1 // SPDX-License-Identifier: GPL-2.0 2 /* arch/sparc64/mm/tlb.c 3 * 4 * Copyright (C) 2004 David S. Miller <davem@redhat.com> 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/percpu.h> 9 #include <linux/mm.h> 10 #include <linux/swap.h> 11 #include <linux/preempt.h> 12 #include <linux/pagemap.h> 13 14 #include <asm/tlbflush.h> 15 #include <asm/cacheflush.h> 16 #include <asm/mmu_context.h> 17 #include <asm/tlb.h> 18 19 /* Heavily inspired by the ppc64 code. */ 20 21 static DEFINE_PER_CPU(struct tlb_batch, tlb_batch); 22 23 void flush_tlb_pending(void) 24 { 25 struct tlb_batch *tb = &get_cpu_var(tlb_batch); 26 struct mm_struct *mm = tb->mm; 27 28 if (!tb->tlb_nr) 29 goto out; 30 31 flush_tsb_user(tb); 32 33 if (CTX_VALID(mm->context)) { 34 if (tb->tlb_nr == 1) { 35 global_flush_tlb_page(mm, tb->vaddrs[0]); 36 } else { 37 #ifdef CONFIG_SMP 38 smp_flush_tlb_pending(tb->mm, tb->tlb_nr, 39 &tb->vaddrs[0]); 40 #else 41 __flush_tlb_pending(CTX_HWBITS(tb->mm->context), 42 tb->tlb_nr, &tb->vaddrs[0]); 43 #endif 44 } 45 } 46 47 tb->tlb_nr = 0; 48 49 out: 50 put_cpu_var(tlb_batch); 51 } 52 53 void arch_enter_lazy_mmu_mode(void) 54 { 55 struct tlb_batch *tb; 56 57 preempt_disable(); 58 tb = this_cpu_ptr(&tlb_batch); 59 tb->active = 1; 60 } 61 62 void arch_leave_lazy_mmu_mode(void) 63 { 64 struct tlb_batch *tb = this_cpu_ptr(&tlb_batch); 65 66 if (tb->tlb_nr) 67 flush_tlb_pending(); 68 tb->active = 0; 69 preempt_enable(); 70 } 71 72 static void tlb_batch_add_one(struct mm_struct *mm, unsigned long vaddr, 73 bool exec, unsigned int hugepage_shift) 74 { 75 struct tlb_batch *tb = &get_cpu_var(tlb_batch); 76 unsigned long nr; 77 78 vaddr &= PAGE_MASK; 79 if (exec) 80 vaddr |= 0x1UL; 81 82 nr = tb->tlb_nr; 83 84 if (unlikely(nr != 0 && mm != tb->mm)) { 85 flush_tlb_pending(); 86 nr = 0; 87 } 88 89 if (!tb->active) { 90 flush_tsb_user_page(mm, vaddr, hugepage_shift); 91 global_flush_tlb_page(mm, vaddr); 92 goto out; 93 } 94 95 if (nr == 0) { 96 tb->mm = mm; 97 tb->hugepage_shift = hugepage_shift; 98 } 99 100 if (tb->hugepage_shift != hugepage_shift) { 101 flush_tlb_pending(); 102 tb->hugepage_shift = hugepage_shift; 103 nr = 0; 104 } 105 106 tb->vaddrs[nr] = vaddr; 107 tb->tlb_nr = ++nr; 108 if (nr >= TLB_BATCH_NR) 109 flush_tlb_pending(); 110 111 out: 112 put_cpu_var(tlb_batch); 113 } 114 115 void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr, 116 pte_t *ptep, pte_t orig, int fullmm, 117 unsigned int hugepage_shift) 118 { 119 if (tlb_type != hypervisor && 120 pte_dirty(orig)) { 121 unsigned long paddr, pfn = pte_pfn(orig); 122 struct address_space *mapping; 123 struct page *page; 124 struct folio *folio; 125 126 if (!pfn_valid(pfn)) 127 goto no_cache_flush; 128 129 page = pfn_to_page(pfn); 130 if (PageReserved(page)) 131 goto no_cache_flush; 132 133 /* A real file page? */ 134 folio = page_folio(page); 135 mapping = folio_flush_mapping(folio); 136 if (!mapping) 137 goto no_cache_flush; 138 139 paddr = (unsigned long) page_address(page); 140 if ((paddr ^ vaddr) & (1 << 13)) 141 flush_dcache_folio_all(mm, folio); 142 } 143 144 no_cache_flush: 145 if (!fullmm) 146 tlb_batch_add_one(mm, vaddr, pte_exec(orig), hugepage_shift); 147 } 148 149 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 150 static void tlb_batch_pmd_scan(struct mm_struct *mm, unsigned long vaddr, 151 pmd_t pmd) 152 { 153 unsigned long end; 154 pte_t *pte; 155 156 pte = pte_offset_map(&pmd, vaddr); 157 if (!pte) 158 return; 159 end = vaddr + HPAGE_SIZE; 160 while (vaddr < end) { 161 if (pte_val(*pte) & _PAGE_VALID) { 162 bool exec = pte_exec(*pte); 163 164 tlb_batch_add_one(mm, vaddr, exec, PAGE_SHIFT); 165 } 166 pte++; 167 vaddr += PAGE_SIZE; 168 } 169 pte_unmap(pte); 170 } 171 172 173 static void __set_pmd_acct(struct mm_struct *mm, unsigned long addr, 174 pmd_t orig, pmd_t pmd) 175 { 176 if (mm == &init_mm) 177 return; 178 179 if ((pmd_val(pmd) ^ pmd_val(orig)) & _PAGE_PMD_HUGE) { 180 /* 181 * Note that this routine only sets pmds for THP pages. 182 * Hugetlb pages are handled elsewhere. We need to check 183 * for huge zero page. Huge zero pages are like hugetlb 184 * pages in that there is no RSS, but there is the need 185 * for TSB entries. So, huge zero page counts go into 186 * hugetlb_pte_count. 187 */ 188 if (pmd_val(pmd) & _PAGE_PMD_HUGE) { 189 if (is_huge_zero_pmd(pmd)) 190 mm->context.hugetlb_pte_count++; 191 else 192 mm->context.thp_pte_count++; 193 } else { 194 if (is_huge_zero_pmd(orig)) 195 mm->context.hugetlb_pte_count--; 196 else 197 mm->context.thp_pte_count--; 198 } 199 200 /* Do not try to allocate the TSB hash table if we 201 * don't have one already. We have various locks held 202 * and thus we'll end up doing a GFP_KERNEL allocation 203 * in an atomic context. 204 * 205 * Instead, we let the first TLB miss on a hugepage 206 * take care of this. 207 */ 208 } 209 210 if (!pmd_none(orig)) { 211 addr &= HPAGE_MASK; 212 if (pmd_trans_huge(orig)) { 213 pte_t orig_pte = __pte(pmd_val(orig)); 214 bool exec = pte_exec(orig_pte); 215 216 tlb_batch_add_one(mm, addr, exec, REAL_HPAGE_SHIFT); 217 tlb_batch_add_one(mm, addr + REAL_HPAGE_SIZE, exec, 218 REAL_HPAGE_SHIFT); 219 } else { 220 tlb_batch_pmd_scan(mm, addr, orig); 221 } 222 } 223 } 224 225 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 226 pmd_t *pmdp, pmd_t pmd) 227 { 228 pmd_t orig = *pmdp; 229 230 *pmdp = pmd; 231 __set_pmd_acct(mm, addr, orig, pmd); 232 } 233 234 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 235 unsigned long address, pmd_t *pmdp, pmd_t pmd) 236 { 237 pmd_t old; 238 239 do { 240 old = *pmdp; 241 } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd); 242 __set_pmd_acct(vma->vm_mm, address, old, pmd); 243 244 return old; 245 } 246 247 /* 248 * This routine is only called when splitting a THP 249 */ 250 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 251 pmd_t *pmdp) 252 { 253 pmd_t old, entry; 254 255 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 256 entry = __pmd(pmd_val(*pmdp) & ~_PAGE_VALID); 257 old = pmdp_establish(vma, address, pmdp, entry); 258 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 259 260 /* 261 * set_pmd_at() will not be called in a way to decrement 262 * thp_pte_count when splitting a THP, so do it now. 263 * Sanity check pmd before doing the actual decrement. 264 */ 265 if ((pmd_val(entry) & _PAGE_PMD_HUGE) && 266 !is_huge_zero_pmd(entry)) 267 (vma->vm_mm)->context.thp_pte_count--; 268 269 return old; 270 } 271 272 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 273 pgtable_t pgtable) 274 { 275 struct list_head *lh = (struct list_head *) pgtable; 276 277 assert_spin_locked(&mm->page_table_lock); 278 279 /* FIFO */ 280 if (!pmd_huge_pte(mm, pmdp)) 281 INIT_LIST_HEAD(lh); 282 else 283 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 284 pmd_huge_pte(mm, pmdp) = pgtable; 285 } 286 287 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 288 { 289 struct list_head *lh; 290 pgtable_t pgtable; 291 292 assert_spin_locked(&mm->page_table_lock); 293 294 /* FIFO */ 295 pgtable = pmd_huge_pte(mm, pmdp); 296 lh = (struct list_head *) pgtable; 297 if (list_empty(lh)) 298 pmd_huge_pte(mm, pmdp) = NULL; 299 else { 300 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 301 list_del(lh); 302 } 303 pte_val(pgtable[0]) = 0; 304 pte_val(pgtable[1]) = 0; 305 306 return pgtable; 307 } 308 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 309