1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited 4 * Copyright (C) 2011 - 2014 Cisco Systems Inc 5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 7 * James Leu (jleu@mindspring.net). 8 * Copyright (C) 2001 by various other people who didn't put their name here. 9 */ 10 11 #define pr_fmt(fmt) "uml-vector: " fmt 12 13 #include <linux/memblock.h> 14 #include <linux/etherdevice.h> 15 #include <linux/ethtool.h> 16 #include <linux/inetdevice.h> 17 #include <linux/init.h> 18 #include <linux/list.h> 19 #include <linux/netdevice.h> 20 #include <linux/platform_device.h> 21 #include <linux/rtnetlink.h> 22 #include <linux/skbuff.h> 23 #include <linux/slab.h> 24 #include <linux/interrupt.h> 25 #include <linux/firmware.h> 26 #include <linux/fs.h> 27 #include <asm/atomic.h> 28 #include <uapi/linux/filter.h> 29 #include <init.h> 30 #include <irq_kern.h> 31 #include <irq_user.h> 32 #include <os.h> 33 #include "mconsole_kern.h" 34 #include "vector_user.h" 35 #include "vector_kern.h" 36 37 /* 38 * Adapted from network devices with the following major changes: 39 * All transports are static - simplifies the code significantly 40 * Multiple FDs/IRQs per device 41 * Vector IO optionally used for read/write, falling back to legacy 42 * based on configuration and/or availability 43 * Configuration is no longer positional - L2TPv3 and GRE require up to 44 * 10 parameters, passing this as positional is not fit for purpose. 45 * Only socket transports are supported 46 */ 47 48 49 #define DRIVER_NAME "uml-vector" 50 struct vector_cmd_line_arg { 51 struct list_head list; 52 int unit; 53 char *arguments; 54 }; 55 56 struct vector_device { 57 struct list_head list; 58 struct net_device *dev; 59 struct platform_device pdev; 60 int unit; 61 int opened; 62 }; 63 64 static LIST_HEAD(vec_cmd_line); 65 66 static DEFINE_SPINLOCK(vector_devices_lock); 67 static LIST_HEAD(vector_devices); 68 69 static int driver_registered; 70 71 static void vector_eth_configure(int n, struct arglist *def); 72 static int vector_mmsg_rx(struct vector_private *vp, int budget); 73 74 /* Argument accessors to set variables (and/or set default values) 75 * mtu, buffer sizing, default headroom, etc 76 */ 77 78 #define DEFAULT_HEADROOM 2 79 #define SAFETY_MARGIN 32 80 #define DEFAULT_VECTOR_SIZE 64 81 #define TX_SMALL_PACKET 128 82 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 83 84 static const struct { 85 const char string[ETH_GSTRING_LEN]; 86 } ethtool_stats_keys[] = { 87 { "rx_queue_max" }, 88 { "rx_queue_running_average" }, 89 { "tx_queue_max" }, 90 { "tx_queue_running_average" }, 91 { "rx_encaps_errors" }, 92 { "tx_timeout_count" }, 93 { "tx_restart_queue" }, 94 { "tx_kicks" }, 95 { "tx_flow_control_xon" }, 96 { "tx_flow_control_xoff" }, 97 { "rx_csum_offload_good" }, 98 { "rx_csum_offload_errors"}, 99 { "sg_ok"}, 100 { "sg_linearized"}, 101 }; 102 103 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 104 105 static void vector_reset_stats(struct vector_private *vp) 106 { 107 /* We reuse the existing queue locks for stats */ 108 109 /* RX stats are modified with RX head_lock held 110 * in vector_poll. 111 */ 112 113 spin_lock(&vp->rx_queue->head_lock); 114 vp->estats.rx_queue_max = 0; 115 vp->estats.rx_queue_running_average = 0; 116 vp->estats.rx_encaps_errors = 0; 117 vp->estats.sg_ok = 0; 118 vp->estats.sg_linearized = 0; 119 spin_unlock(&vp->rx_queue->head_lock); 120 121 /* TX stats are modified with TX head_lock held 122 * in vector_send. 123 */ 124 125 spin_lock(&vp->tx_queue->head_lock); 126 vp->estats.tx_timeout_count = 0; 127 vp->estats.tx_restart_queue = 0; 128 vp->estats.tx_kicks = 0; 129 vp->estats.tx_flow_control_xon = 0; 130 vp->estats.tx_flow_control_xoff = 0; 131 vp->estats.tx_queue_max = 0; 132 vp->estats.tx_queue_running_average = 0; 133 spin_unlock(&vp->tx_queue->head_lock); 134 } 135 136 static int get_mtu(struct arglist *def) 137 { 138 char *mtu = uml_vector_fetch_arg(def, "mtu"); 139 long result; 140 141 if (mtu != NULL) { 142 if (kstrtoul(mtu, 10, &result) == 0) 143 if ((result < (1 << 16) - 1) && (result >= 576)) 144 return result; 145 } 146 return ETH_MAX_PACKET; 147 } 148 149 static char *get_bpf_file(struct arglist *def) 150 { 151 return uml_vector_fetch_arg(def, "bpffile"); 152 } 153 154 static bool get_bpf_flash(struct arglist *def) 155 { 156 char *allow = uml_vector_fetch_arg(def, "bpfflash"); 157 long result; 158 159 if (allow != NULL) { 160 if (kstrtoul(allow, 10, &result) == 0) 161 return result > 0; 162 } 163 return false; 164 } 165 166 static int get_depth(struct arglist *def) 167 { 168 char *mtu = uml_vector_fetch_arg(def, "depth"); 169 long result; 170 171 if (mtu != NULL) { 172 if (kstrtoul(mtu, 10, &result) == 0) 173 return result; 174 } 175 return DEFAULT_VECTOR_SIZE; 176 } 177 178 static int get_headroom(struct arglist *def) 179 { 180 char *mtu = uml_vector_fetch_arg(def, "headroom"); 181 long result; 182 183 if (mtu != NULL) { 184 if (kstrtoul(mtu, 10, &result) == 0) 185 return result; 186 } 187 return DEFAULT_HEADROOM; 188 } 189 190 static int get_req_size(struct arglist *def) 191 { 192 char *gro = uml_vector_fetch_arg(def, "gro"); 193 long result; 194 195 if (gro != NULL) { 196 if (kstrtoul(gro, 10, &result) == 0) { 197 if (result > 0) 198 return 65536; 199 } 200 } 201 return get_mtu(def) + ETH_HEADER_OTHER + 202 get_headroom(def) + SAFETY_MARGIN; 203 } 204 205 206 static int get_transport_options(struct arglist *def) 207 { 208 char *transport = uml_vector_fetch_arg(def, "transport"); 209 char *vector = uml_vector_fetch_arg(def, "vec"); 210 211 int vec_rx = VECTOR_RX; 212 int vec_tx = VECTOR_TX; 213 long parsed; 214 int result = 0; 215 216 if (transport == NULL) 217 return -EINVAL; 218 219 if (vector != NULL) { 220 if (kstrtoul(vector, 10, &parsed) == 0) { 221 if (parsed == 0) { 222 vec_rx = 0; 223 vec_tx = 0; 224 } 225 } 226 } 227 228 if (get_bpf_flash(def)) 229 result = VECTOR_BPF_FLASH; 230 231 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 232 return result; 233 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0) 234 return (result | vec_rx | VECTOR_BPF); 235 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 236 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS); 237 return (result | vec_rx | vec_tx); 238 } 239 240 241 /* A mini-buffer for packet drop read 242 * All of our supported transports are datagram oriented and we always 243 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 244 * than the packet size it still counts as full packet read and will 245 * clean the incoming stream to keep sigio/epoll happy 246 */ 247 248 #define DROP_BUFFER_SIZE 32 249 250 static char *drop_buffer; 251 252 253 /* 254 * Advance the mmsg queue head by n = advance. Resets the queue to 255 * maximum enqueue/dequeue-at-once capacity if possible. Called by 256 * dequeuers. Caller must hold the head_lock! 257 */ 258 259 static int vector_advancehead(struct vector_queue *qi, int advance) 260 { 261 qi->head = 262 (qi->head + advance) 263 % qi->max_depth; 264 265 266 atomic_sub(advance, &qi->queue_depth); 267 return atomic_read(&qi->queue_depth); 268 } 269 270 /* Advance the queue tail by n = advance. 271 * This is called by enqueuers which should hold the 272 * head lock already 273 */ 274 275 static int vector_advancetail(struct vector_queue *qi, int advance) 276 { 277 qi->tail = 278 (qi->tail + advance) 279 % qi->max_depth; 280 atomic_add(advance, &qi->queue_depth); 281 return atomic_read(&qi->queue_depth); 282 } 283 284 static int prep_msg(struct vector_private *vp, 285 struct sk_buff *skb, 286 struct iovec *iov) 287 { 288 int iov_index = 0; 289 int nr_frags, frag; 290 skb_frag_t *skb_frag; 291 292 nr_frags = skb_shinfo(skb)->nr_frags; 293 if (nr_frags > MAX_IOV_SIZE) { 294 if (skb_linearize(skb) != 0) 295 goto drop; 296 } 297 if (vp->header_size > 0) { 298 iov[iov_index].iov_len = vp->header_size; 299 vp->form_header(iov[iov_index].iov_base, skb, vp); 300 iov_index++; 301 } 302 iov[iov_index].iov_base = skb->data; 303 if (nr_frags > 0) { 304 iov[iov_index].iov_len = skb->len - skb->data_len; 305 vp->estats.sg_ok++; 306 } else 307 iov[iov_index].iov_len = skb->len; 308 iov_index++; 309 for (frag = 0; frag < nr_frags; frag++) { 310 skb_frag = &skb_shinfo(skb)->frags[frag]; 311 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 312 iov[iov_index].iov_len = skb_frag_size(skb_frag); 313 iov_index++; 314 } 315 return iov_index; 316 drop: 317 return -1; 318 } 319 /* 320 * Generic vector enqueue with support for forming headers using transport 321 * specific callback. Allows GRE, L2TPv3, RAW and other transports 322 * to use a common enqueue procedure in vector mode 323 */ 324 325 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 326 { 327 struct vector_private *vp = netdev_priv(qi->dev); 328 int queue_depth; 329 int packet_len; 330 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 331 int iov_count; 332 333 spin_lock(&qi->tail_lock); 334 queue_depth = atomic_read(&qi->queue_depth); 335 336 if (skb) 337 packet_len = skb->len; 338 339 if (queue_depth < qi->max_depth) { 340 341 *(qi->skbuff_vector + qi->tail) = skb; 342 mmsg_vector += qi->tail; 343 iov_count = prep_msg( 344 vp, 345 skb, 346 mmsg_vector->msg_hdr.msg_iov 347 ); 348 if (iov_count < 1) 349 goto drop; 350 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 351 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 352 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 353 wmb(); /* Make the packet visible to the NAPI poll thread */ 354 queue_depth = vector_advancetail(qi, 1); 355 } else 356 goto drop; 357 spin_unlock(&qi->tail_lock); 358 return queue_depth; 359 drop: 360 qi->dev->stats.tx_dropped++; 361 if (skb != NULL) { 362 packet_len = skb->len; 363 dev_consume_skb_any(skb); 364 netdev_completed_queue(qi->dev, 1, packet_len); 365 } 366 spin_unlock(&qi->tail_lock); 367 return queue_depth; 368 } 369 370 static int consume_vector_skbs(struct vector_queue *qi, int count) 371 { 372 struct sk_buff *skb; 373 int skb_index; 374 int bytes_compl = 0; 375 376 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 377 skb = *(qi->skbuff_vector + skb_index); 378 /* mark as empty to ensure correct destruction if 379 * needed 380 */ 381 bytes_compl += skb->len; 382 *(qi->skbuff_vector + skb_index) = NULL; 383 dev_consume_skb_any(skb); 384 } 385 qi->dev->stats.tx_bytes += bytes_compl; 386 qi->dev->stats.tx_packets += count; 387 netdev_completed_queue(qi->dev, count, bytes_compl); 388 return vector_advancehead(qi, count); 389 } 390 391 /* 392 * Generic vector dequeue via sendmmsg with support for forming headers 393 * using transport specific callback. Allows GRE, L2TPv3, RAW and 394 * other transports to use a common dequeue procedure in vector mode 395 */ 396 397 398 static int vector_send(struct vector_queue *qi) 399 { 400 struct vector_private *vp = netdev_priv(qi->dev); 401 struct mmsghdr *send_from; 402 int result = 0, send_len; 403 404 if (spin_trylock(&qi->head_lock)) { 405 /* update queue_depth to current value */ 406 while (atomic_read(&qi->queue_depth) > 0) { 407 /* Calculate the start of the vector */ 408 send_len = atomic_read(&qi->queue_depth); 409 send_from = qi->mmsg_vector; 410 send_from += qi->head; 411 /* Adjust vector size if wraparound */ 412 if (send_len + qi->head > qi->max_depth) 413 send_len = qi->max_depth - qi->head; 414 /* Try to TX as many packets as possible */ 415 if (send_len > 0) { 416 result = uml_vector_sendmmsg( 417 vp->fds->tx_fd, 418 send_from, 419 send_len, 420 0 421 ); 422 vp->in_write_poll = 423 (result != send_len); 424 } 425 /* For some of the sendmmsg error scenarios 426 * we may end being unsure in the TX success 427 * for all packets. It is safer to declare 428 * them all TX-ed and blame the network. 429 */ 430 if (result < 0) { 431 if (net_ratelimit()) 432 netdev_err(vp->dev, "sendmmsg err=%i\n", 433 result); 434 vp->in_error = true; 435 result = send_len; 436 } 437 if (result > 0) { 438 consume_vector_skbs(qi, result); 439 /* This is equivalent to an TX IRQ. 440 * Restart the upper layers to feed us 441 * more packets. 442 */ 443 if (result > vp->estats.tx_queue_max) 444 vp->estats.tx_queue_max = result; 445 vp->estats.tx_queue_running_average = 446 (vp->estats.tx_queue_running_average + result) >> 1; 447 } 448 netif_wake_queue(qi->dev); 449 /* if TX is busy, break out of the send loop, 450 * poll write IRQ will reschedule xmit for us. 451 */ 452 if (result != send_len) { 453 vp->estats.tx_restart_queue++; 454 break; 455 } 456 } 457 spin_unlock(&qi->head_lock); 458 } 459 return atomic_read(&qi->queue_depth); 460 } 461 462 /* Queue destructor. Deliberately stateless so we can use 463 * it in queue cleanup if initialization fails. 464 */ 465 466 static void destroy_queue(struct vector_queue *qi) 467 { 468 int i; 469 struct iovec *iov; 470 struct vector_private *vp = netdev_priv(qi->dev); 471 struct mmsghdr *mmsg_vector; 472 473 if (qi == NULL) 474 return; 475 /* deallocate any skbuffs - we rely on any unused to be 476 * set to NULL. 477 */ 478 if (qi->skbuff_vector != NULL) { 479 for (i = 0; i < qi->max_depth; i++) { 480 if (*(qi->skbuff_vector + i) != NULL) 481 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 482 } 483 kfree(qi->skbuff_vector); 484 } 485 /* deallocate matching IOV structures including header buffs */ 486 if (qi->mmsg_vector != NULL) { 487 mmsg_vector = qi->mmsg_vector; 488 for (i = 0; i < qi->max_depth; i++) { 489 iov = mmsg_vector->msg_hdr.msg_iov; 490 if (iov != NULL) { 491 if ((vp->header_size > 0) && 492 (iov->iov_base != NULL)) 493 kfree(iov->iov_base); 494 kfree(iov); 495 } 496 mmsg_vector++; 497 } 498 kfree(qi->mmsg_vector); 499 } 500 kfree(qi); 501 } 502 503 /* 504 * Queue constructor. Create a queue with a given side. 505 */ 506 static struct vector_queue *create_queue( 507 struct vector_private *vp, 508 int max_size, 509 int header_size, 510 int num_extra_frags) 511 { 512 struct vector_queue *result; 513 int i; 514 struct iovec *iov; 515 struct mmsghdr *mmsg_vector; 516 517 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 518 if (result == NULL) 519 return NULL; 520 result->max_depth = max_size; 521 result->dev = vp->dev; 522 result->mmsg_vector = kmalloc( 523 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 524 if (result->mmsg_vector == NULL) 525 goto out_mmsg_fail; 526 result->skbuff_vector = kmalloc( 527 (sizeof(void *) * max_size), GFP_KERNEL); 528 if (result->skbuff_vector == NULL) 529 goto out_skb_fail; 530 531 /* further failures can be handled safely by destroy_queue*/ 532 533 mmsg_vector = result->mmsg_vector; 534 for (i = 0; i < max_size; i++) { 535 /* Clear all pointers - we use non-NULL as marking on 536 * what to free on destruction 537 */ 538 *(result->skbuff_vector + i) = NULL; 539 mmsg_vector->msg_hdr.msg_iov = NULL; 540 mmsg_vector++; 541 } 542 mmsg_vector = result->mmsg_vector; 543 result->max_iov_frags = num_extra_frags; 544 for (i = 0; i < max_size; i++) { 545 if (vp->header_size > 0) 546 iov = kmalloc_array(3 + num_extra_frags, 547 sizeof(struct iovec), 548 GFP_KERNEL 549 ); 550 else 551 iov = kmalloc_array(2 + num_extra_frags, 552 sizeof(struct iovec), 553 GFP_KERNEL 554 ); 555 if (iov == NULL) 556 goto out_fail; 557 mmsg_vector->msg_hdr.msg_iov = iov; 558 mmsg_vector->msg_hdr.msg_iovlen = 1; 559 mmsg_vector->msg_hdr.msg_control = NULL; 560 mmsg_vector->msg_hdr.msg_controllen = 0; 561 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 562 mmsg_vector->msg_hdr.msg_name = NULL; 563 mmsg_vector->msg_hdr.msg_namelen = 0; 564 if (vp->header_size > 0) { 565 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 566 if (iov->iov_base == NULL) 567 goto out_fail; 568 iov->iov_len = header_size; 569 mmsg_vector->msg_hdr.msg_iovlen = 2; 570 iov++; 571 } 572 iov->iov_base = NULL; 573 iov->iov_len = 0; 574 mmsg_vector++; 575 } 576 spin_lock_init(&result->head_lock); 577 spin_lock_init(&result->tail_lock); 578 atomic_set(&result->queue_depth, 0); 579 result->head = 0; 580 result->tail = 0; 581 return result; 582 out_skb_fail: 583 kfree(result->mmsg_vector); 584 out_mmsg_fail: 585 kfree(result); 586 return NULL; 587 out_fail: 588 destroy_queue(result); 589 return NULL; 590 } 591 592 /* 593 * We do not use the RX queue as a proper wraparound queue for now 594 * This is not necessary because the consumption via napi_gro_receive() 595 * happens in-line. While we can try using the return code of 596 * netif_rx() for flow control there are no drivers doing this today. 597 * For this RX specific use we ignore the tail/head locks and 598 * just read into a prepared queue filled with skbuffs. 599 */ 600 601 static struct sk_buff *prep_skb( 602 struct vector_private *vp, 603 struct user_msghdr *msg) 604 { 605 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 606 struct sk_buff *result; 607 int iov_index = 0, len; 608 struct iovec *iov = msg->msg_iov; 609 int err, nr_frags, frag; 610 skb_frag_t *skb_frag; 611 612 if (vp->req_size <= linear) 613 len = linear; 614 else 615 len = vp->req_size; 616 result = alloc_skb_with_frags( 617 linear, 618 len - vp->max_packet, 619 3, 620 &err, 621 GFP_ATOMIC 622 ); 623 if (vp->header_size > 0) 624 iov_index++; 625 if (result == NULL) { 626 iov[iov_index].iov_base = NULL; 627 iov[iov_index].iov_len = 0; 628 goto done; 629 } 630 skb_reserve(result, vp->headroom); 631 result->dev = vp->dev; 632 skb_put(result, vp->max_packet); 633 result->data_len = len - vp->max_packet; 634 result->len += len - vp->max_packet; 635 skb_reset_mac_header(result); 636 result->ip_summed = CHECKSUM_NONE; 637 iov[iov_index].iov_base = result->data; 638 iov[iov_index].iov_len = vp->max_packet; 639 iov_index++; 640 641 nr_frags = skb_shinfo(result)->nr_frags; 642 for (frag = 0; frag < nr_frags; frag++) { 643 skb_frag = &skb_shinfo(result)->frags[frag]; 644 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 645 if (iov[iov_index].iov_base != NULL) 646 iov[iov_index].iov_len = skb_frag_size(skb_frag); 647 else 648 iov[iov_index].iov_len = 0; 649 iov_index++; 650 } 651 done: 652 msg->msg_iovlen = iov_index; 653 return result; 654 } 655 656 657 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */ 658 659 static void prep_queue_for_rx(struct vector_queue *qi) 660 { 661 struct vector_private *vp = netdev_priv(qi->dev); 662 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 663 void **skbuff_vector = qi->skbuff_vector; 664 int i, queue_depth; 665 666 queue_depth = atomic_read(&qi->queue_depth); 667 668 if (queue_depth == 0) 669 return; 670 671 /* RX is always emptied 100% during each cycle, so we do not 672 * have to do the tail wraparound math for it. 673 */ 674 675 qi->head = qi->tail = 0; 676 677 for (i = 0; i < queue_depth; i++) { 678 /* it is OK if allocation fails - recvmmsg with NULL data in 679 * iov argument still performs an RX, just drops the packet 680 * This allows us stop faffing around with a "drop buffer" 681 */ 682 683 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 684 skbuff_vector++; 685 mmsg_vector++; 686 } 687 atomic_set(&qi->queue_depth, 0); 688 } 689 690 static struct vector_device *find_device(int n) 691 { 692 struct vector_device *device; 693 struct list_head *ele; 694 695 spin_lock(&vector_devices_lock); 696 list_for_each(ele, &vector_devices) { 697 device = list_entry(ele, struct vector_device, list); 698 if (device->unit == n) 699 goto out; 700 } 701 device = NULL; 702 out: 703 spin_unlock(&vector_devices_lock); 704 return device; 705 } 706 707 static int vector_parse(char *str, int *index_out, char **str_out, 708 char **error_out) 709 { 710 int n, err; 711 char *start = str; 712 713 while ((*str != ':') && (strlen(str) > 1)) 714 str++; 715 if (*str != ':') { 716 *error_out = "Expected ':' after device number"; 717 return -EINVAL; 718 } 719 *str = '\0'; 720 721 err = kstrtouint(start, 0, &n); 722 if (err < 0) { 723 *error_out = "Bad device number"; 724 return err; 725 } 726 727 str++; 728 if (find_device(n)) { 729 *error_out = "Device already configured"; 730 return -EINVAL; 731 } 732 733 *index_out = n; 734 *str_out = str; 735 return 0; 736 } 737 738 static int vector_config(char *str, char **error_out) 739 { 740 int err, n; 741 char *params; 742 struct arglist *parsed; 743 744 err = vector_parse(str, &n, ¶ms, error_out); 745 if (err != 0) 746 return err; 747 748 /* This string is broken up and the pieces used by the underlying 749 * driver. We should copy it to make sure things do not go wrong 750 * later. 751 */ 752 753 params = kstrdup(params, GFP_KERNEL); 754 if (params == NULL) { 755 *error_out = "vector_config failed to strdup string"; 756 return -ENOMEM; 757 } 758 759 parsed = uml_parse_vector_ifspec(params); 760 761 if (parsed == NULL) { 762 *error_out = "vector_config failed to parse parameters"; 763 kfree(params); 764 return -EINVAL; 765 } 766 767 vector_eth_configure(n, parsed); 768 return 0; 769 } 770 771 static int vector_id(char **str, int *start_out, int *end_out) 772 { 773 char *end; 774 int n; 775 776 n = simple_strtoul(*str, &end, 0); 777 if ((*end != '\0') || (end == *str)) 778 return -1; 779 780 *start_out = n; 781 *end_out = n; 782 *str = end; 783 return n; 784 } 785 786 static int vector_remove(int n, char **error_out) 787 { 788 struct vector_device *vec_d; 789 struct net_device *dev; 790 struct vector_private *vp; 791 792 vec_d = find_device(n); 793 if (vec_d == NULL) 794 return -ENODEV; 795 dev = vec_d->dev; 796 vp = netdev_priv(dev); 797 if (vp->fds != NULL) 798 return -EBUSY; 799 unregister_netdev(dev); 800 platform_device_unregister(&vec_d->pdev); 801 return 0; 802 } 803 804 /* 805 * There is no shared per-transport initialization code, so 806 * we will just initialize each interface one by one and 807 * add them to a list 808 */ 809 810 static struct platform_driver uml_net_driver = { 811 .driver = { 812 .name = DRIVER_NAME, 813 }, 814 }; 815 816 817 static void vector_device_release(struct device *dev) 818 { 819 struct vector_device *device = 820 container_of(dev, struct vector_device, pdev.dev); 821 struct net_device *netdev = device->dev; 822 823 list_del(&device->list); 824 kfree(device); 825 free_netdev(netdev); 826 } 827 828 /* Bog standard recv using recvmsg - not used normally unless the user 829 * explicitly specifies not to use recvmmsg vector RX. 830 */ 831 832 static int vector_legacy_rx(struct vector_private *vp) 833 { 834 int pkt_len; 835 struct user_msghdr hdr; 836 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 837 int iovpos = 0; 838 struct sk_buff *skb; 839 int header_check; 840 841 hdr.msg_name = NULL; 842 hdr.msg_namelen = 0; 843 hdr.msg_iov = (struct iovec *) &iov; 844 hdr.msg_control = NULL; 845 hdr.msg_controllen = 0; 846 hdr.msg_flags = 0; 847 848 if (vp->header_size > 0) { 849 iov[0].iov_base = vp->header_rxbuffer; 850 iov[0].iov_len = vp->header_size; 851 } 852 853 skb = prep_skb(vp, &hdr); 854 855 if (skb == NULL) { 856 /* Read a packet into drop_buffer and don't do 857 * anything with it. 858 */ 859 iov[iovpos].iov_base = drop_buffer; 860 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 861 hdr.msg_iovlen = 1; 862 vp->dev->stats.rx_dropped++; 863 } 864 865 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 866 if (pkt_len < 0) { 867 vp->in_error = true; 868 return pkt_len; 869 } 870 871 if (skb != NULL) { 872 if (pkt_len > vp->header_size) { 873 if (vp->header_size > 0) { 874 header_check = vp->verify_header( 875 vp->header_rxbuffer, skb, vp); 876 if (header_check < 0) { 877 dev_kfree_skb_irq(skb); 878 vp->dev->stats.rx_dropped++; 879 vp->estats.rx_encaps_errors++; 880 return 0; 881 } 882 if (header_check > 0) { 883 vp->estats.rx_csum_offload_good++; 884 skb->ip_summed = CHECKSUM_UNNECESSARY; 885 } 886 } 887 pskb_trim(skb, pkt_len - vp->rx_header_size); 888 skb->protocol = eth_type_trans(skb, skb->dev); 889 vp->dev->stats.rx_bytes += skb->len; 890 vp->dev->stats.rx_packets++; 891 napi_gro_receive(&vp->napi, skb); 892 } else { 893 dev_kfree_skb_irq(skb); 894 } 895 } 896 return pkt_len; 897 } 898 899 /* 900 * Packet at a time TX which falls back to vector TX if the 901 * underlying transport is busy. 902 */ 903 904 905 906 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 907 { 908 struct iovec iov[3 + MAX_IOV_SIZE]; 909 int iov_count, pkt_len = 0; 910 911 iov[0].iov_base = vp->header_txbuffer; 912 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 913 914 if (iov_count < 1) 915 goto drop; 916 917 pkt_len = uml_vector_writev( 918 vp->fds->tx_fd, 919 (struct iovec *) &iov, 920 iov_count 921 ); 922 923 if (pkt_len < 0) 924 goto drop; 925 926 netif_trans_update(vp->dev); 927 netif_wake_queue(vp->dev); 928 929 if (pkt_len > 0) { 930 vp->dev->stats.tx_bytes += skb->len; 931 vp->dev->stats.tx_packets++; 932 } else { 933 vp->dev->stats.tx_dropped++; 934 } 935 consume_skb(skb); 936 return pkt_len; 937 drop: 938 vp->dev->stats.tx_dropped++; 939 consume_skb(skb); 940 if (pkt_len < 0) 941 vp->in_error = true; 942 return pkt_len; 943 } 944 945 /* 946 * Receive as many messages as we can in one call using the special 947 * mmsg vector matched to an skb vector which we prepared earlier. 948 */ 949 950 static int vector_mmsg_rx(struct vector_private *vp, int budget) 951 { 952 int packet_count, i; 953 struct vector_queue *qi = vp->rx_queue; 954 struct sk_buff *skb; 955 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 956 void **skbuff_vector = qi->skbuff_vector; 957 int header_check; 958 959 /* Refresh the vector and make sure it is with new skbs and the 960 * iovs are updated to point to them. 961 */ 962 963 prep_queue_for_rx(qi); 964 965 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 966 967 if (budget > qi->max_depth) 968 budget = qi->max_depth; 969 970 packet_count = uml_vector_recvmmsg( 971 vp->fds->rx_fd, qi->mmsg_vector, budget, 0); 972 973 if (packet_count < 0) 974 vp->in_error = true; 975 976 if (packet_count <= 0) 977 return packet_count; 978 979 /* We treat packet processing as enqueue, buffer refresh as dequeue 980 * The queue_depth tells us how many buffers have been used and how 981 * many do we need to prep the next time prep_queue_for_rx() is called. 982 */ 983 984 atomic_add(packet_count, &qi->queue_depth); 985 986 for (i = 0; i < packet_count; i++) { 987 skb = (*skbuff_vector); 988 if (mmsg_vector->msg_len > vp->header_size) { 989 if (vp->header_size > 0) { 990 header_check = vp->verify_header( 991 mmsg_vector->msg_hdr.msg_iov->iov_base, 992 skb, 993 vp 994 ); 995 if (header_check < 0) { 996 /* Overlay header failed to verify - discard. 997 * We can actually keep this skb and reuse it, 998 * but that will make the prep logic too 999 * complex. 1000 */ 1001 dev_kfree_skb_irq(skb); 1002 vp->estats.rx_encaps_errors++; 1003 continue; 1004 } 1005 if (header_check > 0) { 1006 vp->estats.rx_csum_offload_good++; 1007 skb->ip_summed = CHECKSUM_UNNECESSARY; 1008 } 1009 } 1010 pskb_trim(skb, 1011 mmsg_vector->msg_len - vp->rx_header_size); 1012 skb->protocol = eth_type_trans(skb, skb->dev); 1013 /* 1014 * We do not need to lock on updating stats here 1015 * The interrupt loop is non-reentrant. 1016 */ 1017 vp->dev->stats.rx_bytes += skb->len; 1018 vp->dev->stats.rx_packets++; 1019 napi_gro_receive(&vp->napi, skb); 1020 } else { 1021 /* Overlay header too short to do anything - discard. 1022 * We can actually keep this skb and reuse it, 1023 * but that will make the prep logic too complex. 1024 */ 1025 if (skb != NULL) 1026 dev_kfree_skb_irq(skb); 1027 } 1028 (*skbuff_vector) = NULL; 1029 /* Move to the next buffer element */ 1030 mmsg_vector++; 1031 skbuff_vector++; 1032 } 1033 if (packet_count > 0) { 1034 if (vp->estats.rx_queue_max < packet_count) 1035 vp->estats.rx_queue_max = packet_count; 1036 vp->estats.rx_queue_running_average = 1037 (vp->estats.rx_queue_running_average + packet_count) >> 1; 1038 } 1039 return packet_count; 1040 } 1041 1042 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1043 { 1044 struct vector_private *vp = netdev_priv(dev); 1045 int queue_depth = 0; 1046 1047 if (vp->in_error) { 1048 deactivate_fd(vp->fds->rx_fd, vp->rx_irq); 1049 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0)) 1050 deactivate_fd(vp->fds->tx_fd, vp->tx_irq); 1051 return NETDEV_TX_BUSY; 1052 } 1053 1054 if ((vp->options & VECTOR_TX) == 0) { 1055 writev_tx(vp, skb); 1056 return NETDEV_TX_OK; 1057 } 1058 1059 /* We do BQL only in the vector path, no point doing it in 1060 * packet at a time mode as there is no device queue 1061 */ 1062 1063 netdev_sent_queue(vp->dev, skb->len); 1064 queue_depth = vector_enqueue(vp->tx_queue, skb); 1065 1066 if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) { 1067 mod_timer(&vp->tl, vp->coalesce); 1068 return NETDEV_TX_OK; 1069 } else { 1070 queue_depth = vector_send(vp->tx_queue); 1071 if (queue_depth > 0) 1072 napi_schedule(&vp->napi); 1073 } 1074 1075 return NETDEV_TX_OK; 1076 } 1077 1078 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1079 { 1080 struct net_device *dev = dev_id; 1081 struct vector_private *vp = netdev_priv(dev); 1082 1083 if (!netif_running(dev)) 1084 return IRQ_NONE; 1085 napi_schedule(&vp->napi); 1086 return IRQ_HANDLED; 1087 1088 } 1089 1090 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1091 { 1092 struct net_device *dev = dev_id; 1093 struct vector_private *vp = netdev_priv(dev); 1094 1095 if (!netif_running(dev)) 1096 return IRQ_NONE; 1097 /* We need to pay attention to it only if we got 1098 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1099 * we ignore it. In the future, it may be worth 1100 * it to improve the IRQ controller a bit to make 1101 * tweaking the IRQ mask less costly 1102 */ 1103 1104 napi_schedule(&vp->napi); 1105 return IRQ_HANDLED; 1106 1107 } 1108 1109 static int irq_rr; 1110 1111 static int vector_net_close(struct net_device *dev) 1112 { 1113 struct vector_private *vp = netdev_priv(dev); 1114 1115 netif_stop_queue(dev); 1116 timer_delete(&vp->tl); 1117 1118 vp->opened = false; 1119 1120 if (vp->fds == NULL) 1121 return 0; 1122 1123 /* Disable and free all IRQS */ 1124 if (vp->rx_irq > 0) { 1125 um_free_irq(vp->rx_irq, dev); 1126 vp->rx_irq = 0; 1127 } 1128 if (vp->tx_irq > 0) { 1129 um_free_irq(vp->tx_irq, dev); 1130 vp->tx_irq = 0; 1131 } 1132 napi_disable(&vp->napi); 1133 netif_napi_del(&vp->napi); 1134 if (vp->fds->rx_fd > 0) { 1135 if (vp->bpf) 1136 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1137 os_close_file(vp->fds->rx_fd); 1138 vp->fds->rx_fd = -1; 1139 } 1140 if (vp->fds->tx_fd > 0) { 1141 os_close_file(vp->fds->tx_fd); 1142 vp->fds->tx_fd = -1; 1143 } 1144 if (vp->bpf != NULL) 1145 kfree(vp->bpf->filter); 1146 kfree(vp->bpf); 1147 vp->bpf = NULL; 1148 kfree(vp->fds->remote_addr); 1149 kfree(vp->transport_data); 1150 kfree(vp->header_rxbuffer); 1151 kfree(vp->header_txbuffer); 1152 if (vp->rx_queue != NULL) 1153 destroy_queue(vp->rx_queue); 1154 if (vp->tx_queue != NULL) 1155 destroy_queue(vp->tx_queue); 1156 kfree(vp->fds); 1157 vp->fds = NULL; 1158 vp->in_error = false; 1159 return 0; 1160 } 1161 1162 static int vector_poll(struct napi_struct *napi, int budget) 1163 { 1164 struct vector_private *vp = container_of(napi, struct vector_private, napi); 1165 int work_done = 0; 1166 int err; 1167 bool tx_enqueued = false; 1168 1169 if ((vp->options & VECTOR_TX) != 0) 1170 tx_enqueued = (vector_send(vp->tx_queue) > 0); 1171 spin_lock(&vp->rx_queue->head_lock); 1172 if ((vp->options & VECTOR_RX) > 0) 1173 err = vector_mmsg_rx(vp, budget); 1174 else { 1175 err = vector_legacy_rx(vp); 1176 if (err > 0) 1177 err = 1; 1178 } 1179 spin_unlock(&vp->rx_queue->head_lock); 1180 if (err > 0) 1181 work_done += err; 1182 1183 if (tx_enqueued || err > 0) 1184 napi_schedule(napi); 1185 if (work_done <= budget) 1186 napi_complete_done(napi, work_done); 1187 return work_done; 1188 } 1189 1190 static void vector_reset_tx(struct work_struct *work) 1191 { 1192 struct vector_private *vp = 1193 container_of(work, struct vector_private, reset_tx); 1194 netdev_reset_queue(vp->dev); 1195 netif_start_queue(vp->dev); 1196 netif_wake_queue(vp->dev); 1197 } 1198 1199 static int vector_net_open(struct net_device *dev) 1200 { 1201 struct vector_private *vp = netdev_priv(dev); 1202 int err = -EINVAL; 1203 struct vector_device *vdevice; 1204 1205 if (vp->opened) 1206 return -ENXIO; 1207 vp->opened = true; 1208 1209 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed)); 1210 1211 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1212 1213 if (vp->fds == NULL) 1214 goto out_close; 1215 1216 if (build_transport_data(vp) < 0) 1217 goto out_close; 1218 1219 if ((vp->options & VECTOR_RX) > 0) { 1220 vp->rx_queue = create_queue( 1221 vp, 1222 get_depth(vp->parsed), 1223 vp->rx_header_size, 1224 MAX_IOV_SIZE 1225 ); 1226 atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed)); 1227 } else { 1228 vp->header_rxbuffer = kmalloc( 1229 vp->rx_header_size, 1230 GFP_KERNEL 1231 ); 1232 if (vp->header_rxbuffer == NULL) 1233 goto out_close; 1234 } 1235 if ((vp->options & VECTOR_TX) > 0) { 1236 vp->tx_queue = create_queue( 1237 vp, 1238 get_depth(vp->parsed), 1239 vp->header_size, 1240 MAX_IOV_SIZE 1241 ); 1242 } else { 1243 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1244 if (vp->header_txbuffer == NULL) 1245 goto out_close; 1246 } 1247 1248 netif_napi_add_weight(vp->dev, &vp->napi, vector_poll, 1249 get_depth(vp->parsed)); 1250 napi_enable(&vp->napi); 1251 1252 /* READ IRQ */ 1253 err = um_request_irq( 1254 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1255 IRQ_READ, vector_rx_interrupt, 1256 IRQF_SHARED, dev->name, dev); 1257 if (err < 0) { 1258 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1259 err = -ENETUNREACH; 1260 goto out_close; 1261 } 1262 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1263 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1264 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1265 1266 /* WRITE IRQ - we need it only if we have vector TX */ 1267 if ((vp->options & VECTOR_TX) > 0) { 1268 err = um_request_irq( 1269 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1270 IRQ_WRITE, vector_tx_interrupt, 1271 IRQF_SHARED, dev->name, dev); 1272 if (err < 0) { 1273 netdev_err(dev, 1274 "vector_open: failed to get tx irq(%d)\n", err); 1275 err = -ENETUNREACH; 1276 goto out_close; 1277 } 1278 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1279 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1280 } 1281 1282 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1283 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1284 vp->options |= VECTOR_BPF; 1285 } 1286 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL)) 1287 vp->bpf = uml_vector_default_bpf(dev->dev_addr); 1288 1289 if (vp->bpf != NULL) 1290 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1291 1292 netif_start_queue(dev); 1293 vector_reset_stats(vp); 1294 1295 /* clear buffer - it can happen that the host side of the interface 1296 * is full when we get here. In this case, new data is never queued, 1297 * SIGIOs never arrive, and the net never works. 1298 */ 1299 1300 napi_schedule(&vp->napi); 1301 1302 vdevice = find_device(vp->unit); 1303 vdevice->opened = 1; 1304 1305 if ((vp->options & VECTOR_TX) != 0) 1306 add_timer(&vp->tl); 1307 return 0; 1308 out_close: 1309 vector_net_close(dev); 1310 return err; 1311 } 1312 1313 1314 static void vector_net_set_multicast_list(struct net_device *dev) 1315 { 1316 /* TODO: - we can do some BPF games here */ 1317 return; 1318 } 1319 1320 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue) 1321 { 1322 struct vector_private *vp = netdev_priv(dev); 1323 1324 vp->estats.tx_timeout_count++; 1325 netif_trans_update(dev); 1326 schedule_work(&vp->reset_tx); 1327 } 1328 1329 static netdev_features_t vector_fix_features(struct net_device *dev, 1330 netdev_features_t features) 1331 { 1332 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1333 return features; 1334 } 1335 1336 static int vector_set_features(struct net_device *dev, 1337 netdev_features_t features) 1338 { 1339 struct vector_private *vp = netdev_priv(dev); 1340 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1341 * no way to negotiate it on raw sockets, so we can change 1342 * only our side. 1343 */ 1344 if (features & NETIF_F_GRO) 1345 /* All new frame buffers will be GRO-sized */ 1346 vp->req_size = 65536; 1347 else 1348 /* All new frame buffers will be normal sized */ 1349 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1350 return 0; 1351 } 1352 1353 #ifdef CONFIG_NET_POLL_CONTROLLER 1354 static void vector_net_poll_controller(struct net_device *dev) 1355 { 1356 disable_irq(dev->irq); 1357 vector_rx_interrupt(dev->irq, dev); 1358 enable_irq(dev->irq); 1359 } 1360 #endif 1361 1362 static void vector_net_get_drvinfo(struct net_device *dev, 1363 struct ethtool_drvinfo *info) 1364 { 1365 strscpy(info->driver, DRIVER_NAME); 1366 } 1367 1368 static int vector_net_load_bpf_flash(struct net_device *dev, 1369 struct ethtool_flash *efl) 1370 { 1371 struct vector_private *vp = netdev_priv(dev); 1372 struct vector_device *vdevice; 1373 const struct firmware *fw; 1374 int result = 0; 1375 1376 if (!(vp->options & VECTOR_BPF_FLASH)) { 1377 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data); 1378 return -1; 1379 } 1380 1381 if (vp->bpf != NULL) { 1382 if (vp->opened) 1383 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1384 kfree(vp->bpf->filter); 1385 vp->bpf->filter = NULL; 1386 } else { 1387 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC); 1388 if (vp->bpf == NULL) { 1389 netdev_err(dev, "failed to allocate memory for firmware\n"); 1390 goto flash_fail; 1391 } 1392 } 1393 1394 vdevice = find_device(vp->unit); 1395 1396 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev)) 1397 goto flash_fail; 1398 1399 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC); 1400 if (!vp->bpf->filter) 1401 goto free_buffer; 1402 1403 vp->bpf->len = fw->size / sizeof(struct sock_filter); 1404 release_firmware(fw); 1405 1406 if (vp->opened) 1407 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1408 1409 return result; 1410 1411 free_buffer: 1412 release_firmware(fw); 1413 1414 flash_fail: 1415 if (vp->bpf != NULL) 1416 kfree(vp->bpf->filter); 1417 kfree(vp->bpf); 1418 vp->bpf = NULL; 1419 return -1; 1420 } 1421 1422 static void vector_get_ringparam(struct net_device *netdev, 1423 struct ethtool_ringparam *ring, 1424 struct kernel_ethtool_ringparam *kernel_ring, 1425 struct netlink_ext_ack *extack) 1426 { 1427 struct vector_private *vp = netdev_priv(netdev); 1428 1429 ring->rx_max_pending = vp->rx_queue->max_depth; 1430 ring->tx_max_pending = vp->tx_queue->max_depth; 1431 ring->rx_pending = vp->rx_queue->max_depth; 1432 ring->tx_pending = vp->tx_queue->max_depth; 1433 } 1434 1435 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1436 { 1437 switch (stringset) { 1438 case ETH_SS_TEST: 1439 *buf = '\0'; 1440 break; 1441 case ETH_SS_STATS: 1442 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1443 break; 1444 default: 1445 WARN_ON(1); 1446 break; 1447 } 1448 } 1449 1450 static int vector_get_sset_count(struct net_device *dev, int sset) 1451 { 1452 switch (sset) { 1453 case ETH_SS_TEST: 1454 return 0; 1455 case ETH_SS_STATS: 1456 return VECTOR_NUM_STATS; 1457 default: 1458 return -EOPNOTSUPP; 1459 } 1460 } 1461 1462 static void vector_get_ethtool_stats(struct net_device *dev, 1463 struct ethtool_stats *estats, 1464 u64 *tmp_stats) 1465 { 1466 struct vector_private *vp = netdev_priv(dev); 1467 1468 /* Stats are modified in the dequeue portions of 1469 * rx/tx which are protected by the head locks 1470 * grabbing these locks here ensures they are up 1471 * to date. 1472 */ 1473 1474 spin_lock(&vp->tx_queue->head_lock); 1475 spin_lock(&vp->rx_queue->head_lock); 1476 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1477 spin_unlock(&vp->rx_queue->head_lock); 1478 spin_unlock(&vp->tx_queue->head_lock); 1479 } 1480 1481 static int vector_get_coalesce(struct net_device *netdev, 1482 struct ethtool_coalesce *ec, 1483 struct kernel_ethtool_coalesce *kernel_coal, 1484 struct netlink_ext_ack *extack) 1485 { 1486 struct vector_private *vp = netdev_priv(netdev); 1487 1488 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1489 return 0; 1490 } 1491 1492 static int vector_set_coalesce(struct net_device *netdev, 1493 struct ethtool_coalesce *ec, 1494 struct kernel_ethtool_coalesce *kernel_coal, 1495 struct netlink_ext_ack *extack) 1496 { 1497 struct vector_private *vp = netdev_priv(netdev); 1498 1499 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1500 if (vp->coalesce == 0) 1501 vp->coalesce = 1; 1502 return 0; 1503 } 1504 1505 static const struct ethtool_ops vector_net_ethtool_ops = { 1506 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS, 1507 .get_drvinfo = vector_net_get_drvinfo, 1508 .get_link = ethtool_op_get_link, 1509 .get_ts_info = ethtool_op_get_ts_info, 1510 .get_ringparam = vector_get_ringparam, 1511 .get_strings = vector_get_strings, 1512 .get_sset_count = vector_get_sset_count, 1513 .get_ethtool_stats = vector_get_ethtool_stats, 1514 .get_coalesce = vector_get_coalesce, 1515 .set_coalesce = vector_set_coalesce, 1516 .flash_device = vector_net_load_bpf_flash, 1517 }; 1518 1519 1520 static const struct net_device_ops vector_netdev_ops = { 1521 .ndo_open = vector_net_open, 1522 .ndo_stop = vector_net_close, 1523 .ndo_start_xmit = vector_net_start_xmit, 1524 .ndo_set_rx_mode = vector_net_set_multicast_list, 1525 .ndo_tx_timeout = vector_net_tx_timeout, 1526 .ndo_set_mac_address = eth_mac_addr, 1527 .ndo_validate_addr = eth_validate_addr, 1528 .ndo_fix_features = vector_fix_features, 1529 .ndo_set_features = vector_set_features, 1530 #ifdef CONFIG_NET_POLL_CONTROLLER 1531 .ndo_poll_controller = vector_net_poll_controller, 1532 #endif 1533 }; 1534 1535 static void vector_timer_expire(struct timer_list *t) 1536 { 1537 struct vector_private *vp = timer_container_of(vp, t, tl); 1538 1539 vp->estats.tx_kicks++; 1540 napi_schedule(&vp->napi); 1541 } 1542 1543 static void vector_setup_etheraddr(struct net_device *dev, char *str) 1544 { 1545 u8 addr[ETH_ALEN]; 1546 1547 if (str == NULL) 1548 goto random; 1549 1550 if (!mac_pton(str, addr)) { 1551 netdev_err(dev, 1552 "Failed to parse '%s' as an ethernet address\n", str); 1553 goto random; 1554 } 1555 if (is_multicast_ether_addr(addr)) { 1556 netdev_err(dev, 1557 "Attempt to assign a multicast ethernet address to a device disallowed\n"); 1558 goto random; 1559 } 1560 if (!is_valid_ether_addr(addr)) { 1561 netdev_err(dev, 1562 "Attempt to assign an invalid ethernet address to a device disallowed\n"); 1563 goto random; 1564 } 1565 if (!is_local_ether_addr(addr)) { 1566 netdev_warn(dev, "Warning: Assigning a globally valid ethernet address to a device\n"); 1567 netdev_warn(dev, "You should set the 2nd rightmost bit in the first byte of the MAC,\n"); 1568 netdev_warn(dev, "i.e. %02x:%02x:%02x:%02x:%02x:%02x\n", 1569 addr[0] | 0x02, addr[1], addr[2], addr[3], addr[4], addr[5]); 1570 } 1571 eth_hw_addr_set(dev, addr); 1572 return; 1573 1574 random: 1575 netdev_info(dev, "Choosing a random ethernet address\n"); 1576 eth_hw_addr_random(dev); 1577 } 1578 1579 static void vector_eth_configure( 1580 int n, 1581 struct arglist *def 1582 ) 1583 { 1584 struct vector_device *device; 1585 struct net_device *dev; 1586 struct vector_private *vp; 1587 int err; 1588 1589 device = kzalloc(sizeof(*device), GFP_KERNEL); 1590 if (device == NULL) { 1591 pr_err("Failed to allocate struct vector_device for vec%d\n", n); 1592 return; 1593 } 1594 dev = alloc_etherdev(sizeof(struct vector_private)); 1595 if (dev == NULL) { 1596 pr_err("Failed to allocate struct net_device for vec%d\n", n); 1597 goto out_free_device; 1598 } 1599 1600 dev->mtu = get_mtu(def); 1601 1602 INIT_LIST_HEAD(&device->list); 1603 device->unit = n; 1604 1605 /* If this name ends up conflicting with an existing registered 1606 * netdevice, that is OK, register_netdev{,ice}() will notice this 1607 * and fail. 1608 */ 1609 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1610 vector_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1611 vp = netdev_priv(dev); 1612 1613 /* sysfs register */ 1614 if (!driver_registered) { 1615 platform_driver_register(¨_net_driver); 1616 driver_registered = 1; 1617 } 1618 device->pdev.id = n; 1619 device->pdev.name = DRIVER_NAME; 1620 device->pdev.dev.release = vector_device_release; 1621 dev_set_drvdata(&device->pdev.dev, device); 1622 if (platform_device_register(&device->pdev)) 1623 goto out_free_netdev; 1624 SET_NETDEV_DEV(dev, &device->pdev.dev); 1625 1626 device->dev = dev; 1627 1628 INIT_LIST_HEAD(&vp->list); 1629 vp->dev = dev; 1630 vp->unit = n; 1631 vp->options = get_transport_options(def); 1632 vp->parsed = def; 1633 vp->max_packet = get_mtu(def) + ETH_HEADER_OTHER; 1634 /* 1635 * TODO - we need to calculate headroom so that ip header 1636 * is 16 byte aligned all the time 1637 */ 1638 vp->headroom = get_headroom(def); 1639 vp->coalesce = 2; 1640 vp->req_size = get_req_size(def); 1641 1642 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1643 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1644 1645 timer_setup(&vp->tl, vector_timer_expire, 0); 1646 1647 /* FIXME */ 1648 dev->netdev_ops = &vector_netdev_ops; 1649 dev->ethtool_ops = &vector_net_ethtool_ops; 1650 dev->watchdog_timeo = (HZ >> 1); 1651 /* primary IRQ - fixme */ 1652 dev->irq = 0; /* we will adjust this once opened */ 1653 1654 rtnl_lock(); 1655 err = register_netdevice(dev); 1656 rtnl_unlock(); 1657 if (err) 1658 goto out_undo_user_init; 1659 1660 spin_lock(&vector_devices_lock); 1661 list_add(&device->list, &vector_devices); 1662 spin_unlock(&vector_devices_lock); 1663 1664 return; 1665 1666 out_undo_user_init: 1667 return; 1668 out_free_netdev: 1669 free_netdev(dev); 1670 out_free_device: 1671 kfree(device); 1672 } 1673 1674 1675 1676 1677 /* 1678 * Invoked late in the init 1679 */ 1680 1681 static int __init vector_init(void) 1682 { 1683 struct list_head *ele; 1684 struct vector_cmd_line_arg *def; 1685 struct arglist *parsed; 1686 1687 list_for_each(ele, &vec_cmd_line) { 1688 def = list_entry(ele, struct vector_cmd_line_arg, list); 1689 parsed = uml_parse_vector_ifspec(def->arguments); 1690 if (parsed != NULL) 1691 vector_eth_configure(def->unit, parsed); 1692 } 1693 return 0; 1694 } 1695 1696 1697 /* Invoked at initial argument parsing, only stores 1698 * arguments until a proper vector_init is called 1699 * later 1700 */ 1701 1702 static int __init vector_setup(char *str) 1703 { 1704 char *error; 1705 int n, err; 1706 struct vector_cmd_line_arg *new; 1707 1708 err = vector_parse(str, &n, &str, &error); 1709 if (err) { 1710 pr_err("Couldn't parse '%s': %s\n", str, error); 1711 return 1; 1712 } 1713 new = memblock_alloc_or_panic(sizeof(*new), SMP_CACHE_BYTES); 1714 INIT_LIST_HEAD(&new->list); 1715 new->unit = n; 1716 new->arguments = str; 1717 list_add_tail(&new->list, &vec_cmd_line); 1718 return 1; 1719 } 1720 1721 __setup("vec", vector_setup); 1722 __uml_help(vector_setup, 1723 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1724 " Configure a vector io network device.\n\n" 1725 ); 1726 1727 late_initcall(vector_init); 1728 1729 static struct mc_device vector_mc = { 1730 .list = LIST_HEAD_INIT(vector_mc.list), 1731 .name = "vec", 1732 .config = vector_config, 1733 .get_config = NULL, 1734 .id = vector_id, 1735 .remove = vector_remove, 1736 }; 1737 1738 #ifdef CONFIG_INET 1739 static int vector_inetaddr_event( 1740 struct notifier_block *this, 1741 unsigned long event, 1742 void *ptr) 1743 { 1744 return NOTIFY_DONE; 1745 } 1746 1747 static struct notifier_block vector_inetaddr_notifier = { 1748 .notifier_call = vector_inetaddr_event, 1749 }; 1750 1751 static void inet_register(void) 1752 { 1753 register_inetaddr_notifier(&vector_inetaddr_notifier); 1754 } 1755 #else 1756 static inline void inet_register(void) 1757 { 1758 } 1759 #endif 1760 1761 static int vector_net_init(void) 1762 { 1763 mconsole_register_dev(&vector_mc); 1764 inet_register(); 1765 return 0; 1766 } 1767 1768 __initcall(vector_net_init); 1769 1770 1771 1772