1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. 4 * 5 * (C) Copyright 2014, 2015 Linaro Ltd. 6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 7 * 8 * CPPC describes a few methods for controlling CPU performance using 9 * information from a per CPU table called CPC. This table is described in 10 * the ACPI v5.0+ specification. The table consists of a list of 11 * registers which may be memory mapped or hardware registers and also may 12 * include some static integer values. 13 * 14 * CPU performance is on an abstract continuous scale as against a discretized 15 * P-state scale which is tied to CPU frequency only. In brief, the basic 16 * operation involves: 17 * 18 * - OS makes a CPU performance request. (Can provide min and max bounds) 19 * 20 * - Platform (such as BMC) is free to optimize request within requested bounds 21 * depending on power/thermal budgets etc. 22 * 23 * - Platform conveys its decision back to OS 24 * 25 * The communication between OS and platform occurs through another medium 26 * called (PCC) Platform Communication Channel. This is a generic mailbox like 27 * mechanism which includes doorbell semantics to indicate register updates. 28 * See drivers/mailbox/pcc.c for details on PCC. 29 * 30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and 31 * above specifications. 32 */ 33 34 #define pr_fmt(fmt) "ACPI CPPC: " fmt 35 36 #include <linux/delay.h> 37 #include <linux/iopoll.h> 38 #include <linux/ktime.h> 39 #include <linux/rwsem.h> 40 #include <linux/wait.h> 41 #include <linux/topology.h> 42 #include <linux/dmi.h> 43 #include <linux/units.h> 44 #include <linux/unaligned.h> 45 46 #include <acpi/cppc_acpi.h> 47 48 struct cppc_pcc_data { 49 struct pcc_mbox_chan *pcc_channel; 50 bool pcc_channel_acquired; 51 unsigned int deadline_us; 52 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; 53 54 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */ 55 bool platform_owns_pcc; /* Ownership of PCC subspace */ 56 unsigned int pcc_write_cnt; /* Running count of PCC write commands */ 57 58 /* 59 * Lock to provide controlled access to the PCC channel. 60 * 61 * For performance critical usecases(currently cppc_set_perf) 62 * We need to take read_lock and check if channel belongs to OSPM 63 * before reading or writing to PCC subspace 64 * We need to take write_lock before transferring the channel 65 * ownership to the platform via a Doorbell 66 * This allows us to batch a number of CPPC requests if they happen 67 * to originate in about the same time 68 * 69 * For non-performance critical usecases(init) 70 * Take write_lock for all purposes which gives exclusive access 71 */ 72 struct rw_semaphore pcc_lock; 73 74 /* Wait queue for CPUs whose requests were batched */ 75 wait_queue_head_t pcc_write_wait_q; 76 ktime_t last_cmd_cmpl_time; 77 ktime_t last_mpar_reset; 78 int mpar_count; 79 int refcount; 80 }; 81 82 /* Array to represent the PCC channel per subspace ID */ 83 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES]; 84 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */ 85 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx); 86 87 /* 88 * The cpc_desc structure contains the ACPI register details 89 * as described in the per CPU _CPC tables. The details 90 * include the type of register (e.g. PCC, System IO, FFH etc.) 91 * and destination addresses which lets us READ/WRITE CPU performance 92 * information using the appropriate I/O methods. 93 */ 94 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); 95 96 /* pcc mapped address + header size + offset within PCC subspace */ 97 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_channel->shmem + \ 98 0x8 + (offs)) 99 100 /* Check if a CPC register is in PCC */ 101 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 102 (cpc)->cpc_entry.reg.space_id == \ 103 ACPI_ADR_SPACE_PLATFORM_COMM) 104 105 /* Check if a CPC register is in FFH */ 106 #define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 107 (cpc)->cpc_entry.reg.space_id == \ 108 ACPI_ADR_SPACE_FIXED_HARDWARE) 109 110 /* Check if a CPC register is in SystemMemory */ 111 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 112 (cpc)->cpc_entry.reg.space_id == \ 113 ACPI_ADR_SPACE_SYSTEM_MEMORY) 114 115 /* Check if a CPC register is in SystemIo */ 116 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 117 (cpc)->cpc_entry.reg.space_id == \ 118 ACPI_ADR_SPACE_SYSTEM_IO) 119 120 /* Evaluates to True if reg is a NULL register descriptor */ 121 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \ 122 (reg)->address == 0 && \ 123 (reg)->bit_width == 0 && \ 124 (reg)->bit_offset == 0 && \ 125 (reg)->access_width == 0) 126 127 /* Evaluates to True if an optional cpc field is supported */ 128 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \ 129 !!(cpc)->cpc_entry.int_value : \ 130 !IS_NULL_REG(&(cpc)->cpc_entry.reg)) 131 132 /* 133 * Each bit indicates the optionality of the register in per-cpu 134 * cpc_regs[] with the corresponding index. 0 means mandatory and 1 135 * means optional. 136 */ 137 #define REG_OPTIONAL (0x1FC7D0) 138 139 /* 140 * Use the index of the register in per-cpu cpc_regs[] to check if 141 * it's an optional one. 142 */ 143 #define IS_OPTIONAL_CPC_REG(reg_idx) (REG_OPTIONAL & (1U << (reg_idx))) 144 145 /* 146 * Arbitrary Retries in case the remote processor is slow to respond 147 * to PCC commands. Keeping it high enough to cover emulators where 148 * the processors run painfully slow. 149 */ 150 #define NUM_RETRIES 500ULL 151 152 #define OVER_16BTS_MASK ~0xFFFFULL 153 154 #define define_one_cppc_ro(_name) \ 155 static struct kobj_attribute _name = \ 156 __ATTR(_name, 0444, show_##_name, NULL) 157 158 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj) 159 160 #define show_cppc_data(access_fn, struct_name, member_name) \ 161 static ssize_t show_##member_name(struct kobject *kobj, \ 162 struct kobj_attribute *attr, char *buf) \ 163 { \ 164 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \ 165 struct struct_name st_name = {0}; \ 166 int ret; \ 167 \ 168 ret = access_fn(cpc_ptr->cpu_id, &st_name); \ 169 if (ret) \ 170 return ret; \ 171 \ 172 return sysfs_emit(buf, "%llu\n", \ 173 (u64)st_name.member_name); \ 174 } \ 175 define_one_cppc_ro(member_name) 176 177 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); 178 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); 179 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); 180 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); 181 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf); 182 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq); 183 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq); 184 185 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); 186 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); 187 188 /* Check for valid access_width, otherwise, fallback to using bit_width */ 189 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width) 190 191 /* Shift and apply the mask for CPC reads/writes */ 192 #define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) & \ 193 GENMASK(((reg)->bit_width) - 1, 0)) 194 #define MASK_VAL_WRITE(reg, prev_val, val) \ 195 ((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) | \ 196 ((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset))) \ 197 198 static ssize_t show_feedback_ctrs(struct kobject *kobj, 199 struct kobj_attribute *attr, char *buf) 200 { 201 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); 202 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 203 int ret; 204 205 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs); 206 if (ret) 207 return ret; 208 209 return sysfs_emit(buf, "ref:%llu del:%llu\n", 210 fb_ctrs.reference, fb_ctrs.delivered); 211 } 212 define_one_cppc_ro(feedback_ctrs); 213 214 static struct attribute *cppc_attrs[] = { 215 &feedback_ctrs.attr, 216 &reference_perf.attr, 217 &wraparound_time.attr, 218 &highest_perf.attr, 219 &lowest_perf.attr, 220 &lowest_nonlinear_perf.attr, 221 &guaranteed_perf.attr, 222 &nominal_perf.attr, 223 &nominal_freq.attr, 224 &lowest_freq.attr, 225 NULL 226 }; 227 ATTRIBUTE_GROUPS(cppc); 228 229 static const struct kobj_type cppc_ktype = { 230 .sysfs_ops = &kobj_sysfs_ops, 231 .default_groups = cppc_groups, 232 }; 233 234 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) 235 { 236 int ret, status; 237 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 238 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 239 pcc_ss_data->pcc_channel->shmem; 240 241 if (!pcc_ss_data->platform_owns_pcc) 242 return 0; 243 244 /* 245 * Poll PCC status register every 3us(delay_us) for maximum of 246 * deadline_us(timeout_us) until PCC command complete bit is set(cond) 247 */ 248 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status, 249 status & PCC_CMD_COMPLETE_MASK, 3, 250 pcc_ss_data->deadline_us); 251 252 if (likely(!ret)) { 253 pcc_ss_data->platform_owns_pcc = false; 254 if (chk_err_bit && (status & PCC_ERROR_MASK)) 255 ret = -EIO; 256 } 257 258 if (unlikely(ret)) 259 pr_err("PCC check channel failed for ss: %d. ret=%d\n", 260 pcc_ss_id, ret); 261 262 return ret; 263 } 264 265 /* 266 * This function transfers the ownership of the PCC to the platform 267 * So it must be called while holding write_lock(pcc_lock) 268 */ 269 static int send_pcc_cmd(int pcc_ss_id, u16 cmd) 270 { 271 int ret = -EIO, i; 272 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 273 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 274 pcc_ss_data->pcc_channel->shmem; 275 unsigned int time_delta; 276 277 /* 278 * For CMD_WRITE we know for a fact the caller should have checked 279 * the channel before writing to PCC space 280 */ 281 if (cmd == CMD_READ) { 282 /* 283 * If there are pending cpc_writes, then we stole the channel 284 * before write completion, so first send a WRITE command to 285 * platform 286 */ 287 if (pcc_ss_data->pending_pcc_write_cmd) 288 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 289 290 ret = check_pcc_chan(pcc_ss_id, false); 291 if (ret) 292 goto end; 293 } else /* CMD_WRITE */ 294 pcc_ss_data->pending_pcc_write_cmd = FALSE; 295 296 /* 297 * Handle the Minimum Request Turnaround Time(MRTT) 298 * "The minimum amount of time that OSPM must wait after the completion 299 * of a command before issuing the next command, in microseconds" 300 */ 301 if (pcc_ss_data->pcc_mrtt) { 302 time_delta = ktime_us_delta(ktime_get(), 303 pcc_ss_data->last_cmd_cmpl_time); 304 if (pcc_ss_data->pcc_mrtt > time_delta) 305 udelay(pcc_ss_data->pcc_mrtt - time_delta); 306 } 307 308 /* 309 * Handle the non-zero Maximum Periodic Access Rate(MPAR) 310 * "The maximum number of periodic requests that the subspace channel can 311 * support, reported in commands per minute. 0 indicates no limitation." 312 * 313 * This parameter should be ideally zero or large enough so that it can 314 * handle maximum number of requests that all the cores in the system can 315 * collectively generate. If it is not, we will follow the spec and just 316 * not send the request to the platform after hitting the MPAR limit in 317 * any 60s window 318 */ 319 if (pcc_ss_data->pcc_mpar) { 320 if (pcc_ss_data->mpar_count == 0) { 321 time_delta = ktime_ms_delta(ktime_get(), 322 pcc_ss_data->last_mpar_reset); 323 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) { 324 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit", 325 pcc_ss_id); 326 ret = -EIO; 327 goto end; 328 } 329 pcc_ss_data->last_mpar_reset = ktime_get(); 330 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar; 331 } 332 pcc_ss_data->mpar_count--; 333 } 334 335 /* Write to the shared comm region. */ 336 writew_relaxed(cmd, &generic_comm_base->command); 337 338 /* Flip CMD COMPLETE bit */ 339 writew_relaxed(0, &generic_comm_base->status); 340 341 pcc_ss_data->platform_owns_pcc = true; 342 343 /* Ring doorbell */ 344 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd); 345 if (ret < 0) { 346 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n", 347 pcc_ss_id, cmd, ret); 348 goto end; 349 } 350 351 /* wait for completion and check for PCC error bit */ 352 ret = check_pcc_chan(pcc_ss_id, true); 353 354 if (pcc_ss_data->pcc_mrtt) 355 pcc_ss_data->last_cmd_cmpl_time = ktime_get(); 356 357 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq) 358 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret); 359 else 360 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret); 361 362 end: 363 if (cmd == CMD_WRITE) { 364 if (unlikely(ret)) { 365 for_each_possible_cpu(i) { 366 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i); 367 368 if (!desc) 369 continue; 370 371 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt) 372 desc->write_cmd_status = ret; 373 } 374 } 375 pcc_ss_data->pcc_write_cnt++; 376 wake_up_all(&pcc_ss_data->pcc_write_wait_q); 377 } 378 379 return ret; 380 } 381 382 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) 383 { 384 if (ret < 0) 385 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", 386 *(u16 *)msg, ret); 387 else 388 pr_debug("TX completed. CMD sent:%x, ret:%d\n", 389 *(u16 *)msg, ret); 390 } 391 392 static struct mbox_client cppc_mbox_cl = { 393 .tx_done = cppc_chan_tx_done, 394 .knows_txdone = true, 395 }; 396 397 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) 398 { 399 int result = -EFAULT; 400 acpi_status status = AE_OK; 401 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 402 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; 403 struct acpi_buffer state = {0, NULL}; 404 union acpi_object *psd = NULL; 405 struct acpi_psd_package *pdomain; 406 407 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, 408 &buffer, ACPI_TYPE_PACKAGE); 409 if (status == AE_NOT_FOUND) /* _PSD is optional */ 410 return 0; 411 if (ACPI_FAILURE(status)) 412 return -ENODEV; 413 414 psd = buffer.pointer; 415 if (!psd || psd->package.count != 1) { 416 pr_debug("Invalid _PSD data\n"); 417 goto end; 418 } 419 420 pdomain = &(cpc_ptr->domain_info); 421 422 state.length = sizeof(struct acpi_psd_package); 423 state.pointer = pdomain; 424 425 status = acpi_extract_package(&(psd->package.elements[0]), 426 &format, &state); 427 if (ACPI_FAILURE(status)) { 428 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); 429 goto end; 430 } 431 432 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { 433 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); 434 goto end; 435 } 436 437 if (pdomain->revision != ACPI_PSD_REV0_REVISION) { 438 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); 439 goto end; 440 } 441 442 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && 443 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && 444 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { 445 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); 446 goto end; 447 } 448 449 result = 0; 450 end: 451 kfree(buffer.pointer); 452 return result; 453 } 454 455 bool acpi_cpc_valid(void) 456 { 457 struct cpc_desc *cpc_ptr; 458 int cpu; 459 460 if (acpi_disabled) 461 return false; 462 463 for_each_present_cpu(cpu) { 464 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 465 if (!cpc_ptr) 466 return false; 467 } 468 469 return true; 470 } 471 EXPORT_SYMBOL_GPL(acpi_cpc_valid); 472 473 bool cppc_allow_fast_switch(void) 474 { 475 struct cpc_register_resource *desired_reg; 476 struct cpc_desc *cpc_ptr; 477 int cpu; 478 479 for_each_present_cpu(cpu) { 480 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 481 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF]; 482 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) && 483 !CPC_IN_SYSTEM_IO(desired_reg)) 484 return false; 485 } 486 487 return true; 488 } 489 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch); 490 491 /** 492 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu 493 * @cpu: Find all CPUs that share a domain with cpu. 494 * @cpu_data: Pointer to CPU specific CPPC data including PSD info. 495 * 496 * Return: 0 for success or negative value for err. 497 */ 498 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data) 499 { 500 struct cpc_desc *cpc_ptr, *match_cpc_ptr; 501 struct acpi_psd_package *match_pdomain; 502 struct acpi_psd_package *pdomain; 503 int count_target, i; 504 505 /* 506 * Now that we have _PSD data from all CPUs, let's setup P-state 507 * domain info. 508 */ 509 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 510 if (!cpc_ptr) 511 return -EFAULT; 512 513 pdomain = &(cpc_ptr->domain_info); 514 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 515 if (pdomain->num_processors <= 1) 516 return 0; 517 518 /* Validate the Domain info */ 519 count_target = pdomain->num_processors; 520 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) 521 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL; 522 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) 523 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW; 524 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) 525 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY; 526 527 for_each_possible_cpu(i) { 528 if (i == cpu) 529 continue; 530 531 match_cpc_ptr = per_cpu(cpc_desc_ptr, i); 532 if (!match_cpc_ptr) 533 goto err_fault; 534 535 match_pdomain = &(match_cpc_ptr->domain_info); 536 if (match_pdomain->domain != pdomain->domain) 537 continue; 538 539 /* Here i and cpu are in the same domain */ 540 if (match_pdomain->num_processors != count_target) 541 goto err_fault; 542 543 if (pdomain->coord_type != match_pdomain->coord_type) 544 goto err_fault; 545 546 cpumask_set_cpu(i, cpu_data->shared_cpu_map); 547 } 548 549 return 0; 550 551 err_fault: 552 /* Assume no coordination on any error parsing domain info */ 553 cpumask_clear(cpu_data->shared_cpu_map); 554 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 555 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE; 556 557 return -EFAULT; 558 } 559 EXPORT_SYMBOL_GPL(acpi_get_psd_map); 560 561 static int register_pcc_channel(int pcc_ss_idx) 562 { 563 struct pcc_mbox_chan *pcc_chan; 564 u64 usecs_lat; 565 566 if (pcc_ss_idx >= 0) { 567 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx); 568 569 if (IS_ERR(pcc_chan)) { 570 pr_err("Failed to find PCC channel for subspace %d\n", 571 pcc_ss_idx); 572 return -ENODEV; 573 } 574 575 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan; 576 /* 577 * cppc_ss->latency is just a Nominal value. In reality 578 * the remote processor could be much slower to reply. 579 * So add an arbitrary amount of wait on top of Nominal. 580 */ 581 usecs_lat = NUM_RETRIES * pcc_chan->latency; 582 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat; 583 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time; 584 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate; 585 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency; 586 587 /* Set flag so that we don't come here for each CPU. */ 588 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true; 589 } 590 591 return 0; 592 } 593 594 /** 595 * cpc_ffh_supported() - check if FFH reading supported 596 * 597 * Check if the architecture has support for functional fixed hardware 598 * read/write capability. 599 * 600 * Return: true for supported, false for not supported 601 */ 602 bool __weak cpc_ffh_supported(void) 603 { 604 return false; 605 } 606 607 /** 608 * cpc_supported_by_cpu() - check if CPPC is supported by CPU 609 * 610 * Check if the architectural support for CPPC is present even 611 * if the _OSC hasn't prescribed it 612 * 613 * Return: true for supported, false for not supported 614 */ 615 bool __weak cpc_supported_by_cpu(void) 616 { 617 return false; 618 } 619 620 /** 621 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace 622 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package. 623 * 624 * Check and allocate the cppc_pcc_data memory. 625 * In some processor configurations it is possible that same subspace 626 * is shared between multiple CPUs. This is seen especially in CPUs 627 * with hardware multi-threading support. 628 * 629 * Return: 0 for success, errno for failure 630 */ 631 static int pcc_data_alloc(int pcc_ss_id) 632 { 633 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES) 634 return -EINVAL; 635 636 if (pcc_data[pcc_ss_id]) { 637 pcc_data[pcc_ss_id]->refcount++; 638 } else { 639 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data), 640 GFP_KERNEL); 641 if (!pcc_data[pcc_ss_id]) 642 return -ENOMEM; 643 pcc_data[pcc_ss_id]->refcount++; 644 } 645 646 return 0; 647 } 648 649 /* 650 * An example CPC table looks like the following. 651 * 652 * Name (_CPC, Package() { 653 * 17, // NumEntries 654 * 1, // Revision 655 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance 656 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance 657 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance 658 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance 659 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register 660 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register 661 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)}, 662 * ... 663 * ... 664 * ... 665 * } 666 * Each Register() encodes how to access that specific register. 667 * e.g. a sample PCC entry has the following encoding: 668 * 669 * Register ( 670 * PCC, // AddressSpaceKeyword 671 * 8, // RegisterBitWidth 672 * 8, // RegisterBitOffset 673 * 0x30, // RegisterAddress 674 * 9, // AccessSize (subspace ID) 675 * ) 676 */ 677 678 /** 679 * acpi_cppc_processor_probe - Search for per CPU _CPC objects. 680 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 681 * 682 * Return: 0 for success or negative value for err. 683 */ 684 int acpi_cppc_processor_probe(struct acpi_processor *pr) 685 { 686 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 687 union acpi_object *out_obj, *cpc_obj; 688 struct cpc_desc *cpc_ptr; 689 struct cpc_reg *gas_t; 690 struct device *cpu_dev; 691 acpi_handle handle = pr->handle; 692 unsigned int num_ent, i, cpc_rev; 693 int pcc_subspace_id = -1; 694 acpi_status status; 695 int ret = -ENODATA; 696 697 if (!osc_sb_cppc2_support_acked) { 698 pr_debug("CPPC v2 _OSC not acked\n"); 699 if (!cpc_supported_by_cpu()) { 700 pr_debug("CPPC is not supported by the CPU\n"); 701 return -ENODEV; 702 } 703 } 704 705 /* Parse the ACPI _CPC table for this CPU. */ 706 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, 707 ACPI_TYPE_PACKAGE); 708 if (ACPI_FAILURE(status)) { 709 ret = -ENODEV; 710 goto out_buf_free; 711 } 712 713 out_obj = (union acpi_object *) output.pointer; 714 715 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); 716 if (!cpc_ptr) { 717 ret = -ENOMEM; 718 goto out_buf_free; 719 } 720 721 /* First entry is NumEntries. */ 722 cpc_obj = &out_obj->package.elements[0]; 723 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 724 num_ent = cpc_obj->integer.value; 725 if (num_ent <= 1) { 726 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n", 727 num_ent, pr->id); 728 goto out_free; 729 } 730 } else { 731 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n", 732 cpc_obj->type, pr->id); 733 goto out_free; 734 } 735 736 /* Second entry should be revision. */ 737 cpc_obj = &out_obj->package.elements[1]; 738 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 739 cpc_rev = cpc_obj->integer.value; 740 } else { 741 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n", 742 cpc_obj->type, pr->id); 743 goto out_free; 744 } 745 746 if (cpc_rev < CPPC_V2_REV) { 747 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev, 748 pr->id); 749 goto out_free; 750 } 751 752 /* 753 * Disregard _CPC if the number of entries in the return pachage is not 754 * as expected, but support future revisions being proper supersets of 755 * the v3 and only causing more entries to be returned by _CPC. 756 */ 757 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) || 758 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) || 759 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) { 760 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n", 761 num_ent, pr->id); 762 goto out_free; 763 } 764 if (cpc_rev > CPPC_V3_REV) { 765 num_ent = CPPC_V3_NUM_ENT; 766 cpc_rev = CPPC_V3_REV; 767 } 768 769 cpc_ptr->num_entries = num_ent; 770 cpc_ptr->version = cpc_rev; 771 772 /* Iterate through remaining entries in _CPC */ 773 for (i = 2; i < num_ent; i++) { 774 cpc_obj = &out_obj->package.elements[i]; 775 776 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 777 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; 778 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; 779 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { 780 gas_t = (struct cpc_reg *) 781 cpc_obj->buffer.pointer; 782 783 /* 784 * The PCC Subspace index is encoded inside 785 * the CPC table entries. The same PCC index 786 * will be used for all the PCC entries, 787 * so extract it only once. 788 */ 789 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 790 if (pcc_subspace_id < 0) { 791 pcc_subspace_id = gas_t->access_width; 792 if (pcc_data_alloc(pcc_subspace_id)) 793 goto out_free; 794 } else if (pcc_subspace_id != gas_t->access_width) { 795 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n", 796 pr->id); 797 goto out_free; 798 } 799 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 800 if (gas_t->address) { 801 void __iomem *addr; 802 size_t access_width; 803 804 if (!osc_cpc_flexible_adr_space_confirmed) { 805 pr_debug("Flexible address space capability not supported\n"); 806 if (!cpc_supported_by_cpu()) 807 goto out_free; 808 } 809 810 access_width = GET_BIT_WIDTH(gas_t) / 8; 811 addr = ioremap(gas_t->address, access_width); 812 if (!addr) 813 goto out_free; 814 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr; 815 } 816 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 817 if (gas_t->access_width < 1 || gas_t->access_width > 3) { 818 /* 819 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit. 820 * SystemIO doesn't implement 64-bit 821 * registers. 822 */ 823 pr_debug("Invalid access width %d for SystemIO register in _CPC\n", 824 gas_t->access_width); 825 goto out_free; 826 } 827 if (gas_t->address & OVER_16BTS_MASK) { 828 /* SystemIO registers use 16-bit integer addresses */ 829 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n", 830 gas_t->address); 831 goto out_free; 832 } 833 if (!osc_cpc_flexible_adr_space_confirmed) { 834 pr_debug("Flexible address space capability not supported\n"); 835 if (!cpc_supported_by_cpu()) 836 goto out_free; 837 } 838 } else { 839 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) { 840 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */ 841 pr_debug("Unsupported register type (%d) in _CPC\n", 842 gas_t->space_id); 843 goto out_free; 844 } 845 } 846 847 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; 848 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); 849 } else { 850 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n", 851 i, pr->id); 852 goto out_free; 853 } 854 } 855 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; 856 857 /* 858 * Initialize the remaining cpc_regs as unsupported. 859 * Example: In case FW exposes CPPC v2, the below loop will initialize 860 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported 861 */ 862 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) { 863 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER; 864 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0; 865 } 866 867 868 /* Store CPU Logical ID */ 869 cpc_ptr->cpu_id = pr->id; 870 raw_spin_lock_init(&cpc_ptr->rmw_lock); 871 872 /* Parse PSD data for this CPU */ 873 ret = acpi_get_psd(cpc_ptr, handle); 874 if (ret) 875 goto out_free; 876 877 /* Register PCC channel once for all PCC subspace ID. */ 878 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) { 879 ret = register_pcc_channel(pcc_subspace_id); 880 if (ret) 881 goto out_free; 882 883 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock); 884 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q); 885 } 886 887 /* Everything looks okay */ 888 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); 889 890 /* Add per logical CPU nodes for reading its feedback counters. */ 891 cpu_dev = get_cpu_device(pr->id); 892 if (!cpu_dev) { 893 ret = -EINVAL; 894 goto out_free; 895 } 896 897 /* Plug PSD data into this CPU's CPC descriptor. */ 898 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; 899 900 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj, 901 "acpi_cppc"); 902 if (ret) { 903 per_cpu(cpc_desc_ptr, pr->id) = NULL; 904 kobject_put(&cpc_ptr->kobj); 905 goto out_free; 906 } 907 908 kfree(output.pointer); 909 return 0; 910 911 out_free: 912 /* Free all the mapped sys mem areas for this CPU */ 913 for (i = 2; i < cpc_ptr->num_entries; i++) { 914 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 915 916 if (addr) 917 iounmap(addr); 918 } 919 kfree(cpc_ptr); 920 921 out_buf_free: 922 kfree(output.pointer); 923 return ret; 924 } 925 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); 926 927 /** 928 * acpi_cppc_processor_exit - Cleanup CPC structs. 929 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 930 * 931 * Return: Void 932 */ 933 void acpi_cppc_processor_exit(struct acpi_processor *pr) 934 { 935 struct cpc_desc *cpc_ptr; 936 unsigned int i; 937 void __iomem *addr; 938 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id); 939 940 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) { 941 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) { 942 pcc_data[pcc_ss_id]->refcount--; 943 if (!pcc_data[pcc_ss_id]->refcount) { 944 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel); 945 kfree(pcc_data[pcc_ss_id]); 946 pcc_data[pcc_ss_id] = NULL; 947 } 948 } 949 } 950 951 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); 952 if (!cpc_ptr) 953 return; 954 955 /* Free all the mapped sys mem areas for this CPU */ 956 for (i = 2; i < cpc_ptr->num_entries; i++) { 957 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 958 if (addr) 959 iounmap(addr); 960 } 961 962 kobject_put(&cpc_ptr->kobj); 963 kfree(cpc_ptr); 964 } 965 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); 966 967 /** 968 * cpc_read_ffh() - Read FFH register 969 * @cpunum: CPU number to read 970 * @reg: cppc register information 971 * @val: place holder for return value 972 * 973 * Read bit_width bits from a specified address and bit_offset 974 * 975 * Return: 0 for success and error code 976 */ 977 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val) 978 { 979 return -ENOTSUPP; 980 } 981 982 /** 983 * cpc_write_ffh() - Write FFH register 984 * @cpunum: CPU number to write 985 * @reg: cppc register information 986 * @val: value to write 987 * 988 * Write value of bit_width bits to a specified address and bit_offset 989 * 990 * Return: 0 for success and error code 991 */ 992 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) 993 { 994 return -ENOTSUPP; 995 } 996 997 /* 998 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be 999 * as fast as possible. We have already mapped the PCC subspace during init, so 1000 * we can directly write to it. 1001 */ 1002 1003 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val) 1004 { 1005 void __iomem *vaddr = NULL; 1006 int size; 1007 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1008 struct cpc_reg *reg = ®_res->cpc_entry.reg; 1009 1010 if (reg_res->type == ACPI_TYPE_INTEGER) { 1011 *val = reg_res->cpc_entry.int_value; 1012 return 0; 1013 } 1014 1015 *val = 0; 1016 size = GET_BIT_WIDTH(reg); 1017 1018 if (IS_ENABLED(CONFIG_HAS_IOPORT) && 1019 reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1020 u32 val_u32; 1021 acpi_status status; 1022 1023 status = acpi_os_read_port((acpi_io_address)reg->address, 1024 &val_u32, size); 1025 if (ACPI_FAILURE(status)) { 1026 pr_debug("Error: Failed to read SystemIO port %llx\n", 1027 reg->address); 1028 return -EFAULT; 1029 } 1030 1031 *val = val_u32; 1032 return 0; 1033 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) { 1034 /* 1035 * For registers in PCC space, the register size is determined 1036 * by the bit width field; the access size is used to indicate 1037 * the PCC subspace id. 1038 */ 1039 size = reg->bit_width; 1040 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 1041 } 1042 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1043 vaddr = reg_res->sys_mem_vaddr; 1044 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1045 return cpc_read_ffh(cpu, reg, val); 1046 else 1047 return acpi_os_read_memory((acpi_physical_address)reg->address, 1048 val, size); 1049 1050 switch (size) { 1051 case 8: 1052 *val = readb_relaxed(vaddr); 1053 break; 1054 case 16: 1055 *val = readw_relaxed(vaddr); 1056 break; 1057 case 32: 1058 *val = readl_relaxed(vaddr); 1059 break; 1060 case 64: 1061 *val = readq_relaxed(vaddr); 1062 break; 1063 default: 1064 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1065 pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n", 1066 size, reg->address); 1067 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 1068 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n", 1069 size, pcc_ss_id); 1070 } 1071 return -EFAULT; 1072 } 1073 1074 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1075 *val = MASK_VAL_READ(reg, *val); 1076 1077 return 0; 1078 } 1079 1080 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val) 1081 { 1082 int ret_val = 0; 1083 int size; 1084 u64 prev_val; 1085 void __iomem *vaddr = NULL; 1086 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1087 struct cpc_reg *reg = ®_res->cpc_entry.reg; 1088 struct cpc_desc *cpc_desc; 1089 unsigned long flags; 1090 1091 size = GET_BIT_WIDTH(reg); 1092 1093 if (IS_ENABLED(CONFIG_HAS_IOPORT) && 1094 reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1095 acpi_status status; 1096 1097 status = acpi_os_write_port((acpi_io_address)reg->address, 1098 (u32)val, size); 1099 if (ACPI_FAILURE(status)) { 1100 pr_debug("Error: Failed to write SystemIO port %llx\n", 1101 reg->address); 1102 return -EFAULT; 1103 } 1104 1105 return 0; 1106 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) { 1107 /* 1108 * For registers in PCC space, the register size is determined 1109 * by the bit width field; the access size is used to indicate 1110 * the PCC subspace id. 1111 */ 1112 size = reg->bit_width; 1113 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 1114 } 1115 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1116 vaddr = reg_res->sys_mem_vaddr; 1117 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1118 return cpc_write_ffh(cpu, reg, val); 1119 else 1120 return acpi_os_write_memory((acpi_physical_address)reg->address, 1121 val, size); 1122 1123 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1124 cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1125 if (!cpc_desc) { 1126 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1127 return -ENODEV; 1128 } 1129 1130 raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags); 1131 switch (size) { 1132 case 8: 1133 prev_val = readb_relaxed(vaddr); 1134 break; 1135 case 16: 1136 prev_val = readw_relaxed(vaddr); 1137 break; 1138 case 32: 1139 prev_val = readl_relaxed(vaddr); 1140 break; 1141 case 64: 1142 prev_val = readq_relaxed(vaddr); 1143 break; 1144 default: 1145 raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags); 1146 return -EFAULT; 1147 } 1148 val = MASK_VAL_WRITE(reg, prev_val, val); 1149 } 1150 1151 switch (size) { 1152 case 8: 1153 writeb_relaxed(val, vaddr); 1154 break; 1155 case 16: 1156 writew_relaxed(val, vaddr); 1157 break; 1158 case 32: 1159 writel_relaxed(val, vaddr); 1160 break; 1161 case 64: 1162 writeq_relaxed(val, vaddr); 1163 break; 1164 default: 1165 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1166 pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n", 1167 size, reg->address); 1168 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 1169 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n", 1170 size, pcc_ss_id); 1171 } 1172 ret_val = -EFAULT; 1173 break; 1174 } 1175 1176 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1177 raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags); 1178 1179 return ret_val; 1180 } 1181 1182 static int cppc_get_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 *val) 1183 { 1184 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1185 struct cppc_pcc_data *pcc_ss_data = NULL; 1186 int ret; 1187 1188 if (pcc_ss_id < 0) { 1189 pr_debug("Invalid pcc_ss_id\n"); 1190 return -ENODEV; 1191 } 1192 1193 pcc_ss_data = pcc_data[pcc_ss_id]; 1194 1195 down_write(&pcc_ss_data->pcc_lock); 1196 1197 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) 1198 ret = cpc_read(cpu, reg, val); 1199 else 1200 ret = -EIO; 1201 1202 up_write(&pcc_ss_data->pcc_lock); 1203 1204 return ret; 1205 } 1206 1207 static int cppc_get_reg_val(int cpu, enum cppc_regs reg_idx, u64 *val) 1208 { 1209 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1210 struct cpc_register_resource *reg; 1211 1212 if (val == NULL) 1213 return -EINVAL; 1214 1215 if (!cpc_desc) { 1216 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1217 return -ENODEV; 1218 } 1219 1220 reg = &cpc_desc->cpc_regs[reg_idx]; 1221 1222 if ((reg->type == ACPI_TYPE_INTEGER && IS_OPTIONAL_CPC_REG(reg_idx) && 1223 !reg->cpc_entry.int_value) || (reg->type != ACPI_TYPE_INTEGER && 1224 IS_NULL_REG(®->cpc_entry.reg))) { 1225 pr_debug("CPC register is not supported\n"); 1226 return -EOPNOTSUPP; 1227 } 1228 1229 if (CPC_IN_PCC(reg)) 1230 return cppc_get_reg_val_in_pcc(cpu, reg, val); 1231 1232 return cpc_read(cpu, reg, val); 1233 } 1234 1235 static int cppc_set_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 val) 1236 { 1237 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1238 struct cppc_pcc_data *pcc_ss_data = NULL; 1239 int ret; 1240 1241 if (pcc_ss_id < 0) { 1242 pr_debug("Invalid pcc_ss_id\n"); 1243 return -ENODEV; 1244 } 1245 1246 ret = cpc_write(cpu, reg, val); 1247 if (ret) 1248 return ret; 1249 1250 pcc_ss_data = pcc_data[pcc_ss_id]; 1251 1252 down_write(&pcc_ss_data->pcc_lock); 1253 /* after writing CPC, transfer the ownership of PCC to platform */ 1254 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1255 up_write(&pcc_ss_data->pcc_lock); 1256 1257 return ret; 1258 } 1259 1260 static int cppc_set_reg_val(int cpu, enum cppc_regs reg_idx, u64 val) 1261 { 1262 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1263 struct cpc_register_resource *reg; 1264 1265 if (!cpc_desc) { 1266 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1267 return -ENODEV; 1268 } 1269 1270 reg = &cpc_desc->cpc_regs[reg_idx]; 1271 1272 /* if a register is writeable, it must be a buffer and not null */ 1273 if ((reg->type != ACPI_TYPE_BUFFER) || IS_NULL_REG(®->cpc_entry.reg)) { 1274 pr_debug("CPC register is not supported\n"); 1275 return -EOPNOTSUPP; 1276 } 1277 1278 if (CPC_IN_PCC(reg)) 1279 return cppc_set_reg_val_in_pcc(cpu, reg, val); 1280 1281 return cpc_write(cpu, reg, val); 1282 } 1283 1284 /** 1285 * cppc_get_desired_perf - Get the desired performance register value. 1286 * @cpunum: CPU from which to get desired performance. 1287 * @desired_perf: Return address. 1288 * 1289 * Return: 0 for success, -EIO otherwise. 1290 */ 1291 int cppc_get_desired_perf(int cpunum, u64 *desired_perf) 1292 { 1293 return cppc_get_reg_val(cpunum, DESIRED_PERF, desired_perf); 1294 } 1295 EXPORT_SYMBOL_GPL(cppc_get_desired_perf); 1296 1297 /** 1298 * cppc_get_nominal_perf - Get the nominal performance register value. 1299 * @cpunum: CPU from which to get nominal performance. 1300 * @nominal_perf: Return address. 1301 * 1302 * Return: 0 for success, -EIO otherwise. 1303 */ 1304 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf) 1305 { 1306 return cppc_get_reg_val(cpunum, NOMINAL_PERF, nominal_perf); 1307 } 1308 1309 /** 1310 * cppc_get_highest_perf - Get the highest performance register value. 1311 * @cpunum: CPU from which to get highest performance. 1312 * @highest_perf: Return address. 1313 * 1314 * Return: 0 for success, -EIO otherwise. 1315 */ 1316 int cppc_get_highest_perf(int cpunum, u64 *highest_perf) 1317 { 1318 return cppc_get_reg_val(cpunum, HIGHEST_PERF, highest_perf); 1319 } 1320 EXPORT_SYMBOL_GPL(cppc_get_highest_perf); 1321 1322 /** 1323 * cppc_get_epp_perf - Get the epp register value. 1324 * @cpunum: CPU from which to get epp preference value. 1325 * @epp_perf: Return address. 1326 * 1327 * Return: 0 for success, -EIO otherwise. 1328 */ 1329 int cppc_get_epp_perf(int cpunum, u64 *epp_perf) 1330 { 1331 return cppc_get_reg_val(cpunum, ENERGY_PERF, epp_perf); 1332 } 1333 EXPORT_SYMBOL_GPL(cppc_get_epp_perf); 1334 1335 /** 1336 * cppc_get_perf_caps - Get a CPU's performance capabilities. 1337 * @cpunum: CPU from which to get capabilities info. 1338 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h 1339 * 1340 * Return: 0 for success with perf_caps populated else -ERRNO. 1341 */ 1342 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) 1343 { 1344 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1345 struct cpc_register_resource *highest_reg, *lowest_reg, 1346 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg, 1347 *low_freq_reg = NULL, *nom_freq_reg = NULL; 1348 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0; 1349 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1350 struct cppc_pcc_data *pcc_ss_data = NULL; 1351 int ret = 0, regs_in_pcc = 0; 1352 1353 if (!cpc_desc) { 1354 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1355 return -ENODEV; 1356 } 1357 1358 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; 1359 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; 1360 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; 1361 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1362 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ]; 1363 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ]; 1364 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF]; 1365 1366 /* Are any of the regs PCC ?*/ 1367 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || 1368 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) || 1369 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) { 1370 if (pcc_ss_id < 0) { 1371 pr_debug("Invalid pcc_ss_id\n"); 1372 return -ENODEV; 1373 } 1374 pcc_ss_data = pcc_data[pcc_ss_id]; 1375 regs_in_pcc = 1; 1376 down_write(&pcc_ss_data->pcc_lock); 1377 /* Ring doorbell once to update PCC subspace */ 1378 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1379 ret = -EIO; 1380 goto out_err; 1381 } 1382 } 1383 1384 cpc_read(cpunum, highest_reg, &high); 1385 perf_caps->highest_perf = high; 1386 1387 cpc_read(cpunum, lowest_reg, &low); 1388 perf_caps->lowest_perf = low; 1389 1390 cpc_read(cpunum, nominal_reg, &nom); 1391 perf_caps->nominal_perf = nom; 1392 1393 if (guaranteed_reg->type != ACPI_TYPE_BUFFER || 1394 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) { 1395 perf_caps->guaranteed_perf = 0; 1396 } else { 1397 cpc_read(cpunum, guaranteed_reg, &guaranteed); 1398 perf_caps->guaranteed_perf = guaranteed; 1399 } 1400 1401 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear); 1402 perf_caps->lowest_nonlinear_perf = min_nonlinear; 1403 1404 if (!high || !low || !nom || !min_nonlinear) 1405 ret = -EFAULT; 1406 1407 /* Read optional lowest and nominal frequencies if present */ 1408 if (CPC_SUPPORTED(low_freq_reg)) 1409 cpc_read(cpunum, low_freq_reg, &low_f); 1410 1411 if (CPC_SUPPORTED(nom_freq_reg)) 1412 cpc_read(cpunum, nom_freq_reg, &nom_f); 1413 1414 perf_caps->lowest_freq = low_f; 1415 perf_caps->nominal_freq = nom_f; 1416 1417 1418 out_err: 1419 if (regs_in_pcc) 1420 up_write(&pcc_ss_data->pcc_lock); 1421 return ret; 1422 } 1423 EXPORT_SYMBOL_GPL(cppc_get_perf_caps); 1424 1425 /** 1426 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region. 1427 * 1428 * CPPC has flexibility about how CPU performance counters are accessed. 1429 * One of the choices is PCC regions, which can have a high access latency. This 1430 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time. 1431 * 1432 * Return: true if any of the counters are in PCC regions, false otherwise 1433 */ 1434 bool cppc_perf_ctrs_in_pcc(void) 1435 { 1436 int cpu; 1437 1438 for_each_present_cpu(cpu) { 1439 struct cpc_register_resource *ref_perf_reg; 1440 struct cpc_desc *cpc_desc; 1441 1442 cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1443 1444 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) || 1445 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) || 1446 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME])) 1447 return true; 1448 1449 1450 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1451 1452 /* 1453 * If reference perf register is not supported then we should 1454 * use the nominal perf value 1455 */ 1456 if (!CPC_SUPPORTED(ref_perf_reg)) 1457 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1458 1459 if (CPC_IN_PCC(ref_perf_reg)) 1460 return true; 1461 } 1462 1463 return false; 1464 } 1465 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc); 1466 1467 /** 1468 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters. 1469 * @cpunum: CPU from which to read counters. 1470 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h 1471 * 1472 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. 1473 */ 1474 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) 1475 { 1476 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1477 struct cpc_register_resource *delivered_reg, *reference_reg, 1478 *ref_perf_reg, *ctr_wrap_reg; 1479 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1480 struct cppc_pcc_data *pcc_ss_data = NULL; 1481 u64 delivered, reference, ref_perf, ctr_wrap_time; 1482 int ret = 0, regs_in_pcc = 0; 1483 1484 if (!cpc_desc) { 1485 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1486 return -ENODEV; 1487 } 1488 1489 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; 1490 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; 1491 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1492 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME]; 1493 1494 /* 1495 * If reference perf register is not supported then we should 1496 * use the nominal perf value 1497 */ 1498 if (!CPC_SUPPORTED(ref_perf_reg)) 1499 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1500 1501 /* Are any of the regs PCC ?*/ 1502 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || 1503 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { 1504 if (pcc_ss_id < 0) { 1505 pr_debug("Invalid pcc_ss_id\n"); 1506 return -ENODEV; 1507 } 1508 pcc_ss_data = pcc_data[pcc_ss_id]; 1509 down_write(&pcc_ss_data->pcc_lock); 1510 regs_in_pcc = 1; 1511 /* Ring doorbell once to update PCC subspace */ 1512 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1513 ret = -EIO; 1514 goto out_err; 1515 } 1516 } 1517 1518 cpc_read(cpunum, delivered_reg, &delivered); 1519 cpc_read(cpunum, reference_reg, &reference); 1520 cpc_read(cpunum, ref_perf_reg, &ref_perf); 1521 1522 /* 1523 * Per spec, if ctr_wrap_time optional register is unsupported, then the 1524 * performance counters are assumed to never wrap during the lifetime of 1525 * platform 1526 */ 1527 ctr_wrap_time = (u64)(~((u64)0)); 1528 if (CPC_SUPPORTED(ctr_wrap_reg)) 1529 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time); 1530 1531 if (!delivered || !reference || !ref_perf) { 1532 ret = -EFAULT; 1533 goto out_err; 1534 } 1535 1536 perf_fb_ctrs->delivered = delivered; 1537 perf_fb_ctrs->reference = reference; 1538 perf_fb_ctrs->reference_perf = ref_perf; 1539 perf_fb_ctrs->wraparound_time = ctr_wrap_time; 1540 out_err: 1541 if (regs_in_pcc) 1542 up_write(&pcc_ss_data->pcc_lock); 1543 return ret; 1544 } 1545 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); 1546 1547 /* 1548 * Set Energy Performance Preference Register value through 1549 * Performance Controls Interface 1550 */ 1551 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable) 1552 { 1553 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1554 struct cpc_register_resource *epp_set_reg; 1555 struct cpc_register_resource *auto_sel_reg; 1556 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1557 struct cppc_pcc_data *pcc_ss_data = NULL; 1558 int ret; 1559 1560 if (!cpc_desc) { 1561 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1562 return -ENODEV; 1563 } 1564 1565 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE]; 1566 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF]; 1567 1568 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) { 1569 if (pcc_ss_id < 0) { 1570 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu); 1571 return -ENODEV; 1572 } 1573 1574 if (CPC_SUPPORTED(auto_sel_reg)) { 1575 ret = cpc_write(cpu, auto_sel_reg, enable); 1576 if (ret) 1577 return ret; 1578 } 1579 1580 if (CPC_SUPPORTED(epp_set_reg)) { 1581 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf); 1582 if (ret) 1583 return ret; 1584 } 1585 1586 pcc_ss_data = pcc_data[pcc_ss_id]; 1587 1588 down_write(&pcc_ss_data->pcc_lock); 1589 /* after writing CPC, transfer the ownership of PCC to platform */ 1590 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1591 up_write(&pcc_ss_data->pcc_lock); 1592 } else if (osc_cpc_flexible_adr_space_confirmed && 1593 CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) { 1594 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf); 1595 } else { 1596 ret = -ENOTSUPP; 1597 pr_debug("_CPC in PCC and _CPC in FFH are not supported\n"); 1598 } 1599 1600 return ret; 1601 } 1602 EXPORT_SYMBOL_GPL(cppc_set_epp_perf); 1603 1604 /** 1605 * cppc_set_epp() - Write the EPP register. 1606 * @cpu: CPU on which to write register. 1607 * @epp_val: Value to write to the EPP register. 1608 */ 1609 int cppc_set_epp(int cpu, u64 epp_val) 1610 { 1611 if (epp_val > CPPC_ENERGY_PERF_MAX) 1612 return -EINVAL; 1613 1614 return cppc_set_reg_val(cpu, ENERGY_PERF, epp_val); 1615 } 1616 EXPORT_SYMBOL_GPL(cppc_set_epp); 1617 1618 /** 1619 * cppc_get_auto_act_window() - Read autonomous activity window register. 1620 * @cpu: CPU from which to read register. 1621 * @auto_act_window: Return address. 1622 * 1623 * According to ACPI 6.5, s8.4.6.1.6, the value read from the autonomous 1624 * activity window register consists of two parts: a 7 bits value indicate 1625 * significand and a 3 bits value indicate exponent. 1626 */ 1627 int cppc_get_auto_act_window(int cpu, u64 *auto_act_window) 1628 { 1629 unsigned int exp; 1630 u64 val, sig; 1631 int ret; 1632 1633 if (auto_act_window == NULL) 1634 return -EINVAL; 1635 1636 ret = cppc_get_reg_val(cpu, AUTO_ACT_WINDOW, &val); 1637 if (ret) 1638 return ret; 1639 1640 sig = val & CPPC_AUTO_ACT_WINDOW_MAX_SIG; 1641 exp = (val >> CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) & CPPC_AUTO_ACT_WINDOW_MAX_EXP; 1642 *auto_act_window = sig * int_pow(10, exp); 1643 1644 return 0; 1645 } 1646 EXPORT_SYMBOL_GPL(cppc_get_auto_act_window); 1647 1648 /** 1649 * cppc_set_auto_act_window() - Write autonomous activity window register. 1650 * @cpu: CPU on which to write register. 1651 * @auto_act_window: usec value to write to the autonomous activity window register. 1652 * 1653 * According to ACPI 6.5, s8.4.6.1.6, the value to write to the autonomous 1654 * activity window register consists of two parts: a 7 bits value indicate 1655 * significand and a 3 bits value indicate exponent. 1656 */ 1657 int cppc_set_auto_act_window(int cpu, u64 auto_act_window) 1658 { 1659 /* The max value to store is 1270000000 */ 1660 u64 max_val = CPPC_AUTO_ACT_WINDOW_MAX_SIG * int_pow(10, CPPC_AUTO_ACT_WINDOW_MAX_EXP); 1661 int exp = 0; 1662 u64 val; 1663 1664 if (auto_act_window > max_val) 1665 return -EINVAL; 1666 1667 /* 1668 * The max significand is 127, when auto_act_window is larger than 1669 * 129, discard the precision of the last digit and increase the 1670 * exponent by 1. 1671 */ 1672 while (auto_act_window > CPPC_AUTO_ACT_WINDOW_SIG_CARRY_THRESH) { 1673 auto_act_window /= 10; 1674 exp += 1; 1675 } 1676 1677 /* For 128 and 129, cut it to 127. */ 1678 if (auto_act_window > CPPC_AUTO_ACT_WINDOW_MAX_SIG) 1679 auto_act_window = CPPC_AUTO_ACT_WINDOW_MAX_SIG; 1680 1681 val = (exp << CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) + auto_act_window; 1682 1683 return cppc_set_reg_val(cpu, AUTO_ACT_WINDOW, val); 1684 } 1685 EXPORT_SYMBOL_GPL(cppc_set_auto_act_window); 1686 1687 /** 1688 * cppc_get_auto_sel() - Read autonomous selection register. 1689 * @cpu: CPU from which to read register. 1690 * @enable: Return address. 1691 */ 1692 int cppc_get_auto_sel(int cpu, bool *enable) 1693 { 1694 u64 auto_sel; 1695 int ret; 1696 1697 if (enable == NULL) 1698 return -EINVAL; 1699 1700 ret = cppc_get_reg_val(cpu, AUTO_SEL_ENABLE, &auto_sel); 1701 if (ret) 1702 return ret; 1703 1704 *enable = (bool)auto_sel; 1705 1706 return 0; 1707 } 1708 EXPORT_SYMBOL_GPL(cppc_get_auto_sel); 1709 1710 /** 1711 * cppc_set_auto_sel - Write autonomous selection register. 1712 * @cpu : CPU to which to write register. 1713 * @enable : the desired value of autonomous selection resiter to be updated. 1714 */ 1715 int cppc_set_auto_sel(int cpu, bool enable) 1716 { 1717 return cppc_set_reg_val(cpu, AUTO_SEL_ENABLE, enable); 1718 } 1719 EXPORT_SYMBOL_GPL(cppc_set_auto_sel); 1720 1721 /** 1722 * cppc_set_enable - Set to enable CPPC on the processor by writing the 1723 * Continuous Performance Control package EnableRegister field. 1724 * @cpu: CPU for which to enable CPPC register. 1725 * @enable: 0 - disable, 1 - enable CPPC feature on the processor. 1726 * 1727 * Return: 0 for success, -ERRNO or -EIO otherwise. 1728 */ 1729 int cppc_set_enable(int cpu, bool enable) 1730 { 1731 return cppc_set_reg_val(cpu, ENABLE, enable); 1732 } 1733 EXPORT_SYMBOL_GPL(cppc_set_enable); 1734 1735 /** 1736 * cppc_set_perf - Set a CPU's performance controls. 1737 * @cpu: CPU for which to set performance controls. 1738 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h 1739 * 1740 * Return: 0 for success, -ERRNO otherwise. 1741 */ 1742 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) 1743 { 1744 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1745 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg; 1746 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1747 struct cppc_pcc_data *pcc_ss_data = NULL; 1748 int ret = 0; 1749 1750 if (!cpc_desc) { 1751 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1752 return -ENODEV; 1753 } 1754 1755 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1756 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF]; 1757 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF]; 1758 1759 /* 1760 * This is Phase-I where we want to write to CPC registers 1761 * -> We want all CPUs to be able to execute this phase in parallel 1762 * 1763 * Since read_lock can be acquired by multiple CPUs simultaneously we 1764 * achieve that goal here 1765 */ 1766 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) { 1767 if (pcc_ss_id < 0) { 1768 pr_debug("Invalid pcc_ss_id\n"); 1769 return -ENODEV; 1770 } 1771 pcc_ss_data = pcc_data[pcc_ss_id]; 1772 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ 1773 if (pcc_ss_data->platform_owns_pcc) { 1774 ret = check_pcc_chan(pcc_ss_id, false); 1775 if (ret) { 1776 up_read(&pcc_ss_data->pcc_lock); 1777 return ret; 1778 } 1779 } 1780 /* 1781 * Update the pending_write to make sure a PCC CMD_READ will not 1782 * arrive and steal the channel during the switch to write lock 1783 */ 1784 pcc_ss_data->pending_pcc_write_cmd = true; 1785 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt; 1786 cpc_desc->write_cmd_status = 0; 1787 } 1788 1789 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf); 1790 1791 /* 1792 * Only write if min_perf and max_perf not zero. Some drivers pass zero 1793 * value to min and max perf, but they don't mean to set the zero value, 1794 * they just don't want to write to those registers. 1795 */ 1796 if (perf_ctrls->min_perf) 1797 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf); 1798 if (perf_ctrls->max_perf) 1799 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf); 1800 1801 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) 1802 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */ 1803 /* 1804 * This is Phase-II where we transfer the ownership of PCC to Platform 1805 * 1806 * Short Summary: Basically if we think of a group of cppc_set_perf 1807 * requests that happened in short overlapping interval. The last CPU to 1808 * come out of Phase-I will enter Phase-II and ring the doorbell. 1809 * 1810 * We have the following requirements for Phase-II: 1811 * 1. We want to execute Phase-II only when there are no CPUs 1812 * currently executing in Phase-I 1813 * 2. Once we start Phase-II we want to avoid all other CPUs from 1814 * entering Phase-I. 1815 * 3. We want only one CPU among all those who went through Phase-I 1816 * to run phase-II 1817 * 1818 * If write_trylock fails to get the lock and doesn't transfer the 1819 * PCC ownership to the platform, then one of the following will be TRUE 1820 * 1. There is at-least one CPU in Phase-I which will later execute 1821 * write_trylock, so the CPUs in Phase-I will be responsible for 1822 * executing the Phase-II. 1823 * 2. Some other CPU has beaten this CPU to successfully execute the 1824 * write_trylock and has already acquired the write_lock. We know for a 1825 * fact it (other CPU acquiring the write_lock) couldn't have happened 1826 * before this CPU's Phase-I as we held the read_lock. 1827 * 3. Some other CPU executing pcc CMD_READ has stolen the 1828 * down_write, in which case, send_pcc_cmd will check for pending 1829 * CMD_WRITE commands by checking the pending_pcc_write_cmd. 1830 * So this CPU can be certain that its request will be delivered 1831 * So in all cases, this CPU knows that its request will be delivered 1832 * by another CPU and can return 1833 * 1834 * After getting the down_write we still need to check for 1835 * pending_pcc_write_cmd to take care of the following scenario 1836 * The thread running this code could be scheduled out between 1837 * Phase-I and Phase-II. Before it is scheduled back on, another CPU 1838 * could have delivered the request to Platform by triggering the 1839 * doorbell and transferred the ownership of PCC to platform. So this 1840 * avoids triggering an unnecessary doorbell and more importantly before 1841 * triggering the doorbell it makes sure that the PCC channel ownership 1842 * is still with OSPM. 1843 * pending_pcc_write_cmd can also be cleared by a different CPU, if 1844 * there was a pcc CMD_READ waiting on down_write and it steals the lock 1845 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this 1846 * case during a CMD_READ and if there are pending writes it delivers 1847 * the write command before servicing the read command 1848 */ 1849 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) { 1850 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */ 1851 /* Update only if there are pending write commands */ 1852 if (pcc_ss_data->pending_pcc_write_cmd) 1853 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1854 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */ 1855 } else 1856 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */ 1857 wait_event(pcc_ss_data->pcc_write_wait_q, 1858 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt); 1859 1860 /* send_pcc_cmd updates the status in case of failure */ 1861 ret = cpc_desc->write_cmd_status; 1862 } 1863 return ret; 1864 } 1865 EXPORT_SYMBOL_GPL(cppc_set_perf); 1866 1867 /** 1868 * cppc_get_transition_latency - returns frequency transition latency in ns 1869 * @cpu_num: CPU number for per_cpu(). 1870 * 1871 * ACPI CPPC does not explicitly specify how a platform can specify the 1872 * transition latency for performance change requests. The closest we have 1873 * is the timing information from the PCCT tables which provides the info 1874 * on the number and frequency of PCC commands the platform can handle. 1875 * 1876 * If desired_reg is in the SystemMemory or SystemIo ACPI address space, 1877 * then assume there is no latency. 1878 */ 1879 unsigned int cppc_get_transition_latency(int cpu_num) 1880 { 1881 /* 1882 * Expected transition latency is based on the PCCT timing values 1883 * Below are definition from ACPI spec: 1884 * pcc_nominal- Expected latency to process a command, in microseconds 1885 * pcc_mpar - The maximum number of periodic requests that the subspace 1886 * channel can support, reported in commands per minute. 0 1887 * indicates no limitation. 1888 * pcc_mrtt - The minimum amount of time that OSPM must wait after the 1889 * completion of a command before issuing the next command, 1890 * in microseconds. 1891 */ 1892 unsigned int latency_ns = 0; 1893 struct cpc_desc *cpc_desc; 1894 struct cpc_register_resource *desired_reg; 1895 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num); 1896 struct cppc_pcc_data *pcc_ss_data; 1897 1898 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num); 1899 if (!cpc_desc) 1900 return CPUFREQ_ETERNAL; 1901 1902 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1903 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg)) 1904 return 0; 1905 else if (!CPC_IN_PCC(desired_reg)) 1906 return CPUFREQ_ETERNAL; 1907 1908 if (pcc_ss_id < 0) 1909 return CPUFREQ_ETERNAL; 1910 1911 pcc_ss_data = pcc_data[pcc_ss_id]; 1912 if (pcc_ss_data->pcc_mpar) 1913 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar); 1914 1915 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000); 1916 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000); 1917 1918 return latency_ns; 1919 } 1920 EXPORT_SYMBOL_GPL(cppc_get_transition_latency); 1921 1922 /* Minimum struct length needed for the DMI processor entry we want */ 1923 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 1924 1925 /* Offset in the DMI processor structure for the max frequency */ 1926 #define DMI_PROCESSOR_MAX_SPEED 0x14 1927 1928 /* Callback function used to retrieve the max frequency from DMI */ 1929 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) 1930 { 1931 const u8 *dmi_data = (const u8 *)dm; 1932 u16 *mhz = (u16 *)private; 1933 1934 if (dm->type == DMI_ENTRY_PROCESSOR && 1935 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { 1936 u16 val = (u16)get_unaligned((const u16 *) 1937 (dmi_data + DMI_PROCESSOR_MAX_SPEED)); 1938 *mhz = umax(val, *mhz); 1939 } 1940 } 1941 1942 /* Look up the max frequency in DMI */ 1943 static u64 cppc_get_dmi_max_khz(void) 1944 { 1945 u16 mhz = 0; 1946 1947 dmi_walk(cppc_find_dmi_mhz, &mhz); 1948 1949 /* 1950 * Real stupid fallback value, just in case there is no 1951 * actual value set. 1952 */ 1953 mhz = mhz ? mhz : 1; 1954 1955 return KHZ_PER_MHZ * mhz; 1956 } 1957 1958 /* 1959 * If CPPC lowest_freq and nominal_freq registers are exposed then we can 1960 * use them to convert perf to freq and vice versa. The conversion is 1961 * extrapolated as an affine function passing by the 2 points: 1962 * - (Low perf, Low freq) 1963 * - (Nominal perf, Nominal freq) 1964 */ 1965 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf) 1966 { 1967 s64 retval, offset = 0; 1968 static u64 max_khz; 1969 u64 mul, div; 1970 1971 if (caps->lowest_freq && caps->nominal_freq) { 1972 /* Avoid special case when nominal_freq is equal to lowest_freq */ 1973 if (caps->lowest_freq == caps->nominal_freq) { 1974 mul = caps->nominal_freq; 1975 div = caps->nominal_perf; 1976 } else { 1977 mul = caps->nominal_freq - caps->lowest_freq; 1978 div = caps->nominal_perf - caps->lowest_perf; 1979 } 1980 mul *= KHZ_PER_MHZ; 1981 offset = caps->nominal_freq * KHZ_PER_MHZ - 1982 div64_u64(caps->nominal_perf * mul, div); 1983 } else { 1984 if (!max_khz) 1985 max_khz = cppc_get_dmi_max_khz(); 1986 mul = max_khz; 1987 div = caps->highest_perf; 1988 } 1989 1990 retval = offset + div64_u64(perf * mul, div); 1991 if (retval >= 0) 1992 return retval; 1993 return 0; 1994 } 1995 EXPORT_SYMBOL_GPL(cppc_perf_to_khz); 1996 1997 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq) 1998 { 1999 s64 retval, offset = 0; 2000 static u64 max_khz; 2001 u64 mul, div; 2002 2003 if (caps->lowest_freq && caps->nominal_freq) { 2004 /* Avoid special case when nominal_freq is equal to lowest_freq */ 2005 if (caps->lowest_freq == caps->nominal_freq) { 2006 mul = caps->nominal_perf; 2007 div = caps->nominal_freq; 2008 } else { 2009 mul = caps->nominal_perf - caps->lowest_perf; 2010 div = caps->nominal_freq - caps->lowest_freq; 2011 } 2012 /* 2013 * We don't need to convert to kHz for computing offset and can 2014 * directly use nominal_freq and lowest_freq as the div64_u64 2015 * will remove the frequency unit. 2016 */ 2017 offset = caps->nominal_perf - 2018 div64_u64(caps->nominal_freq * mul, div); 2019 /* But we need it for computing the perf level. */ 2020 div *= KHZ_PER_MHZ; 2021 } else { 2022 if (!max_khz) 2023 max_khz = cppc_get_dmi_max_khz(); 2024 mul = caps->highest_perf; 2025 div = max_khz; 2026 } 2027 2028 retval = offset + div64_u64(freq * mul, div); 2029 if (retval >= 0) 2030 return retval; 2031 return 0; 2032 } 2033 EXPORT_SYMBOL_GPL(cppc_khz_to_perf); 2034