1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37 
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51 
52 #include <asm/cpuid/api.h>
53 #include <asm/paravirt.h>
54 #include <asm/apic.h>
55 #include <asm/page.h>
56 #include <asm/xen/pci.h>
57 #include <asm/xen/hypercall.h>
58 #include <asm/xen/hypervisor.h>
59 #include <asm/xen/cpuid.h>
60 #include <asm/fixmap.h>
61 #include <asm/processor.h>
62 #include <asm/proto.h>
63 #include <asm/msr-index.h>
64 #include <asm/msr.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/tlbflush.h>
70 #include <asm/reboot.h>
71 #include <asm/hypervisor.h>
72 #include <asm/mach_traps.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/pci_x86.h>
76 #include <asm/cpu.h>
77 #include <asm/irq_stack.h>
78 #ifdef CONFIG_X86_IOPL_IOPERM
79 #include <asm/io_bitmap.h>
80 #endif
81 
82 #ifdef CONFIG_ACPI
83 #include <linux/acpi.h>
84 #include <asm/acpi.h>
85 #include <acpi/proc_cap_intel.h>
86 #include <acpi/processor.h>
87 #include <xen/interface/platform.h>
88 #endif
89 
90 #include "xen-ops.h"
91 
92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93 
94 void *xen_initial_gdt;
95 
96 static int xen_cpu_up_prepare_pv(unsigned int cpu);
97 static int xen_cpu_dead_pv(unsigned int cpu);
98 
99 #ifndef CONFIG_PREEMPTION
100 /*
101  * Some hypercalls issued by the toolstack can take many 10s of
102  * seconds. Allow tasks running hypercalls via the privcmd driver to
103  * be voluntarily preempted even if full kernel preemption is
104  * disabled.
105  *
106  * Such preemptible hypercalls are bracketed by
107  * xen_preemptible_hcall_begin() and xen_preemptible_hcall_end()
108  * calls.
109  */
110 DEFINE_PER_CPU(bool, xen_in_preemptible_hcall);
111 EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall);
112 
113 /*
114  * In case of scheduling the flag must be cleared and restored after
115  * returning from schedule as the task might move to a different CPU.
116  */
117 static __always_inline bool get_and_clear_inhcall(void)
118 {
119 	bool inhcall = __this_cpu_read(xen_in_preemptible_hcall);
120 
121 	__this_cpu_write(xen_in_preemptible_hcall, false);
122 	return inhcall;
123 }
124 
125 static __always_inline void restore_inhcall(bool inhcall)
126 {
127 	__this_cpu_write(xen_in_preemptible_hcall, inhcall);
128 }
129 
130 #else
131 
132 static __always_inline bool get_and_clear_inhcall(void) { return false; }
133 static __always_inline void restore_inhcall(bool inhcall) { }
134 
135 #endif
136 
137 struct tls_descs {
138 	struct desc_struct desc[3];
139 };
140 
141 DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
142 
143 enum xen_lazy_mode xen_get_lazy_mode(void)
144 {
145 	if (in_interrupt())
146 		return XEN_LAZY_NONE;
147 
148 	return this_cpu_read(xen_lazy_mode);
149 }
150 
151 /*
152  * Updating the 3 TLS descriptors in the GDT on every task switch is
153  * surprisingly expensive so we avoid updating them if they haven't
154  * changed.  Since Xen writes different descriptors than the one
155  * passed in the update_descriptor hypercall we keep shadow copies to
156  * compare against.
157  */
158 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
159 
160 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
161 
162 static int __init parse_xen_msr_safe(char *str)
163 {
164 	if (str)
165 		return kstrtobool(str, &xen_msr_safe);
166 	return -EINVAL;
167 }
168 early_param("xen_msr_safe", parse_xen_msr_safe);
169 
170 /* Get MTRR settings from Xen and put them into mtrr_state. */
171 static void __init xen_set_mtrr_data(void)
172 {
173 #ifdef CONFIG_MTRR
174 	struct xen_platform_op op = {
175 		.cmd = XENPF_read_memtype,
176 		.interface_version = XENPF_INTERFACE_VERSION,
177 	};
178 	unsigned int reg;
179 	unsigned long mask;
180 	uint32_t eax, width;
181 	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
182 
183 	/* Get physical address width (only 64-bit cpus supported). */
184 	width = 36;
185 	eax = cpuid_eax(0x80000000);
186 	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
187 		eax = cpuid_eax(0x80000008);
188 		width = eax & 0xff;
189 	}
190 
191 	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
192 		op.u.read_memtype.reg = reg;
193 		if (HYPERVISOR_platform_op(&op))
194 			break;
195 
196 		/*
197 		 * Only called in dom0, which has all RAM PFNs mapped at
198 		 * RAM MFNs, and all PCI space etc. is identity mapped.
199 		 * This means we can treat MFN == PFN regarding MTRR settings.
200 		 */
201 		var[reg].base_lo = op.u.read_memtype.type;
202 		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
203 		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
204 		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
205 		mask &= (1UL << width) - 1;
206 		if (mask)
207 			mask |= MTRR_PHYSMASK_V;
208 		var[reg].mask_lo = mask;
209 		var[reg].mask_hi = mask >> 32;
210 	}
211 
212 	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
213 	if (reg)
214 		guest_force_mtrr_state(var, reg, MTRR_TYPE_UNCACHABLE);
215 #endif
216 }
217 
218 static void __init xen_pv_init_platform(void)
219 {
220 	/* PV guests can't operate virtio devices without grants. */
221 	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
222 		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
223 
224 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
225 
226 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
227 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
228 
229 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
230 	xen_vcpu_info_reset(0);
231 
232 	/* pvclock is in shared info area */
233 	xen_init_time_ops();
234 
235 	if (xen_initial_domain())
236 		xen_set_mtrr_data();
237 	else
238 		guest_force_mtrr_state(NULL, 0, MTRR_TYPE_WRBACK);
239 
240 	/* Adjust nr_cpu_ids before "enumeration" happens */
241 	xen_smp_count_cpus();
242 }
243 
244 static void __init xen_pv_guest_late_init(void)
245 {
246 #ifndef CONFIG_SMP
247 	/* Setup shared vcpu info for non-smp configurations */
248 	xen_setup_vcpu_info_placement();
249 #endif
250 }
251 
252 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
253 static __read_mostly unsigned int cpuid_leaf5_edx_val;
254 
255 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
256 		      unsigned int *cx, unsigned int *dx)
257 {
258 	unsigned int maskebx = ~0;
259 	unsigned int or_ebx = 0;
260 
261 	/*
262 	 * Mask out inconvenient features, to try and disable as many
263 	 * unsupported kernel subsystems as possible.
264 	 */
265 	switch (*ax) {
266 	case 0x1:
267 		/* Replace initial APIC ID in bits 24-31 of EBX. */
268 		/* See xen_pv_smp_config() for related topology preparations. */
269 		maskebx = 0x00ffffff;
270 		or_ebx = smp_processor_id() << 24;
271 		break;
272 
273 	case CPUID_LEAF_MWAIT:
274 		/* Synthesize the values.. */
275 		*ax = 0;
276 		*bx = 0;
277 		*cx = cpuid_leaf5_ecx_val;
278 		*dx = cpuid_leaf5_edx_val;
279 		return;
280 
281 	case 0xb:
282 		/* Suppress extended topology stuff */
283 		maskebx = 0;
284 		break;
285 	}
286 
287 	asm(XEN_EMULATE_PREFIX "cpuid"
288 		: "=a" (*ax),
289 		  "=b" (*bx),
290 		  "=c" (*cx),
291 		  "=d" (*dx)
292 		: "0" (*ax), "2" (*cx));
293 
294 	*bx &= maskebx;
295 	*bx |= or_ebx;
296 }
297 
298 static bool __init xen_check_mwait(void)
299 {
300 #ifdef CONFIG_ACPI
301 	struct xen_platform_op op = {
302 		.cmd			= XENPF_set_processor_pminfo,
303 		.u.set_pminfo.id	= -1,
304 		.u.set_pminfo.type	= XEN_PM_PDC,
305 	};
306 	uint32_t buf[3];
307 	unsigned int ax, bx, cx, dx;
308 	unsigned int mwait_mask;
309 
310 	/* We need to determine whether it is OK to expose the MWAIT
311 	 * capability to the kernel to harvest deeper than C3 states from ACPI
312 	 * _CST using the processor_harvest_xen.c module. For this to work, we
313 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
314 	 * checks against). The hypervisor won't expose the MWAIT flag because
315 	 * it would break backwards compatibility; so we will find out directly
316 	 * from the hardware and hypercall.
317 	 */
318 	if (!xen_initial_domain())
319 		return false;
320 
321 	/*
322 	 * When running under platform earlier than Xen4.2, do not expose
323 	 * mwait, to avoid the risk of loading native acpi pad driver
324 	 */
325 	if (!xen_running_on_version_or_later(4, 2))
326 		return false;
327 
328 	ax = 1;
329 	cx = 0;
330 
331 	native_cpuid(&ax, &bx, &cx, &dx);
332 
333 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
334 		     (1 << (X86_FEATURE_MWAIT % 32));
335 
336 	if ((cx & mwait_mask) != mwait_mask)
337 		return false;
338 
339 	/* We need to emulate the MWAIT_LEAF and for that we need both
340 	 * ecx and edx. The hypercall provides only partial information.
341 	 */
342 
343 	ax = CPUID_LEAF_MWAIT;
344 	bx = 0;
345 	cx = 0;
346 	dx = 0;
347 
348 	native_cpuid(&ax, &bx, &cx, &dx);
349 
350 	/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
351 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
352 	 */
353 	buf[0] = ACPI_PDC_REVISION_ID;
354 	buf[1] = 1;
355 	buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
356 
357 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
358 
359 	if ((HYPERVISOR_platform_op(&op) == 0) &&
360 	    (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
361 		cpuid_leaf5_ecx_val = cx;
362 		cpuid_leaf5_edx_val = dx;
363 	}
364 	return true;
365 #else
366 	return false;
367 #endif
368 }
369 
370 static bool __init xen_check_xsave(void)
371 {
372 	unsigned int cx, xsave_mask;
373 
374 	cx = cpuid_ecx(1);
375 
376 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
377 		     (1 << (X86_FEATURE_OSXSAVE % 32));
378 
379 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
380 	return (cx & xsave_mask) == xsave_mask;
381 }
382 
383 static void __init xen_init_capabilities(void)
384 {
385 	setup_force_cpu_cap(X86_FEATURE_XENPV);
386 	setup_clear_cpu_cap(X86_FEATURE_DCA);
387 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
388 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
389 	setup_clear_cpu_cap(X86_FEATURE_ACC);
390 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
391 	setup_clear_cpu_cap(X86_FEATURE_SME);
392 	setup_clear_cpu_cap(X86_FEATURE_LKGS);
393 
394 	/*
395 	 * Xen PV would need some work to support PCID: CR3 handling as well
396 	 * as xen_flush_tlb_others() would need updating.
397 	 */
398 	setup_clear_cpu_cap(X86_FEATURE_PCID);
399 
400 	if (!xen_initial_domain())
401 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
402 
403 	if (xen_check_mwait())
404 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
405 	else
406 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
407 
408 	if (!xen_check_xsave()) {
409 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
410 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
411 	}
412 }
413 
414 static noinstr void xen_set_debugreg(int reg, unsigned long val)
415 {
416 	HYPERVISOR_set_debugreg(reg, val);
417 }
418 
419 static noinstr unsigned long xen_get_debugreg(int reg)
420 {
421 	return HYPERVISOR_get_debugreg(reg);
422 }
423 
424 static void xen_start_context_switch(struct task_struct *prev)
425 {
426 	BUG_ON(preemptible());
427 
428 	if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
429 		arch_leave_lazy_mmu_mode();
430 		set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
431 	}
432 	enter_lazy(XEN_LAZY_CPU);
433 }
434 
435 static void xen_end_context_switch(struct task_struct *next)
436 {
437 	BUG_ON(preemptible());
438 
439 	xen_mc_flush();
440 	leave_lazy(XEN_LAZY_CPU);
441 	if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
442 		arch_enter_lazy_mmu_mode();
443 }
444 
445 static unsigned long xen_store_tr(void)
446 {
447 	return 0;
448 }
449 
450 /*
451  * Set the page permissions for a particular virtual address.  If the
452  * address is a vmalloc mapping (or other non-linear mapping), then
453  * find the linear mapping of the page and also set its protections to
454  * match.
455  */
456 static void set_aliased_prot(void *v, pgprot_t prot)
457 {
458 	int level;
459 	pte_t *ptep;
460 	pte_t pte;
461 	unsigned long pfn;
462 	unsigned char dummy;
463 	void *va;
464 
465 	ptep = lookup_address((unsigned long)v, &level);
466 	BUG_ON(ptep == NULL);
467 
468 	pfn = pte_pfn(*ptep);
469 	pte = pfn_pte(pfn, prot);
470 
471 	/*
472 	 * Careful: update_va_mapping() will fail if the virtual address
473 	 * we're poking isn't populated in the page tables.  We don't
474 	 * need to worry about the direct map (that's always in the page
475 	 * tables), but we need to be careful about vmap space.  In
476 	 * particular, the top level page table can lazily propagate
477 	 * entries between processes, so if we've switched mms since we
478 	 * vmapped the target in the first place, we might not have the
479 	 * top-level page table entry populated.
480 	 *
481 	 * We disable preemption because we want the same mm active when
482 	 * we probe the target and when we issue the hypercall.  We'll
483 	 * have the same nominal mm, but if we're a kernel thread, lazy
484 	 * mm dropping could change our pgd.
485 	 *
486 	 * Out of an abundance of caution, this uses __get_user() to fault
487 	 * in the target address just in case there's some obscure case
488 	 * in which the target address isn't readable.
489 	 */
490 
491 	preempt_disable();
492 
493 	copy_from_kernel_nofault(&dummy, v, 1);
494 
495 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
496 		BUG();
497 
498 	va = __va(PFN_PHYS(pfn));
499 
500 	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
501 		BUG();
502 
503 	preempt_enable();
504 }
505 
506 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
507 {
508 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
509 	int i;
510 
511 	/*
512 	 * We need to mark the all aliases of the LDT pages RO.  We
513 	 * don't need to call vm_flush_aliases(), though, since that's
514 	 * only responsible for flushing aliases out the TLBs, not the
515 	 * page tables, and Xen will flush the TLB for us if needed.
516 	 *
517 	 * To avoid confusing future readers: none of this is necessary
518 	 * to load the LDT.  The hypervisor only checks this when the
519 	 * LDT is faulted in due to subsequent descriptor access.
520 	 */
521 
522 	for (i = 0; i < entries; i += entries_per_page)
523 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
524 }
525 
526 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
527 {
528 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
529 	int i;
530 
531 	for (i = 0; i < entries; i += entries_per_page)
532 		set_aliased_prot(ldt + i, PAGE_KERNEL);
533 }
534 
535 static void xen_set_ldt(const void *addr, unsigned entries)
536 {
537 	struct mmuext_op *op;
538 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
539 
540 	trace_xen_cpu_set_ldt(addr, entries);
541 
542 	op = mcs.args;
543 	op->cmd = MMUEXT_SET_LDT;
544 	op->arg1.linear_addr = (unsigned long)addr;
545 	op->arg2.nr_ents = entries;
546 
547 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
548 
549 	xen_mc_issue(XEN_LAZY_CPU);
550 }
551 
552 static void xen_load_gdt(const struct desc_ptr *dtr)
553 {
554 	unsigned long va = dtr->address;
555 	unsigned int size = dtr->size + 1;
556 	unsigned long pfn, mfn;
557 	int level;
558 	pte_t *ptep;
559 	void *virt;
560 
561 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
562 	BUG_ON(size > PAGE_SIZE);
563 	BUG_ON(va & ~PAGE_MASK);
564 
565 	/*
566 	 * The GDT is per-cpu and is in the percpu data area.
567 	 * That can be virtually mapped, so we need to do a
568 	 * page-walk to get the underlying MFN for the
569 	 * hypercall.  The page can also be in the kernel's
570 	 * linear range, so we need to RO that mapping too.
571 	 */
572 	ptep = lookup_address(va, &level);
573 	BUG_ON(ptep == NULL);
574 
575 	pfn = pte_pfn(*ptep);
576 	mfn = pfn_to_mfn(pfn);
577 	virt = __va(PFN_PHYS(pfn));
578 
579 	make_lowmem_page_readonly((void *)va);
580 	make_lowmem_page_readonly(virt);
581 
582 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
583 		BUG();
584 }
585 
586 /*
587  * load_gdt for early boot, when the gdt is only mapped once
588  */
589 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
590 {
591 	unsigned long va = dtr->address;
592 	unsigned int size = dtr->size + 1;
593 	unsigned long pfn, mfn;
594 	pte_t pte;
595 
596 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
597 	BUG_ON(size > PAGE_SIZE);
598 	BUG_ON(va & ~PAGE_MASK);
599 
600 	pfn = virt_to_pfn((void *)va);
601 	mfn = pfn_to_mfn(pfn);
602 
603 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
604 
605 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
606 		BUG();
607 
608 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
609 		BUG();
610 }
611 
612 static inline bool desc_equal(const struct desc_struct *d1,
613 			      const struct desc_struct *d2)
614 {
615 	return !memcmp(d1, d2, sizeof(*d1));
616 }
617 
618 static void load_TLS_descriptor(struct thread_struct *t,
619 				unsigned int cpu, unsigned int i)
620 {
621 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
622 	struct desc_struct *gdt;
623 	xmaddr_t maddr;
624 	struct multicall_space mc;
625 
626 	if (desc_equal(shadow, &t->tls_array[i]))
627 		return;
628 
629 	*shadow = t->tls_array[i];
630 
631 	gdt = get_cpu_gdt_rw(cpu);
632 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
633 	mc = __xen_mc_entry(0);
634 
635 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
636 }
637 
638 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
639 {
640 	/*
641 	 * In lazy mode we need to zero %fs, otherwise we may get an
642 	 * exception between the new %fs descriptor being loaded and
643 	 * %fs being effectively cleared at __switch_to().
644 	 */
645 	if (xen_get_lazy_mode() == XEN_LAZY_CPU)
646 		loadsegment(fs, 0);
647 
648 	xen_mc_batch();
649 
650 	load_TLS_descriptor(t, cpu, 0);
651 	load_TLS_descriptor(t, cpu, 1);
652 	load_TLS_descriptor(t, cpu, 2);
653 
654 	xen_mc_issue(XEN_LAZY_CPU);
655 }
656 
657 static void xen_load_gs_index(unsigned int idx)
658 {
659 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
660 		BUG();
661 }
662 
663 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
664 				const void *ptr)
665 {
666 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
667 	u64 entry = *(u64 *)ptr;
668 
669 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
670 
671 	preempt_disable();
672 
673 	xen_mc_flush();
674 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
675 		BUG();
676 
677 	preempt_enable();
678 }
679 
680 void noist_exc_debug(struct pt_regs *regs);
681 
682 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
683 {
684 	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
685 	exc_nmi(regs);
686 }
687 
688 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
689 {
690 	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
691 	exc_double_fault(regs, error_code);
692 }
693 
694 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
695 {
696 	/*
697 	 * There's no IST on Xen PV, but we still need to dispatch
698 	 * to the correct handler.
699 	 */
700 	if (user_mode(regs))
701 		noist_exc_debug(regs);
702 	else
703 		exc_debug(regs);
704 }
705 
706 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
707 {
708 	/* This should never happen and there is no way to handle it. */
709 	instrumentation_begin();
710 	pr_err("Unknown trap in Xen PV mode.");
711 	BUG();
712 	instrumentation_end();
713 }
714 
715 #ifdef CONFIG_X86_MCE
716 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
717 {
718 	/*
719 	 * There's no IST on Xen PV, but we still need to dispatch
720 	 * to the correct handler.
721 	 */
722 	if (user_mode(regs))
723 		noist_exc_machine_check(regs);
724 	else
725 		exc_machine_check(regs);
726 }
727 #endif
728 
729 static void __xen_pv_evtchn_do_upcall(struct pt_regs *regs)
730 {
731 	struct pt_regs *old_regs = set_irq_regs(regs);
732 
733 	inc_irq_stat(irq_hv_callback_count);
734 
735 	xen_evtchn_do_upcall();
736 
737 	set_irq_regs(old_regs);
738 }
739 
740 __visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs)
741 {
742 	irqentry_state_t state = irqentry_enter(regs);
743 	bool inhcall;
744 
745 	instrumentation_begin();
746 	run_sysvec_on_irqstack_cond(__xen_pv_evtchn_do_upcall, regs);
747 
748 	inhcall = get_and_clear_inhcall();
749 	if (inhcall && !WARN_ON_ONCE(state.exit_rcu)) {
750 		irqentry_exit_cond_resched();
751 		instrumentation_end();
752 		restore_inhcall(inhcall);
753 	} else {
754 		instrumentation_end();
755 		irqentry_exit(regs, state);
756 	}
757 }
758 
759 struct trap_array_entry {
760 	void (*orig)(void);
761 	void (*xen)(void);
762 	bool ist_okay;
763 };
764 
765 #define TRAP_ENTRY(func, ist_ok) {			\
766 	.orig		= asm_##func,			\
767 	.xen		= xen_asm_##func,		\
768 	.ist_okay	= ist_ok }
769 
770 #define TRAP_ENTRY_REDIR(func, ist_ok) {		\
771 	.orig		= asm_##func,			\
772 	.xen		= xen_asm_xenpv_##func,		\
773 	.ist_okay	= ist_ok }
774 
775 static struct trap_array_entry trap_array[] = {
776 	TRAP_ENTRY_REDIR(exc_debug,			true  ),
777 	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
778 #ifdef CONFIG_X86_MCE
779 	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
780 #endif
781 	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
782 	TRAP_ENTRY(exc_int3,				false ),
783 	TRAP_ENTRY(exc_overflow,			false ),
784 #ifdef CONFIG_IA32_EMULATION
785 	TRAP_ENTRY(int80_emulation,			false ),
786 #endif
787 	TRAP_ENTRY(exc_page_fault,			false ),
788 	TRAP_ENTRY(exc_divide_error,			false ),
789 	TRAP_ENTRY(exc_bounds,				false ),
790 	TRAP_ENTRY(exc_invalid_op,			false ),
791 	TRAP_ENTRY(exc_device_not_available,		false ),
792 	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
793 	TRAP_ENTRY(exc_invalid_tss,			false ),
794 	TRAP_ENTRY(exc_segment_not_present,		false ),
795 	TRAP_ENTRY(exc_stack_segment,			false ),
796 	TRAP_ENTRY(exc_general_protection,		false ),
797 	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
798 	TRAP_ENTRY(exc_coprocessor_error,		false ),
799 	TRAP_ENTRY(exc_alignment_check,			false ),
800 	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
801 #ifdef CONFIG_X86_CET
802 	TRAP_ENTRY(exc_control_protection,		false ),
803 #endif
804 };
805 
806 static bool __ref get_trap_addr(void **addr, unsigned int ist)
807 {
808 	unsigned int nr;
809 	bool ist_okay = false;
810 	bool found = false;
811 
812 	/*
813 	 * Replace trap handler addresses by Xen specific ones.
814 	 * Check for known traps using IST and whitelist them.
815 	 * The debugger ones are the only ones we care about.
816 	 * Xen will handle faults like double_fault, so we should never see
817 	 * them.  Warn if there's an unexpected IST-using fault handler.
818 	 */
819 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
820 		struct trap_array_entry *entry = trap_array + nr;
821 
822 		if (*addr == entry->orig) {
823 			*addr = entry->xen;
824 			ist_okay = entry->ist_okay;
825 			found = true;
826 			break;
827 		}
828 	}
829 
830 	if (nr == ARRAY_SIZE(trap_array) &&
831 	    *addr >= (void *)early_idt_handler_array[0] &&
832 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
833 		nr = (*addr - (void *)early_idt_handler_array[0]) /
834 		     EARLY_IDT_HANDLER_SIZE;
835 		*addr = (void *)xen_early_idt_handler_array[nr];
836 		found = true;
837 	}
838 
839 	if (!found)
840 		*addr = (void *)xen_asm_exc_xen_unknown_trap;
841 
842 	if (WARN_ON(found && ist != 0 && !ist_okay))
843 		return false;
844 
845 	return true;
846 }
847 
848 static int cvt_gate_to_trap(int vector, const gate_desc *val,
849 			    struct trap_info *info)
850 {
851 	unsigned long addr;
852 
853 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
854 		return 0;
855 
856 	info->vector = vector;
857 
858 	addr = gate_offset(val);
859 	if (!get_trap_addr((void **)&addr, val->bits.ist))
860 		return 0;
861 	info->address = addr;
862 
863 	info->cs = gate_segment(val);
864 	info->flags = val->bits.dpl;
865 	/* interrupt gates clear IF */
866 	if (val->bits.type == GATE_INTERRUPT)
867 		info->flags |= 1 << 2;
868 
869 	return 1;
870 }
871 
872 /* Locations of each CPU's IDT */
873 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
874 
875 /* Set an IDT entry.  If the entry is part of the current IDT, then
876    also update Xen. */
877 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
878 {
879 	unsigned long p = (unsigned long)&dt[entrynum];
880 	unsigned long start, end;
881 
882 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
883 
884 	preempt_disable();
885 
886 	start = __this_cpu_read(idt_desc.address);
887 	end = start + __this_cpu_read(idt_desc.size) + 1;
888 
889 	xen_mc_flush();
890 
891 	native_write_idt_entry(dt, entrynum, g);
892 
893 	if (p >= start && (p + 8) <= end) {
894 		struct trap_info info[2];
895 
896 		info[1].address = 0;
897 
898 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
899 			if (HYPERVISOR_set_trap_table(info))
900 				BUG();
901 	}
902 
903 	preempt_enable();
904 }
905 
906 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
907 				      struct trap_info *traps, bool full)
908 {
909 	unsigned in, out, count;
910 
911 	count = (desc->size+1) / sizeof(gate_desc);
912 	BUG_ON(count > 256);
913 
914 	for (in = out = 0; in < count; in++) {
915 		gate_desc *entry = (gate_desc *)(desc->address) + in;
916 
917 		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
918 			out++;
919 	}
920 
921 	return out;
922 }
923 
924 void xen_copy_trap_info(struct trap_info *traps)
925 {
926 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
927 
928 	xen_convert_trap_info(desc, traps, true);
929 }
930 
931 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
932    hold a spinlock to protect the static traps[] array (static because
933    it avoids allocation, and saves stack space). */
934 static void xen_load_idt(const struct desc_ptr *desc)
935 {
936 	static DEFINE_SPINLOCK(lock);
937 	static struct trap_info traps[257];
938 	static const struct trap_info zero = { };
939 	unsigned out;
940 
941 	trace_xen_cpu_load_idt(desc);
942 
943 	spin_lock(&lock);
944 
945 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
946 
947 	out = xen_convert_trap_info(desc, traps, false);
948 	traps[out] = zero;
949 
950 	xen_mc_flush();
951 	if (HYPERVISOR_set_trap_table(traps))
952 		BUG();
953 
954 	spin_unlock(&lock);
955 }
956 
957 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
958    they're handled differently. */
959 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
960 				const void *desc, int type)
961 {
962 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
963 
964 	preempt_disable();
965 
966 	switch (type) {
967 	case DESC_LDT:
968 	case DESC_TSS:
969 		/* ignore */
970 		break;
971 
972 	default: {
973 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
974 
975 		xen_mc_flush();
976 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
977 			BUG();
978 	}
979 
980 	}
981 
982 	preempt_enable();
983 }
984 
985 /*
986  * Version of write_gdt_entry for use at early boot-time needed to
987  * update an entry as simply as possible.
988  */
989 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
990 					    const void *desc, int type)
991 {
992 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
993 
994 	switch (type) {
995 	case DESC_LDT:
996 	case DESC_TSS:
997 		/* ignore */
998 		break;
999 
1000 	default: {
1001 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
1002 
1003 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
1004 			dt[entry] = *(struct desc_struct *)desc;
1005 	}
1006 
1007 	}
1008 }
1009 
1010 static void xen_load_sp0(unsigned long sp0)
1011 {
1012 	struct multicall_space mcs;
1013 
1014 	mcs = xen_mc_entry(0);
1015 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
1016 	xen_mc_issue(XEN_LAZY_CPU);
1017 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
1018 }
1019 
1020 #ifdef CONFIG_X86_IOPL_IOPERM
1021 static void xen_invalidate_io_bitmap(void)
1022 {
1023 	struct physdev_set_iobitmap iobitmap = {
1024 		.bitmap = NULL,
1025 		.nr_ports = 0,
1026 	};
1027 
1028 	native_tss_invalidate_io_bitmap();
1029 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1030 }
1031 
1032 static void xen_update_io_bitmap(void)
1033 {
1034 	struct physdev_set_iobitmap iobitmap;
1035 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1036 
1037 	native_tss_update_io_bitmap();
1038 
1039 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
1040 			  tss->x86_tss.io_bitmap_base;
1041 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
1042 		iobitmap.nr_ports = 0;
1043 	else
1044 		iobitmap.nr_ports = IO_BITMAP_BITS;
1045 
1046 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1047 }
1048 #endif
1049 
1050 static void xen_io_delay(void)
1051 {
1052 }
1053 
1054 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1055 
1056 static unsigned long xen_read_cr0(void)
1057 {
1058 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
1059 
1060 	if (unlikely(cr0 == 0)) {
1061 		cr0 = native_read_cr0();
1062 		this_cpu_write(xen_cr0_value, cr0);
1063 	}
1064 
1065 	return cr0;
1066 }
1067 
1068 static void xen_write_cr0(unsigned long cr0)
1069 {
1070 	struct multicall_space mcs;
1071 
1072 	this_cpu_write(xen_cr0_value, cr0);
1073 
1074 	/* Only pay attention to cr0.TS; everything else is
1075 	   ignored. */
1076 	mcs = xen_mc_entry(0);
1077 
1078 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1079 
1080 	xen_mc_issue(XEN_LAZY_CPU);
1081 }
1082 
1083 static void xen_write_cr4(unsigned long cr4)
1084 {
1085 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1086 
1087 	native_write_cr4(cr4);
1088 }
1089 
1090 static u64 xen_do_read_msr(u32 msr, int *err)
1091 {
1092 	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
1093 
1094 	if (pmu_msr_chk_emulated(msr, &val, true))
1095 		return val;
1096 
1097 	if (err)
1098 		*err = native_read_msr_safe(msr, &val);
1099 	else
1100 		val = native_read_msr(msr);
1101 
1102 	switch (msr) {
1103 	case MSR_IA32_APICBASE:
1104 		val &= ~X2APIC_ENABLE;
1105 		if (smp_processor_id() == 0)
1106 			val |= MSR_IA32_APICBASE_BSP;
1107 		else
1108 			val &= ~MSR_IA32_APICBASE_BSP;
1109 		break;
1110 	}
1111 	return val;
1112 }
1113 
1114 static void set_seg(u32 which, u64 base)
1115 {
1116 	if (HYPERVISOR_set_segment_base(which, base))
1117 		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1118 }
1119 
1120 /*
1121  * Support write_msr_safe() and write_msr() semantics.
1122  * With err == NULL write_msr() semantics are selected.
1123  * Supplying an err pointer requires err to be pre-initialized with 0.
1124  */
1125 static void xen_do_write_msr(u32 msr, u64 val, int *err)
1126 {
1127 	switch (msr) {
1128 	case MSR_FS_BASE:
1129 		set_seg(SEGBASE_FS, val);
1130 		break;
1131 
1132 	case MSR_KERNEL_GS_BASE:
1133 		set_seg(SEGBASE_GS_USER, val);
1134 		break;
1135 
1136 	case MSR_GS_BASE:
1137 		set_seg(SEGBASE_GS_KERNEL, val);
1138 		break;
1139 
1140 	case MSR_STAR:
1141 	case MSR_CSTAR:
1142 	case MSR_LSTAR:
1143 	case MSR_SYSCALL_MASK:
1144 	case MSR_IA32_SYSENTER_CS:
1145 	case MSR_IA32_SYSENTER_ESP:
1146 	case MSR_IA32_SYSENTER_EIP:
1147 		/* Fast syscall setup is all done in hypercalls, so
1148 		   these are all ignored.  Stub them out here to stop
1149 		   Xen console noise. */
1150 		break;
1151 
1152 	default:
1153 		if (pmu_msr_chk_emulated(msr, &val, false))
1154 			return;
1155 
1156 		if (err)
1157 			*err = native_write_msr_safe(msr, val);
1158 		else
1159 			native_write_msr(msr, val);
1160 	}
1161 }
1162 
1163 static int xen_read_msr_safe(u32 msr, u64 *val)
1164 {
1165 	int err = 0;
1166 
1167 	*val = xen_do_read_msr(msr, &err);
1168 	return err;
1169 }
1170 
1171 static int xen_write_msr_safe(u32 msr, u64 val)
1172 {
1173 	int err = 0;
1174 
1175 	xen_do_write_msr(msr, val, &err);
1176 
1177 	return err;
1178 }
1179 
1180 static u64 xen_read_msr(u32 msr)
1181 {
1182 	int err = 0;
1183 
1184 	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1185 }
1186 
1187 static void xen_write_msr(u32 msr, u64 val)
1188 {
1189 	int err;
1190 
1191 	xen_do_write_msr(msr, val, xen_msr_safe ? &err : NULL);
1192 }
1193 
1194 /* This is called once we have the cpu_possible_mask */
1195 void __init xen_setup_vcpu_info_placement(void)
1196 {
1197 	int cpu;
1198 
1199 	for_each_possible_cpu(cpu) {
1200 		/* Set up direct vCPU id mapping for PV guests. */
1201 		per_cpu(xen_vcpu_id, cpu) = cpu;
1202 		xen_vcpu_setup(cpu);
1203 	}
1204 
1205 	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1206 	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1207 	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1208 	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1209 }
1210 
1211 static const struct pv_info xen_info __initconst = {
1212 	.extra_user_64bit_cs = FLAT_USER_CS64,
1213 	.name = "Xen",
1214 };
1215 
1216 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1217 	.cpu = {
1218 		.cpuid = xen_cpuid,
1219 
1220 		.set_debugreg = xen_set_debugreg,
1221 		.get_debugreg = xen_get_debugreg,
1222 
1223 		.read_cr0 = xen_read_cr0,
1224 		.write_cr0 = xen_write_cr0,
1225 
1226 		.write_cr4 = xen_write_cr4,
1227 
1228 		.read_msr = xen_read_msr,
1229 		.write_msr = xen_write_msr,
1230 
1231 		.read_msr_safe = xen_read_msr_safe,
1232 		.write_msr_safe = xen_write_msr_safe,
1233 
1234 		.read_pmc = xen_read_pmc,
1235 
1236 		.load_tr_desc = paravirt_nop,
1237 		.set_ldt = xen_set_ldt,
1238 		.load_gdt = xen_load_gdt,
1239 		.load_idt = xen_load_idt,
1240 		.load_tls = xen_load_tls,
1241 		.load_gs_index = xen_load_gs_index,
1242 
1243 		.alloc_ldt = xen_alloc_ldt,
1244 		.free_ldt = xen_free_ldt,
1245 
1246 		.store_tr = xen_store_tr,
1247 
1248 		.write_ldt_entry = xen_write_ldt_entry,
1249 		.write_gdt_entry = xen_write_gdt_entry,
1250 		.write_idt_entry = xen_write_idt_entry,
1251 		.load_sp0 = xen_load_sp0,
1252 
1253 #ifdef CONFIG_X86_IOPL_IOPERM
1254 		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1255 		.update_io_bitmap = xen_update_io_bitmap,
1256 #endif
1257 		.io_delay = xen_io_delay,
1258 
1259 		.start_context_switch = xen_start_context_switch,
1260 		.end_context_switch = xen_end_context_switch,
1261 	},
1262 };
1263 
1264 static void xen_restart(char *msg)
1265 {
1266 	xen_reboot(SHUTDOWN_reboot);
1267 }
1268 
1269 static void xen_machine_halt(void)
1270 {
1271 	xen_reboot(SHUTDOWN_poweroff);
1272 }
1273 
1274 static void xen_machine_power_off(void)
1275 {
1276 	do_kernel_power_off();
1277 	xen_reboot(SHUTDOWN_poweroff);
1278 }
1279 
1280 static void xen_crash_shutdown(struct pt_regs *regs)
1281 {
1282 	xen_reboot(SHUTDOWN_crash);
1283 }
1284 
1285 static const struct machine_ops xen_machine_ops __initconst = {
1286 	.restart = xen_restart,
1287 	.halt = xen_machine_halt,
1288 	.power_off = xen_machine_power_off,
1289 	.shutdown = xen_machine_halt,
1290 	.crash_shutdown = xen_crash_shutdown,
1291 	.emergency_restart = xen_emergency_restart,
1292 };
1293 
1294 static unsigned char xen_get_nmi_reason(void)
1295 {
1296 	unsigned char reason = 0;
1297 
1298 	/* Construct a value which looks like it came from port 0x61. */
1299 	if (test_bit(_XEN_NMIREASON_io_error,
1300 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1301 		reason |= NMI_REASON_IOCHK;
1302 	if (test_bit(_XEN_NMIREASON_pci_serr,
1303 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1304 		reason |= NMI_REASON_SERR;
1305 
1306 	return reason;
1307 }
1308 
1309 static void __init xen_boot_params_init_edd(void)
1310 {
1311 #if IS_ENABLED(CONFIG_EDD)
1312 	struct xen_platform_op op;
1313 	struct edd_info *edd_info;
1314 	u32 *mbr_signature;
1315 	unsigned nr;
1316 	int ret;
1317 
1318 	edd_info = boot_params.eddbuf;
1319 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1320 
1321 	op.cmd = XENPF_firmware_info;
1322 
1323 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1324 	for (nr = 0; nr < EDDMAXNR; nr++) {
1325 		struct edd_info *info = edd_info + nr;
1326 
1327 		op.u.firmware_info.index = nr;
1328 		info->params.length = sizeof(info->params);
1329 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1330 				     &info->params);
1331 		ret = HYPERVISOR_platform_op(&op);
1332 		if (ret)
1333 			break;
1334 
1335 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1336 		C(device);
1337 		C(version);
1338 		C(interface_support);
1339 		C(legacy_max_cylinder);
1340 		C(legacy_max_head);
1341 		C(legacy_sectors_per_track);
1342 #undef C
1343 	}
1344 	boot_params.eddbuf_entries = nr;
1345 
1346 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1347 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1348 		op.u.firmware_info.index = nr;
1349 		ret = HYPERVISOR_platform_op(&op);
1350 		if (ret)
1351 			break;
1352 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1353 	}
1354 	boot_params.edd_mbr_sig_buf_entries = nr;
1355 #endif
1356 }
1357 
1358 /*
1359  * Set up the GDT and segment registers for -fstack-protector.  Until
1360  * we do this, we have to be careful not to call any stack-protected
1361  * function, which is most of the kernel.
1362  */
1363 static void __init xen_setup_gdt(int cpu)
1364 {
1365 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1366 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1367 
1368 	switch_gdt_and_percpu_base(cpu);
1369 
1370 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1371 	pv_ops.cpu.load_gdt = xen_load_gdt;
1372 }
1373 
1374 static void __init xen_dom0_set_legacy_features(void)
1375 {
1376 	x86_platform.legacy.rtc = 1;
1377 }
1378 
1379 static void __init xen_domu_set_legacy_features(void)
1380 {
1381 	x86_platform.legacy.rtc = 0;
1382 }
1383 
1384 extern void early_xen_iret_patch(void);
1385 
1386 /* First C function to be called on Xen boot */
1387 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1388 {
1389 	struct physdev_set_iopl set_iopl;
1390 	unsigned long initrd_start = 0;
1391 	int rc;
1392 
1393 	if (!si)
1394 		return;
1395 
1396 	clear_bss();
1397 
1398 	xen_start_info = si;
1399 
1400 	__text_gen_insn(&early_xen_iret_patch,
1401 			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1402 			JMP32_INSN_SIZE);
1403 
1404 	xen_domain_type = XEN_PV_DOMAIN;
1405 	xen_start_flags = xen_start_info->flags;
1406 	/* Interrupts are guaranteed to be off initially. */
1407 	early_boot_irqs_disabled = true;
1408 	static_call_update_early(xen_hypercall, xen_hypercall_pv);
1409 
1410 	xen_setup_features();
1411 
1412 	/* Install Xen paravirt ops */
1413 	pv_info = xen_info;
1414 	pv_ops.cpu = xen_cpu_ops.cpu;
1415 	xen_init_irq_ops();
1416 
1417 	/*
1418 	 * Setup xen_vcpu early because it is needed for
1419 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1420 	 *
1421 	 * Don't do the full vcpu_info placement stuff until we have
1422 	 * the cpu_possible_mask and a non-dummy shared_info.
1423 	 */
1424 	xen_vcpu_info_reset(0);
1425 
1426 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1427 	x86_platform.realmode_reserve = x86_init_noop;
1428 	x86_platform.realmode_init = x86_init_noop;
1429 
1430 	x86_init.resources.memory_setup = xen_memory_setup;
1431 	x86_init.irqs.intr_mode_select	= x86_init_noop;
1432 	x86_init.irqs.intr_mode_init	= x86_64_probe_apic;
1433 	x86_init.oem.arch_setup = xen_arch_setup;
1434 	x86_init.oem.banner = xen_banner;
1435 	x86_init.hyper.init_platform = xen_pv_init_platform;
1436 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1437 
1438 	/*
1439 	 * Set up some pagetable state before starting to set any ptes.
1440 	 */
1441 
1442 	xen_setup_machphys_mapping();
1443 	xen_init_mmu_ops();
1444 
1445 	/* Prevent unwanted bits from being set in PTEs. */
1446 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1447 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1448 
1449 	/* Get mfn list */
1450 	xen_build_dynamic_phys_to_machine();
1451 
1452 	/* Work out if we support NX */
1453 	get_cpu_cap(&boot_cpu_data);
1454 	x86_configure_nx();
1455 
1456 	/*
1457 	 * Set up kernel GDT and segment registers, mainly so that
1458 	 * -fstack-protector code can be executed.
1459 	 */
1460 	xen_setup_gdt(0);
1461 
1462 	/* Determine virtual and physical address sizes */
1463 	get_cpu_address_sizes(&boot_cpu_data);
1464 
1465 	/* Let's presume PV guests always boot on vCPU with id 0. */
1466 	per_cpu(xen_vcpu_id, 0) = 0;
1467 
1468 	idt_setup_early_handler();
1469 
1470 	xen_init_capabilities();
1471 
1472 	/*
1473 	 * set up the basic apic ops.
1474 	 */
1475 	xen_init_apic();
1476 
1477 	machine_ops = xen_machine_ops;
1478 
1479 	/*
1480 	 * The only reliable way to retain the initial address of the
1481 	 * percpu gdt_page is to remember it here, so we can go and
1482 	 * mark it RW later, when the initial percpu area is freed.
1483 	 */
1484 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1485 
1486 	xen_smp_init();
1487 
1488 #ifdef CONFIG_ACPI_NUMA
1489 	/*
1490 	 * The pages we from Xen are not related to machine pages, so
1491 	 * any NUMA information the kernel tries to get from ACPI will
1492 	 * be meaningless.  Prevent it from trying.
1493 	 */
1494 	disable_srat();
1495 #endif
1496 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1497 
1498 	local_irq_disable();
1499 
1500 	xen_raw_console_write("mapping kernel into physical memory\n");
1501 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1502 				   xen_start_info->nr_pages);
1503 	xen_reserve_special_pages();
1504 
1505 	/*
1506 	 * We used to do this in xen_arch_setup, but that is too late
1507 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1508 	 * early_amd_init which pokes 0xcf8 port.
1509 	 */
1510 	set_iopl.iopl = 1;
1511 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1512 	if (rc != 0)
1513 		xen_raw_printk("physdev_op failed %d\n", rc);
1514 
1515 
1516 	if (xen_start_info->mod_start) {
1517 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1518 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1519 	    else
1520 		initrd_start = __pa(xen_start_info->mod_start);
1521 	}
1522 
1523 	/* Poke various useful things into boot_params */
1524 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1525 	boot_params.hdr.ramdisk_image = initrd_start;
1526 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1527 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1528 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1529 
1530 	if (!xen_initial_domain()) {
1531 		if (pci_xen)
1532 			x86_init.pci.arch_init = pci_xen_init;
1533 		x86_platform.set_legacy_features =
1534 				xen_domu_set_legacy_features;
1535 	} else {
1536 		const struct dom0_vga_console_info *info =
1537 			(void *)((char *)xen_start_info +
1538 				 xen_start_info->console.dom0.info_off);
1539 		struct xen_platform_op op = {
1540 			.cmd = XENPF_firmware_info,
1541 			.interface_version = XENPF_INTERFACE_VERSION,
1542 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1543 		};
1544 
1545 		x86_platform.set_legacy_features =
1546 				xen_dom0_set_legacy_features;
1547 		xen_init_vga(info, xen_start_info->console.dom0.info_size,
1548 			     &boot_params.screen_info);
1549 		xen_start_info->console.domU.mfn = 0;
1550 		xen_start_info->console.domU.evtchn = 0;
1551 
1552 		if (HYPERVISOR_platform_op(&op) == 0)
1553 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1554 
1555 		/* Make sure ACS will be enabled */
1556 		pci_request_acs();
1557 
1558 		xen_acpi_sleep_register();
1559 
1560 		xen_boot_params_init_edd();
1561 
1562 #ifdef CONFIG_ACPI
1563 		/*
1564 		 * Disable selecting "Firmware First mode" for correctable
1565 		 * memory errors, as this is the duty of the hypervisor to
1566 		 * decide.
1567 		 */
1568 		acpi_disable_cmcff = 1;
1569 #endif
1570 	}
1571 
1572 	xen_add_preferred_consoles();
1573 
1574 #ifdef CONFIG_PCI
1575 	/* PCI BIOS service won't work from a PV guest. */
1576 	pci_probe &= ~PCI_PROBE_BIOS;
1577 #endif
1578 	xen_raw_console_write("about to get started...\n");
1579 
1580 	/* We need this for printk timestamps */
1581 	xen_setup_runstate_info(0);
1582 
1583 	xen_efi_init(&boot_params);
1584 
1585 	/* Start the world */
1586 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1587 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1588 }
1589 
1590 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1591 {
1592 	int rc;
1593 
1594 	if (per_cpu(xen_vcpu, cpu) == NULL)
1595 		return -ENODEV;
1596 
1597 	xen_setup_timer(cpu);
1598 
1599 	rc = xen_smp_intr_init(cpu);
1600 	if (rc) {
1601 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1602 		     cpu, rc);
1603 		return rc;
1604 	}
1605 
1606 	rc = xen_smp_intr_init_pv(cpu);
1607 	if (rc) {
1608 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1609 		     cpu, rc);
1610 		return rc;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static int xen_cpu_dead_pv(unsigned int cpu)
1617 {
1618 	xen_smp_intr_free(cpu);
1619 	xen_smp_intr_free_pv(cpu);
1620 
1621 	xen_teardown_timer(cpu);
1622 
1623 	return 0;
1624 }
1625 
1626 static uint32_t __init xen_platform_pv(void)
1627 {
1628 	if (xen_pv_domain())
1629 		return xen_cpuid_base();
1630 
1631 	return 0;
1632 }
1633 
1634 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1635 	.name                   = "Xen PV",
1636 	.detect                 = xen_platform_pv,
1637 	.type			= X86_HYPER_XEN_PV,
1638 	.runtime.pin_vcpu       = xen_pin_vcpu,
1639 	.ignore_nopv		= true,
1640 };
1641