ 1122 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1123 acpi_bus_init_power_state(device, i); 1124 1125 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1126 1127 /* Set the defaults for D0 and D3hot (always supported). */ 1128 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1129 device->power.states[ACPI_STATE_D0].power = 100; 1130 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1131 1132 /* 1133 * Use power resources only if the D0 list of them is populated, because 1134 * some platforms may provide _PR3 only to indicate D3cold support and 1135 * in those cases the power resources list returned by it may be bogus. 1136 */ 1137 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1138 device->power.flags.power_resources = 1; 1139 /* 1140 * D3cold is supported if the D3hot list of power resources is 1141 * not empty. 1142 */ 1143 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1144 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1145 } 1146 1147 if (acpi_bus_init_power(device)) 1148 device->flags.power_manageable = 0; 1149 } 1150 1151 static void acpi_bus_get_flags(struct acpi_device *device) 1152 { 1153 /* Presence of _STA indicates 'dynamic_status' */ 1154 if (acpi_has_method(device->handle, "_STA")) 1155 device->flags.dynamic_status = 1; 1156 1157 /* Presence of _RMV indicates 'removable' */ 1158 if (acpi_has_method(device->handle, "_RMV")) 1159 device->flags.removable = 1; 1160 1161 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1162 if (acpi_has_method(device->handle, "_EJD") || 1163 acpi_has_method(device->handle, "_EJ0")) 1164 device->flags.ejectable = 1; 1165 } 1166 1167 static void acpi_device_get_busid(struct acpi_device *device) 1168 { 1169 char bus_id[5] = { '?', 0 }; 1170 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1171 int i = 0; 1172 1173 /* 1174 * Bus ID 1175 * ------ 1176 * The device's Bus ID is simply the object name. 1177 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1178 */ 1179 if (!acpi_dev_parent(device)) { 1180 strscpy(device->pnp.bus_id, "ACPI"); 1181 return; 1182 } 1183 1184 switch (device->device_type) { 1185 case ACPI_BUS_TYPE_POWER_BUTTON: 1186 strscpy(device->pnp.bus_id, "PWRF"); 1187 break; 1188 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1189 strscpy(device->pnp.bus_id, "SLPF"); 1190 break; 1191 case ACPI_BUS_TYPE_ECDT_EC: 1192 strscpy(device->pnp.bus_id, "ECDT"); 1193 break; 1194 default: 1195 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1196 /* Clean up trailing underscores (if any) */ 1197 for (i = 3; i > 1; i--) { 1198 if (bus_id[i] == '_') 1199 bus_id[i] = '\0'; 1200 else 1201 break; 1202 } 1203 strscpy(device->pnp.bus_id, bus_id); 1204 break; 1205 } 1206 } 1207 1208 /* 1209 * acpi_ata_match - see if an acpi object is an ATA device 1210 * 1211 * If an acpi object has one of the ACPI ATA methods defined, 1212 * then we can safely call it an ATA device. 1213 */ 1214 bool acpi_ata_match(acpi_handle handle) 1215 { 1216 return acpi_has_method(handle, "_GTF") || 1217 acpi_has_method(handle, "_GTM") || 1218 acpi_has_method(handle, "_STM") || 1219 acpi_has_method(handle, "_SDD"); 1220 } 1221 1222 /* 1223 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1224 * 1225 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1226 * then we can safely call it an ejectable drive bay 1227 */ 1228 bool acpi_bay_match(acpi_handle handle) 1229 { 1230 acpi_handle phandle; 1231 1232 if (!acpi_has_method(handle, "_EJ0")) 1233 return false; 1234 if (acpi_ata_match(handle)) 1235 return true; 1236 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1237 return false; 1238 1239 return acpi_ata_match(phandle); 1240 } 1241 1242 bool acpi_device_is_battery(struct acpi_device *adev) 1243 { 1244 struct acpi_hardware_id *hwid; 1245 1246 list_for_each_entry(hwid, &adev->pnp.ids, list) 1247 if (!strcmp("PNP0C0A", hwid->id)) 1248 return true; 1249 1250 return false; 1251 } 1252 1253 static bool is_ejectable_bay(struct acpi_device *adev) 1254 { 1255 acpi_handle handle = adev->handle; 1256 1257 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1258 return true; 1259 1260 return acpi_bay_match(handle); 1261 } 1262 1263 /* 1264 * acpi_dock_match - see if an acpi object has a _DCK method 1265 */ 1266 bool acpi_dock_match(acpi_handle handle) 1267 { 1268 return acpi_has_method(handle, "_DCK"); 1269 } 1270 1271 static acpi_status 1272 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1273 void **return_value) 1274 { 1275 long *cap = context; 1276 1277 if (acpi_has_method(handle, "_BCM") && 1278 acpi_has_method(handle, "_BCL")) { 1279 acpi_handle_debug(handle, "Found generic backlight support\n"); 1280 *cap |= ACPI_VIDEO_BACKLIGHT; 1281 /* We have backlight support, no need to scan further */ 1282 return AE_CTRL_TERMINATE; 1283 } 1284 return 0; 1285 } 1286 1287 /* Returns true if the ACPI object is a video device which can be 1288 * handled by video.ko. 1289 * The device will get a Linux specific CID added in scan.c to 1290 * identify the device as an ACPI graphics device 1291 * Be aware that the graphics device may not be physically present 1292 * Use acpi_video_get_capabilities() to detect general ACPI video 1293 * capabilities of present cards 1294 */ 1295 long acpi_is_video_device(acpi_handle handle) 1296 { 1297 long video_caps = 0; 1298 1299 /* Is this device able to support video switching ? */ 1300 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1301 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1302 1303 /* Is this device able to retrieve a video ROM ? */ 1304 if (acpi_has_method(handle, "_ROM")) 1305 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1306 1307 /* Is this device able to configure which video head to be POSTed ? */ 1308 if (acpi_has_method(handle, "_VPO") && 1309 acpi_has_method(handle, "_GPD") && 1310 acpi_has_method(handle, "_SPD")) 1311 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1312 1313 /* Only check for backlight functionality if one of the above hit. */ 1314 if (video_caps) 1315 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1316 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1317 &video_caps, NULL); 1318 1319 return video_caps; 1320 } 1321 EXPORT_SYMBOL(acpi_is_video_device); 1322 1323 const char *acpi_device_hid(struct acpi_device *device) 1324 { 1325 struct acpi_hardware_id *hid; 1326 1327 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list); 1328 if (!hid) 1329 return dummy_hid; 1330 1331 return hid->id; 1332 } 1333 EXPORT_SYMBOL(acpi_device_hid); 1334 1335 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1336 { 1337 struct acpi_hardware_id *id; 1338 1339 id = kmalloc(sizeof(*id), GFP_KERNEL); 1340 if (!id) 1341 return; 1342 1343 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1344 if (!id->id) { 1345 kfree(id); 1346 return; 1347 } 1348 1349 list_add_tail(&id->list, &pnp->ids); 1350 pnp->type.hardware_id = 1; 1351 } 1352 1353 /* 1354 * Old IBM workstations have a DSDT bug wherein the SMBus object 1355 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1356 * prefix. Work around this. 1357 */ 1358 static bool acpi_ibm_smbus_match(acpi_handle handle) 1359 { 1360 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1361 struct acpi_buffer path = { sizeof(node_name), node_name }; 1362 1363 if (!dmi_name_in_vendors("IBM")) 1364 return false; 1365 1366 /* Look for SMBS object */ 1367 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1368 strcmp("SMBS", path.pointer)) 1369 return false; 1370 1371 /* Does it have the necessary (but misnamed) methods? */ 1372 if (acpi_has_method(handle, "SBI") && 1373 acpi_has_method(handle, "SBR") && 1374 acpi_has_method(handle, "SBW")) 1375 return true; 1376 1377 return false; 1378 } 1379 1380 static bool acpi_object_is_system_bus(acpi_handle handle) 1381 { 1382 acpi_handle tmp; 1383 1384 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1385 tmp == handle) 1386 return true; 1387 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1388 tmp == handle) 1389 return true; 1390 1391 return false; 1392 } 1393 1394 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1395 int device_type) 1396 { 1397 struct acpi_device_info *info = NULL; 1398 struct acpi_pnp_device_id_list *cid_list; 1399 int i; 1400 1401 switch (device_type) { 1402 case ACPI_BUS_TYPE_DEVICE: 1403 if (handle == ACPI_ROOT_OBJECT) { 1404 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1405 break; 1406 } 1407 1408 acpi_get_object_info(handle, &info); 1409 if (!info) { 1410 pr_err("%s: Error reading device info\n", __func__); 1411 return; 1412 } 1413 1414 if (info->valid & ACPI_VALID_HID) { 1415 acpi_add_id(pnp, info->hardware_id.string); 1416 pnp->type.platform_id = 1; 1417 } 1418 if (info->valid & ACPI_VALID_CID) { 1419 cid_list = &info->compatible_id_list; 1420 for (i = 0; i < cid_list->count; i++) 1421 acpi_add_id(pnp, cid_list->ids[i].string); 1422 } 1423 if (info->valid & ACPI_VALID_ADR) { 1424 pnp->bus_address = info->address; 1425 pnp->type.bus_address = 1; 1426 } 1427 if (info->valid & ACPI_VALID_UID) 1428 pnp->unique_id = kstrdup(info->unique_id.string, 1429 GFP_KERNEL); 1430 if (info->valid & ACPI_VALID_CLS) 1431 acpi_add_id(pnp, info->class_code.string); 1432 1433 kfree(info); 1434 1435 /* 1436 * Some devices don't reliably have _HIDs & _CIDs, so add 1437 * synthetic HIDs to make sure drivers can find them. 1438 */ 1439 if (acpi_is_video_device(handle)) { 1440 acpi_add_id(pnp, ACPI_VIDEO_HID); 1441 pnp->type.backlight = 1; 1442 break; 1443 } 1444 if (acpi_bay_match(handle)) 1445 acpi_add_id(pnp, ACPI_BAY_HID); 1446 else if (acpi_dock_match(handle)) 1447 acpi_add_id(pnp, ACPI_DOCK_HID); 1448 else if (acpi_ibm_smbus_match(handle)) 1449 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1450 else if (list_empty(&pnp->ids) && 1451 acpi_object_is_system_bus(handle)) { 1452 /* \_SB, \_TZ, LNXSYBUS */ 1453 acpi_add_id(pnp, ACPI_BUS_HID); 1454 strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1455 strscpy(pnp->device_class, ACPI_BUS_CLASS); 1456 } 1457 1458 break; 1459 case ACPI_BUS_TYPE_POWER: 1460 acpi_add_id(pnp, ACPI_POWER_HID); 1461 break; 1462 case ACPI_BUS_TYPE_PROCESSOR: 1463 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1464 break; 1465 case ACPI_BUS_TYPE_THERMAL: 1466 acpi_add_id(pnp, ACPI_THERMAL_HID); 1467 break; 1468 case ACPI_BUS_TYPE_POWER_BUTTON: 1469 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1470 break; 1471 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1472 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1473 break; 1474 case ACPI_BUS_TYPE_ECDT_EC: 1475 acpi_add_id(pnp, ACPI_ECDT_HID); 1476 break; 1477 } 1478 } 1479 1480 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1481 { 1482 struct acpi_hardware_id *id, *tmp; 1483 1484 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1485 kfree_const(id->id); 1486 kfree(id); 1487 } 1488 kfree(pnp->unique_id); 1489 } 1490 1491 /** 1492 * acpi_dma_supported - Check DMA support for the specified device. 1493 * @adev: The pointer to acpi device 1494 * 1495 * Return false if DMA is not supported. Otherwise, return true 1496 */ 1497 bool acpi_dma_supported(const struct acpi_device *adev) 1498 { 1499 if (!adev) 1500 return false; 1501 1502 if (adev->flags.cca_seen) 1503 return true; 1504 1505 /* 1506 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1507 * DMA on "Intel platforms". Presumably that includes all x86 and 1508 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1509 */ 1510 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1511 return true; 1512 1513 return false; 1514 } 1515 1516 /** 1517 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1518 * @adev: The pointer to acpi device 1519 * 1520 * Return enum dev_dma_attr. 1521 */ 1522 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1523 { 1524 if (!acpi_dma_supported(adev)) 1525 return DEV_DMA_NOT_SUPPORTED; 1526 1527 if (adev->flags.coherent_dma) 1528 return DEV_DMA_COHERENT; 1529 else 1530 return DEV_DMA_NON_COHERENT; 1531 } 1532 1533 /** 1534 * acpi_dma_get_range() - Get device DMA parameters. 1535 * 1536 * @dev: device to configure 1537 * @map: pointer to DMA ranges result 1538 * 1539 * Evaluate DMA regions and return pointer to DMA regions on 1540 * parsing success; it does not update the passed in values on failure. 1541 * 1542 * Return 0 on success, < 0 on failure. 1543 */ 1544 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1545 { 1546 struct acpi_device *adev; 1547 LIST_HEAD(list); 1548 struct resource_entry *rentry; 1549 int ret; 1550 struct device *dma_dev = dev; 1551 struct bus_dma_region *r; 1552 1553 /* 1554 * Walk the device tree chasing an ACPI companion with a _DMA 1555 * object while we go. Stop if we find a device with an ACPI 1556 * companion containing a _DMA method. 1557 */ 1558 do { 1559 adev = ACPI_COMPANION(dma_dev); 1560 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1561 break; 1562 1563 dma_dev = dma_dev->parent; 1564 } while (dma_dev); 1565 1566 if (!dma_dev) 1567 return -ENODEV; 1568 1569 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1570 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1571 return -EINVAL; 1572 } 1573 1574 ret = acpi_dev_get_dma_resources(adev, &list); 1575 if (ret > 0) { 1576 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1577 if (!r) { 1578 ret = -ENOMEM; 1579 goto out; 1580 } 1581 1582 *map = r; 1583 1584 list_for_each_entry(rentry, &list, node) { 1585 if (rentry->res->start >= rentry->res->end) { 1586 kfree(*map); 1587 *map = NULL; 1588 ret = -EINVAL; 1589 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1590 goto out; 1591 } 1592 1593 r->cpu_start = rentry->res->start; 1594 r->dma_start = rentry->res->start - rentry->offset; 1595 r->size = resource_size(rentry->res); 1596 r++; 1597 } 1598 } 1599 out: 1600 acpi_dev_free_resource_list(&list); 1601 1602 return ret >= 0 ? 0 : ret; 1603 } 1604 1605 #ifdef CONFIG_IOMMU_API 1606 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1607 struct fwnode_handle *fwnode) 1608 { 1609 int ret; 1610 1611 ret = iommu_fwspec_init(dev, fwnode); 1612 if (ret) 1613 return ret; 1614 1615 return iommu_fwspec_add_ids(dev, &id, 1); 1616 } 1617 1618 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1619 { 1620 int err; 1621 1622 /* Serialise to make dev->iommu stable under our potential fwspec */ 1623 mutex_lock(&iommu_probe_device_lock); 1624 /* If we already translated the fwspec there is nothing left to do */ 1625 if (dev_iommu_fwspec_get(dev)) { 1626 mutex_unlock(&iommu_probe_device_lock); 1627 return 0; 1628 } 1629 1630 err = iort_iommu_configure_id(dev, id_in); 1631 if (err && err != -EPROBE_DEFER) 1632 err = viot_iommu_configure(dev); 1633 mutex_unlock(&iommu_probe_device_lock); 1634 1635 return err; 1636 } 1637 1638 #else /* !CONFIG_IOMMU_API */ 1639 1640 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1641 struct fwnode_handle *fwnode) 1642 { 1643 return -ENODEV; 1644 } 1645 1646 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1647 { 1648 return -ENODEV; 1649 } 1650 1651 #endif /* !CONFIG_IOMMU_API */ 1652 1653 /** 1654 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1655 * @dev: The pointer to the device 1656 * @attr: device dma attributes 1657 * @input_id: input device id const value pointer 1658 */ 1659 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1660 const u32 *input_id) 1661 { 1662 int ret; 1663 1664 if (attr == DEV_DMA_NOT_SUPPORTED) { 1665 set_dma_ops(dev, &dma_dummy_ops); 1666 return 0; 1667 } 1668 1669 acpi_arch_dma_setup(dev); 1670 1671 /* Ignore all other errors apart from EPROBE_DEFER */ 1672 ret = acpi_iommu_configure_id(dev, input_id); 1673 if (ret == -EPROBE_DEFER) 1674 return -EPROBE_DEFER; 1675 if (ret) 1676 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret); 1677 1678 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT); 1679 1680 return 0; 1681 } 1682 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1683 1684 static void acpi_init_coherency(struct acpi_device *adev) 1685 { 1686 unsigned long long cca = 0; 1687 acpi_status status; 1688 struct acpi_device *parent = acpi_dev_parent(adev); 1689 1690 if (parent && parent->flags.cca_seen) { 1691 /* 1692 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1693 * already saw one. 1694 */ 1695 adev->flags.cca_seen = 1; 1696 cca = parent->flags.coherent_dma; 1697 } else { 1698 status = acpi_evaluate_integer(adev->handle, "_CCA", 1699 NULL, &cca); 1700 if (ACPI_SUCCESS(status)) 1701 adev->flags.cca_seen = 1; 1702 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1703 /* 1704 * If architecture does not specify that _CCA is 1705 * required for DMA-able devices (e.g. x86), 1706 * we default to _CCA=1. 1707 */ 1708 cca = 1; 1709 else 1710 acpi_handle_debug(adev->handle, 1711 "ACPI device is missing _CCA.\n"); 1712 } 1713 1714 adev->flags.coherent_dma = cca; 1715 } 1716 1717 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1718 { 1719 bool *is_serial_bus_slave_p = data; 1720 1721 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1722 return 1; 1723 1724 *is_serial_bus_slave_p = true; 1725 1726 /* no need to do more checking */ 1727 return -1; 1728 } 1729 1730 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1731 { 1732 struct acpi_device *parent = acpi_dev_parent(device); 1733 static const struct acpi_device_id indirect_io_hosts[] = { 1734 {"HISI0191", 0}, 1735 {} 1736 }; 1737 1738 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1739 } 1740 1741 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1742 { 1743 struct list_head resource_list; 1744 bool is_serial_bus_slave = false; 1745 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1746 /* 1747 * These devices have multiple SerialBus resources and a client 1748 * device must be instantiated for each of them, each with 1749 * its own device id. 1750 * Normally we only instantiate one client device for the first 1751 * resource, using the ACPI HID as id. These special cases are handled 1752 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1753 * knows which client device id to use for each resource. 1754 */ 1755 {"BSG1160", }, 1756 {"BSG2150", }, 1757 {"CSC3551", }, 1758 {"CSC3554", }, 1759 {"CSC3556", }, 1760 {"CSC3557", }, 1761 {"INT33FE", }, 1762 {"INT3515", }, 1763 {"TXNW2781", }, 1764 /* Non-conforming _HID for Cirrus Logic already released */ 1765 {"CLSA0100", }, 1766 {"CLSA0101", }, 1767 /* 1768 * Some ACPI devs contain SerialBus resources even though they are not 1769 * attached to a serial bus at all. 1770 */ 1771 {ACPI_VIDEO_HID, }, 1772 {"MSHW0028", }, 1773 /* 1774 * HIDs of device with an UartSerialBusV2 resource for which userspace 1775 * expects a regular tty cdev to be created (instead of the in kernel 1776 * serdev) and which have a kernel driver which expects a platform_dev 1777 * such as the rfkill-gpio driver. 1778 */ 1779 {"BCM4752", }, 1780 {"LNV4752", }, 1781 {} 1782 }; 1783 1784 if (acpi_is_indirect_io_slave(device)) 1785 return true; 1786 1787 /* Macs use device properties in lieu of _CRS resources */ 1788 if (x86_apple_machine && 1789 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1790 fwnode_property_present(&device->fwnode, "i2cAddress") || 1791 fwnode_property_present(&device->fwnode, "baud"))) 1792 return true; 1793 1794 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1795 return false; 1796 1797 INIT_LIST_HEAD(&resource_list); 1798 acpi_dev_get_resources(device, &resource_list, 1799 acpi_check_serial_bus_slave, 1800 &is_serial_bus_slave); 1801 acpi_dev_free_resource_list(&resource_list); 1802 1803 return is_serial_bus_slave; 1804 } 1805 1806 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1807 int type, void (*release)(struct device *)) 1808 { 1809 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1810 1811 INIT_LIST_HEAD(&device->pnp.ids); 1812 device->device_type = type; 1813 device->handle = handle; 1814 device->dev.parent = parent ? &parent->dev : NULL; 1815 device->dev.release = release; 1816 device->dev.bus = &acpi_bus_type; 1817 device->dev.groups = acpi_groups; 1818 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1819 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1820 acpi_device_get_busid(device); 1821 acpi_set_pnp_ids(handle, &device->pnp, type); 1822 acpi_init_properties(device); 1823 acpi_bus_get_flags(device); 1824 device->flags.match_driver = false; 1825 device->flags.initialized = true; 1826 device->flags.enumeration_by_parent = 1827 acpi_device_enumeration_by_parent(device); 1828 acpi_device_clear_enumerated(device); 1829 device_initialize(&device->dev); 1830 dev_set_uevent_suppress(&device->dev, true); 1831 acpi_init_coherency(device); 1832 } 1833 1834 static void acpi_scan_dep_init(struct acpi_device *adev) 1835 { 1836 struct acpi_dep_data *dep; 1837 1838 list_for_each_entry(dep, &acpi_dep_list, node) { 1839 if (dep->consumer == adev->handle) { 1840 if (dep->honor_dep) 1841 adev->flags.honor_deps = 1; 1842 1843 if (!dep->met) 1844 adev->dep_unmet++; 1845 } 1846 } 1847 } 1848 1849 void acpi_device_add_finalize(struct acpi_device *device) 1850 { 1851 dev_set_uevent_suppress(&device->dev, false); 1852 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1853 } 1854 1855 static void acpi_scan_init_status(struct acpi_device *adev) 1856 { 1857 if (acpi_bus_get_status(adev)) 1858 acpi_set_device_status(adev, 0); 1859 } 1860 1861 static int acpi_add_single_object(struct acpi_device **child, 1862 acpi_handle handle, int type, bool dep_init) 1863 { 1864 struct acpi_device *device; 1865 bool release_dep_lock = false; 1866 int result; 1867 1868 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1869 if (!device) 1870 return -ENOMEM; 1871 1872 acpi_init_device_object(device, handle, type, acpi_device_release); 1873 /* 1874 * Getting the status is delayed till here so that we can call 1875 * acpi_bus_get_status() and use its quirk handling. Note that 1876 * this must be done before the get power-/wakeup_dev-flags calls. 1877 */ 1878 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1879 if (dep_init) { 1880 mutex_lock(&acpi_dep_list_lock); 1881 /* 1882 * Hold the lock until the acpi_tie_acpi_dev() call 1883 * below to prevent concurrent acpi_scan_clear_dep() 1884 * from deleting a dependency list entry without 1885 * updating dep_unmet for the device. 1886 */ 1887 release_dep_lock = true; 1888 acpi_scan_dep_init(device); 1889 } 1890 acpi_scan_init_status(device); 1891 } 1892 1893 acpi_bus_get_power_flags(device); 1894 acpi_bus_get_wakeup_device_flags(device); 1895 1896 result = acpi_tie_acpi_dev(device); 1897 1898 if (release_dep_lock) 1899 mutex_unlock(&acpi_dep_list_lock); 1900 1901 if (!result) 1902 result = acpi_device_add(device); 1903 1904 if (result) { 1905 acpi_device_release(&device->dev); 1906 return result; 1907 } 1908 1909 acpi_power_add_remove_device(device, true); 1910 acpi_device_add_finalize(device); 1911 1912 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1913 dev_name(&device->dev), device->dev.parent ? 1914 dev_name(device->dev.parent) : "(null)"); 1915 1916 *child = device; 1917 return 0; 1918 } 1919 1920 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1921 void *context) 1922 { 1923 struct resource *res = context; 1924 1925 if (acpi_dev_resource_memory(ares, res)) 1926 return AE_CTRL_TERMINATE; 1927 1928 return AE_OK; 1929 } 1930 1931 static bool acpi_device_should_be_hidden(acpi_handle handle) 1932 { 1933 acpi_status status; 1934 struct resource res; 1935 1936 /* Check if it should ignore the UART device */ 1937 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1938 return false; 1939 1940 /* 1941 * The UART device described in SPCR table is assumed to have only one 1942 * memory resource present. So we only look for the first one here. 1943 */ 1944 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1945 acpi_get_resource_memory, &res); 1946 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1947 return false; 1948 1949 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1950 &res.start); 1951 1952 return true; 1953 } 1954 1955 bool acpi_device_is_present(const struct acpi_device *adev) 1956 { 1957 return adev->status.present || adev->status.functional; 1958 } 1959 1960 bool acpi_device_is_enabled(const struct acpi_device *adev) 1961 { 1962 return adev->status.enabled; 1963 } 1964 1965 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1966 const char *idstr, 1967 const struct acpi_device_id **matchid) 1968 { 1969 const struct acpi_device_id *devid; 1970 1971 if (handler->match) 1972 return handler->match(idstr, matchid); 1973 1974 for (devid = handler->ids; devid->id[0]; devid++) 1975 if (!strcmp((char *)devid->id, idstr)) { 1976 if (matchid) 1977 *matchid = devid; 1978 1979 return true; 1980 } 1981 1982 return false; 1983 } 1984 1985 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1986 const struct acpi_device_id **matchid) 1987 { 1988 struct acpi_scan_handler *handler; 1989 1990 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1991 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1992 return handler; 1993 1994 return NULL; 1995 } 1996 1997 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1998 { 1999 if (!!hotplug->enabled == !!val) 2000 return; 2001 2002 mutex_lock(&acpi_scan_lock); 2003 2004 hotplug->enabled = val; 2005 2006 mutex_unlock(&acpi_scan_lock); 2007 } 2008 2009 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices) 2010 { 2011 u32 count; 2012 int i; 2013 2014 for (count = 0, i = 0; i < dep_devices->count; i++) { 2015 struct acpi_device_info *info; 2016 struct acpi_dep_data *dep; 2017 bool skip, honor_dep; 2018 acpi_status status; 2019 2020 status = acpi_get_object_info(dep_devices->handles[i], &info); 2021 if (ACPI_FAILURE(status)) { 2022 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2023 continue; 2024 } 2025 2026 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2027 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2028 kfree(info); 2029 2030 if (skip) 2031 continue; 2032 2033 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2034 if (!dep) 2035 continue; 2036 2037 count++; 2038 2039 dep->supplier = dep_devices->handles[i]; 2040 dep->consumer = handle; 2041 dep->honor_dep = honor_dep; 2042 2043 mutex_lock(&acpi_dep_list_lock); 2044 list_add_tail(&dep->node, &acpi_dep_list); 2045 mutex_unlock(&acpi_dep_list_lock); 2046 } 2047 2048 acpi_handle_list_free(dep_devices); 2049 return count; 2050 } 2051 2052 static void acpi_scan_init_hotplug(struct acpi_device *adev) 2053 { 2054 struct acpi_hardware_id *hwid; 2055 2056 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 2057 acpi_dock_add(adev); 2058 return; 2059 } 2060 list_for_each_entry(hwid, &adev->pnp.ids, list) { 2061 struct acpi_scan_handler *handler; 2062 2063 handler = acpi_scan_match_handler(hwid->id, NULL); 2064 if (handler) { 2065 adev->flags.hotplug_notify = true; 2066 break; 2067 } 2068 } 2069 } 2070 2071 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; } 2072 2073 static u32 acpi_scan_check_dep(acpi_handle handle) 2074 { 2075 struct acpi_handle_list dep_devices; 2076 u32 count = 0; 2077 2078 /* 2079 * Some architectures like RISC-V need to add dependencies for 2080 * all devices which use GSI to the interrupt controller so that 2081 * interrupt controller is probed before any of those devices. 2082 * Instead of mandating _DEP on all the devices, detect the 2083 * dependency and add automatically. 2084 */ 2085 count += arch_acpi_add_auto_dep(handle); 2086 2087 /* 2088 * Check for _HID here to avoid deferring the enumeration of: 2089 * 1. PCI devices. 2090 * 2. ACPI nodes describing USB ports. 2091 * Still, checking for _HID catches more then just these cases ... 2092 */ 2093 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 2094 return count; 2095 2096 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) { 2097 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2098 return count; 2099 } 2100 2101 count += acpi_scan_add_dep(handle, &dep_devices); 2102 return count; 2103 } 2104 2105 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c) 2106 { 2107 acpi_mipi_check_crs_csi2(handle); 2108 return AE_OK; 2109 } 2110 2111 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass, 2112 struct acpi_device **adev_p) 2113 { 2114 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2115 acpi_object_type acpi_type; 2116 int type; 2117 2118 if (device) 2119 goto out; 2120 2121 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2122 return AE_OK; 2123 2124 switch (acpi_type) { 2125 case ACPI_TYPE_DEVICE: 2126 if (acpi_device_should_be_hidden(handle)) 2127 return AE_OK; 2128 2129 if (first_pass) { 2130 acpi_mipi_check_crs_csi2(handle); 2131 2132 /* Bail out if there are dependencies. */ 2133 if (acpi_scan_check_dep(handle) > 0) { 2134 /* 2135 * The entire CSI-2 connection graph needs to be 2136 * extracted before any drivers or scan handlers 2137 * are bound to struct device objects, so scan 2138 * _CRS CSI-2 resource descriptors for all 2139 * devices below the current handle. 2140 */ 2141 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2142 ACPI_UINT32_MAX, 2143 acpi_scan_check_crs_csi2_cb, 2144 NULL, NULL, NULL); 2145 return AE_CTRL_DEPTH; 2146 } 2147 } 2148 2149 fallthrough; 2150 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2151 type = ACPI_BUS_TYPE_DEVICE; 2152 break; 2153 2154 case ACPI_TYPE_PROCESSOR: 2155 type = ACPI_BUS_TYPE_PROCESSOR; 2156 break; 2157 2158 case ACPI_TYPE_THERMAL: 2159 type = ACPI_BUS_TYPE_THERMAL; 2160 break; 2161 2162 case ACPI_TYPE_POWER: 2163 acpi_add_power_resource(handle); 2164 fallthrough; 2165 default: 2166 return AE_OK; 2167 } 2168 2169 /* 2170 * If first_pass is true at this point, the device has no dependencies, 2171 * or the creation of the device object would have been postponed above. 2172 */ 2173 acpi_add_single_object(&device, handle, type, !first_pass); 2174 if (!device) 2175 return AE_CTRL_DEPTH; 2176 2177 acpi_scan_init_hotplug(device); 2178 2179 out: 2180 if (!*adev_p) 2181 *adev_p = device; 2182 2183 return AE_OK; 2184 } 2185 2186 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2187 void *not_used, void **ret_p) 2188 { 2189 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2190 } 2191 2192 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2193 void *not_used, void **ret_p) 2194 { 2195 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2196 } 2197 2198 static void acpi_default_enumeration(struct acpi_device *device) 2199 { 2200 /* 2201 * Do not enumerate devices with enumeration_by_parent flag set as 2202 * they will be enumerated by their respective parents. 2203 */ 2204 if (!device->flags.enumeration_by_parent) { 2205 acpi_create_platform_device(device, NULL); 2206 acpi_device_set_enumerated(device); 2207 } else { 2208 blocking_notifier_call_chain(&acpi_reconfig_chain, 2209 ACPI_RECONFIG_DEVICE_ADD, device); 2210 } 2211 } 2212 2213 static const struct acpi_device_id generic_device_ids[] = { 2214 {ACPI_DT_NAMESPACE_HID, }, 2215 {"", }, 2216 }; 2217 2218 static int acpi_generic_device_attach(struct acpi_device *adev, 2219 const struct acpi_device_id *not_used) 2220 { 2221 /* 2222 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2223 * below can be unconditional. 2224 */ 2225 if (adev->data.of_compatible) 2226 acpi_default_enumeration(adev); 2227 2228 return 1; 2229 } 2230 2231 static struct acpi_scan_handler generic_device_handler = { 2232 .ids = generic_device_ids, 2233 .attach = acpi_generic_device_attach, 2234 }; 2235 2236 static int acpi_scan_attach_handler(struct acpi_device *device) 2237 { 2238 struct acpi_hardware_id *hwid; 2239 int ret = 0; 2240 2241 list_for_each_entry(hwid, &device->pnp.ids, list) { 2242 const struct acpi_device_id *devid; 2243 struct acpi_scan_handler *handler; 2244 2245 handler = acpi_scan_match_handler(hwid->id, &devid); 2246 if (handler) { 2247 if (!handler->attach) { 2248 device->pnp.type.platform_id = 0; 2249 continue; 2250 } 2251 device->handler = handler; 2252 ret = handler->attach(device, devid); 2253 if (ret > 0) 2254 break; 2255 2256 device->handler = NULL; 2257 if (ret < 0) 2258 break; 2259 } 2260 } 2261 2262 return ret; 2263 } 2264 2265 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2266 { 2267 bool skip = !first_pass && device->flags.visited; 2268 acpi_handle ejd; 2269 int ret; 2270 2271 if (skip) 2272 goto ok; 2273 2274 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2275 register_dock_dependent_device(device, ejd); 2276 2277 acpi_bus_get_status(device); 2278 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2279 if (!acpi_dev_ready_for_enumeration(device)) { 2280 device->flags.initialized = false; 2281 acpi_device_clear_enumerated(device); 2282 device->flags.power_manageable = 0; 2283 return 0; 2284 } 2285 if (device->handler) 2286 goto ok; 2287 2288 acpi_ec_register_opregions(device); 2289 2290 if (!device->flags.initialized) { 2291 device->flags.power_manageable = 2292 device->power.states[ACPI_STATE_D0].flags.valid; 2293 if (acpi_bus_init_power(device)) 2294 device->flags.power_manageable = 0; 2295 2296 device->flags.initialized = true; 2297 } else if (device->flags.visited) { 2298 goto ok; 2299 } 2300 2301 ret = acpi_scan_attach_handler(device); 2302 if (ret < 0) 2303 return 0; 2304 2305 device->flags.match_driver = true; 2306 if (ret > 0 && !device->flags.enumeration_by_parent) { 2307 acpi_device_set_enumerated(device); 2308 goto ok; 2309 } 2310 2311 ret = device_attach(&device->dev); 2312 if (ret < 0) 2313 return 0; 2314 2315 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2316 acpi_default_enumeration(device); 2317 else 2318 acpi_device_set_enumerated(device); 2319 2320 ok: 2321 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2322 2323 if (!skip && device->handler && device->handler->hotplug.notify_online) 2324 device->handler->hotplug.notify_online(device); 2325 2326 return 0; 2327 } 2328 2329 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2330 { 2331 struct acpi_device **adev_p = data; 2332 struct acpi_device *adev = *adev_p; 2333 2334 /* 2335 * If we're passed a 'previous' consumer device then we need to skip 2336 * any consumers until we meet the previous one, and then NULL @data 2337 * so the next one can be returned. 2338 */ 2339 if (adev) { 2340 if (dep->consumer == adev->handle) 2341 *adev_p = NULL; 2342 2343 return 0; 2344 } 2345 2346 adev = acpi_get_acpi_dev(dep->consumer); 2347 if (adev) { 2348 *(struct acpi_device **)data = adev; 2349 return 1; 2350 } 2351 /* Continue parsing if the device object is not present. */ 2352 return 0; 2353 } 2354 2355 struct acpi_scan_clear_dep_work { 2356 struct work_struct work; 2357 struct acpi_device *adev; 2358 }; 2359 2360 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2361 { 2362 struct acpi_scan_clear_dep_work *cdw; 2363 2364 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2365 2366 acpi_scan_lock_acquire(); 2367 acpi_bus_attach(cdw->adev, (void *)true); 2368 acpi_scan_lock_release(); 2369 2370 acpi_dev_put(cdw->adev); 2371 kfree(cdw); 2372 } 2373 2374 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2375 { 2376 struct acpi_scan_clear_dep_work *cdw; 2377 2378 if (adev->dep_unmet) 2379 return false; 2380 2381 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2382 if (!cdw) 2383 return false; 2384 2385 cdw->adev = adev; 2386 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2387 /* 2388 * Since the work function may block on the lock until the entire 2389 * initial enumeration of devices is complete, put it into the unbound 2390 * workqueue. 2391 */ 2392 queue_work(system_unbound_wq, &cdw->work); 2393 2394 return true; 2395 } 2396 2397 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2398 { 2399 list_del(&dep->node); 2400 kfree(dep); 2401 } 2402 2403 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2404 { 2405 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2406 2407 if (adev) { 2408 adev->dep_unmet--; 2409 if (!acpi_scan_clear_dep_queue(adev)) 2410 acpi_dev_put(adev); 2411 } 2412 2413 if (dep->free_when_met) 2414 acpi_scan_delete_dep_data(dep); 2415 else 2416 dep->met = true; 2417 2418 return 0; 2419 } 2420 2421 /** 2422 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2423 * @handle: The ACPI handle of the supplier device 2424 * @callback: Pointer to the callback function to apply 2425 * @data: Pointer to some data to pass to the callback 2426 * 2427 * The return value of the callback determines this function's behaviour. If 0 2428 * is returned we continue to iterate over acpi_dep_list. If a positive value 2429 * is returned then the loop is broken but this function returns 0. If a 2430 * negative value is returned by the callback then the loop is broken and that 2431 * value is returned as the final error. 2432 */ 2433 static int acpi_walk_dep_device_list(acpi_handle handle, 2434 int (*callback)(struct acpi_dep_data *, void *), 2435 void *data) 2436 { 2437 struct acpi_dep_data *dep, *tmp; 2438 int ret = 0; 2439 2440 mutex_lock(&acpi_dep_list_lock); 2441 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2442 if (dep->supplier == handle) { 2443 ret = callback(dep, data); 2444 if (ret) 2445 break; 2446 } 2447 } 2448 mutex_unlock(&acpi_dep_list_lock); 2449 2450 return ret > 0 ? 0 : ret; 2451 } 2452 2453 /** 2454 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2455 * @supplier: Pointer to the supplier &struct acpi_device 2456 * 2457 * Clear dependencies on the given device. 2458 */ 2459 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2460 { 2461 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2462 } 2463 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2464 2465 /** 2466 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2467 * @device: Pointer to the &struct acpi_device to check 2468 * 2469 * Check if the device is present and has no unmet dependencies. 2470 * 2471 * Return true if the device is ready for enumeratino. Otherwise, return false. 2472 */ 2473 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2474 { 2475 if (device->flags.honor_deps && device->dep_unmet) 2476 return false; 2477 2478 return acpi_device_is_present(device); 2479 } 2480 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2481 2482 /** 2483 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2484 * @supplier: Pointer to the dependee device 2485 * @start: Pointer to the current dependent device 2486 * 2487 * Returns the next &struct acpi_device which declares itself dependent on 2488 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2489 * 2490 * If the returned adev is not passed as @start to this function, the caller is 2491 * responsible for putting the reference to adev when it is no longer needed. 2492 */ 2493 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2494 struct acpi_device *start) 2495 { 2496 struct acpi_device *adev = start; 2497 2498 acpi_walk_dep_device_list(supplier->handle, 2499 acpi_dev_get_next_consumer_dev_cb, &adev); 2500 2501 acpi_dev_put(start); 2502 2503 if (adev == start) 2504 return NULL; 2505 2506 return adev; 2507 } 2508 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2509 2510 static void acpi_scan_postponed_branch(acpi_handle handle) 2511 { 2512 struct acpi_device *adev = NULL; 2513 2514 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2515 return; 2516 2517 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2518 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2519 2520 /* 2521 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that 2522 * have been added above. 2523 */ 2524 acpi_mipi_init_crs_csi2_swnodes(); 2525 2526 acpi_bus_attach(adev, NULL); 2527 } 2528 2529 static void acpi_scan_postponed(void) 2530 { 2531 struct acpi_dep_data *dep, *tmp; 2532 2533 mutex_lock(&acpi_dep_list_lock); 2534 2535 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2536 acpi_handle handle = dep->consumer; 2537 2538 /* 2539 * In case there are multiple acpi_dep_list entries with the 2540 * same consumer, skip the current entry if the consumer device 2541 * object corresponding to it is present already. 2542 */ 2543 if (!acpi_fetch_acpi_dev(handle)) { 2544 /* 2545 * Even though the lock is released here, tmp is 2546 * guaranteed to be valid, because none of the list 2547 * entries following dep is marked as "free when met" 2548 * and so they cannot be deleted. 2549 */ 2550 mutex_unlock(&acpi_dep_list_lock); 2551 2552 acpi_scan_postponed_branch(handle); 2553 2554 mutex_lock(&acpi_dep_list_lock); 2555 } 2556 2557 if (dep->met) 2558 acpi_scan_delete_dep_data(dep); 2559 else 2560 dep->free_when_met = true; 2561 } 2562 2563 mutex_unlock(&acpi_dep_list_lock); 2564 } 2565 2566 /** 2567 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2568 * @handle: Root of the namespace scope to scan. 2569 * 2570 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2571 * found devices. 2572 * 2573 * If no devices were found, -ENODEV is returned, but it does not mean that 2574 * there has been a real error. There just have been no suitable ACPI objects 2575 * in the table trunk from which the kernel could create a device and add an 2576 * appropriate driver. 2577 * 2578 * Must be called under acpi_scan_lock. 2579 */ 2580 int acpi_bus_scan(acpi_handle handle) 2581 { 2582 struct acpi_device *device = NULL; 2583 2584 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2585 2586 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2587 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2588 acpi_bus_check_add_1, NULL, NULL, 2589 (void **)&device); 2590 2591 if (!device) 2592 return -ENODEV; 2593 2594 /* 2595 * Set up ACPI _CRS CSI-2 software nodes using information extracted 2596 * from the _CRS CSI-2 resource descriptors during the ACPI namespace 2597 * walk above and MIPI DisCo for Imaging device properties. 2598 */ 2599 acpi_mipi_scan_crs_csi2(); 2600 acpi_mipi_init_crs_csi2_swnodes(); 2601 2602 acpi_bus_attach(device, (void *)true); 2603 2604 /* Pass 2: Enumerate all of the remaining devices. */ 2605 2606 acpi_scan_postponed(); 2607 2608 acpi_mipi_crs_csi2_cleanup(); 2609 2610 return 0; 2611 } 2612 EXPORT_SYMBOL(acpi_bus_scan); 2613 2614 /** 2615 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2616 * @adev: Root of the ACPI namespace scope to walk. 2617 * 2618 * Must be called under acpi_scan_lock. 2619 */ 2620 void acpi_bus_trim(struct acpi_device *adev) 2621 { 2622 uintptr_t flags = 0; 2623 2624 acpi_scan_check_and_detach(adev, (void *)flags); 2625 } 2626 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2627 2628 int acpi_bus_register_early_device(int type) 2629 { 2630 struct acpi_device *device = NULL; 2631 int result; 2632 2633 result = acpi_add_single_object(&device, NULL, type, false); 2634 if (result) 2635 return result; 2636 2637 device->flags.match_driver = true; 2638 return device_attach(&device->dev); 2639 } 2640 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2641 2642 static void acpi_bus_scan_fixed(void) 2643 { 2644 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2645 struct acpi_device *adev = NULL; 2646 2647 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2648 false); 2649 if (adev) { 2650 adev->flags.match_driver = true; 2651 if (device_attach(&adev->dev) >= 0) 2652 device_init_wakeup(&adev->dev, true); 2653 else 2654 dev_dbg(&adev->dev, "No driver\n"); 2655 } 2656 } 2657 2658 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2659 struct acpi_device *adev = NULL; 2660 2661 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2662 false); 2663 if (adev) { 2664 adev->flags.match_driver = true; 2665 if (device_attach(&adev->dev) < 0) 2666 dev_dbg(&adev->dev, "No driver\n"); 2667 } 2668 } 2669 } 2670 2671 static void __init acpi_get_spcr_uart_addr(void) 2672 { 2673 acpi_status status; 2674 struct acpi_table_spcr *spcr_ptr; 2675 2676 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2677 (struct acpi_table_header **)&spcr_ptr); 2678 if (ACPI_FAILURE(status)) { 2679 pr_warn("STAO table present, but SPCR is missing\n"); 2680 return; 2681 } 2682 2683 spcr_uart_addr = spcr_ptr->serial_port.address; 2684 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2685 } 2686 2687 static bool acpi_scan_initialized; 2688 2689 void __init acpi_scan_init(void) 2690 { 2691 acpi_status status; 2692 struct acpi_table_stao *stao_ptr; 2693 2694 acpi_pci_root_init(); 2695 acpi_pci_link_init(); 2696 acpi_processor_init(); 2697 acpi_platform_init(); 2698 acpi_lpss_init(); 2699 acpi_apd_init(); 2700 acpi_cmos_rtc_init(); 2701 acpi_container_init(); 2702 acpi_memory_hotplug_init(); 2703 acpi_watchdog_init(); 2704 acpi_pnp_init(); 2705 acpi_int340x_thermal_init(); 2706 acpi_init_lpit(); 2707 2708 acpi_scan_add_handler(&generic_device_handler); 2709 2710 /* 2711 * If there is STAO table, check whether it needs to ignore the UART 2712 * device in SPCR table. 2713 */ 2714 status = acpi_get_table(ACPI_SIG_STAO, 0, 2715 (struct acpi_table_header **)&stao_ptr); 2716 if (ACPI_SUCCESS(status)) { 2717 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2718 pr_info("STAO Name List not yet supported.\n"); 2719 2720 if (stao_ptr->ignore_uart) 2721 acpi_get_spcr_uart_addr(); 2722 2723 acpi_put_table((struct acpi_table_header *)stao_ptr); 2724 } 2725 2726 acpi_gpe_apply_masked_gpes(); 2727 acpi_update_all_gpes(); 2728 2729 /* 2730 * Although we call __add_memory() that is documented to require the 2731 * device_hotplug_lock, it is not necessary here because this is an 2732 * early code when userspace or any other code path cannot trigger 2733 * hotplug/hotunplug operations. 2734 */ 2735 mutex_lock(&acpi_scan_lock); 2736 /* 2737 * Enumerate devices in the ACPI namespace. 2738 */ 2739 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2740 goto unlock; 2741 2742 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2743 if (!acpi_root) 2744 goto unlock; 2745 2746 /* Fixed feature devices do not exist on HW-reduced platform */ 2747 if (!acpi_gbl_reduced_hardware) 2748 acpi_bus_scan_fixed(); 2749 2750 acpi_turn_off_unused_power_resources(); 2751 2752 acpi_scan_initialized = true; 2753 2754 unlock: 2755 mutex_unlock(&acpi_scan_lock); 2756 } 2757 2758 static struct acpi_probe_entry *ape; 2759 static int acpi_probe_count; 2760 static DEFINE_MUTEX(acpi_probe_mutex); 2761 2762 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2763 const unsigned long end) 2764 { 2765 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2766 if (!ape->probe_subtbl(header, end)) 2767 acpi_probe_count++; 2768 2769 return 0; 2770 } 2771 2772 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { } 2773 2774 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2775 { 2776 int count = 0; 2777 2778 if (acpi_disabled) 2779 return 0; 2780 2781 mutex_lock(&acpi_probe_mutex); 2782 arch_sort_irqchip_probe(ap_head, nr); 2783 for (ape = ap_head; nr; ape++, nr--) { 2784 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2785 acpi_probe_count = 0; 2786 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2787 count += acpi_probe_count; 2788 } else { 2789 int res; 2790 res = acpi_table_parse(ape->id, ape->probe_table); 2791 if (!res) 2792 count++; 2793 } 2794 } 2795 mutex_unlock(&acpi_probe_mutex); 2796 2797 return count; 2798 } 2799 2800 static void acpi_table_events_fn(struct work_struct *work) 2801 { 2802 acpi_scan_lock_acquire(); 2803 acpi_bus_scan(ACPI_ROOT_OBJECT); 2804 acpi_scan_lock_release(); 2805 2806 kfree(work); 2807 } 2808 2809 void acpi_scan_table_notify(void) 2810 { 2811 struct work_struct *work; 2812 2813 if (!acpi_scan_initialized) 2814 return; 2815 2816 work = kmalloc(sizeof(*work), GFP_KERNEL); 2817 if (!work) 2818 return; 2819 2820 INIT_WORK(work, acpi_table_events_fn); 2821 schedule_work(work); 2822 } 2823 2824 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2825 { 2826 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2827 } 2828 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2829 2830 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2831 { 2832 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2833 } 2834 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2835