1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <linux/uaccess.h> 43 #include <vdso/vsyscall.h> 44 #include <vdso/clocksource.h> 45 #include <vdso/helpers.h> 46 #include <asm/facility.h> 47 #include <asm/delay.h> 48 #include <asm/div64.h> 49 #include <asm/vdso.h> 50 #include <asm/irq.h> 51 #include <asm/irq_regs.h> 52 #include <asm/vtimer.h> 53 #include <asm/stp.h> 54 #include <asm/cio.h> 55 #include "entry.h" 56 57 union tod_clock __bootdata_preserved(tod_clock_base); 58 EXPORT_SYMBOL_GPL(tod_clock_base); 59 60 u64 __bootdata_preserved(clock_comparator_max); 61 EXPORT_SYMBOL_GPL(clock_comparator_max); 62 63 static DEFINE_PER_CPU(struct clock_event_device, comparators); 64 65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 66 EXPORT_SYMBOL(s390_epoch_delta_notifier); 67 68 unsigned char ptff_function_mask[16]; 69 70 static unsigned long lpar_offset; 71 static unsigned long initial_leap_seconds; 72 static unsigned long tod_steering_end; 73 static long tod_steering_delta; 74 75 /* 76 * Get time offsets with PTFF 77 */ 78 void __init time_early_init(void) 79 { 80 struct ptff_qto qto; 81 struct ptff_qui qui; 82 83 /* Initialize TOD steering parameters */ 84 tod_steering_end = tod_clock_base.tod; 85 vdso_k_time_data->arch_data.tod_steering_end = tod_steering_end; 86 87 if (!test_facility(28)) 88 return; 89 90 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 91 92 /* get LPAR offset */ 93 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 94 lpar_offset = qto.tod_epoch_difference; 95 96 /* get initial leap seconds */ 97 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 98 initial_leap_seconds = (unsigned long) 99 ((long) qui.old_leap * 4096000000L); 100 } 101 102 unsigned long long noinstr sched_clock_noinstr(void) 103 { 104 return tod_to_ns(__get_tod_clock_monotonic()); 105 } 106 107 /* 108 * Scheduler clock - returns current time in nanosec units. 109 */ 110 unsigned long long notrace sched_clock(void) 111 { 112 return tod_to_ns(get_tod_clock_monotonic()); 113 } 114 NOKPROBE_SYMBOL(sched_clock); 115 116 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 117 { 118 unsigned long rem, sec, nsec; 119 120 sec = clk->us; 121 rem = do_div(sec, 1000000); 122 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 123 xt->tv_sec = sec; 124 xt->tv_nsec = nsec; 125 } 126 127 void clock_comparator_work(void) 128 { 129 struct clock_event_device *cd; 130 131 get_lowcore()->clock_comparator = clock_comparator_max; 132 cd = this_cpu_ptr(&comparators); 133 cd->event_handler(cd); 134 } 135 136 static int s390_next_event(unsigned long delta, 137 struct clock_event_device *evt) 138 { 139 get_lowcore()->clock_comparator = get_tod_clock() + delta; 140 set_clock_comparator(get_lowcore()->clock_comparator); 141 return 0; 142 } 143 144 /* 145 * Set up lowcore and control register of the current cpu to 146 * enable TOD clock and clock comparator interrupts. 147 */ 148 void init_cpu_timer(void) 149 { 150 struct clock_event_device *cd; 151 int cpu; 152 153 get_lowcore()->clock_comparator = clock_comparator_max; 154 set_clock_comparator(get_lowcore()->clock_comparator); 155 156 cpu = smp_processor_id(); 157 cd = &per_cpu(comparators, cpu); 158 cd->name = "comparator"; 159 cd->features = CLOCK_EVT_FEAT_ONESHOT; 160 cd->mult = 16777; 161 cd->shift = 12; 162 cd->min_delta_ns = 1; 163 cd->min_delta_ticks = 1; 164 cd->max_delta_ns = LONG_MAX; 165 cd->max_delta_ticks = ULONG_MAX; 166 cd->rating = 400; 167 cd->cpumask = cpumask_of(cpu); 168 cd->set_next_event = s390_next_event; 169 170 clockevents_register_device(cd); 171 172 /* Enable clock comparator timer interrupt. */ 173 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); 174 175 /* Always allow the timing alert external interrupt. */ 176 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); 177 } 178 179 static void clock_comparator_interrupt(struct ext_code ext_code, 180 unsigned int param32, 181 unsigned long param64) 182 { 183 inc_irq_stat(IRQEXT_CLK); 184 if (get_lowcore()->clock_comparator == clock_comparator_max) 185 set_clock_comparator(get_lowcore()->clock_comparator); 186 } 187 188 static void stp_timing_alert(struct stp_irq_parm *); 189 190 static void timing_alert_interrupt(struct ext_code ext_code, 191 unsigned int param32, unsigned long param64) 192 { 193 inc_irq_stat(IRQEXT_TLA); 194 if (param32 & 0x00038000) 195 stp_timing_alert((struct stp_irq_parm *) ¶m32); 196 } 197 198 static void stp_reset(void); 199 200 void read_persistent_clock64(struct timespec64 *ts) 201 { 202 union tod_clock clk; 203 u64 delta; 204 205 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 206 store_tod_clock_ext(&clk); 207 clk.eitod -= delta; 208 ext_to_timespec64(&clk, ts); 209 } 210 211 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 212 struct timespec64 *boot_offset) 213 { 214 struct timespec64 boot_time; 215 union tod_clock clk; 216 u64 delta; 217 218 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 219 clk = tod_clock_base; 220 clk.eitod -= delta; 221 ext_to_timespec64(&clk, &boot_time); 222 223 read_persistent_clock64(wall_time); 224 *boot_offset = timespec64_sub(*wall_time, boot_time); 225 } 226 227 static u64 read_tod_clock(struct clocksource *cs) 228 { 229 unsigned long now, adj; 230 231 preempt_disable(); /* protect from changes to steering parameters */ 232 now = get_tod_clock(); 233 adj = tod_steering_end - now; 234 if (unlikely((s64) adj > 0)) 235 /* 236 * manually steer by 1 cycle every 2^16 cycles. This 237 * corresponds to shifting the tod delta by 15. 1s is 238 * therefore steered in ~9h. The adjust will decrease 239 * over time, until it finally reaches 0. 240 */ 241 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 242 preempt_enable(); 243 return now; 244 } 245 246 static struct clocksource clocksource_tod = { 247 .name = "tod", 248 .rating = 400, 249 .read = read_tod_clock, 250 .mask = CLOCKSOURCE_MASK(64), 251 .mult = 4096000, 252 .shift = 24, 253 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 254 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 255 .id = CSID_S390_TOD, 256 }; 257 258 struct clocksource * __init clocksource_default_clock(void) 259 { 260 return &clocksource_tod; 261 } 262 263 /* 264 * Initialize the TOD clock and the CPU timer of 265 * the boot cpu. 266 */ 267 void __init time_init(void) 268 { 269 /* Reset time synchronization interfaces. */ 270 stp_reset(); 271 272 /* request the clock comparator external interrupt */ 273 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 274 panic("Couldn't request external interrupt 0x1004"); 275 276 /* request the timing alert external interrupt */ 277 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 278 panic("Couldn't request external interrupt 0x1406"); 279 280 if (__clocksource_register(&clocksource_tod) != 0) 281 panic("Could not register TOD clock source"); 282 283 /* Enable TOD clock interrupts on the boot cpu. */ 284 init_cpu_timer(); 285 286 /* Enable cpu timer interrupts on the boot cpu. */ 287 vtime_init(); 288 } 289 290 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 291 static DEFINE_MUTEX(stp_mutex); 292 static unsigned long clock_sync_flags; 293 294 #define CLOCK_SYNC_HAS_STP 0 295 #define CLOCK_SYNC_STP 1 296 #define CLOCK_SYNC_STPINFO_VALID 2 297 298 /* 299 * The get_clock function for the physical clock. It will get the current 300 * TOD clock, subtract the LPAR offset and write the result to *clock. 301 * The function returns 0 if the clock is in sync with the external time 302 * source. If the clock mode is local it will return -EOPNOTSUPP and 303 * -EAGAIN if the clock is not in sync with the external reference. 304 */ 305 int get_phys_clock(unsigned long *clock) 306 { 307 atomic_t *sw_ptr; 308 unsigned int sw0, sw1; 309 310 sw_ptr = &get_cpu_var(clock_sync_word); 311 sw0 = atomic_read(sw_ptr); 312 *clock = get_tod_clock() - lpar_offset; 313 sw1 = atomic_read(sw_ptr); 314 put_cpu_var(clock_sync_word); 315 if (sw0 == sw1 && (sw0 & 0x80000000U)) 316 /* Success: time is in sync. */ 317 return 0; 318 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 319 return -EOPNOTSUPP; 320 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 321 return -EACCES; 322 return -EAGAIN; 323 } 324 EXPORT_SYMBOL(get_phys_clock); 325 326 /* 327 * Make get_phys_clock() return -EAGAIN. 328 */ 329 static void disable_sync_clock(void *dummy) 330 { 331 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 332 /* 333 * Clear the in-sync bit 2^31. All get_phys_clock calls will 334 * fail until the sync bit is turned back on. In addition 335 * increase the "sequence" counter to avoid the race of an 336 * stp event and the complete recovery against get_phys_clock. 337 */ 338 atomic_andnot(0x80000000, sw_ptr); 339 atomic_inc(sw_ptr); 340 } 341 342 /* 343 * Make get_phys_clock() return 0 again. 344 * Needs to be called from a context disabled for preemption. 345 */ 346 static void enable_sync_clock(void) 347 { 348 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 349 atomic_or(0x80000000, sw_ptr); 350 } 351 352 /* 353 * Function to check if the clock is in sync. 354 */ 355 static inline int check_sync_clock(void) 356 { 357 atomic_t *sw_ptr; 358 int rc; 359 360 sw_ptr = &get_cpu_var(clock_sync_word); 361 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 362 put_cpu_var(clock_sync_word); 363 return rc; 364 } 365 366 /* 367 * Apply clock delta to the global data structures. 368 * This is called once on the CPU that performed the clock sync. 369 */ 370 static void clock_sync_global(long delta) 371 { 372 unsigned long now, adj; 373 struct ptff_qto qto; 374 375 /* Fixup the monotonic sched clock. */ 376 tod_clock_base.eitod += delta; 377 /* Adjust TOD steering parameters. */ 378 now = get_tod_clock(); 379 adj = tod_steering_end - now; 380 if (unlikely((s64) adj >= 0)) 381 /* Calculate how much of the old adjustment is left. */ 382 tod_steering_delta = (tod_steering_delta < 0) ? 383 -(adj >> 15) : (adj >> 15); 384 tod_steering_delta += delta; 385 if ((abs(tod_steering_delta) >> 48) != 0) 386 panic("TOD clock sync offset %li is too large to drift\n", 387 tod_steering_delta); 388 tod_steering_end = now + (abs(tod_steering_delta) << 15); 389 vdso_k_time_data->arch_data.tod_steering_end = tod_steering_end; 390 vdso_k_time_data->arch_data.tod_steering_delta = tod_steering_delta; 391 392 /* Update LPAR offset. */ 393 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 394 lpar_offset = qto.tod_epoch_difference; 395 /* Call the TOD clock change notifier. */ 396 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 397 } 398 399 /* 400 * Apply clock delta to the per-CPU data structures of this CPU. 401 * This is called for each online CPU after the call to clock_sync_global. 402 */ 403 static void clock_sync_local(long delta) 404 { 405 /* Add the delta to the clock comparator. */ 406 if (get_lowcore()->clock_comparator != clock_comparator_max) { 407 get_lowcore()->clock_comparator += delta; 408 set_clock_comparator(get_lowcore()->clock_comparator); 409 } 410 /* Adjust the last_update_clock time-stamp. */ 411 get_lowcore()->last_update_clock += delta; 412 } 413 414 /* Single threaded workqueue used for stp sync events */ 415 static struct workqueue_struct *time_sync_wq; 416 417 static void __init time_init_wq(void) 418 { 419 if (time_sync_wq) 420 return; 421 time_sync_wq = create_singlethread_workqueue("timesync"); 422 } 423 424 struct clock_sync_data { 425 atomic_t cpus; 426 int in_sync; 427 long clock_delta; 428 }; 429 430 /* 431 * Server Time Protocol (STP) code. 432 */ 433 static bool stp_online; 434 static struct stp_sstpi stp_info; 435 static void *stp_page; 436 437 static void stp_work_fn(struct work_struct *work); 438 static DECLARE_WORK(stp_work, stp_work_fn); 439 static struct timer_list stp_timer; 440 441 static int __init early_parse_stp(char *p) 442 { 443 return kstrtobool(p, &stp_online); 444 } 445 early_param("stp", early_parse_stp); 446 447 /* 448 * Reset STP attachment. 449 */ 450 static void __init stp_reset(void) 451 { 452 int rc; 453 454 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 455 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 456 if (rc == 0) 457 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 458 else if (stp_online) { 459 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 460 free_page((unsigned long) stp_page); 461 stp_page = NULL; 462 stp_online = false; 463 } 464 } 465 466 bool stp_enabled(void) 467 { 468 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online; 469 } 470 EXPORT_SYMBOL(stp_enabled); 471 472 static void stp_timeout(struct timer_list *unused) 473 { 474 queue_work(time_sync_wq, &stp_work); 475 } 476 477 static int __init stp_init(void) 478 { 479 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 480 return 0; 481 timer_setup(&stp_timer, stp_timeout, 0); 482 time_init_wq(); 483 if (!stp_online) 484 return 0; 485 queue_work(time_sync_wq, &stp_work); 486 return 0; 487 } 488 489 arch_initcall(stp_init); 490 491 /* 492 * STP timing alert. There are three causes: 493 * 1) timing status change 494 * 2) link availability change 495 * 3) time control parameter change 496 * In all three cases we are only interested in the clock source state. 497 * If a STP clock source is now available use it. 498 */ 499 static void stp_timing_alert(struct stp_irq_parm *intparm) 500 { 501 if (intparm->tsc || intparm->lac || intparm->tcpc) 502 queue_work(time_sync_wq, &stp_work); 503 } 504 505 /* 506 * STP sync check machine check. This is called when the timing state 507 * changes from the synchronized state to the unsynchronized state. 508 * After a STP sync check the clock is not in sync. The machine check 509 * is broadcasted to all cpus at the same time. 510 */ 511 int stp_sync_check(void) 512 { 513 disable_sync_clock(NULL); 514 return 1; 515 } 516 517 /* 518 * STP island condition machine check. This is called when an attached 519 * server attempts to communicate over an STP link and the servers 520 * have matching CTN ids and have a valid stratum-1 configuration 521 * but the configurations do not match. 522 */ 523 int stp_island_check(void) 524 { 525 disable_sync_clock(NULL); 526 return 1; 527 } 528 529 void stp_queue_work(void) 530 { 531 queue_work(time_sync_wq, &stp_work); 532 } 533 534 static int __store_stpinfo(void) 535 { 536 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 537 538 if (rc) 539 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 540 else 541 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 542 return rc; 543 } 544 545 static int stpinfo_valid(void) 546 { 547 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 548 } 549 550 static int stp_sync_clock(void *data) 551 { 552 struct clock_sync_data *sync = data; 553 long clock_delta, flags; 554 static int first; 555 int rc; 556 557 enable_sync_clock(); 558 if (xchg(&first, 1) == 0) { 559 /* Wait until all other cpus entered the sync function. */ 560 while (atomic_read(&sync->cpus) != 0) 561 cpu_relax(); 562 rc = 0; 563 if (stp_info.todoff || stp_info.tmd != 2) { 564 flags = vdso_update_begin(); 565 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 566 &clock_delta); 567 if (rc == 0) { 568 sync->clock_delta = clock_delta; 569 clock_sync_global(clock_delta); 570 rc = __store_stpinfo(); 571 if (rc == 0 && stp_info.tmd != 2) 572 rc = -EAGAIN; 573 } 574 vdso_update_end(flags); 575 } 576 sync->in_sync = rc ? -EAGAIN : 1; 577 xchg(&first, 0); 578 } else { 579 /* Slave */ 580 atomic_dec(&sync->cpus); 581 /* Wait for in_sync to be set. */ 582 while (READ_ONCE(sync->in_sync) == 0) 583 __udelay(1); 584 } 585 if (sync->in_sync != 1) 586 /* Didn't work. Clear per-cpu in sync bit again. */ 587 disable_sync_clock(NULL); 588 /* Apply clock delta to per-CPU fields of this CPU. */ 589 clock_sync_local(sync->clock_delta); 590 591 return 0; 592 } 593 594 static int stp_clear_leap(void) 595 { 596 struct __kernel_timex txc; 597 int ret; 598 599 memset(&txc, 0, sizeof(txc)); 600 601 ret = do_adjtimex(&txc); 602 if (ret < 0) 603 return ret; 604 605 txc.modes = ADJ_STATUS; 606 txc.status &= ~(STA_INS|STA_DEL); 607 return do_adjtimex(&txc); 608 } 609 610 static void stp_check_leap(void) 611 { 612 struct stp_stzi stzi; 613 struct stp_lsoib *lsoib = &stzi.lsoib; 614 struct __kernel_timex txc; 615 int64_t timediff; 616 int leapdiff, ret; 617 618 if (!stp_info.lu || !check_sync_clock()) { 619 /* 620 * Either a scheduled leap second was removed by the operator, 621 * or STP is out of sync. In both cases, clear the leap second 622 * kernel flags. 623 */ 624 if (stp_clear_leap() < 0) 625 pr_err("failed to clear leap second flags\n"); 626 return; 627 } 628 629 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { 630 pr_err("stzi failed\n"); 631 return; 632 } 633 634 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; 635 leapdiff = lsoib->nlso - lsoib->also; 636 637 if (leapdiff != 1 && leapdiff != -1) { 638 pr_err("Cannot schedule %d leap seconds\n", leapdiff); 639 return; 640 } 641 642 if (timediff < 0) { 643 if (stp_clear_leap() < 0) 644 pr_err("failed to clear leap second flags\n"); 645 } else if (timediff < 7200) { 646 memset(&txc, 0, sizeof(txc)); 647 ret = do_adjtimex(&txc); 648 if (ret < 0) 649 return; 650 651 txc.modes = ADJ_STATUS; 652 if (leapdiff > 0) 653 txc.status |= STA_INS; 654 else 655 txc.status |= STA_DEL; 656 ret = do_adjtimex(&txc); 657 if (ret < 0) 658 pr_err("failed to set leap second flags\n"); 659 /* arm Timer to clear leap second flags */ 660 mod_timer(&stp_timer, jiffies + secs_to_jiffies(14400)); 661 } else { 662 /* The day the leap second is scheduled for hasn't been reached. Retry 663 * in one hour. 664 */ 665 mod_timer(&stp_timer, jiffies + secs_to_jiffies(3600)); 666 } 667 } 668 669 /* 670 * STP work. Check for the STP state and take over the clock 671 * synchronization if the STP clock source is usable. 672 */ 673 static void stp_work_fn(struct work_struct *work) 674 { 675 struct clock_sync_data stp_sync; 676 int rc; 677 678 /* prevent multiple execution. */ 679 mutex_lock(&stp_mutex); 680 681 if (!stp_online) { 682 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 683 timer_delete_sync(&stp_timer); 684 goto out_unlock; 685 } 686 687 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 688 if (rc) 689 goto out_unlock; 690 691 rc = __store_stpinfo(); 692 if (rc || stp_info.c == 0) 693 goto out_unlock; 694 695 /* Skip synchronization if the clock is already in sync. */ 696 if (!check_sync_clock()) { 697 memset(&stp_sync, 0, sizeof(stp_sync)); 698 cpus_read_lock(); 699 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 700 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 701 cpus_read_unlock(); 702 } 703 704 if (!check_sync_clock()) 705 /* 706 * There is a usable clock but the synchronization failed. 707 * Retry after a second. 708 */ 709 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 710 else if (stp_info.lu) 711 stp_check_leap(); 712 713 out_unlock: 714 mutex_unlock(&stp_mutex); 715 } 716 717 /* 718 * STP subsys sysfs interface functions 719 */ 720 static const struct bus_type stp_subsys = { 721 .name = "stp", 722 .dev_name = "stp", 723 }; 724 725 static ssize_t ctn_id_show(struct device *dev, 726 struct device_attribute *attr, 727 char *buf) 728 { 729 ssize_t ret = -ENODATA; 730 731 mutex_lock(&stp_mutex); 732 if (stpinfo_valid()) 733 ret = sysfs_emit(buf, "%016lx\n", 734 *(unsigned long *)stp_info.ctnid); 735 mutex_unlock(&stp_mutex); 736 return ret; 737 } 738 739 static DEVICE_ATTR_RO(ctn_id); 740 741 static ssize_t ctn_type_show(struct device *dev, 742 struct device_attribute *attr, 743 char *buf) 744 { 745 ssize_t ret = -ENODATA; 746 747 mutex_lock(&stp_mutex); 748 if (stpinfo_valid()) 749 ret = sysfs_emit(buf, "%i\n", stp_info.ctn); 750 mutex_unlock(&stp_mutex); 751 return ret; 752 } 753 754 static DEVICE_ATTR_RO(ctn_type); 755 756 static ssize_t dst_offset_show(struct device *dev, 757 struct device_attribute *attr, 758 char *buf) 759 { 760 ssize_t ret = -ENODATA; 761 762 mutex_lock(&stp_mutex); 763 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 764 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto); 765 mutex_unlock(&stp_mutex); 766 return ret; 767 } 768 769 static DEVICE_ATTR_RO(dst_offset); 770 771 static ssize_t leap_seconds_show(struct device *dev, 772 struct device_attribute *attr, 773 char *buf) 774 { 775 ssize_t ret = -ENODATA; 776 777 mutex_lock(&stp_mutex); 778 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 779 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps); 780 mutex_unlock(&stp_mutex); 781 return ret; 782 } 783 784 static DEVICE_ATTR_RO(leap_seconds); 785 786 static ssize_t leap_seconds_scheduled_show(struct device *dev, 787 struct device_attribute *attr, 788 char *buf) 789 { 790 struct stp_stzi stzi; 791 ssize_t ret; 792 793 mutex_lock(&stp_mutex); 794 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 795 mutex_unlock(&stp_mutex); 796 return -ENODATA; 797 } 798 799 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 800 mutex_unlock(&stp_mutex); 801 if (ret < 0) 802 return ret; 803 804 if (!stzi.lsoib.p) 805 return sysfs_emit(buf, "0,0\n"); 806 807 return sysfs_emit(buf, "%lu,%d\n", 808 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 809 stzi.lsoib.nlso - stzi.lsoib.also); 810 } 811 812 static DEVICE_ATTR_RO(leap_seconds_scheduled); 813 814 static ssize_t stratum_show(struct device *dev, 815 struct device_attribute *attr, 816 char *buf) 817 { 818 ssize_t ret = -ENODATA; 819 820 mutex_lock(&stp_mutex); 821 if (stpinfo_valid()) 822 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum); 823 mutex_unlock(&stp_mutex); 824 return ret; 825 } 826 827 static DEVICE_ATTR_RO(stratum); 828 829 static ssize_t time_offset_show(struct device *dev, 830 struct device_attribute *attr, 831 char *buf) 832 { 833 ssize_t ret = -ENODATA; 834 835 mutex_lock(&stp_mutex); 836 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 837 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto); 838 mutex_unlock(&stp_mutex); 839 return ret; 840 } 841 842 static DEVICE_ATTR_RO(time_offset); 843 844 static ssize_t time_zone_offset_show(struct device *dev, 845 struct device_attribute *attr, 846 char *buf) 847 { 848 ssize_t ret = -ENODATA; 849 850 mutex_lock(&stp_mutex); 851 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 852 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo); 853 mutex_unlock(&stp_mutex); 854 return ret; 855 } 856 857 static DEVICE_ATTR_RO(time_zone_offset); 858 859 static ssize_t timing_mode_show(struct device *dev, 860 struct device_attribute *attr, 861 char *buf) 862 { 863 ssize_t ret = -ENODATA; 864 865 mutex_lock(&stp_mutex); 866 if (stpinfo_valid()) 867 ret = sysfs_emit(buf, "%i\n", stp_info.tmd); 868 mutex_unlock(&stp_mutex); 869 return ret; 870 } 871 872 static DEVICE_ATTR_RO(timing_mode); 873 874 static ssize_t timing_state_show(struct device *dev, 875 struct device_attribute *attr, 876 char *buf) 877 { 878 ssize_t ret = -ENODATA; 879 880 mutex_lock(&stp_mutex); 881 if (stpinfo_valid()) 882 ret = sysfs_emit(buf, "%i\n", stp_info.tst); 883 mutex_unlock(&stp_mutex); 884 return ret; 885 } 886 887 static DEVICE_ATTR_RO(timing_state); 888 889 static ssize_t online_show(struct device *dev, 890 struct device_attribute *attr, 891 char *buf) 892 { 893 return sysfs_emit(buf, "%i\n", stp_online); 894 } 895 896 static ssize_t online_store(struct device *dev, 897 struct device_attribute *attr, 898 const char *buf, size_t count) 899 { 900 unsigned int value; 901 902 value = simple_strtoul(buf, NULL, 0); 903 if (value != 0 && value != 1) 904 return -EINVAL; 905 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 906 return -EOPNOTSUPP; 907 mutex_lock(&stp_mutex); 908 stp_online = value; 909 if (stp_online) 910 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 911 else 912 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 913 queue_work(time_sync_wq, &stp_work); 914 mutex_unlock(&stp_mutex); 915 return count; 916 } 917 918 /* 919 * Can't use DEVICE_ATTR because the attribute should be named 920 * stp/online but dev_attr_online already exists in this file .. 921 */ 922 static DEVICE_ATTR_RW(online); 923 924 static struct attribute *stp_dev_attrs[] = { 925 &dev_attr_ctn_id.attr, 926 &dev_attr_ctn_type.attr, 927 &dev_attr_dst_offset.attr, 928 &dev_attr_leap_seconds.attr, 929 &dev_attr_online.attr, 930 &dev_attr_leap_seconds_scheduled.attr, 931 &dev_attr_stratum.attr, 932 &dev_attr_time_offset.attr, 933 &dev_attr_time_zone_offset.attr, 934 &dev_attr_timing_mode.attr, 935 &dev_attr_timing_state.attr, 936 NULL 937 }; 938 ATTRIBUTE_GROUPS(stp_dev); 939 940 static int __init stp_init_sysfs(void) 941 { 942 return subsys_system_register(&stp_subsys, stp_dev_groups); 943 } 944 945 device_initcall(stp_init_sysfs); 946