1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 4 * 5 * Authors: 6 * Atish Patra <atish.patra@wdc.com> 7 */ 8 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/uaccess.h> 13 #include <clocksource/timer-riscv.h> 14 #include <asm/delay.h> 15 #include <asm/kvm_nacl.h> 16 #include <asm/kvm_vcpu_timer.h> 17 18 static u64 kvm_riscv_current_cycles(struct kvm_guest_timer *gt) 19 { 20 return get_cycles64() + gt->time_delta; 21 } 22 23 static u64 kvm_riscv_delta_cycles2ns(u64 cycles, 24 struct kvm_guest_timer *gt, 25 struct kvm_vcpu_timer *t) 26 { 27 unsigned long flags; 28 u64 cycles_now, cycles_delta, delta_ns; 29 30 local_irq_save(flags); 31 cycles_now = kvm_riscv_current_cycles(gt); 32 if (cycles_now < cycles) 33 cycles_delta = cycles - cycles_now; 34 else 35 cycles_delta = 0; 36 delta_ns = (cycles_delta * gt->nsec_mult) >> gt->nsec_shift; 37 local_irq_restore(flags); 38 39 return delta_ns; 40 } 41 42 static enum hrtimer_restart kvm_riscv_vcpu_hrtimer_expired(struct hrtimer *h) 43 { 44 u64 delta_ns; 45 struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt); 46 struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer); 47 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 48 49 if (kvm_riscv_current_cycles(gt) < t->next_cycles) { 50 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t); 51 hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns)); 52 return HRTIMER_RESTART; 53 } 54 55 t->next_set = false; 56 kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_TIMER); 57 58 return HRTIMER_NORESTART; 59 } 60 61 static int kvm_riscv_vcpu_timer_cancel(struct kvm_vcpu_timer *t) 62 { 63 if (!t->init_done || !t->next_set) 64 return -EINVAL; 65 66 hrtimer_cancel(&t->hrt); 67 t->next_set = false; 68 69 return 0; 70 } 71 72 static int kvm_riscv_vcpu_update_vstimecmp(struct kvm_vcpu *vcpu, u64 ncycles) 73 { 74 #if defined(CONFIG_32BIT) 75 ncsr_write(CSR_VSTIMECMP, ncycles & 0xFFFFFFFF); 76 ncsr_write(CSR_VSTIMECMPH, ncycles >> 32); 77 #else 78 ncsr_write(CSR_VSTIMECMP, ncycles); 79 #endif 80 return 0; 81 } 82 83 static int kvm_riscv_vcpu_update_hrtimer(struct kvm_vcpu *vcpu, u64 ncycles) 84 { 85 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 86 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 87 u64 delta_ns; 88 89 if (!t->init_done) 90 return -EINVAL; 91 92 kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_TIMER); 93 94 delta_ns = kvm_riscv_delta_cycles2ns(ncycles, gt, t); 95 t->next_cycles = ncycles; 96 hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL); 97 t->next_set = true; 98 99 return 0; 100 } 101 102 int kvm_riscv_vcpu_timer_next_event(struct kvm_vcpu *vcpu, u64 ncycles) 103 { 104 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 105 106 return t->timer_next_event(vcpu, ncycles); 107 } 108 109 static enum hrtimer_restart kvm_riscv_vcpu_vstimer_expired(struct hrtimer *h) 110 { 111 u64 delta_ns; 112 struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt); 113 struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer); 114 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 115 116 if (kvm_riscv_current_cycles(gt) < t->next_cycles) { 117 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t); 118 hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns)); 119 return HRTIMER_RESTART; 120 } 121 122 t->next_set = false; 123 kvm_vcpu_kick(vcpu); 124 125 return HRTIMER_NORESTART; 126 } 127 128 bool kvm_riscv_vcpu_timer_pending(struct kvm_vcpu *vcpu) 129 { 130 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 131 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 132 133 if (!kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t) || 134 kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER)) 135 return true; 136 else 137 return false; 138 } 139 140 static void kvm_riscv_vcpu_timer_blocking(struct kvm_vcpu *vcpu) 141 { 142 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 143 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 144 u64 delta_ns; 145 146 if (!t->init_done) 147 return; 148 149 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t); 150 hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL); 151 t->next_set = true; 152 } 153 154 static void kvm_riscv_vcpu_timer_unblocking(struct kvm_vcpu *vcpu) 155 { 156 kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer); 157 } 158 159 int kvm_riscv_vcpu_get_reg_timer(struct kvm_vcpu *vcpu, 160 const struct kvm_one_reg *reg) 161 { 162 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 163 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 164 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 165 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 166 KVM_REG_SIZE_MASK | 167 KVM_REG_RISCV_TIMER); 168 u64 reg_val; 169 170 if (KVM_REG_SIZE(reg->id) != sizeof(u64)) 171 return -EINVAL; 172 if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64)) 173 return -ENOENT; 174 175 switch (reg_num) { 176 case KVM_REG_RISCV_TIMER_REG(frequency): 177 reg_val = riscv_timebase; 178 break; 179 case KVM_REG_RISCV_TIMER_REG(time): 180 reg_val = kvm_riscv_current_cycles(gt); 181 break; 182 case KVM_REG_RISCV_TIMER_REG(compare): 183 reg_val = t->next_cycles; 184 break; 185 case KVM_REG_RISCV_TIMER_REG(state): 186 reg_val = (t->next_set) ? KVM_RISCV_TIMER_STATE_ON : 187 KVM_RISCV_TIMER_STATE_OFF; 188 break; 189 default: 190 return -ENOENT; 191 } 192 193 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) 194 return -EFAULT; 195 196 return 0; 197 } 198 199 int kvm_riscv_vcpu_set_reg_timer(struct kvm_vcpu *vcpu, 200 const struct kvm_one_reg *reg) 201 { 202 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 203 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 204 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 205 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 206 KVM_REG_SIZE_MASK | 207 KVM_REG_RISCV_TIMER); 208 u64 reg_val; 209 int ret = 0; 210 211 if (KVM_REG_SIZE(reg->id) != sizeof(u64)) 212 return -EINVAL; 213 if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64)) 214 return -ENOENT; 215 216 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) 217 return -EFAULT; 218 219 switch (reg_num) { 220 case KVM_REG_RISCV_TIMER_REG(frequency): 221 if (reg_val != riscv_timebase) 222 return -EINVAL; 223 break; 224 case KVM_REG_RISCV_TIMER_REG(time): 225 gt->time_delta = reg_val - get_cycles64(); 226 break; 227 case KVM_REG_RISCV_TIMER_REG(compare): 228 t->next_cycles = reg_val; 229 break; 230 case KVM_REG_RISCV_TIMER_REG(state): 231 if (reg_val == KVM_RISCV_TIMER_STATE_ON) 232 ret = kvm_riscv_vcpu_timer_next_event(vcpu, reg_val); 233 else 234 ret = kvm_riscv_vcpu_timer_cancel(t); 235 break; 236 default: 237 ret = -ENOENT; 238 break; 239 } 240 241 return ret; 242 } 243 244 int kvm_riscv_vcpu_timer_init(struct kvm_vcpu *vcpu) 245 { 246 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 247 248 if (t->init_done) 249 return -EINVAL; 250 251 t->init_done = true; 252 t->next_set = false; 253 254 /* Enable sstc for every vcpu if available in hardware */ 255 if (riscv_isa_extension_available(NULL, SSTC)) { 256 t->sstc_enabled = true; 257 hrtimer_setup(&t->hrt, kvm_riscv_vcpu_vstimer_expired, CLOCK_MONOTONIC, 258 HRTIMER_MODE_REL); 259 t->timer_next_event = kvm_riscv_vcpu_update_vstimecmp; 260 } else { 261 t->sstc_enabled = false; 262 hrtimer_setup(&t->hrt, kvm_riscv_vcpu_hrtimer_expired, CLOCK_MONOTONIC, 263 HRTIMER_MODE_REL); 264 t->timer_next_event = kvm_riscv_vcpu_update_hrtimer; 265 } 266 267 return 0; 268 } 269 270 int kvm_riscv_vcpu_timer_deinit(struct kvm_vcpu *vcpu) 271 { 272 int ret; 273 274 ret = kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer); 275 vcpu->arch.timer.init_done = false; 276 277 return ret; 278 } 279 280 int kvm_riscv_vcpu_timer_reset(struct kvm_vcpu *vcpu) 281 { 282 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 283 284 t->next_cycles = -1ULL; 285 return kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer); 286 } 287 288 static void kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu *vcpu) 289 { 290 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer; 291 292 #if defined(CONFIG_32BIT) 293 ncsr_write(CSR_HTIMEDELTA, (u32)(gt->time_delta)); 294 ncsr_write(CSR_HTIMEDELTAH, (u32)(gt->time_delta >> 32)); 295 #else 296 ncsr_write(CSR_HTIMEDELTA, gt->time_delta); 297 #endif 298 } 299 300 void kvm_riscv_vcpu_timer_restore(struct kvm_vcpu *vcpu) 301 { 302 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 303 304 kvm_riscv_vcpu_update_timedelta(vcpu); 305 306 if (!t->sstc_enabled) 307 return; 308 309 #if defined(CONFIG_32BIT) 310 ncsr_write(CSR_VSTIMECMP, (u32)t->next_cycles); 311 ncsr_write(CSR_VSTIMECMPH, (u32)(t->next_cycles >> 32)); 312 #else 313 ncsr_write(CSR_VSTIMECMP, t->next_cycles); 314 #endif 315 316 /* timer should be enabled for the remaining operations */ 317 if (unlikely(!t->init_done)) 318 return; 319 320 kvm_riscv_vcpu_timer_unblocking(vcpu); 321 } 322 323 void kvm_riscv_vcpu_timer_sync(struct kvm_vcpu *vcpu) 324 { 325 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 326 327 if (!t->sstc_enabled) 328 return; 329 330 #if defined(CONFIG_32BIT) 331 t->next_cycles = ncsr_read(CSR_VSTIMECMP); 332 t->next_cycles |= (u64)ncsr_read(CSR_VSTIMECMPH) << 32; 333 #else 334 t->next_cycles = ncsr_read(CSR_VSTIMECMP); 335 #endif 336 } 337 338 void kvm_riscv_vcpu_timer_save(struct kvm_vcpu *vcpu) 339 { 340 struct kvm_vcpu_timer *t = &vcpu->arch.timer; 341 342 if (!t->sstc_enabled) 343 return; 344 345 /* 346 * The vstimecmp CSRs are saved by kvm_riscv_vcpu_timer_sync() 347 * upon every VM exit so no need to save here. 348 */ 349 350 /* timer should be enabled for the remaining operations */ 351 if (unlikely(!t->init_done)) 352 return; 353 354 if (kvm_vcpu_is_blocking(vcpu)) 355 kvm_riscv_vcpu_timer_blocking(vcpu); 356 } 357 358 void kvm_riscv_guest_timer_init(struct kvm *kvm) 359 { 360 struct kvm_guest_timer *gt = &kvm->arch.timer; 361 362 riscv_cs_get_mult_shift(>->nsec_mult, >->nsec_shift); 363 gt->time_delta = -get_cycles64(); 364 } 365