1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
26 
27 /*
28  * Include the apic definitions for x86 to have the APIC timer related defines
29  * available also for UP (on SMP it gets magically included via linux/smp.h).
30  * asm/acpi.h is not an option, as it would require more include magic. Also
31  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
32  */
33 #ifdef CONFIG_X86
34 #include <asm/apic.h>
35 #include <asm/cpu.h>
36 #endif
37 
38 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39 
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0400);
42 static bool nocst __read_mostly;
43 module_param(nocst, bool, 0400);
44 static bool bm_check_disable __read_mostly;
45 module_param(bm_check_disable, bool, 0400);
46 
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49 
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51 
52 struct cpuidle_driver acpi_idle_driver = {
53 	.name =		"acpi_idle",
54 	.owner =	THIS_MODULE,
55 };
56 
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60 
61 static int disabled_by_idle_boot_param(void)
62 {
63 	return boot_option_idle_override == IDLE_POLL ||
64 		boot_option_idle_override == IDLE_HALT;
65 }
66 
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 		return 0;
77 
78 	pr_notice("%s detected - limiting to C%ld max_cstate."
79 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81 
82 	max_cstate = (long)id->driver_data;
83 
84 	return 0;
85 }
86 
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 	{ set_max_cstate, "Clevo 5600D", {
89 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 	 (void *)2},
92 	{ set_max_cstate, "Pavilion zv5000", {
93 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 	 (void *)1},
96 	{ set_max_cstate, "Asus L8400B", {
97 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 	 (void *)1},
100 	{},
101 };
102 
103 
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110 	if (!tif_need_resched()) {
111 		raw_safe_halt();
112 		raw_local_irq_disable();
113 	}
114 }
115 
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117 
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 				   struct acpi_processor_cx *cx)
126 {
127 	struct acpi_processor_power *pwr = &pr->power;
128 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129 
130 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 		return;
132 
133 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 		type = ACPI_STATE_C1;
135 
136 	/*
137 	 * Check, if one of the previous states already marked the lapic
138 	 * unstable
139 	 */
140 	if (pwr->timer_broadcast_on_state < state)
141 		return;
142 
143 	if (cx->type >= type)
144 		pr->power.timer_broadcast_on_state = state;
145 }
146 
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149 	struct acpi_processor *pr = arg;
150 
151 	if (pr->power.timer_broadcast_on_state < INT_MAX)
152 		tick_broadcast_enable();
153 	else
154 		tick_broadcast_disable();
155 }
156 
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 				 (void *)pr, 1);
161 }
162 
163 /* Power(C) State timer broadcast control */
164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
165 					struct acpi_processor_cx *cx)
166 {
167 	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
168 }
169 
170 #else
171 
172 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
173 				   struct acpi_processor_cx *cstate) { }
174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
175 
176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
177 					struct acpi_processor_cx *cx)
178 {
179 	return false;
180 }
181 
182 #endif
183 
184 #if defined(CONFIG_X86)
185 static void tsc_check_state(int state)
186 {
187 	switch (boot_cpu_data.x86_vendor) {
188 	case X86_VENDOR_HYGON:
189 	case X86_VENDOR_AMD:
190 	case X86_VENDOR_INTEL:
191 	case X86_VENDOR_CENTAUR:
192 	case X86_VENDOR_ZHAOXIN:
193 		/*
194 		 * AMD Fam10h TSC will tick in all
195 		 * C/P/S0/S1 states when this bit is set.
196 		 */
197 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
198 			return;
199 		fallthrough;
200 	default:
201 		/* TSC could halt in idle, so notify users */
202 		if (state > ACPI_STATE_C1)
203 			mark_tsc_unstable("TSC halts in idle");
204 	}
205 }
206 #else
207 static void tsc_check_state(int state) { return; }
208 #endif
209 
210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
211 {
212 
213 	if (!pr->pblk)
214 		return -ENODEV;
215 
216 	/* if info is obtained from pblk/fadt, type equals state */
217 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
218 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
219 
220 #ifndef CONFIG_HOTPLUG_CPU
221 	/*
222 	 * Check for P_LVL2_UP flag before entering C2 and above on
223 	 * an SMP system.
224 	 */
225 	if ((num_online_cpus() > 1) &&
226 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
227 		return -ENODEV;
228 #endif
229 
230 	/* determine C2 and C3 address from pblk */
231 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
232 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
233 
234 	/* determine latencies from FADT */
235 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
236 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
237 
238 	/*
239 	 * FADT specified C2 latency must be less than or equal to
240 	 * 100 microseconds.
241 	 */
242 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
243 		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
244 				  acpi_gbl_FADT.c2_latency);
245 		/* invalidate C2 */
246 		pr->power.states[ACPI_STATE_C2].address = 0;
247 	}
248 
249 	/*
250 	 * FADT supplied C3 latency must be less than or equal to
251 	 * 1000 microseconds.
252 	 */
253 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
254 		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
255 				  acpi_gbl_FADT.c3_latency);
256 		/* invalidate C3 */
257 		pr->power.states[ACPI_STATE_C3].address = 0;
258 	}
259 
260 	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
261 			  pr->power.states[ACPI_STATE_C2].address,
262 			  pr->power.states[ACPI_STATE_C3].address);
263 
264 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
265 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
266 			 pr->power.states[ACPI_STATE_C2].address);
267 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
268 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
269 			 pr->power.states[ACPI_STATE_C3].address);
270 
271 	if (!pr->power.states[ACPI_STATE_C2].address &&
272 	    !pr->power.states[ACPI_STATE_C3].address)
273 		return -ENODEV;
274 
275 	return 0;
276 }
277 
278 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
279 {
280 	if (!pr->power.states[ACPI_STATE_C1].valid) {
281 		/* set the first C-State to C1 */
282 		/* all processors need to support C1 */
283 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
284 		pr->power.states[ACPI_STATE_C1].valid = 1;
285 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
286 
287 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
288 			 ACPI_CX_DESC_LEN, "ACPI HLT");
289 	}
290 	/* the C0 state only exists as a filler in our array */
291 	pr->power.states[ACPI_STATE_C0].valid = 1;
292 	return 0;
293 }
294 
295 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
296 {
297 	int ret;
298 
299 	if (nocst)
300 		return -ENODEV;
301 
302 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
303 	if (ret)
304 		return ret;
305 
306 	if (!pr->power.count)
307 		return -EFAULT;
308 
309 	pr->flags.has_cst = 1;
310 	return 0;
311 }
312 
313 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
314 					   struct acpi_processor_cx *cx)
315 {
316 	static int bm_check_flag = -1;
317 	static int bm_control_flag = -1;
318 
319 
320 	if (!cx->address)
321 		return;
322 
323 	/*
324 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
325 	 * DMA transfers are used by any ISA device to avoid livelock.
326 	 * Note that we could disable Type-F DMA (as recommended by
327 	 * the erratum), but this is known to disrupt certain ISA
328 	 * devices thus we take the conservative approach.
329 	 */
330 	if (errata.piix4.fdma) {
331 		acpi_handle_debug(pr->handle,
332 				  "C3 not supported on PIIX4 with Type-F DMA\n");
333 		return;
334 	}
335 
336 	/* All the logic here assumes flags.bm_check is same across all CPUs */
337 	if (bm_check_flag == -1) {
338 		/* Determine whether bm_check is needed based on CPU  */
339 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
340 		bm_check_flag = pr->flags.bm_check;
341 		bm_control_flag = pr->flags.bm_control;
342 	} else {
343 		pr->flags.bm_check = bm_check_flag;
344 		pr->flags.bm_control = bm_control_flag;
345 	}
346 
347 	if (pr->flags.bm_check) {
348 		if (!pr->flags.bm_control) {
349 			if (pr->flags.has_cst != 1) {
350 				/* bus mastering control is necessary */
351 				acpi_handle_debug(pr->handle,
352 						  "C3 support requires BM control\n");
353 				return;
354 			} else {
355 				/* Here we enter C3 without bus mastering */
356 				acpi_handle_debug(pr->handle,
357 						  "C3 support without BM control\n");
358 			}
359 		}
360 	} else {
361 		/*
362 		 * WBINVD should be set in fadt, for C3 state to be
363 		 * supported on when bm_check is not required.
364 		 */
365 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
366 			acpi_handle_debug(pr->handle,
367 					  "Cache invalidation should work properly"
368 					  " for C3 to be enabled on SMP systems\n");
369 			return;
370 		}
371 	}
372 
373 	/*
374 	 * Otherwise we've met all of our C3 requirements.
375 	 * Normalize the C3 latency to expidite policy.  Enable
376 	 * checking of bus mastering status (bm_check) so we can
377 	 * use this in our C3 policy
378 	 */
379 	cx->valid = 1;
380 
381 	/*
382 	 * On older chipsets, BM_RLD needs to be set
383 	 * in order for Bus Master activity to wake the
384 	 * system from C3.  Newer chipsets handle DMA
385 	 * during C3 automatically and BM_RLD is a NOP.
386 	 * In either case, the proper way to
387 	 * handle BM_RLD is to set it and leave it set.
388 	 */
389 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
390 }
391 
392 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
393 {
394 	int i, j, k;
395 
396 	for (i = 1; i < length; i++) {
397 		if (!states[i].valid)
398 			continue;
399 
400 		for (j = i - 1, k = i; j >= 0; j--) {
401 			if (!states[j].valid)
402 				continue;
403 
404 			if (states[j].latency > states[k].latency)
405 				swap(states[j].latency, states[k].latency);
406 
407 			k = j;
408 		}
409 	}
410 }
411 
412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414 	unsigned int i;
415 	unsigned int working = 0;
416 	unsigned int last_latency = 0;
417 	unsigned int last_type = 0;
418 	bool buggy_latency = false;
419 
420 	pr->power.timer_broadcast_on_state = INT_MAX;
421 
422 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423 		struct acpi_processor_cx *cx = &pr->power.states[i];
424 
425 		switch (cx->type) {
426 		case ACPI_STATE_C1:
427 			cx->valid = 1;
428 			break;
429 
430 		case ACPI_STATE_C2:
431 			if (!cx->address)
432 				break;
433 			cx->valid = 1;
434 			break;
435 
436 		case ACPI_STATE_C3:
437 			acpi_processor_power_verify_c3(pr, cx);
438 			break;
439 		}
440 		if (!cx->valid)
441 			continue;
442 		if (cx->type >= last_type && cx->latency < last_latency)
443 			buggy_latency = true;
444 		last_latency = cx->latency;
445 		last_type = cx->type;
446 
447 		lapic_timer_check_state(i, pr, cx);
448 		tsc_check_state(cx->type);
449 		working++;
450 	}
451 
452 	if (buggy_latency) {
453 		pr_notice("FW issue: working around C-state latencies out of order\n");
454 		acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
455 	}
456 
457 	lapic_timer_propagate_broadcast(pr);
458 
459 	return working;
460 }
461 
462 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
463 {
464 	int result;
465 
466 	/* NOTE: the idle thread may not be running while calling
467 	 * this function */
468 
469 	/* Zero initialize all the C-states info. */
470 	memset(pr->power.states, 0, sizeof(pr->power.states));
471 
472 	result = acpi_processor_get_power_info_cst(pr);
473 	if (result == -ENODEV)
474 		result = acpi_processor_get_power_info_fadt(pr);
475 
476 	if (result)
477 		return result;
478 
479 	acpi_processor_get_power_info_default(pr);
480 
481 	pr->power.count = acpi_processor_power_verify(pr);
482 	pr->flags.power = 1;
483 
484 	return 0;
485 }
486 
487 /**
488  * acpi_idle_bm_check - checks if bus master activity was detected
489  */
490 static int acpi_idle_bm_check(void)
491 {
492 	u32 bm_status = 0;
493 
494 	if (bm_check_disable)
495 		return 0;
496 
497 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
498 	if (bm_status)
499 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
500 	/*
501 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
502 	 * the true state of bus mastering activity; forcing us to
503 	 * manually check the BMIDEA bit of each IDE channel.
504 	 */
505 	else if (errata.piix4.bmisx) {
506 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
507 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
508 			bm_status = 1;
509 	}
510 	return bm_status;
511 }
512 
513 static __cpuidle void io_idle(unsigned long addr)
514 {
515 	/* IO port based C-state */
516 	inb(addr);
517 
518 #ifdef	CONFIG_X86
519 	/* No delay is needed if we are in guest */
520 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
521 		return;
522 	/*
523 	 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
524 	 * not this code.  Assume that any Intel systems using this
525 	 * are ancient and may need the dummy wait.  This also assumes
526 	 * that the motivating chipset issue was Intel-only.
527 	 */
528 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
529 		return;
530 #endif
531 	/*
532 	 * Dummy wait op - must do something useless after P_LVL2 read
533 	 * because chipsets cannot guarantee that STPCLK# signal gets
534 	 * asserted in time to freeze execution properly
535 	 *
536 	 * This workaround has been in place since the original ACPI
537 	 * implementation was merged, circa 2002.
538 	 *
539 	 * If a profile is pointing to this instruction, please first
540 	 * consider moving your system to a more modern idle
541 	 * mechanism.
542 	 */
543 	inl(acpi_gbl_FADT.xpm_timer_block.address);
544 }
545 
546 /**
547  * acpi_idle_do_entry - enter idle state using the appropriate method
548  * @cx: cstate data
549  *
550  * Caller disables interrupt before call and enables interrupt after return.
551  */
552 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
553 {
554 	perf_lopwr_cb(true);
555 
556 	if (cx->entry_method == ACPI_CSTATE_FFH) {
557 		/* Call into architectural FFH based C-state */
558 		acpi_processor_ffh_cstate_enter(cx);
559 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
560 		acpi_safe_halt();
561 	} else {
562 		io_idle(cx->address);
563 	}
564 
565 	perf_lopwr_cb(false);
566 }
567 
568 /**
569  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
570  * @dev: the target CPU
571  * @index: the index of suggested state
572  */
573 static void acpi_idle_play_dead(struct cpuidle_device *dev, int index)
574 {
575 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
576 
577 	ACPI_FLUSH_CPU_CACHE();
578 
579 	while (1) {
580 
581 		if (cx->entry_method == ACPI_CSTATE_HALT)
582 			raw_safe_halt();
583 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
584 			io_idle(cx->address);
585 		} else if (cx->entry_method == ACPI_CSTATE_FFH) {
586 			acpi_processor_ffh_play_dead(cx);
587 		} else
588 			return;
589 	}
590 }
591 
592 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
593 {
594 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
595 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
596 }
597 
598 static int c3_cpu_count;
599 static DEFINE_RAW_SPINLOCK(c3_lock);
600 
601 /**
602  * acpi_idle_enter_bm - enters C3 with proper BM handling
603  * @drv: cpuidle driver
604  * @pr: Target processor
605  * @cx: Target state context
606  * @index: index of target state
607  */
608 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
609 			       struct acpi_processor *pr,
610 			       struct acpi_processor_cx *cx,
611 			       int index)
612 {
613 	static struct acpi_processor_cx safe_cx = {
614 		.entry_method = ACPI_CSTATE_HALT,
615 	};
616 
617 	/*
618 	 * disable bus master
619 	 * bm_check implies we need ARB_DIS
620 	 * bm_control implies whether we can do ARB_DIS
621 	 *
622 	 * That leaves a case where bm_check is set and bm_control is not set.
623 	 * In that case we cannot do much, we enter C3 without doing anything.
624 	 */
625 	bool dis_bm = pr->flags.bm_control;
626 
627 	instrumentation_begin();
628 
629 	/* If we can skip BM, demote to a safe state. */
630 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
631 		dis_bm = false;
632 		index = drv->safe_state_index;
633 		if (index >= 0) {
634 			cx = this_cpu_read(acpi_cstate[index]);
635 		} else {
636 			cx = &safe_cx;
637 			index = -EBUSY;
638 		}
639 	}
640 
641 	if (dis_bm) {
642 		raw_spin_lock(&c3_lock);
643 		c3_cpu_count++;
644 		/* Disable bus master arbitration when all CPUs are in C3 */
645 		if (c3_cpu_count == num_online_cpus())
646 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
647 		raw_spin_unlock(&c3_lock);
648 	}
649 
650 	ct_cpuidle_enter();
651 
652 	acpi_idle_do_entry(cx);
653 
654 	ct_cpuidle_exit();
655 
656 	/* Re-enable bus master arbitration */
657 	if (dis_bm) {
658 		raw_spin_lock(&c3_lock);
659 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
660 		c3_cpu_count--;
661 		raw_spin_unlock(&c3_lock);
662 	}
663 
664 	instrumentation_end();
665 
666 	return index;
667 }
668 
669 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
670 			   struct cpuidle_driver *drv, int index)
671 {
672 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
673 	struct acpi_processor *pr;
674 
675 	pr = __this_cpu_read(processors);
676 	if (unlikely(!pr))
677 		return -EINVAL;
678 
679 	if (cx->type != ACPI_STATE_C1) {
680 		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
681 			return acpi_idle_enter_bm(drv, pr, cx, index);
682 
683 		/* C2 to C1 demotion. */
684 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
685 			index = ACPI_IDLE_STATE_START;
686 			cx = per_cpu(acpi_cstate[index], dev->cpu);
687 		}
688 	}
689 
690 	if (cx->type == ACPI_STATE_C3)
691 		ACPI_FLUSH_CPU_CACHE();
692 
693 	acpi_idle_do_entry(cx);
694 
695 	return index;
696 }
697 
698 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
699 				  struct cpuidle_driver *drv, int index)
700 {
701 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
702 
703 	if (cx->type == ACPI_STATE_C3) {
704 		struct acpi_processor *pr = __this_cpu_read(processors);
705 
706 		if (unlikely(!pr))
707 			return 0;
708 
709 		if (pr->flags.bm_check) {
710 			u8 bm_sts_skip = cx->bm_sts_skip;
711 
712 			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
713 			cx->bm_sts_skip = 1;
714 			acpi_idle_enter_bm(drv, pr, cx, index);
715 			cx->bm_sts_skip = bm_sts_skip;
716 
717 			return 0;
718 		} else {
719 			ACPI_FLUSH_CPU_CACHE();
720 		}
721 	}
722 	acpi_idle_do_entry(cx);
723 
724 	return 0;
725 }
726 
727 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
728 					   struct cpuidle_device *dev)
729 {
730 	int i, count = ACPI_IDLE_STATE_START;
731 	struct acpi_processor_cx *cx;
732 	struct cpuidle_state *state;
733 
734 	if (max_cstate == 0)
735 		max_cstate = 1;
736 
737 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
738 		state = &acpi_idle_driver.states[count];
739 		cx = &pr->power.states[i];
740 
741 		if (!cx->valid)
742 			continue;
743 
744 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
745 
746 		if (lapic_timer_needs_broadcast(pr, cx))
747 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
748 
749 		if (cx->type == ACPI_STATE_C3) {
750 			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
751 			if (pr->flags.bm_check)
752 				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
753 		}
754 
755 		count++;
756 		if (count == CPUIDLE_STATE_MAX)
757 			break;
758 	}
759 
760 	if (!count)
761 		return -EINVAL;
762 
763 	return 0;
764 }
765 
766 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
767 {
768 	int i, count;
769 	struct acpi_processor_cx *cx;
770 	struct cpuidle_state *state;
771 	struct cpuidle_driver *drv = &acpi_idle_driver;
772 
773 	if (max_cstate == 0)
774 		max_cstate = 1;
775 
776 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
777 		cpuidle_poll_state_init(drv);
778 		count = 1;
779 	} else {
780 		count = 0;
781 	}
782 
783 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
784 		cx = &pr->power.states[i];
785 
786 		if (!cx->valid)
787 			continue;
788 
789 		state = &drv->states[count];
790 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
791 		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
792 		state->exit_latency = cx->latency;
793 		state->target_residency = cx->latency * latency_factor;
794 		state->enter = acpi_idle_enter;
795 
796 		state->flags = 0;
797 
798 		state->enter_dead = acpi_idle_play_dead;
799 
800 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2)
801 			drv->safe_state_index = count;
802 
803 		/*
804 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
805 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
806 		 * particularly interesting from the suspend-to-idle angle, so
807 		 * avoid C1 and the situations in which we may need to fall back
808 		 * to it altogether.
809 		 */
810 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
811 			state->enter_s2idle = acpi_idle_enter_s2idle;
812 
813 		count++;
814 		if (count == CPUIDLE_STATE_MAX)
815 			break;
816 	}
817 
818 	drv->state_count = count;
819 
820 	if (!count)
821 		return -EINVAL;
822 
823 	return 0;
824 }
825 
826 static inline void acpi_processor_cstate_first_run_checks(void)
827 {
828 	static int first_run;
829 
830 	if (first_run)
831 		return;
832 	dmi_check_system(processor_power_dmi_table);
833 	max_cstate = acpi_processor_cstate_check(max_cstate);
834 	if (max_cstate < ACPI_C_STATES_MAX)
835 		pr_notice("processor limited to max C-state %d\n", max_cstate);
836 
837 	first_run++;
838 
839 	if (nocst)
840 		return;
841 
842 	acpi_processor_claim_cst_control();
843 }
844 #else
845 
846 static inline int disabled_by_idle_boot_param(void) { return 0; }
847 static inline void acpi_processor_cstate_first_run_checks(void) { }
848 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
849 {
850 	return -ENODEV;
851 }
852 
853 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
854 					   struct cpuidle_device *dev)
855 {
856 	return -EINVAL;
857 }
858 
859 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
860 {
861 	return -EINVAL;
862 }
863 
864 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
865 
866 struct acpi_lpi_states_array {
867 	unsigned int size;
868 	unsigned int composite_states_size;
869 	struct acpi_lpi_state *entries;
870 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
871 };
872 
873 static int obj_get_integer(union acpi_object *obj, u32 *value)
874 {
875 	if (obj->type != ACPI_TYPE_INTEGER)
876 		return -EINVAL;
877 
878 	*value = obj->integer.value;
879 	return 0;
880 }
881 
882 static int acpi_processor_evaluate_lpi(acpi_handle handle,
883 				       struct acpi_lpi_states_array *info)
884 {
885 	acpi_status status;
886 	int ret = 0;
887 	int pkg_count, state_idx = 1, loop;
888 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
889 	union acpi_object *lpi_data;
890 	struct acpi_lpi_state *lpi_state;
891 
892 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
893 	if (ACPI_FAILURE(status)) {
894 		acpi_handle_debug(handle, "No _LPI, giving up\n");
895 		return -ENODEV;
896 	}
897 
898 	lpi_data = buffer.pointer;
899 
900 	/* There must be at least 4 elements = 3 elements + 1 package */
901 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
902 	    lpi_data->package.count < 4) {
903 		pr_debug("not enough elements in _LPI\n");
904 		ret = -ENODATA;
905 		goto end;
906 	}
907 
908 	pkg_count = lpi_data->package.elements[2].integer.value;
909 
910 	/* Validate number of power states. */
911 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
912 		pr_debug("count given by _LPI is not valid\n");
913 		ret = -ENODATA;
914 		goto end;
915 	}
916 
917 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
918 	if (!lpi_state) {
919 		ret = -ENOMEM;
920 		goto end;
921 	}
922 
923 	info->size = pkg_count;
924 	info->entries = lpi_state;
925 
926 	/* LPI States start at index 3 */
927 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
928 		union acpi_object *element, *pkg_elem, *obj;
929 
930 		element = &lpi_data->package.elements[loop];
931 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
932 			continue;
933 
934 		pkg_elem = element->package.elements;
935 
936 		obj = pkg_elem + 6;
937 		if (obj->type == ACPI_TYPE_BUFFER) {
938 			struct acpi_power_register *reg;
939 
940 			reg = (struct acpi_power_register *)obj->buffer.pointer;
941 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
942 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
943 				continue;
944 
945 			lpi_state->address = reg->address;
946 			lpi_state->entry_method =
947 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
948 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
949 		} else if (obj->type == ACPI_TYPE_INTEGER) {
950 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
951 			lpi_state->address = obj->integer.value;
952 		} else {
953 			continue;
954 		}
955 
956 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
957 
958 		obj = pkg_elem + 9;
959 		if (obj->type == ACPI_TYPE_STRING)
960 			strscpy(lpi_state->desc, obj->string.pointer,
961 				ACPI_CX_DESC_LEN);
962 
963 		lpi_state->index = state_idx;
964 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
965 			pr_debug("No min. residency found, assuming 10 us\n");
966 			lpi_state->min_residency = 10;
967 		}
968 
969 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
970 			pr_debug("No wakeup residency found, assuming 10 us\n");
971 			lpi_state->wake_latency = 10;
972 		}
973 
974 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
975 			lpi_state->flags = 0;
976 
977 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
978 			lpi_state->arch_flags = 0;
979 
980 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
981 			lpi_state->res_cnt_freq = 1;
982 
983 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
984 			lpi_state->enable_parent_state = 0;
985 	}
986 
987 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
988 end:
989 	kfree(buffer.pointer);
990 	return ret;
991 }
992 
993 /*
994  * flat_state_cnt - the number of composite LPI states after the process of flattening
995  */
996 static int flat_state_cnt;
997 
998 /**
999  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1000  *
1001  * @local: local LPI state
1002  * @parent: parent LPI state
1003  * @result: composite LPI state
1004  */
1005 static bool combine_lpi_states(struct acpi_lpi_state *local,
1006 			       struct acpi_lpi_state *parent,
1007 			       struct acpi_lpi_state *result)
1008 {
1009 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1010 		if (!parent->address) /* 0 means autopromotable */
1011 			return false;
1012 		result->address = local->address + parent->address;
1013 	} else {
1014 		result->address = parent->address;
1015 	}
1016 
1017 	result->min_residency = max(local->min_residency, parent->min_residency);
1018 	result->wake_latency = local->wake_latency + parent->wake_latency;
1019 	result->enable_parent_state = parent->enable_parent_state;
1020 	result->entry_method = local->entry_method;
1021 
1022 	result->flags = parent->flags;
1023 	result->arch_flags = parent->arch_flags;
1024 	result->index = parent->index;
1025 
1026 	strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1027 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1028 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1029 	return true;
1030 }
1031 
1032 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1033 
1034 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1035 				  struct acpi_lpi_state *t)
1036 {
1037 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1038 }
1039 
1040 static int flatten_lpi_states(struct acpi_processor *pr,
1041 			      struct acpi_lpi_states_array *curr_level,
1042 			      struct acpi_lpi_states_array *prev_level)
1043 {
1044 	int i, j, state_count = curr_level->size;
1045 	struct acpi_lpi_state *p, *t = curr_level->entries;
1046 
1047 	curr_level->composite_states_size = 0;
1048 	for (j = 0; j < state_count; j++, t++) {
1049 		struct acpi_lpi_state *flpi;
1050 
1051 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1052 			continue;
1053 
1054 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1055 			pr_warn("Limiting number of LPI states to max (%d)\n",
1056 				ACPI_PROCESSOR_MAX_POWER);
1057 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1058 			break;
1059 		}
1060 
1061 		flpi = &pr->power.lpi_states[flat_state_cnt];
1062 
1063 		if (!prev_level) { /* leaf/processor node */
1064 			memcpy(flpi, t, sizeof(*t));
1065 			stash_composite_state(curr_level, flpi);
1066 			flat_state_cnt++;
1067 			continue;
1068 		}
1069 
1070 		for (i = 0; i < prev_level->composite_states_size; i++) {
1071 			p = prev_level->composite_states[i];
1072 			if (t->index <= p->enable_parent_state &&
1073 			    combine_lpi_states(p, t, flpi)) {
1074 				stash_composite_state(curr_level, flpi);
1075 				flat_state_cnt++;
1076 				flpi++;
1077 			}
1078 		}
1079 	}
1080 
1081 	kfree(curr_level->entries);
1082 	return 0;
1083 }
1084 
1085 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1086 {
1087 	return -EOPNOTSUPP;
1088 }
1089 
1090 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1091 {
1092 	int ret, i;
1093 	acpi_status status;
1094 	acpi_handle handle = pr->handle, pr_ahandle;
1095 	struct acpi_device *d = NULL;
1096 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1097 
1098 	/* make sure our architecture has support */
1099 	ret = acpi_processor_ffh_lpi_probe(pr->id);
1100 	if (ret == -EOPNOTSUPP)
1101 		return ret;
1102 
1103 	if (!osc_pc_lpi_support_confirmed)
1104 		return -EOPNOTSUPP;
1105 
1106 	if (!acpi_has_method(handle, "_LPI"))
1107 		return -EINVAL;
1108 
1109 	flat_state_cnt = 0;
1110 	prev = &info[0];
1111 	curr = &info[1];
1112 	handle = pr->handle;
1113 	ret = acpi_processor_evaluate_lpi(handle, prev);
1114 	if (ret)
1115 		return ret;
1116 	flatten_lpi_states(pr, prev, NULL);
1117 
1118 	status = acpi_get_parent(handle, &pr_ahandle);
1119 	while (ACPI_SUCCESS(status)) {
1120 		d = acpi_fetch_acpi_dev(pr_ahandle);
1121 		if (!d)
1122 			break;
1123 
1124 		handle = pr_ahandle;
1125 
1126 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1127 			break;
1128 
1129 		/* can be optional ? */
1130 		if (!acpi_has_method(handle, "_LPI"))
1131 			break;
1132 
1133 		ret = acpi_processor_evaluate_lpi(handle, curr);
1134 		if (ret)
1135 			break;
1136 
1137 		/* flatten all the LPI states in this level of hierarchy */
1138 		flatten_lpi_states(pr, curr, prev);
1139 
1140 		tmp = prev, prev = curr, curr = tmp;
1141 
1142 		status = acpi_get_parent(handle, &pr_ahandle);
1143 	}
1144 
1145 	pr->power.count = flat_state_cnt;
1146 	/* reset the index after flattening */
1147 	for (i = 0; i < pr->power.count; i++)
1148 		pr->power.lpi_states[i].index = i;
1149 
1150 	/* Tell driver that _LPI is supported. */
1151 	pr->flags.has_lpi = 1;
1152 	pr->flags.power = 1;
1153 
1154 	return 0;
1155 }
1156 
1157 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1158 {
1159 	return -ENODEV;
1160 }
1161 
1162 /**
1163  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1164  * @dev: the target CPU
1165  * @drv: cpuidle driver containing cpuidle state info
1166  * @index: index of target state
1167  *
1168  * Return: 0 for success or negative value for error
1169  */
1170 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1171 			       struct cpuidle_driver *drv, int index)
1172 {
1173 	struct acpi_processor *pr;
1174 	struct acpi_lpi_state *lpi;
1175 
1176 	pr = __this_cpu_read(processors);
1177 
1178 	if (unlikely(!pr))
1179 		return -EINVAL;
1180 
1181 	lpi = &pr->power.lpi_states[index];
1182 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1183 		return acpi_processor_ffh_lpi_enter(lpi);
1184 
1185 	return -EINVAL;
1186 }
1187 
1188 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1189 {
1190 	int i;
1191 	struct acpi_lpi_state *lpi;
1192 	struct cpuidle_state *state;
1193 	struct cpuidle_driver *drv = &acpi_idle_driver;
1194 
1195 	if (!pr->flags.has_lpi)
1196 		return -EOPNOTSUPP;
1197 
1198 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1199 		lpi = &pr->power.lpi_states[i];
1200 
1201 		state = &drv->states[i];
1202 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1203 		strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1204 		state->exit_latency = lpi->wake_latency;
1205 		state->target_residency = lpi->min_residency;
1206 		state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1207 		if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1208 			state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1209 		state->enter = acpi_idle_lpi_enter;
1210 		drv->safe_state_index = i;
1211 	}
1212 
1213 	drv->state_count = i;
1214 
1215 	return 0;
1216 }
1217 
1218 /**
1219  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1220  * global state data i.e. idle routines
1221  *
1222  * @pr: the ACPI processor
1223  */
1224 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1225 {
1226 	int i;
1227 	struct cpuidle_driver *drv = &acpi_idle_driver;
1228 
1229 	if (!pr->flags.power_setup_done || !pr->flags.power)
1230 		return -EINVAL;
1231 
1232 	drv->safe_state_index = -1;
1233 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1234 		drv->states[i].name[0] = '\0';
1235 		drv->states[i].desc[0] = '\0';
1236 	}
1237 
1238 	if (pr->flags.has_lpi)
1239 		return acpi_processor_setup_lpi_states(pr);
1240 
1241 	return acpi_processor_setup_cstates(pr);
1242 }
1243 
1244 /**
1245  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1246  * device i.e. per-cpu data
1247  *
1248  * @pr: the ACPI processor
1249  * @dev : the cpuidle device
1250  */
1251 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1252 					    struct cpuidle_device *dev)
1253 {
1254 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1255 		return -EINVAL;
1256 
1257 	dev->cpu = pr->id;
1258 	if (pr->flags.has_lpi)
1259 		return acpi_processor_ffh_lpi_probe(pr->id);
1260 
1261 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1262 }
1263 
1264 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1265 {
1266 	int ret;
1267 
1268 	ret = acpi_processor_get_lpi_info(pr);
1269 	if (ret)
1270 		ret = acpi_processor_get_cstate_info(pr);
1271 
1272 	return ret;
1273 }
1274 
1275 int acpi_processor_hotplug(struct acpi_processor *pr)
1276 {
1277 	int ret = 0;
1278 	struct cpuidle_device *dev;
1279 
1280 	if (disabled_by_idle_boot_param())
1281 		return 0;
1282 
1283 	if (!pr->flags.power_setup_done)
1284 		return -ENODEV;
1285 
1286 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1287 	cpuidle_pause_and_lock();
1288 	cpuidle_disable_device(dev);
1289 	ret = acpi_processor_get_power_info(pr);
1290 	if (!ret && pr->flags.power) {
1291 		acpi_processor_setup_cpuidle_dev(pr, dev);
1292 		ret = cpuidle_enable_device(dev);
1293 	}
1294 	cpuidle_resume_and_unlock();
1295 
1296 	return ret;
1297 }
1298 
1299 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1300 {
1301 	int cpu;
1302 	struct acpi_processor *_pr;
1303 	struct cpuidle_device *dev;
1304 
1305 	if (disabled_by_idle_boot_param())
1306 		return 0;
1307 
1308 	if (!pr->flags.power_setup_done)
1309 		return -ENODEV;
1310 
1311 	/*
1312 	 * FIXME:  Design the ACPI notification to make it once per
1313 	 * system instead of once per-cpu.  This condition is a hack
1314 	 * to make the code that updates C-States be called once.
1315 	 */
1316 
1317 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1318 
1319 		/* Protect against cpu-hotplug */
1320 		cpus_read_lock();
1321 		cpuidle_pause_and_lock();
1322 
1323 		/* Disable all cpuidle devices */
1324 		for_each_online_cpu(cpu) {
1325 			_pr = per_cpu(processors, cpu);
1326 			if (!_pr || !_pr->flags.power_setup_done)
1327 				continue;
1328 			dev = per_cpu(acpi_cpuidle_device, cpu);
1329 			cpuidle_disable_device(dev);
1330 		}
1331 
1332 		/* Populate Updated C-state information */
1333 		acpi_processor_get_power_info(pr);
1334 		acpi_processor_setup_cpuidle_states(pr);
1335 
1336 		/* Enable all cpuidle devices */
1337 		for_each_online_cpu(cpu) {
1338 			_pr = per_cpu(processors, cpu);
1339 			if (!_pr || !_pr->flags.power_setup_done)
1340 				continue;
1341 			acpi_processor_get_power_info(_pr);
1342 			if (_pr->flags.power) {
1343 				dev = per_cpu(acpi_cpuidle_device, cpu);
1344 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1345 				cpuidle_enable_device(dev);
1346 			}
1347 		}
1348 		cpuidle_resume_and_unlock();
1349 		cpus_read_unlock();
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int acpi_processor_registered;
1356 
1357 int acpi_processor_power_init(struct acpi_processor *pr)
1358 {
1359 	int retval;
1360 	struct cpuidle_device *dev;
1361 
1362 	if (disabled_by_idle_boot_param())
1363 		return 0;
1364 
1365 	acpi_processor_cstate_first_run_checks();
1366 
1367 	if (!acpi_processor_get_power_info(pr))
1368 		pr->flags.power_setup_done = 1;
1369 
1370 	/*
1371 	 * Install the idle handler if processor power management is supported.
1372 	 * Note that we use previously set idle handler will be used on
1373 	 * platforms that only support C1.
1374 	 */
1375 	if (pr->flags.power) {
1376 		/* Register acpi_idle_driver if not already registered */
1377 		if (!acpi_processor_registered) {
1378 			acpi_processor_setup_cpuidle_states(pr);
1379 			retval = cpuidle_register_driver(&acpi_idle_driver);
1380 			if (retval)
1381 				return retval;
1382 			pr_debug("%s registered with cpuidle\n",
1383 				 acpi_idle_driver.name);
1384 		}
1385 
1386 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1387 		if (!dev)
1388 			return -ENOMEM;
1389 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1390 
1391 		acpi_processor_setup_cpuidle_dev(pr, dev);
1392 
1393 		/* Register per-cpu cpuidle_device. Cpuidle driver
1394 		 * must already be registered before registering device
1395 		 */
1396 		retval = cpuidle_register_device(dev);
1397 		if (retval) {
1398 			if (acpi_processor_registered == 0)
1399 				cpuidle_unregister_driver(&acpi_idle_driver);
1400 			return retval;
1401 		}
1402 		acpi_processor_registered++;
1403 	}
1404 	return 0;
1405 }
1406 
1407 int acpi_processor_power_exit(struct acpi_processor *pr)
1408 {
1409 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1410 
1411 	if (disabled_by_idle_boot_param())
1412 		return 0;
1413 
1414 	if (pr->flags.power) {
1415 		cpuidle_unregister_device(dev);
1416 		acpi_processor_registered--;
1417 		if (acpi_processor_registered == 0)
1418 			cpuidle_unregister_driver(&acpi_idle_driver);
1419 
1420 		kfree(dev);
1421 	}
1422 
1423 	pr->flags.power_setup_done = 0;
1424 	return 0;
1425 }
1426