1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for the System z CPU-measurement Sampling Facility 4 * 5 * Copyright IBM Corp. 2013, 2018 6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 7 */ 8 #define KMSG_COMPONENT "cpum_sf" 9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/pid.h> 16 #include <linux/notifier.h> 17 #include <linux/export.h> 18 #include <linux/slab.h> 19 #include <linux/mm.h> 20 #include <linux/moduleparam.h> 21 #include <asm/cpu_mf.h> 22 #include <asm/irq.h> 23 #include <asm/debug.h> 24 #include <asm/timex.h> 25 #include <linux/io.h> 26 27 /* Perf PMU definitions for the sampling facility */ 28 #define PERF_CPUM_SF_MAX_CTR 2 29 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */ 30 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */ 31 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */ 32 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */ 33 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */ 34 35 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config) 36 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc) 37 #define TEAR_REG(hwc) ((hwc)->last_tag) 38 #define SAMPL_RATE(hwc) ((hwc)->event_base) 39 #define SAMPL_FLAGS(hwc) ((hwc)->config_base) 40 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE) 41 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE) 42 43 /* Minimum number of sample-data-block-tables: 44 * At least one table is required for the sampling buffer structure. 45 * A single table contains up to 511 pointers to sample-data-blocks. 46 */ 47 #define CPUM_SF_MIN_SDBT 1 48 49 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 50 * A table contains SDB pointers (8 bytes) and one table-link entry 51 * that points to the origin of the next SDBT. 52 */ 53 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 54 55 /* Maximum page offset for an SDBT table-link entry: 56 * If this page offset is reached, a table-link entry to the next SDBT 57 * must be added. 58 */ 59 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 60 static inline int require_table_link(const void *sdbt) 61 { 62 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 63 } 64 65 /* Minimum and maximum sampling buffer sizes: 66 * 67 * This number represents the maximum size of the sampling buffer taking 68 * the number of sample-data-block-tables into account. Note that these 69 * numbers apply to the basic-sampling function only. 70 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 71 * the diagnostic-sampling function is active. 72 * 73 * Sampling buffer size Buffer characteristics 74 * --------------------------------------------------- 75 * 64KB == 16 pages (4KB per page) 76 * 1 page for SDB-tables 77 * 15 pages for SDBs 78 * 79 * 32MB == 8192 pages (4KB per page) 80 * 16 pages for SDB-tables 81 * 8176 pages for SDBs 82 */ 83 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 84 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 85 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 86 87 struct sf_buffer { 88 unsigned long *sdbt; /* Sample-data-block-table origin */ 89 /* buffer characteristics (required for buffer increments) */ 90 unsigned long num_sdb; /* Number of sample-data-blocks */ 91 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 92 unsigned long *tail; /* last sample-data-block-table */ 93 }; 94 95 struct aux_buffer { 96 struct sf_buffer sfb; 97 unsigned long head; /* index of SDB of buffer head */ 98 unsigned long alert_mark; /* index of SDB of alert request position */ 99 unsigned long empty_mark; /* mark of SDB not marked full */ 100 unsigned long *sdb_index; /* SDB address for fast lookup */ 101 unsigned long *sdbt_index; /* SDBT address for fast lookup */ 102 }; 103 104 struct cpu_hw_sf { 105 /* CPU-measurement sampling information block */ 106 struct hws_qsi_info_block qsi; 107 /* CPU-measurement sampling control block */ 108 struct hws_lsctl_request_block lsctl; 109 struct sf_buffer sfb; /* Sampling buffer */ 110 unsigned int flags; /* Status flags */ 111 struct perf_event *event; /* Scheduled perf event */ 112 struct perf_output_handle handle; /* AUX buffer output handle */ 113 }; 114 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 115 116 /* Debug feature */ 117 static debug_info_t *sfdbg; 118 119 /* Sampling control helper functions */ 120 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi, 121 unsigned long freq) 122 { 123 return (USEC_PER_SEC / freq) * qsi->cpu_speed; 124 } 125 126 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi, 127 unsigned long rate) 128 { 129 return USEC_PER_SEC * qsi->cpu_speed / rate; 130 } 131 132 /* Return pointer to trailer entry of an sample data block */ 133 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v) 134 { 135 void *ret; 136 137 ret = (void *)v; 138 ret += PAGE_SIZE; 139 ret -= sizeof(struct hws_trailer_entry); 140 141 return ret; 142 } 143 144 /* 145 * Return true if the entry in the sample data block table (sdbt) 146 * is a link to the next sdbt 147 */ 148 static inline int is_link_entry(unsigned long *s) 149 { 150 return *s & 0x1UL ? 1 : 0; 151 } 152 153 /* Return pointer to the linked sdbt */ 154 static inline unsigned long *get_next_sdbt(unsigned long *s) 155 { 156 return phys_to_virt(*s & ~0x1UL); 157 } 158 159 /* 160 * sf_disable() - Switch off sampling facility 161 */ 162 static void sf_disable(void) 163 { 164 struct hws_lsctl_request_block sreq; 165 166 memset(&sreq, 0, sizeof(sreq)); 167 lsctl(&sreq); 168 } 169 170 /* 171 * sf_buffer_available() - Check for an allocated sampling buffer 172 */ 173 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 174 { 175 return !!cpuhw->sfb.sdbt; 176 } 177 178 /* 179 * deallocate sampling facility buffer 180 */ 181 static void free_sampling_buffer(struct sf_buffer *sfb) 182 { 183 unsigned long *sdbt, *curr, *head; 184 185 sdbt = sfb->sdbt; 186 if (!sdbt) 187 return; 188 sfb->sdbt = NULL; 189 /* Free the SDBT after all SDBs are processed... */ 190 head = sdbt; 191 curr = sdbt; 192 do { 193 if (is_link_entry(curr)) { 194 /* Process table-link entries */ 195 curr = get_next_sdbt(curr); 196 free_page((unsigned long)sdbt); 197 sdbt = curr; 198 } else { 199 /* Process SDB pointer */ 200 free_page((unsigned long)phys_to_virt(*curr)); 201 curr++; 202 } 203 } while (curr != head); 204 memset(sfb, 0, sizeof(*sfb)); 205 } 206 207 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 208 { 209 struct hws_trailer_entry *te; 210 unsigned long sdb; 211 212 /* Allocate and initialize sample-data-block */ 213 sdb = get_zeroed_page(gfp_flags); 214 if (!sdb) 215 return -ENOMEM; 216 te = trailer_entry_ptr(sdb); 217 te->header.a = 1; 218 219 /* Link SDB into the sample-data-block-table */ 220 *sdbt = virt_to_phys((void *)sdb); 221 222 return 0; 223 } 224 225 /* 226 * realloc_sampling_buffer() - extend sampler memory 227 * 228 * Allocates new sample-data-blocks and adds them to the specified sampling 229 * buffer memory. 230 * 231 * Important: This modifies the sampling buffer and must be called when the 232 * sampling facility is disabled. 233 * 234 * Returns zero on success, non-zero otherwise. 235 */ 236 static int realloc_sampling_buffer(struct sf_buffer *sfb, 237 unsigned long num_sdb, gfp_t gfp_flags) 238 { 239 int i, rc; 240 unsigned long *new, *tail, *tail_prev = NULL; 241 242 if (!sfb->sdbt || !sfb->tail) 243 return -EINVAL; 244 245 if (!is_link_entry(sfb->tail)) 246 return -EINVAL; 247 248 /* Append to the existing sampling buffer, overwriting the table-link 249 * register. 250 * The tail variables always points to the "tail" (last and table-link) 251 * entry in an SDB-table. 252 */ 253 tail = sfb->tail; 254 255 /* Do a sanity check whether the table-link entry points to 256 * the sampling buffer origin. 257 */ 258 if (sfb->sdbt != get_next_sdbt(tail)) { 259 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n", 260 __func__, (unsigned long)sfb->sdbt, 261 (unsigned long)tail); 262 return -EINVAL; 263 } 264 265 /* Allocate remaining SDBs */ 266 rc = 0; 267 for (i = 0; i < num_sdb; i++) { 268 /* Allocate a new SDB-table if it is full. */ 269 if (require_table_link(tail)) { 270 new = (unsigned long *)get_zeroed_page(gfp_flags); 271 if (!new) { 272 rc = -ENOMEM; 273 break; 274 } 275 sfb->num_sdbt++; 276 /* Link current page to tail of chain */ 277 *tail = virt_to_phys((void *)new) + 1; 278 tail_prev = tail; 279 tail = new; 280 } 281 282 /* Allocate a new sample-data-block. 283 * If there is not enough memory, stop the realloc process 284 * and simply use what was allocated. If this is a temporary 285 * issue, a new realloc call (if required) might succeed. 286 */ 287 rc = alloc_sample_data_block(tail, gfp_flags); 288 if (rc) { 289 /* Undo last SDBT. An SDBT with no SDB at its first 290 * entry but with an SDBT entry instead can not be 291 * handled by the interrupt handler code. 292 * Avoid this situation. 293 */ 294 if (tail_prev) { 295 sfb->num_sdbt--; 296 free_page((unsigned long)new); 297 tail = tail_prev; 298 } 299 break; 300 } 301 sfb->num_sdb++; 302 tail++; 303 tail_prev = new = NULL; /* Allocated at least one SBD */ 304 } 305 306 /* Link sampling buffer to its origin */ 307 *tail = virt_to_phys(sfb->sdbt) + 1; 308 sfb->tail = tail; 309 310 return rc; 311 } 312 313 /* 314 * allocate_sampling_buffer() - allocate sampler memory 315 * 316 * Allocates and initializes a sampling buffer structure using the 317 * specified number of sample-data-blocks (SDB). For each allocation, 318 * a 4K page is used. The number of sample-data-block-tables (SDBT) 319 * are calculated from SDBs. 320 * Also set the ALERT_REQ mask in each SDBs trailer. 321 * 322 * Returns zero on success, non-zero otherwise. 323 */ 324 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 325 { 326 int rc; 327 328 if (sfb->sdbt) 329 return -EINVAL; 330 331 /* Allocate the sample-data-block-table origin */ 332 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 333 if (!sfb->sdbt) 334 return -ENOMEM; 335 sfb->num_sdb = 0; 336 sfb->num_sdbt = 1; 337 338 /* Link the table origin to point to itself to prepare for 339 * realloc_sampling_buffer() invocation. 340 */ 341 sfb->tail = sfb->sdbt; 342 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1; 343 344 /* Allocate requested number of sample-data-blocks */ 345 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 346 if (rc) 347 free_sampling_buffer(sfb); 348 return rc; 349 } 350 351 static void sfb_set_limits(unsigned long min, unsigned long max) 352 { 353 struct hws_qsi_info_block si; 354 355 CPUM_SF_MIN_SDB = min; 356 CPUM_SF_MAX_SDB = max; 357 358 memset(&si, 0, sizeof(si)); 359 qsi(&si); 360 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 361 } 362 363 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 364 { 365 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 366 : CPUM_SF_MAX_SDB; 367 } 368 369 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 370 struct hw_perf_event *hwc) 371 { 372 if (!sfb->sdbt) 373 return SFB_ALLOC_REG(hwc); 374 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 375 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 376 return 0; 377 } 378 379 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 380 { 381 /* Limit the number of SDBs to not exceed the maximum */ 382 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 383 if (num) 384 SFB_ALLOC_REG(hwc) += num; 385 } 386 387 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 388 { 389 SFB_ALLOC_REG(hwc) = 0; 390 sfb_account_allocs(num, hwc); 391 } 392 393 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 394 { 395 if (sf_buffer_available(cpuhw)) 396 free_sampling_buffer(&cpuhw->sfb); 397 } 398 399 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 400 { 401 unsigned long n_sdb, freq; 402 403 /* Calculate sampling buffers using 4K pages 404 * 405 * 1. The sampling size is 32 bytes for basic sampling. This size 406 * is the same for all machine types. Diagnostic 407 * sampling uses auxlilary data buffer setup which provides the 408 * memory for SDBs using linux common code auxiliary trace 409 * setup. 410 * 411 * 2. Function alloc_sampling_buffer() sets the Alert Request 412 * Control indicator to trigger a measurement-alert to harvest 413 * sample-data-blocks (SDB). This is done per SDB. This 414 * measurement alert interrupt fires quick enough to handle 415 * one SDB, on very high frequency and work loads there might 416 * be 2 to 3 SBDs available for sample processing. 417 * Currently there is no need for setup alert request on every 418 * n-th page. This is counterproductive as one IRQ triggers 419 * a very high number of samples to be processed at one IRQ. 420 * 421 * 3. Use the sampling frequency as input. 422 * Compute the number of SDBs and ensure a minimum 423 * of CPUM_SF_MIN_SDB. Depending on frequency add some more 424 * SDBs to handle a higher sampling rate. 425 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples 426 * (one SDB) for every 10000 HZ frequency increment. 427 * 428 * 4. Compute the number of sample-data-block-tables (SDBT) and 429 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 430 * to 511 SDBs). 431 */ 432 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 433 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); 434 435 /* If there is already a sampling buffer allocated, it is very likely 436 * that the sampling facility is enabled too. If the event to be 437 * initialized requires a greater sampling buffer, the allocation must 438 * be postponed. Changing the sampling buffer requires the sampling 439 * facility to be in the disabled state. So, account the number of 440 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 441 * before the event is started. 442 */ 443 sfb_init_allocs(n_sdb, hwc); 444 if (sf_buffer_available(cpuhw)) 445 return 0; 446 447 return alloc_sampling_buffer(&cpuhw->sfb, 448 sfb_pending_allocs(&cpuhw->sfb, hwc)); 449 } 450 451 static unsigned long min_percent(unsigned int percent, unsigned long base, 452 unsigned long min) 453 { 454 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 455 } 456 457 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 458 { 459 /* Use a percentage-based approach to extend the sampling facility 460 * buffer. Accept up to 5% sample data loss. 461 * Vary the extents between 1% to 5% of the current number of 462 * sample-data-blocks. 463 */ 464 if (ratio <= 5) 465 return 0; 466 if (ratio <= 25) 467 return min_percent(1, base, 1); 468 if (ratio <= 50) 469 return min_percent(1, base, 1); 470 if (ratio <= 75) 471 return min_percent(2, base, 2); 472 if (ratio <= 100) 473 return min_percent(3, base, 3); 474 if (ratio <= 250) 475 return min_percent(4, base, 4); 476 477 return min_percent(5, base, 8); 478 } 479 480 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 481 struct hw_perf_event *hwc) 482 { 483 unsigned long ratio, num; 484 485 if (!OVERFLOW_REG(hwc)) 486 return; 487 488 /* The sample_overflow contains the average number of sample data 489 * that has been lost because sample-data-blocks were full. 490 * 491 * Calculate the total number of sample data entries that has been 492 * discarded. Then calculate the ratio of lost samples to total samples 493 * per second in percent. 494 */ 495 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 496 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 497 498 /* Compute number of sample-data-blocks */ 499 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 500 if (num) 501 sfb_account_allocs(num, hwc); 502 503 OVERFLOW_REG(hwc) = 0; 504 } 505 506 /* extend_sampling_buffer() - Extend sampling buffer 507 * @sfb: Sampling buffer structure (for local CPU) 508 * @hwc: Perf event hardware structure 509 * 510 * Use this function to extend the sampling buffer based on the overflow counter 511 * and postponed allocation extents stored in the specified Perf event hardware. 512 * 513 * Important: This function disables the sampling facility in order to safely 514 * change the sampling buffer structure. Do not call this function 515 * when the PMU is active. 516 */ 517 static void extend_sampling_buffer(struct sf_buffer *sfb, 518 struct hw_perf_event *hwc) 519 { 520 unsigned long num; 521 522 num = sfb_pending_allocs(sfb, hwc); 523 if (!num) 524 return; 525 526 /* Disable the sampling facility to reset any states and also 527 * clear pending measurement alerts. 528 */ 529 sf_disable(); 530 531 /* Extend the sampling buffer. 532 * This memory allocation typically happens in an atomic context when 533 * called by perf. Because this is a reallocation, it is fine if the 534 * new SDB-request cannot be satisfied immediately. 535 */ 536 realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 537 } 538 539 /* Number of perf events counting hardware events */ 540 static refcount_t num_events; 541 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 542 static DEFINE_MUTEX(pmc_reserve_mutex); 543 544 #define PMC_INIT 0 545 #define PMC_RELEASE 1 546 static void setup_pmc_cpu(void *flags) 547 { 548 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 549 550 sf_disable(); 551 switch (*((int *)flags)) { 552 case PMC_INIT: 553 memset(cpuhw, 0, sizeof(*cpuhw)); 554 qsi(&cpuhw->qsi); 555 cpuhw->flags |= PMU_F_RESERVED; 556 break; 557 case PMC_RELEASE: 558 cpuhw->flags &= ~PMU_F_RESERVED; 559 deallocate_buffers(cpuhw); 560 break; 561 } 562 } 563 564 static void release_pmc_hardware(void) 565 { 566 int flags = PMC_RELEASE; 567 568 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 569 on_each_cpu(setup_pmc_cpu, &flags, 1); 570 } 571 572 static void reserve_pmc_hardware(void) 573 { 574 int flags = PMC_INIT; 575 576 on_each_cpu(setup_pmc_cpu, &flags, 1); 577 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 578 } 579 580 static void hw_perf_event_destroy(struct perf_event *event) 581 { 582 /* Release PMC if this is the last perf event */ 583 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) { 584 release_pmc_hardware(); 585 mutex_unlock(&pmc_reserve_mutex); 586 } 587 } 588 589 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 590 { 591 hwc->sample_period = period; 592 hwc->last_period = hwc->sample_period; 593 local64_set(&hwc->period_left, hwc->sample_period); 594 } 595 596 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 597 unsigned long rate) 598 { 599 return clamp_t(unsigned long, rate, 600 si->min_sampl_rate, si->max_sampl_rate); 601 } 602 603 static u32 cpumsf_pid_type(struct perf_event *event, 604 u32 pid, enum pid_type type) 605 { 606 struct task_struct *tsk; 607 608 /* Idle process */ 609 if (!pid) 610 goto out; 611 612 tsk = find_task_by_pid_ns(pid, &init_pid_ns); 613 pid = -1; 614 if (tsk) { 615 /* 616 * Only top level events contain the pid namespace in which 617 * they are created. 618 */ 619 if (event->parent) 620 event = event->parent; 621 pid = __task_pid_nr_ns(tsk, type, event->ns); 622 /* 623 * See also 1d953111b648 624 * "perf/core: Don't report zero PIDs for exiting tasks". 625 */ 626 if (!pid && !pid_alive(tsk)) 627 pid = -1; 628 } 629 out: 630 return pid; 631 } 632 633 static void cpumsf_output_event_pid(struct perf_event *event, 634 struct perf_sample_data *data, 635 struct pt_regs *regs) 636 { 637 u32 pid; 638 struct perf_event_header header; 639 struct perf_output_handle handle; 640 641 /* 642 * Obtain the PID from the basic-sampling data entry and 643 * correct the data->tid_entry.pid value. 644 */ 645 pid = data->tid_entry.pid; 646 647 /* Protect callchain buffers, tasks */ 648 rcu_read_lock(); 649 650 perf_prepare_sample(data, event, regs); 651 perf_prepare_header(&header, data, event, regs); 652 if (perf_output_begin(&handle, data, event, header.size)) 653 goto out; 654 655 /* Update the process ID (see also kernel/events/core.c) */ 656 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); 657 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); 658 659 perf_output_sample(&handle, &header, data, event); 660 perf_output_end(&handle); 661 out: 662 rcu_read_unlock(); 663 } 664 665 static unsigned long getrate(bool freq, unsigned long sample, 666 struct hws_qsi_info_block *si) 667 { 668 unsigned long rate; 669 670 if (freq) { 671 rate = freq_to_sample_rate(si, sample); 672 rate = hw_limit_rate(si, rate); 673 } else { 674 /* The min/max sampling rates specifies the valid range 675 * of sample periods. If the specified sample period is 676 * out of range, limit the period to the range boundary. 677 */ 678 rate = hw_limit_rate(si, sample); 679 680 /* The perf core maintains a maximum sample rate that is 681 * configurable through the sysctl interface. Ensure the 682 * sampling rate does not exceed this value. This also helps 683 * to avoid throttling when pushing samples with 684 * perf_event_overflow(). 685 */ 686 if (sample_rate_to_freq(si, rate) > 687 sysctl_perf_event_sample_rate) { 688 rate = 0; 689 } 690 } 691 return rate; 692 } 693 694 /* The sampling information (si) contains information about the 695 * min/max sampling intervals and the CPU speed. So calculate the 696 * correct sampling interval and avoid the whole period adjust 697 * feedback loop. 698 * 699 * Since the CPU Measurement sampling facility can not handle frequency 700 * calculate the sampling interval when frequency is specified using 701 * this formula: 702 * interval := cpu_speed * 1000000 / sample_freq 703 * 704 * Returns errno on bad input and zero on success with parameter interval 705 * set to the correct sampling rate. 706 * 707 * Note: This function turns off freq bit to avoid calling function 708 * perf_adjust_period(). This causes frequency adjustment in the common 709 * code part which causes tremendous variations in the counter values. 710 */ 711 static int __hw_perf_event_init_rate(struct perf_event *event, 712 struct hws_qsi_info_block *si) 713 { 714 struct perf_event_attr *attr = &event->attr; 715 struct hw_perf_event *hwc = &event->hw; 716 unsigned long rate; 717 718 if (attr->freq) { 719 if (!attr->sample_freq) 720 return -EINVAL; 721 rate = getrate(attr->freq, attr->sample_freq, si); 722 attr->freq = 0; /* Don't call perf_adjust_period() */ 723 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; 724 } else { 725 rate = getrate(attr->freq, attr->sample_period, si); 726 if (!rate) 727 return -EINVAL; 728 } 729 attr->sample_period = rate; 730 SAMPL_RATE(hwc) = rate; 731 hw_init_period(hwc, SAMPL_RATE(hwc)); 732 return 0; 733 } 734 735 static int __hw_perf_event_init(struct perf_event *event) 736 { 737 struct cpu_hw_sf *cpuhw; 738 struct hws_qsi_info_block si; 739 struct perf_event_attr *attr = &event->attr; 740 struct hw_perf_event *hwc = &event->hw; 741 int cpu, err = 0; 742 743 /* Reserve CPU-measurement sampling facility */ 744 mutex_lock(&pmc_reserve_mutex); 745 if (!refcount_inc_not_zero(&num_events)) { 746 reserve_pmc_hardware(); 747 refcount_set(&num_events, 1); 748 } 749 event->destroy = hw_perf_event_destroy; 750 751 /* Access per-CPU sampling information (query sampling info) */ 752 /* 753 * The event->cpu value can be -1 to count on every CPU, for example, 754 * when attaching to a task. If this is specified, use the query 755 * sampling info from the current CPU, otherwise use event->cpu to 756 * retrieve the per-CPU information. 757 * Later, cpuhw indicates whether to allocate sampling buffers for a 758 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 759 */ 760 memset(&si, 0, sizeof(si)); 761 cpuhw = NULL; 762 if (event->cpu == -1) { 763 qsi(&si); 764 } else { 765 /* Event is pinned to a particular CPU, retrieve the per-CPU 766 * sampling structure for accessing the CPU-specific QSI. 767 */ 768 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 769 si = cpuhw->qsi; 770 } 771 772 /* Check sampling facility authorization and, if not authorized, 773 * fall back to other PMUs. It is safe to check any CPU because 774 * the authorization is identical for all configured CPUs. 775 */ 776 if (!si.as) { 777 err = -ENOENT; 778 goto out; 779 } 780 781 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { 782 pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); 783 err = -EBUSY; 784 goto out; 785 } 786 787 /* Always enable basic sampling */ 788 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 789 790 /* Check if diagnostic sampling is requested. Deny if the required 791 * sampling authorization is missing. 792 */ 793 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 794 if (!si.ad) { 795 err = -EPERM; 796 goto out; 797 } 798 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 799 } 800 801 err = __hw_perf_event_init_rate(event, &si); 802 if (err) 803 goto out; 804 805 /* Use AUX buffer. No need to allocate it by ourself */ 806 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) 807 goto out; 808 809 /* Allocate the per-CPU sampling buffer using the CPU information 810 * from the event. If the event is not pinned to a particular 811 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 812 * buffers for each online CPU. 813 */ 814 if (cpuhw) 815 /* Event is pinned to a particular CPU */ 816 err = allocate_buffers(cpuhw, hwc); 817 else { 818 /* Event is not pinned, allocate sampling buffer on 819 * each online CPU 820 */ 821 for_each_online_cpu(cpu) { 822 cpuhw = &per_cpu(cpu_hw_sf, cpu); 823 err = allocate_buffers(cpuhw, hwc); 824 if (err) 825 break; 826 } 827 } 828 829 /* If PID/TID sampling is active, replace the default overflow 830 * handler to extract and resolve the PIDs from the basic-sampling 831 * data entries. 832 */ 833 if (event->attr.sample_type & PERF_SAMPLE_TID) 834 if (is_default_overflow_handler(event)) 835 event->overflow_handler = cpumsf_output_event_pid; 836 out: 837 mutex_unlock(&pmc_reserve_mutex); 838 return err; 839 } 840 841 static bool is_callchain_event(struct perf_event *event) 842 { 843 u64 sample_type = event->attr.sample_type; 844 845 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | 846 PERF_SAMPLE_STACK_USER); 847 } 848 849 static int cpumsf_pmu_event_init(struct perf_event *event) 850 { 851 int err; 852 853 /* No support for taken branch sampling */ 854 /* No support for callchain, stacks and registers */ 855 if (has_branch_stack(event) || is_callchain_event(event)) 856 return -EOPNOTSUPP; 857 858 switch (event->attr.type) { 859 case PERF_TYPE_RAW: 860 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 861 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 862 return -ENOENT; 863 break; 864 case PERF_TYPE_HARDWARE: 865 /* Support sampling of CPU cycles in addition to the 866 * counter facility. However, the counter facility 867 * is more precise and, hence, restrict this PMU to 868 * sampling events only. 869 */ 870 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 871 return -ENOENT; 872 if (!is_sampling_event(event)) 873 return -ENOENT; 874 break; 875 default: 876 return -ENOENT; 877 } 878 879 /* Force reset of idle/hv excludes regardless of what the 880 * user requested. 881 */ 882 if (event->attr.exclude_hv) 883 event->attr.exclude_hv = 0; 884 if (event->attr.exclude_idle) 885 event->attr.exclude_idle = 0; 886 887 err = __hw_perf_event_init(event); 888 return err; 889 } 890 891 static void cpumsf_pmu_enable(struct pmu *pmu) 892 { 893 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 894 struct hw_perf_event *hwc; 895 int err; 896 897 /* 898 * Event must be 899 * - added/started on this CPU (PMU_F_IN_USE set) 900 * - and CPU must be available (PMU_F_RESERVED set) 901 * - and not already enabled (PMU_F_ENABLED not set) 902 * - and not in error condition (PMU_F_ERR_MASK not set) 903 */ 904 if (cpuhw->flags != (PMU_F_IN_USE | PMU_F_RESERVED)) 905 return; 906 907 /* Check whether to extent the sampling buffer. 908 * 909 * Two conditions trigger an increase of the sampling buffer for a 910 * perf event: 911 * 1. Postponed buffer allocations from the event initialization. 912 * 2. Sampling overflows that contribute to pending allocations. 913 * 914 * Note that the extend_sampling_buffer() function disables the sampling 915 * facility, but it can be fully re-enabled using sampling controls that 916 * have been saved in cpumsf_pmu_disable(). 917 */ 918 hwc = &cpuhw->event->hw; 919 if (!(SAMPL_DIAG_MODE(hwc))) { 920 /* 921 * Account number of overflow-designated buffer extents 922 */ 923 sfb_account_overflows(cpuhw, hwc); 924 extend_sampling_buffer(&cpuhw->sfb, hwc); 925 } 926 /* Rate may be adjusted with ioctl() */ 927 cpuhw->lsctl.interval = SAMPL_RATE(hwc); 928 929 /* (Re)enable the PMU and sampling facility */ 930 err = lsctl(&cpuhw->lsctl); 931 if (err) { 932 pr_err("Loading sampling controls failed: op 1 err %i\n", err); 933 return; 934 } 935 936 /* Load current program parameter */ 937 lpp(&get_lowcore()->lpp); 938 cpuhw->flags |= PMU_F_ENABLED; 939 } 940 941 static void cpumsf_pmu_disable(struct pmu *pmu) 942 { 943 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 944 struct hws_lsctl_request_block inactive; 945 struct hws_qsi_info_block si; 946 int err; 947 948 if (!(cpuhw->flags & PMU_F_ENABLED)) 949 return; 950 951 if (cpuhw->flags & PMU_F_ERR_MASK) 952 return; 953 954 /* Switch off sampling activation control */ 955 inactive = cpuhw->lsctl; 956 inactive.cs = 0; 957 inactive.cd = 0; 958 959 err = lsctl(&inactive); 960 if (err) { 961 pr_err("Loading sampling controls failed: op 2 err %i\n", err); 962 return; 963 } 964 965 /* 966 * Save state of TEAR and DEAR register contents. 967 * TEAR/DEAR values are valid only if the sampling facility is 968 * enabled. Note that cpumsf_pmu_disable() might be called even 969 * for a disabled sampling facility because cpumsf_pmu_enable() 970 * controls the enable/disable state. 971 */ 972 qsi(&si); 973 if (si.es) { 974 cpuhw->lsctl.tear = si.tear; 975 cpuhw->lsctl.dear = si.dear; 976 } 977 978 cpuhw->flags &= ~PMU_F_ENABLED; 979 } 980 981 /* perf_event_exclude() - Filter event 982 * @event: The perf event 983 * @regs: pt_regs structure 984 * @sde_regs: Sample-data-entry (sde) regs structure 985 * 986 * Filter perf events according to their exclude specification. 987 * 988 * Return non-zero if the event shall be excluded. 989 */ 990 static int perf_event_exclude(struct perf_event *event, struct pt_regs *regs, 991 struct perf_sf_sde_regs *sde_regs) 992 { 993 if (event->attr.exclude_user && user_mode(regs)) 994 return 1; 995 if (event->attr.exclude_kernel && !user_mode(regs)) 996 return 1; 997 if (event->attr.exclude_guest && sde_regs->in_guest) 998 return 1; 999 if (event->attr.exclude_host && !sde_regs->in_guest) 1000 return 1; 1001 return 0; 1002 } 1003 1004 /* perf_push_sample() - Push samples to perf 1005 * @event: The perf event 1006 * @sample: Hardware sample data 1007 * 1008 * Use the hardware sample data to create perf event sample. The sample 1009 * is the pushed to the event subsystem and the function checks for 1010 * possible event overflows. If an event overflow occurs, the PMU is 1011 * stopped. 1012 * 1013 * Return non-zero if an event overflow occurred. 1014 */ 1015 static int perf_push_sample(struct perf_event *event, 1016 struct hws_basic_entry *basic) 1017 { 1018 int overflow; 1019 struct pt_regs regs; 1020 struct perf_sf_sde_regs *sde_regs; 1021 struct perf_sample_data data; 1022 1023 /* Setup perf sample */ 1024 perf_sample_data_init(&data, 0, event->hw.last_period); 1025 1026 /* Setup pt_regs to look like an CPU-measurement external interrupt 1027 * using the Program Request Alert code. The regs.int_parm_long 1028 * field which is unused contains additional sample-data-entry related 1029 * indicators. 1030 */ 1031 memset(®s, 0, sizeof(regs)); 1032 regs.int_code = 0x1407; 1033 regs.int_parm = CPU_MF_INT_SF_PRA; 1034 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 1035 1036 psw_bits(regs.psw).ia = basic->ia; 1037 psw_bits(regs.psw).dat = basic->T; 1038 psw_bits(regs.psw).wait = basic->W; 1039 psw_bits(regs.psw).pstate = basic->P; 1040 psw_bits(regs.psw).as = basic->AS; 1041 1042 /* 1043 * Use the hardware provided configuration level to decide if the 1044 * sample belongs to a guest or host. If that is not available, 1045 * fall back to the following heuristics: 1046 * A non-zero guest program parameter always indicates a guest 1047 * sample. Some early samples or samples from guests without 1048 * lpp usage would be misaccounted to the host. We use the asn 1049 * value as an addon heuristic to detect most of these guest samples. 1050 * If the value differs from 0xffff (the host value), we assume to 1051 * be a KVM guest. 1052 */ 1053 switch (basic->CL) { 1054 case 1: /* logical partition */ 1055 sde_regs->in_guest = 0; 1056 break; 1057 case 2: /* virtual machine */ 1058 sde_regs->in_guest = 1; 1059 break; 1060 default: /* old machine, use heuristics */ 1061 if (basic->gpp || basic->prim_asn != 0xffff) 1062 sde_regs->in_guest = 1; 1063 break; 1064 } 1065 1066 /* 1067 * Store the PID value from the sample-data-entry to be 1068 * processed and resolved by cpumsf_output_event_pid(). 1069 */ 1070 data.tid_entry.pid = basic->hpp & LPP_PID_MASK; 1071 1072 overflow = 0; 1073 if (perf_event_exclude(event, ®s, sde_regs)) 1074 goto out; 1075 overflow = perf_event_overflow(event, &data, ®s); 1076 perf_event_update_userpage(event); 1077 out: 1078 return overflow; 1079 } 1080 1081 static void perf_event_count_update(struct perf_event *event, u64 count) 1082 { 1083 local64_add(count, &event->count); 1084 } 1085 1086 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1087 * @event: The perf event 1088 * @sdbt: Sample-data-block table 1089 * @overflow: Event overflow counter 1090 * 1091 * Walks through a sample-data-block and collects sampling data entries that are 1092 * then pushed to the perf event subsystem. Depending on the sampling function, 1093 * there can be either basic-sampling or combined-sampling data entries. A 1094 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1095 * data entry. The sampling function is determined by the flags in the perf 1096 * event hardware structure. The function always works with a combined-sampling 1097 * data entry but ignores the the diagnostic portion if it is not available. 1098 * 1099 * Note that the implementation focuses on basic-sampling data entries and, if 1100 * such an entry is not valid, the entire combined-sampling data entry is 1101 * ignored. 1102 * 1103 * The overflow variables counts the number of samples that has been discarded 1104 * due to a perf event overflow. 1105 */ 1106 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1107 unsigned long long *overflow) 1108 { 1109 struct hws_trailer_entry *te; 1110 struct hws_basic_entry *sample; 1111 1112 te = trailer_entry_ptr((unsigned long)sdbt); 1113 sample = (struct hws_basic_entry *)sdbt; 1114 while ((unsigned long *)sample < (unsigned long *)te) { 1115 /* Check for an empty sample */ 1116 if (!sample->def || sample->LS) 1117 break; 1118 1119 /* Update perf event period */ 1120 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1121 1122 /* Check whether sample is valid */ 1123 if (sample->def == 0x0001) { 1124 /* If an event overflow occurred, the PMU is stopped to 1125 * throttle event delivery. Remaining sample data is 1126 * discarded. 1127 */ 1128 if (!*overflow) { 1129 /* Check whether sample is consistent */ 1130 if (sample->I == 0 && sample->W == 0) { 1131 /* Deliver sample data to perf */ 1132 *overflow = perf_push_sample(event, 1133 sample); 1134 } 1135 } else 1136 /* Count discarded samples */ 1137 *overflow += 1; 1138 } else { 1139 /* Sample slot is not yet written or other record. 1140 * 1141 * This condition can occur if the buffer was reused 1142 * from a combined basic- and diagnostic-sampling. 1143 * If only basic-sampling is then active, entries are 1144 * written into the larger diagnostic entries. 1145 * This is typically the case for sample-data-blocks 1146 * that are not full. Stop processing if the first 1147 * invalid format was detected. 1148 */ 1149 if (!te->header.f) 1150 break; 1151 } 1152 1153 /* Reset sample slot and advance to next sample */ 1154 sample->def = 0; 1155 sample++; 1156 } 1157 } 1158 1159 /* hw_perf_event_update() - Process sampling buffer 1160 * @event: The perf event 1161 * @flush_all: Flag to also flush partially filled sample-data-blocks 1162 * 1163 * Processes the sampling buffer and create perf event samples. 1164 * The sampling buffer position are retrieved and saved in the TEAR_REG 1165 * register of the specified perf event. 1166 * 1167 * Only full sample-data-blocks are processed. Specify the flush_all flag 1168 * to also walk through partially filled sample-data-blocks. 1169 */ 1170 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1171 { 1172 unsigned long long event_overflow, sampl_overflow, num_sdb; 1173 struct hw_perf_event *hwc = &event->hw; 1174 union hws_trailer_header prev, new; 1175 struct hws_trailer_entry *te; 1176 unsigned long *sdbt, sdb; 1177 int done; 1178 1179 /* 1180 * AUX buffer is used when in diagnostic sampling mode. 1181 * No perf events/samples are created. 1182 */ 1183 if (SAMPL_DIAG_MODE(hwc)) 1184 return; 1185 1186 sdbt = (unsigned long *)TEAR_REG(hwc); 1187 done = event_overflow = sampl_overflow = num_sdb = 0; 1188 while (!done) { 1189 /* Get the trailer entry of the sample-data-block */ 1190 sdb = (unsigned long)phys_to_virt(*sdbt); 1191 te = trailer_entry_ptr(sdb); 1192 1193 /* Leave loop if no more work to do (block full indicator) */ 1194 if (!te->header.f) { 1195 done = 1; 1196 if (!flush_all) 1197 break; 1198 } 1199 1200 /* Check the sample overflow count */ 1201 if (te->header.overflow) 1202 /* Account sample overflows and, if a particular limit 1203 * is reached, extend the sampling buffer. 1204 * For details, see sfb_account_overflows(). 1205 */ 1206 sampl_overflow += te->header.overflow; 1207 1208 /* Collect all samples from a single sample-data-block and 1209 * flag if an (perf) event overflow happened. If so, the PMU 1210 * is stopped and remaining samples will be discarded. 1211 */ 1212 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow); 1213 num_sdb++; 1214 1215 /* Reset trailer (using compare-double-and-swap) */ 1216 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1217 do { 1218 new.val = prev.val; 1219 new.f = 0; 1220 new.a = 1; 1221 new.overflow = 0; 1222 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1223 1224 /* Advance to next sample-data-block */ 1225 sdbt++; 1226 if (is_link_entry(sdbt)) 1227 sdbt = get_next_sdbt(sdbt); 1228 1229 /* Update event hardware registers */ 1230 TEAR_REG(hwc) = (unsigned long)sdbt; 1231 1232 /* Stop processing sample-data if all samples of the current 1233 * sample-data-block were flushed even if it was not full. 1234 */ 1235 if (flush_all && done) 1236 break; 1237 } 1238 1239 /* Account sample overflows in the event hardware structure */ 1240 if (sampl_overflow) 1241 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1242 sampl_overflow, 1 + num_sdb); 1243 1244 /* Perf_event_overflow() and perf_event_account_interrupt() limit 1245 * the interrupt rate to an upper limit. Roughly 1000 samples per 1246 * task tick. 1247 * Hitting this limit results in a large number 1248 * of throttled REF_REPORT_THROTTLE entries and the samples 1249 * are dropped. 1250 * Slightly increase the interval to avoid hitting this limit. 1251 */ 1252 if (event_overflow) 1253 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); 1254 } 1255 1256 static inline unsigned long aux_sdb_index(struct aux_buffer *aux, 1257 unsigned long i) 1258 { 1259 return i % aux->sfb.num_sdb; 1260 } 1261 1262 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end) 1263 { 1264 return end >= start ? end - start + 1 : 0; 1265 } 1266 1267 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux) 1268 { 1269 return aux_sdb_num(aux->head, aux->alert_mark); 1270 } 1271 1272 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux) 1273 { 1274 return aux_sdb_num(aux->head, aux->empty_mark); 1275 } 1276 1277 /* 1278 * Get trailer entry by index of SDB. 1279 */ 1280 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, 1281 unsigned long index) 1282 { 1283 unsigned long sdb; 1284 1285 index = aux_sdb_index(aux, index); 1286 sdb = aux->sdb_index[index]; 1287 return trailer_entry_ptr(sdb); 1288 } 1289 1290 /* 1291 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu 1292 * disabled. Collect the full SDBs in AUX buffer which have not reached 1293 * the point of alert indicator. And ignore the SDBs which are not 1294 * full. 1295 * 1296 * 1. Scan SDBs to see how much data is there and consume them. 1297 * 2. Remove alert indicator in the buffer. 1298 */ 1299 static void aux_output_end(struct perf_output_handle *handle) 1300 { 1301 unsigned long i, range_scan, idx; 1302 struct aux_buffer *aux; 1303 struct hws_trailer_entry *te; 1304 1305 aux = perf_get_aux(handle); 1306 if (!aux) 1307 return; 1308 1309 range_scan = aux_sdb_num_alert(aux); 1310 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { 1311 te = aux_sdb_trailer(aux, idx); 1312 if (!te->header.f) 1313 break; 1314 } 1315 /* i is num of SDBs which are full */ 1316 perf_aux_output_end(handle, i << PAGE_SHIFT); 1317 1318 /* Remove alert indicators in the buffer */ 1319 te = aux_sdb_trailer(aux, aux->alert_mark); 1320 te->header.a = 0; 1321 } 1322 1323 /* 1324 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event 1325 * is first added to the CPU or rescheduled again to the CPU. It is called 1326 * with pmu disabled. 1327 * 1328 * 1. Reset the trailer of SDBs to get ready for new data. 1329 * 2. Tell the hardware where to put the data by reset the SDBs buffer 1330 * head(tear/dear). 1331 */ 1332 static int aux_output_begin(struct perf_output_handle *handle, 1333 struct aux_buffer *aux, 1334 struct cpu_hw_sf *cpuhw) 1335 { 1336 unsigned long range, i, range_scan, idx, head, base, offset; 1337 struct hws_trailer_entry *te; 1338 1339 if (handle->head & ~PAGE_MASK) 1340 return -EINVAL; 1341 1342 aux->head = handle->head >> PAGE_SHIFT; 1343 range = (handle->size + 1) >> PAGE_SHIFT; 1344 if (range <= 1) 1345 return -ENOMEM; 1346 1347 /* 1348 * SDBs between aux->head and aux->empty_mark are already ready 1349 * for new data. range_scan is num of SDBs not within them. 1350 */ 1351 if (range > aux_sdb_num_empty(aux)) { 1352 range_scan = range - aux_sdb_num_empty(aux); 1353 idx = aux->empty_mark + 1; 1354 for (i = 0; i < range_scan; i++, idx++) { 1355 te = aux_sdb_trailer(aux, idx); 1356 te->header.f = 0; 1357 te->header.a = 0; 1358 te->header.overflow = 0; 1359 } 1360 /* Save the position of empty SDBs */ 1361 aux->empty_mark = aux->head + range - 1; 1362 } 1363 1364 /* Set alert indicator */ 1365 aux->alert_mark = aux->head + range/2 - 1; 1366 te = aux_sdb_trailer(aux, aux->alert_mark); 1367 te->header.a = 1; 1368 1369 /* Reset hardware buffer head */ 1370 head = aux_sdb_index(aux, aux->head); 1371 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; 1372 offset = head % CPUM_SF_SDB_PER_TABLE; 1373 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long); 1374 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]); 1375 1376 return 0; 1377 } 1378 1379 /* 1380 * Set alert indicator on SDB at index @alert_index while sampler is running. 1381 * 1382 * Return true if successfully. 1383 * Return false if full indicator is already set by hardware sampler. 1384 */ 1385 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, 1386 unsigned long long *overflow) 1387 { 1388 union hws_trailer_header prev, new; 1389 struct hws_trailer_entry *te; 1390 1391 te = aux_sdb_trailer(aux, alert_index); 1392 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1393 do { 1394 new.val = prev.val; 1395 *overflow = prev.overflow; 1396 if (prev.f) { 1397 /* 1398 * SDB is already set by hardware. 1399 * Abort and try to set somewhere 1400 * behind. 1401 */ 1402 return false; 1403 } 1404 new.a = 1; 1405 new.overflow = 0; 1406 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1407 return true; 1408 } 1409 1410 /* 1411 * aux_reset_buffer() - Scan and setup SDBs for new samples 1412 * @aux: The AUX buffer to set 1413 * @range: The range of SDBs to scan started from aux->head 1414 * @overflow: Set to overflow count 1415 * 1416 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is 1417 * marked as empty, check if it is already set full by the hardware sampler. 1418 * If yes, that means new data is already there before we can set an alert 1419 * indicator. Caller should try to set alert indicator to some position behind. 1420 * 1421 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used 1422 * previously and have already been consumed by user space. Reset these SDBs 1423 * (clear full indicator and alert indicator) for new data. 1424 * If aux->alert_mark fall in this area, just set it. Overflow count is 1425 * recorded while scanning. 1426 * 1427 * SDBs between aux->head and aux->empty_mark are already reset at last time. 1428 * and ready for new samples. So scanning on this area could be skipped. 1429 * 1430 * Return true if alert indicator is set successfully and false if not. 1431 */ 1432 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, 1433 unsigned long long *overflow) 1434 { 1435 union hws_trailer_header prev, new; 1436 unsigned long i, range_scan, idx; 1437 unsigned long long orig_overflow; 1438 struct hws_trailer_entry *te; 1439 1440 if (range <= aux_sdb_num_empty(aux)) 1441 /* 1442 * No need to scan. All SDBs in range are marked as empty. 1443 * Just set alert indicator. Should check race with hardware 1444 * sampler. 1445 */ 1446 return aux_set_alert(aux, aux->alert_mark, overflow); 1447 1448 if (aux->alert_mark <= aux->empty_mark) 1449 /* 1450 * Set alert indicator on empty SDB. Should check race 1451 * with hardware sampler. 1452 */ 1453 if (!aux_set_alert(aux, aux->alert_mark, overflow)) 1454 return false; 1455 1456 /* 1457 * Scan the SDBs to clear full and alert indicator used previously. 1458 * Start scanning from one SDB behind empty_mark. If the new alert 1459 * indicator fall into this range, set it. 1460 */ 1461 range_scan = range - aux_sdb_num_empty(aux); 1462 idx = aux->empty_mark + 1; 1463 for (i = 0; i < range_scan; i++, idx++) { 1464 te = aux_sdb_trailer(aux, idx); 1465 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1466 do { 1467 new.val = prev.val; 1468 orig_overflow = prev.overflow; 1469 new.f = 0; 1470 new.overflow = 0; 1471 if (idx == aux->alert_mark) 1472 new.a = 1; 1473 else 1474 new.a = 0; 1475 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1476 *overflow += orig_overflow; 1477 } 1478 1479 /* Update empty_mark to new position */ 1480 aux->empty_mark = aux->head + range - 1; 1481 1482 return true; 1483 } 1484 1485 /* 1486 * Measurement alert handler for diagnostic mode sampling. 1487 */ 1488 static void hw_collect_aux(struct cpu_hw_sf *cpuhw) 1489 { 1490 struct aux_buffer *aux; 1491 int done = 0; 1492 unsigned long range = 0, size; 1493 unsigned long long overflow = 0; 1494 struct perf_output_handle *handle = &cpuhw->handle; 1495 unsigned long num_sdb; 1496 1497 aux = perf_get_aux(handle); 1498 if (!aux) 1499 return; 1500 1501 /* Inform user space new data arrived */ 1502 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1503 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__, 1504 size >> PAGE_SHIFT); 1505 perf_aux_output_end(handle, size); 1506 1507 num_sdb = aux->sfb.num_sdb; 1508 while (!done) { 1509 /* Get an output handle */ 1510 aux = perf_aux_output_begin(handle, cpuhw->event); 1511 if (handle->size == 0) { 1512 pr_err("The AUX buffer with %lu pages for the " 1513 "diagnostic-sampling mode is full\n", 1514 num_sdb); 1515 break; 1516 } 1517 if (!aux) 1518 return; 1519 1520 /* Update head and alert_mark to new position */ 1521 aux->head = handle->head >> PAGE_SHIFT; 1522 range = (handle->size + 1) >> PAGE_SHIFT; 1523 if (range == 1) 1524 aux->alert_mark = aux->head; 1525 else 1526 aux->alert_mark = aux->head + range/2 - 1; 1527 1528 if (aux_reset_buffer(aux, range, &overflow)) { 1529 if (!overflow) { 1530 done = 1; 1531 break; 1532 } 1533 size = range << PAGE_SHIFT; 1534 perf_aux_output_end(&cpuhw->handle, size); 1535 pr_err("Sample data caused the AUX buffer with %lu " 1536 "pages to overflow\n", aux->sfb.num_sdb); 1537 } else { 1538 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1539 perf_aux_output_end(&cpuhw->handle, size); 1540 } 1541 } 1542 } 1543 1544 /* 1545 * Callback when freeing AUX buffers. 1546 */ 1547 static void aux_buffer_free(void *data) 1548 { 1549 struct aux_buffer *aux = data; 1550 unsigned long i, num_sdbt; 1551 1552 if (!aux) 1553 return; 1554 1555 /* Free SDBT. SDB is freed by the caller */ 1556 num_sdbt = aux->sfb.num_sdbt; 1557 for (i = 0; i < num_sdbt; i++) 1558 free_page(aux->sdbt_index[i]); 1559 1560 kfree(aux->sdbt_index); 1561 kfree(aux->sdb_index); 1562 kfree(aux); 1563 } 1564 1565 static void aux_sdb_init(unsigned long sdb) 1566 { 1567 struct hws_trailer_entry *te; 1568 1569 te = trailer_entry_ptr(sdb); 1570 1571 /* Save clock base */ 1572 te->clock_base = 1; 1573 te->progusage2 = tod_clock_base.tod; 1574 } 1575 1576 /* 1577 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling 1578 * @event: Event the buffer is setup for, event->cpu == -1 means current 1579 * @pages: Array of pointers to buffer pages passed from perf core 1580 * @nr_pages: Total pages 1581 * @snapshot: Flag for snapshot mode 1582 * 1583 * This is the callback when setup an event using AUX buffer. Perf tool can 1584 * trigger this by an additional mmap() call on the event. Unlike the buffer 1585 * for basic samples, AUX buffer belongs to the event. It is scheduled with 1586 * the task among online cpus when it is a per-thread event. 1587 * 1588 * Return the private AUX buffer structure if success or NULL if fails. 1589 */ 1590 static void *aux_buffer_setup(struct perf_event *event, void **pages, 1591 int nr_pages, bool snapshot) 1592 { 1593 struct sf_buffer *sfb; 1594 struct aux_buffer *aux; 1595 unsigned long *new, *tail; 1596 int i, n_sdbt; 1597 1598 if (!nr_pages || !pages) 1599 return NULL; 1600 1601 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1602 pr_err("AUX buffer size (%i pages) is larger than the " 1603 "maximum sampling buffer limit\n", 1604 nr_pages); 1605 return NULL; 1606 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1607 pr_err("AUX buffer size (%i pages) is less than the " 1608 "minimum sampling buffer limit\n", 1609 nr_pages); 1610 return NULL; 1611 } 1612 1613 /* Allocate aux_buffer struct for the event */ 1614 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); 1615 if (!aux) 1616 goto no_aux; 1617 sfb = &aux->sfb; 1618 1619 /* Allocate sdbt_index for fast reference */ 1620 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); 1621 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); 1622 if (!aux->sdbt_index) 1623 goto no_sdbt_index; 1624 1625 /* Allocate sdb_index for fast reference */ 1626 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 1627 if (!aux->sdb_index) 1628 goto no_sdb_index; 1629 1630 /* Allocate the first SDBT */ 1631 sfb->num_sdbt = 0; 1632 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1633 if (!sfb->sdbt) 1634 goto no_sdbt; 1635 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; 1636 tail = sfb->tail = sfb->sdbt; 1637 1638 /* 1639 * Link the provided pages of AUX buffer to SDBT. 1640 * Allocate SDBT if needed. 1641 */ 1642 for (i = 0; i < nr_pages; i++, tail++) { 1643 if (require_table_link(tail)) { 1644 new = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1645 if (!new) 1646 goto no_sdbt; 1647 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; 1648 /* Link current page to tail of chain */ 1649 *tail = virt_to_phys(new) + 1; 1650 tail = new; 1651 } 1652 /* Tail is the entry in a SDBT */ 1653 *tail = virt_to_phys(pages[i]); 1654 aux->sdb_index[i] = (unsigned long)pages[i]; 1655 aux_sdb_init((unsigned long)pages[i]); 1656 } 1657 sfb->num_sdb = nr_pages; 1658 1659 /* Link the last entry in the SDBT to the first SDBT */ 1660 *tail = virt_to_phys(sfb->sdbt) + 1; 1661 sfb->tail = tail; 1662 1663 /* 1664 * Initial all SDBs are zeroed. Mark it as empty. 1665 * So there is no need to clear the full indicator 1666 * when this event is first added. 1667 */ 1668 aux->empty_mark = sfb->num_sdb - 1; 1669 1670 return aux; 1671 1672 no_sdbt: 1673 /* SDBs (AUX buffer pages) are freed by caller */ 1674 for (i = 0; i < sfb->num_sdbt; i++) 1675 free_page(aux->sdbt_index[i]); 1676 kfree(aux->sdb_index); 1677 no_sdb_index: 1678 kfree(aux->sdbt_index); 1679 no_sdbt_index: 1680 kfree(aux); 1681 no_aux: 1682 return NULL; 1683 } 1684 1685 static void cpumsf_pmu_read(struct perf_event *event) 1686 { 1687 /* Nothing to do ... updates are interrupt-driven */ 1688 } 1689 1690 /* Check if the new sampling period/frequency is appropriate. 1691 * 1692 * Return non-zero on error and zero on passed checks. 1693 */ 1694 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) 1695 { 1696 struct hws_qsi_info_block si; 1697 unsigned long rate; 1698 bool do_freq; 1699 1700 memset(&si, 0, sizeof(si)); 1701 if (event->cpu == -1) { 1702 qsi(&si); 1703 } else { 1704 /* Event is pinned to a particular CPU, retrieve the per-CPU 1705 * sampling structure for accessing the CPU-specific QSI. 1706 */ 1707 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 1708 1709 si = cpuhw->qsi; 1710 } 1711 1712 do_freq = !!SAMPL_FREQ_MODE(&event->hw); 1713 rate = getrate(do_freq, value, &si); 1714 if (!rate) 1715 return -EINVAL; 1716 1717 event->attr.sample_period = rate; 1718 SAMPL_RATE(&event->hw) = rate; 1719 hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); 1720 return 0; 1721 } 1722 1723 /* Activate sampling control. 1724 * Next call of pmu_enable() starts sampling. 1725 */ 1726 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1727 { 1728 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1729 1730 if (!(event->hw.state & PERF_HES_STOPPED)) 1731 return; 1732 perf_pmu_disable(event->pmu); 1733 event->hw.state = 0; 1734 cpuhw->lsctl.cs = 1; 1735 if (SAMPL_DIAG_MODE(&event->hw)) 1736 cpuhw->lsctl.cd = 1; 1737 perf_pmu_enable(event->pmu); 1738 } 1739 1740 /* Deactivate sampling control. 1741 * Next call of pmu_enable() stops sampling. 1742 */ 1743 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1744 { 1745 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1746 1747 if (event->hw.state & PERF_HES_STOPPED) 1748 return; 1749 1750 perf_pmu_disable(event->pmu); 1751 cpuhw->lsctl.cs = 0; 1752 cpuhw->lsctl.cd = 0; 1753 event->hw.state |= PERF_HES_STOPPED; 1754 1755 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1756 /* CPU hotplug off removes SDBs. No samples to extract. */ 1757 if (cpuhw->flags & PMU_F_RESERVED) 1758 hw_perf_event_update(event, 1); 1759 event->hw.state |= PERF_HES_UPTODATE; 1760 } 1761 perf_pmu_enable(event->pmu); 1762 } 1763 1764 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1765 { 1766 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1767 struct aux_buffer *aux; 1768 int err = 0; 1769 1770 if (cpuhw->flags & PMU_F_IN_USE) 1771 return -EAGAIN; 1772 1773 if (!SAMPL_DIAG_MODE(&event->hw) && !sf_buffer_available(cpuhw)) 1774 return -EINVAL; 1775 1776 perf_pmu_disable(event->pmu); 1777 1778 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1779 1780 /* Set up sampling controls. Always program the sampling register 1781 * using the SDB-table start. Reset TEAR_REG event hardware register 1782 * that is used by hw_perf_event_update() to store the sampling buffer 1783 * position after samples have been flushed. 1784 */ 1785 cpuhw->lsctl.s = 0; 1786 cpuhw->lsctl.h = 1; 1787 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1788 if (!SAMPL_DIAG_MODE(&event->hw)) { 1789 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt); 1790 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt; 1791 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt; 1792 } 1793 1794 /* Ensure sampling functions are in the disabled state. If disabled, 1795 * switch on sampling enable control. */ 1796 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1797 err = -EAGAIN; 1798 goto out; 1799 } 1800 if (SAMPL_DIAG_MODE(&event->hw)) { 1801 aux = perf_aux_output_begin(&cpuhw->handle, event); 1802 if (!aux) { 1803 err = -EINVAL; 1804 goto out; 1805 } 1806 err = aux_output_begin(&cpuhw->handle, aux, cpuhw); 1807 if (err) 1808 goto out; 1809 cpuhw->lsctl.ed = 1; 1810 } 1811 cpuhw->lsctl.es = 1; 1812 1813 /* Set in_use flag and store event */ 1814 cpuhw->event = event; 1815 cpuhw->flags |= PMU_F_IN_USE; 1816 1817 if (flags & PERF_EF_START) 1818 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1819 out: 1820 perf_event_update_userpage(event); 1821 perf_pmu_enable(event->pmu); 1822 return err; 1823 } 1824 1825 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1826 { 1827 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1828 1829 perf_pmu_disable(event->pmu); 1830 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1831 1832 cpuhw->lsctl.es = 0; 1833 cpuhw->lsctl.ed = 0; 1834 cpuhw->flags &= ~PMU_F_IN_USE; 1835 cpuhw->event = NULL; 1836 1837 if (SAMPL_DIAG_MODE(&event->hw)) 1838 aux_output_end(&cpuhw->handle); 1839 perf_event_update_userpage(event); 1840 perf_pmu_enable(event->pmu); 1841 } 1842 1843 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1844 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1845 1846 /* Attribute list for CPU_SF. 1847 * 1848 * The availablitiy depends on the CPU_MF sampling facility authorization 1849 * for basic + diagnositic samples. This is determined at initialization 1850 * time by the sampling facility device driver. 1851 * If the authorization for basic samples is turned off, it should be 1852 * also turned off for diagnostic sampling. 1853 * 1854 * During initialization of the device driver, check the authorization 1855 * level for diagnostic sampling and installs the attribute 1856 * file for diagnostic sampling if necessary. 1857 * 1858 * For now install a placeholder to reference all possible attributes: 1859 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. 1860 * Add another entry for the final NULL pointer. 1861 */ 1862 enum { 1863 SF_CYCLES_BASIC_ATTR_IDX = 0, 1864 SF_CYCLES_BASIC_DIAG_ATTR_IDX, 1865 SF_CYCLES_ATTR_MAX 1866 }; 1867 1868 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { 1869 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) 1870 }; 1871 1872 PMU_FORMAT_ATTR(event, "config:0-63"); 1873 1874 static struct attribute *cpumsf_pmu_format_attr[] = { 1875 &format_attr_event.attr, 1876 NULL, 1877 }; 1878 1879 static struct attribute_group cpumsf_pmu_events_group = { 1880 .name = "events", 1881 .attrs = cpumsf_pmu_events_attr, 1882 }; 1883 1884 static struct attribute_group cpumsf_pmu_format_group = { 1885 .name = "format", 1886 .attrs = cpumsf_pmu_format_attr, 1887 }; 1888 1889 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 1890 &cpumsf_pmu_events_group, 1891 &cpumsf_pmu_format_group, 1892 NULL, 1893 }; 1894 1895 static struct pmu cpumf_sampling = { 1896 .pmu_enable = cpumsf_pmu_enable, 1897 .pmu_disable = cpumsf_pmu_disable, 1898 1899 .event_init = cpumsf_pmu_event_init, 1900 .add = cpumsf_pmu_add, 1901 .del = cpumsf_pmu_del, 1902 1903 .start = cpumsf_pmu_start, 1904 .stop = cpumsf_pmu_stop, 1905 .read = cpumsf_pmu_read, 1906 1907 .attr_groups = cpumsf_pmu_attr_groups, 1908 1909 .setup_aux = aux_buffer_setup, 1910 .free_aux = aux_buffer_free, 1911 1912 .check_period = cpumsf_pmu_check_period, 1913 }; 1914 1915 static void cpumf_measurement_alert(struct ext_code ext_code, 1916 unsigned int alert, unsigned long unused) 1917 { 1918 struct cpu_hw_sf *cpuhw; 1919 1920 if (!(alert & CPU_MF_INT_SF_MASK)) 1921 return; 1922 inc_irq_stat(IRQEXT_CMS); 1923 cpuhw = this_cpu_ptr(&cpu_hw_sf); 1924 1925 /* Measurement alerts are shared and might happen when the PMU 1926 * is not reserved. Ignore these alerts in this case. */ 1927 if (!(cpuhw->flags & PMU_F_RESERVED)) 1928 return; 1929 1930 /* The processing below must take care of multiple alert events that 1931 * might be indicated concurrently. */ 1932 1933 /* Program alert request */ 1934 if (alert & CPU_MF_INT_SF_PRA) { 1935 if (cpuhw->flags & PMU_F_IN_USE) { 1936 if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) 1937 hw_collect_aux(cpuhw); 1938 else 1939 hw_perf_event_update(cpuhw->event, 0); 1940 } 1941 } 1942 1943 /* Report measurement alerts only for non-PRA codes */ 1944 if (alert != CPU_MF_INT_SF_PRA) 1945 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__, 1946 alert); 1947 1948 /* Sampling authorization change request */ 1949 if (alert & CPU_MF_INT_SF_SACA) 1950 qsi(&cpuhw->qsi); 1951 1952 /* Loss of sample data due to high-priority machine activities */ 1953 if (alert & CPU_MF_INT_SF_LSDA) { 1954 pr_err("Sample data was lost\n"); 1955 cpuhw->flags |= PMU_F_ERR_LSDA; 1956 sf_disable(); 1957 } 1958 1959 /* Invalid sampling buffer entry */ 1960 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 1961 pr_err("A sampling buffer entry is incorrect (alert=%#x)\n", 1962 alert); 1963 cpuhw->flags |= PMU_F_ERR_IBE; 1964 sf_disable(); 1965 } 1966 } 1967 1968 static int cpusf_pmu_setup(unsigned int cpu, int flags) 1969 { 1970 /* Ignore the notification if no events are scheduled on the PMU. 1971 * This might be racy... 1972 */ 1973 if (!refcount_read(&num_events)) 1974 return 0; 1975 1976 local_irq_disable(); 1977 setup_pmc_cpu(&flags); 1978 local_irq_enable(); 1979 return 0; 1980 } 1981 1982 static int s390_pmu_sf_online_cpu(unsigned int cpu) 1983 { 1984 return cpusf_pmu_setup(cpu, PMC_INIT); 1985 } 1986 1987 static int s390_pmu_sf_offline_cpu(unsigned int cpu) 1988 { 1989 return cpusf_pmu_setup(cpu, PMC_RELEASE); 1990 } 1991 1992 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 1993 { 1994 if (!cpum_sf_avail()) 1995 return -ENODEV; 1996 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 1997 } 1998 1999 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 2000 { 2001 int rc; 2002 unsigned long min, max; 2003 2004 if (!cpum_sf_avail()) 2005 return -ENODEV; 2006 if (!val || !strlen(val)) 2007 return -EINVAL; 2008 2009 /* Valid parameter values: "min,max" or "max" */ 2010 min = CPUM_SF_MIN_SDB; 2011 max = CPUM_SF_MAX_SDB; 2012 if (strchr(val, ',')) 2013 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 2014 else 2015 rc = kstrtoul(val, 10, &max); 2016 2017 if (min < 2 || min >= max || max > get_num_physpages()) 2018 rc = -EINVAL; 2019 if (rc) 2020 return rc; 2021 2022 sfb_set_limits(min, max); 2023 pr_info("The sampling buffer limits have changed to: " 2024 "min %lu max %lu (diag %lu)\n", 2025 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 2026 return 0; 2027 } 2028 2029 #define param_check_sfb_size(name, p) __param_check(name, p, void) 2030 static const struct kernel_param_ops param_ops_sfb_size = { 2031 .set = param_set_sfb_size, 2032 .get = param_get_sfb_size, 2033 }; 2034 2035 enum { 2036 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */ 2037 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */ 2038 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */ 2039 }; 2040 2041 static void __init pr_cpumsf_err(unsigned int reason) 2042 { 2043 pr_err("Sampling facility support for perf is not available: " 2044 "reason %#x\n", reason); 2045 } 2046 2047 static int __init init_cpum_sampling_pmu(void) 2048 { 2049 struct hws_qsi_info_block si; 2050 int err; 2051 2052 if (!cpum_sf_avail()) 2053 return -ENODEV; 2054 2055 memset(&si, 0, sizeof(si)); 2056 qsi(&si); 2057 if (!si.as && !si.ad) 2058 return -ENODEV; 2059 2060 if (si.bsdes != sizeof(struct hws_basic_entry)) { 2061 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 2062 return -EINVAL; 2063 } 2064 2065 if (si.ad) { 2066 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2067 /* Sampling of diagnostic data authorized, 2068 * install event into attribute list of PMU device. 2069 */ 2070 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = 2071 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 2072 } 2073 2074 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 2075 if (!sfdbg) { 2076 pr_err("Registering for s390dbf failed\n"); 2077 return -ENOMEM; 2078 } 2079 debug_register_view(sfdbg, &debug_sprintf_view); 2080 2081 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 2082 cpumf_measurement_alert); 2083 if (err) { 2084 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 2085 debug_unregister(sfdbg); 2086 goto out; 2087 } 2088 2089 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 2090 if (err) { 2091 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 2092 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 2093 cpumf_measurement_alert); 2094 debug_unregister(sfdbg); 2095 goto out; 2096 } 2097 2098 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", 2099 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); 2100 out: 2101 return err; 2102 } 2103 2104 arch_initcall(init_cpum_sampling_pmu); 2105 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); 2106