1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 #include "sys_regs.h" 50 51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 52 53 enum kvm_wfx_trap_policy { 54 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 55 KVM_WFX_NOTRAP, 56 KVM_WFX_TRAP, 57 }; 58 59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 61 62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 63 64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 66 67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 68 69 static bool vgic_present, kvm_arm_initialised; 70 71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 72 73 bool is_kvm_arm_initialised(void) 74 { 75 return kvm_arm_initialised; 76 } 77 78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 79 { 80 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 81 } 82 83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 84 struct kvm_enable_cap *cap) 85 { 86 int r = -EINVAL; 87 88 if (cap->flags) 89 return -EINVAL; 90 91 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap)) 92 return -EINVAL; 93 94 switch (cap->cap) { 95 case KVM_CAP_ARM_NISV_TO_USER: 96 r = 0; 97 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 98 &kvm->arch.flags); 99 break; 100 case KVM_CAP_ARM_MTE: 101 mutex_lock(&kvm->lock); 102 if (system_supports_mte() && !kvm->created_vcpus) { 103 r = 0; 104 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 105 } 106 mutex_unlock(&kvm->lock); 107 break; 108 case KVM_CAP_ARM_SYSTEM_SUSPEND: 109 r = 0; 110 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 111 break; 112 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 113 mutex_lock(&kvm->slots_lock); 114 /* 115 * To keep things simple, allow changing the chunk 116 * size only when no memory slots have been created. 117 */ 118 if (kvm_are_all_memslots_empty(kvm)) { 119 u64 new_cap = cap->args[0]; 120 121 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 122 r = 0; 123 kvm->arch.mmu.split_page_chunk_size = new_cap; 124 } 125 } 126 mutex_unlock(&kvm->slots_lock); 127 break; 128 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 129 mutex_lock(&kvm->lock); 130 if (!kvm->created_vcpus) { 131 r = 0; 132 set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags); 133 } 134 mutex_unlock(&kvm->lock); 135 break; 136 default: 137 break; 138 } 139 140 return r; 141 } 142 143 static int kvm_arm_default_max_vcpus(void) 144 { 145 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 146 } 147 148 /** 149 * kvm_arch_init_vm - initializes a VM data structure 150 * @kvm: pointer to the KVM struct 151 * @type: kvm device type 152 */ 153 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 154 { 155 int ret; 156 157 mutex_init(&kvm->arch.config_lock); 158 159 #ifdef CONFIG_LOCKDEP 160 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 161 mutex_lock(&kvm->lock); 162 mutex_lock(&kvm->arch.config_lock); 163 mutex_unlock(&kvm->arch.config_lock); 164 mutex_unlock(&kvm->lock); 165 #endif 166 167 kvm_init_nested(kvm); 168 169 ret = kvm_share_hyp(kvm, kvm + 1); 170 if (ret) 171 return ret; 172 173 ret = pkvm_init_host_vm(kvm); 174 if (ret) 175 goto err_unshare_kvm; 176 177 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 178 ret = -ENOMEM; 179 goto err_unshare_kvm; 180 } 181 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 182 183 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 184 if (ret) 185 goto err_free_cpumask; 186 187 kvm_vgic_early_init(kvm); 188 189 kvm_timer_init_vm(kvm); 190 191 /* The maximum number of VCPUs is limited by the host's GIC model */ 192 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 193 194 kvm_arm_init_hypercalls(kvm); 195 196 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 197 198 return 0; 199 200 err_free_cpumask: 201 free_cpumask_var(kvm->arch.supported_cpus); 202 err_unshare_kvm: 203 kvm_unshare_hyp(kvm, kvm + 1); 204 return ret; 205 } 206 207 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 208 { 209 return VM_FAULT_SIGBUS; 210 } 211 212 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 213 { 214 kvm_sys_regs_create_debugfs(kvm); 215 kvm_s2_ptdump_create_debugfs(kvm); 216 } 217 218 static void kvm_destroy_mpidr_data(struct kvm *kvm) 219 { 220 struct kvm_mpidr_data *data; 221 222 mutex_lock(&kvm->arch.config_lock); 223 224 data = rcu_dereference_protected(kvm->arch.mpidr_data, 225 lockdep_is_held(&kvm->arch.config_lock)); 226 if (data) { 227 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 228 synchronize_rcu(); 229 kfree(data); 230 } 231 232 mutex_unlock(&kvm->arch.config_lock); 233 } 234 235 /** 236 * kvm_arch_destroy_vm - destroy the VM data structure 237 * @kvm: pointer to the KVM struct 238 */ 239 void kvm_arch_destroy_vm(struct kvm *kvm) 240 { 241 bitmap_free(kvm->arch.pmu_filter); 242 free_cpumask_var(kvm->arch.supported_cpus); 243 244 kvm_vgic_destroy(kvm); 245 246 if (is_protected_kvm_enabled()) 247 pkvm_destroy_hyp_vm(kvm); 248 249 kvm_destroy_mpidr_data(kvm); 250 251 kfree(kvm->arch.sysreg_masks); 252 kvm_destroy_vcpus(kvm); 253 254 kvm_unshare_hyp(kvm, kvm + 1); 255 256 kvm_arm_teardown_hypercalls(kvm); 257 } 258 259 static bool kvm_has_full_ptr_auth(void) 260 { 261 bool apa, gpa, api, gpi, apa3, gpa3; 262 u64 isar1, isar2, val; 263 264 /* 265 * Check that: 266 * 267 * - both Address and Generic auth are implemented for a given 268 * algorithm (Q5, IMPDEF or Q3) 269 * - only a single algorithm is implemented. 270 */ 271 if (!system_has_full_ptr_auth()) 272 return false; 273 274 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 275 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 276 277 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 278 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 279 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 280 281 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 282 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 283 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 284 285 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 286 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 287 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 288 289 return (apa == gpa && api == gpi && apa3 == gpa3 && 290 (apa + api + apa3) == 1); 291 } 292 293 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 294 { 295 int r; 296 297 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext)) 298 return 0; 299 300 switch (ext) { 301 case KVM_CAP_IRQCHIP: 302 r = vgic_present; 303 break; 304 case KVM_CAP_IOEVENTFD: 305 case KVM_CAP_USER_MEMORY: 306 case KVM_CAP_SYNC_MMU: 307 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 308 case KVM_CAP_ONE_REG: 309 case KVM_CAP_ARM_PSCI: 310 case KVM_CAP_ARM_PSCI_0_2: 311 case KVM_CAP_READONLY_MEM: 312 case KVM_CAP_MP_STATE: 313 case KVM_CAP_IMMEDIATE_EXIT: 314 case KVM_CAP_VCPU_EVENTS: 315 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 316 case KVM_CAP_ARM_NISV_TO_USER: 317 case KVM_CAP_ARM_INJECT_EXT_DABT: 318 case KVM_CAP_SET_GUEST_DEBUG: 319 case KVM_CAP_VCPU_ATTRIBUTES: 320 case KVM_CAP_PTP_KVM: 321 case KVM_CAP_ARM_SYSTEM_SUSPEND: 322 case KVM_CAP_IRQFD_RESAMPLE: 323 case KVM_CAP_COUNTER_OFFSET: 324 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 325 r = 1; 326 break; 327 case KVM_CAP_SET_GUEST_DEBUG2: 328 return KVM_GUESTDBG_VALID_MASK; 329 case KVM_CAP_ARM_SET_DEVICE_ADDR: 330 r = 1; 331 break; 332 case KVM_CAP_NR_VCPUS: 333 /* 334 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 335 * architectures, as it does not always bound it to 336 * KVM_CAP_MAX_VCPUS. It should not matter much because 337 * this is just an advisory value. 338 */ 339 r = min_t(unsigned int, num_online_cpus(), 340 kvm_arm_default_max_vcpus()); 341 break; 342 case KVM_CAP_MAX_VCPUS: 343 case KVM_CAP_MAX_VCPU_ID: 344 if (kvm) 345 r = kvm->max_vcpus; 346 else 347 r = kvm_arm_default_max_vcpus(); 348 break; 349 case KVM_CAP_MSI_DEVID: 350 if (!kvm) 351 r = -EINVAL; 352 else 353 r = kvm->arch.vgic.msis_require_devid; 354 break; 355 case KVM_CAP_ARM_USER_IRQ: 356 /* 357 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 358 * (bump this number if adding more devices) 359 */ 360 r = 1; 361 break; 362 case KVM_CAP_ARM_MTE: 363 r = system_supports_mte(); 364 break; 365 case KVM_CAP_STEAL_TIME: 366 r = kvm_arm_pvtime_supported(); 367 break; 368 case KVM_CAP_ARM_EL1_32BIT: 369 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 370 break; 371 case KVM_CAP_GUEST_DEBUG_HW_BPS: 372 r = get_num_brps(); 373 break; 374 case KVM_CAP_GUEST_DEBUG_HW_WPS: 375 r = get_num_wrps(); 376 break; 377 case KVM_CAP_ARM_PMU_V3: 378 r = kvm_supports_guest_pmuv3(); 379 break; 380 case KVM_CAP_ARM_INJECT_SERROR_ESR: 381 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 382 break; 383 case KVM_CAP_ARM_VM_IPA_SIZE: 384 r = get_kvm_ipa_limit(); 385 break; 386 case KVM_CAP_ARM_SVE: 387 r = system_supports_sve(); 388 break; 389 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 390 case KVM_CAP_ARM_PTRAUTH_GENERIC: 391 r = kvm_has_full_ptr_auth(); 392 break; 393 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 394 if (kvm) 395 r = kvm->arch.mmu.split_page_chunk_size; 396 else 397 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 398 break; 399 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 400 r = kvm_supported_block_sizes(); 401 break; 402 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 403 r = BIT(0); 404 break; 405 default: 406 r = 0; 407 } 408 409 return r; 410 } 411 412 long kvm_arch_dev_ioctl(struct file *filp, 413 unsigned int ioctl, unsigned long arg) 414 { 415 return -EINVAL; 416 } 417 418 struct kvm *kvm_arch_alloc_vm(void) 419 { 420 size_t sz = sizeof(struct kvm); 421 422 if (!has_vhe()) 423 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 424 425 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 426 } 427 428 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 429 { 430 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 431 return -EBUSY; 432 433 if (id >= kvm->max_vcpus) 434 return -EINVAL; 435 436 return 0; 437 } 438 439 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 440 { 441 int err; 442 443 spin_lock_init(&vcpu->arch.mp_state_lock); 444 445 #ifdef CONFIG_LOCKDEP 446 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 447 mutex_lock(&vcpu->mutex); 448 mutex_lock(&vcpu->kvm->arch.config_lock); 449 mutex_unlock(&vcpu->kvm->arch.config_lock); 450 mutex_unlock(&vcpu->mutex); 451 #endif 452 453 /* Force users to call KVM_ARM_VCPU_INIT */ 454 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 455 456 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 457 458 /* Set up the timer */ 459 kvm_timer_vcpu_init(vcpu); 460 461 kvm_pmu_vcpu_init(vcpu); 462 463 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 464 465 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 466 467 /* 468 * This vCPU may have been created after mpidr_data was initialized. 469 * Throw out the pre-computed mappings if that is the case which forces 470 * KVM to fall back to iteratively searching the vCPUs. 471 */ 472 kvm_destroy_mpidr_data(vcpu->kvm); 473 474 err = kvm_vgic_vcpu_init(vcpu); 475 if (err) 476 return err; 477 478 err = kvm_share_hyp(vcpu, vcpu + 1); 479 if (err) 480 kvm_vgic_vcpu_destroy(vcpu); 481 482 return err; 483 } 484 485 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 486 { 487 } 488 489 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 490 { 491 if (!is_protected_kvm_enabled()) 492 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 493 else 494 free_hyp_memcache(&vcpu->arch.pkvm_memcache); 495 kvm_timer_vcpu_terminate(vcpu); 496 kvm_pmu_vcpu_destroy(vcpu); 497 kvm_vgic_vcpu_destroy(vcpu); 498 kvm_arm_vcpu_destroy(vcpu); 499 } 500 501 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 502 { 503 504 } 505 506 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 507 { 508 509 } 510 511 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 512 { 513 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 514 /* 515 * Either we're running an L2 guest, and the API/APK bits come 516 * from L1's HCR_EL2, or API/APK are both set. 517 */ 518 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 519 u64 val; 520 521 val = __vcpu_sys_reg(vcpu, HCR_EL2); 522 val &= (HCR_API | HCR_APK); 523 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 524 vcpu->arch.hcr_el2 |= val; 525 } else { 526 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 527 } 528 529 /* 530 * Save the host keys if there is any chance for the guest 531 * to use pauth, as the entry code will reload the guest 532 * keys in that case. 533 */ 534 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 535 struct kvm_cpu_context *ctxt; 536 537 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 538 ptrauth_save_keys(ctxt); 539 } 540 } 541 } 542 543 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 544 { 545 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 546 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 547 548 return single_task_running() && 549 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 550 vcpu->kvm->arch.vgic.nassgireq); 551 } 552 553 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 554 { 555 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 556 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 557 558 return single_task_running(); 559 } 560 561 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 562 { 563 struct kvm_s2_mmu *mmu; 564 int *last_ran; 565 566 if (is_protected_kvm_enabled()) 567 goto nommu; 568 569 if (vcpu_has_nv(vcpu)) 570 kvm_vcpu_load_hw_mmu(vcpu); 571 572 mmu = vcpu->arch.hw_mmu; 573 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 574 575 /* 576 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2, 577 * which happens eagerly in VHE. 578 * 579 * Also, the VMID allocator only preserves VMIDs that are active at the 580 * time of rollover, so KVM might need to grab a new VMID for the MMU if 581 * this is called from kvm_sched_in(). 582 */ 583 kvm_arm_vmid_update(&mmu->vmid); 584 585 /* 586 * We guarantee that both TLBs and I-cache are private to each 587 * vcpu. If detecting that a vcpu from the same VM has 588 * previously run on the same physical CPU, call into the 589 * hypervisor code to nuke the relevant contexts. 590 * 591 * We might get preempted before the vCPU actually runs, but 592 * over-invalidation doesn't affect correctness. 593 */ 594 if (*last_ran != vcpu->vcpu_idx) { 595 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 596 *last_ran = vcpu->vcpu_idx; 597 } 598 599 nommu: 600 vcpu->cpu = cpu; 601 602 /* 603 * The timer must be loaded before the vgic to correctly set up physical 604 * interrupt deactivation in nested state (e.g. timer interrupt). 605 */ 606 kvm_timer_vcpu_load(vcpu); 607 kvm_vgic_load(vcpu); 608 kvm_vcpu_load_debug(vcpu); 609 if (has_vhe()) 610 kvm_vcpu_load_vhe(vcpu); 611 kvm_arch_vcpu_load_fp(vcpu); 612 kvm_vcpu_pmu_restore_guest(vcpu); 613 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 614 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 615 616 if (kvm_vcpu_should_clear_twe(vcpu)) 617 vcpu->arch.hcr_el2 &= ~HCR_TWE; 618 else 619 vcpu->arch.hcr_el2 |= HCR_TWE; 620 621 if (kvm_vcpu_should_clear_twi(vcpu)) 622 vcpu->arch.hcr_el2 &= ~HCR_TWI; 623 else 624 vcpu->arch.hcr_el2 |= HCR_TWI; 625 626 vcpu_set_pauth_traps(vcpu); 627 628 if (is_protected_kvm_enabled()) { 629 kvm_call_hyp_nvhe(__pkvm_vcpu_load, 630 vcpu->kvm->arch.pkvm.handle, 631 vcpu->vcpu_idx, vcpu->arch.hcr_el2); 632 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, 633 &vcpu->arch.vgic_cpu.vgic_v3); 634 } 635 636 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 637 vcpu_set_on_unsupported_cpu(vcpu); 638 } 639 640 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 641 { 642 if (is_protected_kvm_enabled()) { 643 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, 644 &vcpu->arch.vgic_cpu.vgic_v3); 645 kvm_call_hyp_nvhe(__pkvm_vcpu_put); 646 } 647 648 kvm_vcpu_put_debug(vcpu); 649 kvm_arch_vcpu_put_fp(vcpu); 650 if (has_vhe()) 651 kvm_vcpu_put_vhe(vcpu); 652 kvm_timer_vcpu_put(vcpu); 653 kvm_vgic_put(vcpu); 654 kvm_vcpu_pmu_restore_host(vcpu); 655 if (vcpu_has_nv(vcpu)) 656 kvm_vcpu_put_hw_mmu(vcpu); 657 kvm_arm_vmid_clear_active(); 658 659 vcpu_clear_on_unsupported_cpu(vcpu); 660 vcpu->cpu = -1; 661 } 662 663 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 664 { 665 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 666 kvm_make_request(KVM_REQ_SLEEP, vcpu); 667 kvm_vcpu_kick(vcpu); 668 } 669 670 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 671 { 672 spin_lock(&vcpu->arch.mp_state_lock); 673 __kvm_arm_vcpu_power_off(vcpu); 674 spin_unlock(&vcpu->arch.mp_state_lock); 675 } 676 677 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 678 { 679 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 680 } 681 682 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 683 { 684 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 685 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 686 kvm_vcpu_kick(vcpu); 687 } 688 689 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 690 { 691 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 692 } 693 694 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 695 struct kvm_mp_state *mp_state) 696 { 697 *mp_state = READ_ONCE(vcpu->arch.mp_state); 698 699 return 0; 700 } 701 702 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 703 struct kvm_mp_state *mp_state) 704 { 705 int ret = 0; 706 707 spin_lock(&vcpu->arch.mp_state_lock); 708 709 switch (mp_state->mp_state) { 710 case KVM_MP_STATE_RUNNABLE: 711 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 712 break; 713 case KVM_MP_STATE_STOPPED: 714 __kvm_arm_vcpu_power_off(vcpu); 715 break; 716 case KVM_MP_STATE_SUSPENDED: 717 kvm_arm_vcpu_suspend(vcpu); 718 break; 719 default: 720 ret = -EINVAL; 721 } 722 723 spin_unlock(&vcpu->arch.mp_state_lock); 724 725 return ret; 726 } 727 728 /** 729 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 730 * @v: The VCPU pointer 731 * 732 * If the guest CPU is not waiting for interrupts or an interrupt line is 733 * asserted, the CPU is by definition runnable. 734 */ 735 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 736 { 737 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 738 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 739 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 740 } 741 742 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 743 { 744 return vcpu_mode_priv(vcpu); 745 } 746 747 #ifdef CONFIG_GUEST_PERF_EVENTS 748 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 749 { 750 return *vcpu_pc(vcpu); 751 } 752 #endif 753 754 static void kvm_init_mpidr_data(struct kvm *kvm) 755 { 756 struct kvm_mpidr_data *data = NULL; 757 unsigned long c, mask, nr_entries; 758 u64 aff_set = 0, aff_clr = ~0UL; 759 struct kvm_vcpu *vcpu; 760 761 mutex_lock(&kvm->arch.config_lock); 762 763 if (rcu_access_pointer(kvm->arch.mpidr_data) || 764 atomic_read(&kvm->online_vcpus) == 1) 765 goto out; 766 767 kvm_for_each_vcpu(c, vcpu, kvm) { 768 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 769 aff_set |= aff; 770 aff_clr &= aff; 771 } 772 773 /* 774 * A significant bit can be either 0 or 1, and will only appear in 775 * aff_set. Use aff_clr to weed out the useless stuff. 776 */ 777 mask = aff_set ^ aff_clr; 778 nr_entries = BIT_ULL(hweight_long(mask)); 779 780 /* 781 * Don't let userspace fool us. If we need more than a single page 782 * to describe the compressed MPIDR array, just fall back to the 783 * iterative method. Single vcpu VMs do not need this either. 784 */ 785 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 786 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 787 GFP_KERNEL_ACCOUNT); 788 789 if (!data) 790 goto out; 791 792 data->mpidr_mask = mask; 793 794 kvm_for_each_vcpu(c, vcpu, kvm) { 795 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 796 u16 index = kvm_mpidr_index(data, aff); 797 798 data->cmpidr_to_idx[index] = c; 799 } 800 801 rcu_assign_pointer(kvm->arch.mpidr_data, data); 802 out: 803 mutex_unlock(&kvm->arch.config_lock); 804 } 805 806 /* 807 * Handle both the initialisation that is being done when the vcpu is 808 * run for the first time, as well as the updates that must be 809 * performed each time we get a new thread dealing with this vcpu. 810 */ 811 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 812 { 813 struct kvm *kvm = vcpu->kvm; 814 int ret; 815 816 if (!kvm_vcpu_initialized(vcpu)) 817 return -ENOEXEC; 818 819 if (!kvm_arm_vcpu_is_finalized(vcpu)) 820 return -EPERM; 821 822 ret = kvm_arch_vcpu_run_map_fp(vcpu); 823 if (ret) 824 return ret; 825 826 if (likely(vcpu_has_run_once(vcpu))) 827 return 0; 828 829 kvm_init_mpidr_data(kvm); 830 831 if (likely(irqchip_in_kernel(kvm))) { 832 /* 833 * Map the VGIC hardware resources before running a vcpu the 834 * first time on this VM. 835 */ 836 ret = kvm_vgic_map_resources(kvm); 837 if (ret) 838 return ret; 839 } 840 841 ret = kvm_finalize_sys_regs(vcpu); 842 if (ret) 843 return ret; 844 845 if (vcpu_has_nv(vcpu)) { 846 ret = kvm_vgic_vcpu_nv_init(vcpu); 847 if (ret) 848 return ret; 849 } 850 851 /* 852 * This needs to happen after any restriction has been applied 853 * to the feature set. 854 */ 855 kvm_calculate_traps(vcpu); 856 857 ret = kvm_timer_enable(vcpu); 858 if (ret) 859 return ret; 860 861 if (kvm_vcpu_has_pmu(vcpu)) { 862 ret = kvm_arm_pmu_v3_enable(vcpu); 863 if (ret) 864 return ret; 865 } 866 867 if (is_protected_kvm_enabled()) { 868 ret = pkvm_create_hyp_vm(kvm); 869 if (ret) 870 return ret; 871 872 ret = pkvm_create_hyp_vcpu(vcpu); 873 if (ret) 874 return ret; 875 } 876 877 mutex_lock(&kvm->arch.config_lock); 878 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 879 mutex_unlock(&kvm->arch.config_lock); 880 881 return ret; 882 } 883 884 bool kvm_arch_intc_initialized(struct kvm *kvm) 885 { 886 return vgic_initialized(kvm); 887 } 888 889 void kvm_arm_halt_guest(struct kvm *kvm) 890 { 891 unsigned long i; 892 struct kvm_vcpu *vcpu; 893 894 kvm_for_each_vcpu(i, vcpu, kvm) 895 vcpu->arch.pause = true; 896 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 897 } 898 899 void kvm_arm_resume_guest(struct kvm *kvm) 900 { 901 unsigned long i; 902 struct kvm_vcpu *vcpu; 903 904 kvm_for_each_vcpu(i, vcpu, kvm) { 905 vcpu->arch.pause = false; 906 __kvm_vcpu_wake_up(vcpu); 907 } 908 } 909 910 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 911 { 912 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 913 914 rcuwait_wait_event(wait, 915 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 916 TASK_INTERRUPTIBLE); 917 918 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 919 /* Awaken to handle a signal, request we sleep again later. */ 920 kvm_make_request(KVM_REQ_SLEEP, vcpu); 921 } 922 923 /* 924 * Make sure we will observe a potential reset request if we've 925 * observed a change to the power state. Pairs with the smp_wmb() in 926 * kvm_psci_vcpu_on(). 927 */ 928 smp_rmb(); 929 } 930 931 /** 932 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 933 * @vcpu: The VCPU pointer 934 * 935 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 936 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 937 * on when a wake event arrives, e.g. there may already be a pending wake event. 938 */ 939 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 940 { 941 /* 942 * Sync back the state of the GIC CPU interface so that we have 943 * the latest PMR and group enables. This ensures that 944 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 945 * we have pending interrupts, e.g. when determining if the 946 * vCPU should block. 947 * 948 * For the same reason, we want to tell GICv4 that we need 949 * doorbells to be signalled, should an interrupt become pending. 950 */ 951 preempt_disable(); 952 vcpu_set_flag(vcpu, IN_WFI); 953 kvm_vgic_put(vcpu); 954 preempt_enable(); 955 956 kvm_vcpu_halt(vcpu); 957 vcpu_clear_flag(vcpu, IN_WFIT); 958 959 preempt_disable(); 960 vcpu_clear_flag(vcpu, IN_WFI); 961 kvm_vgic_load(vcpu); 962 preempt_enable(); 963 } 964 965 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 966 { 967 if (!kvm_arm_vcpu_suspended(vcpu)) 968 return 1; 969 970 kvm_vcpu_wfi(vcpu); 971 972 /* 973 * The suspend state is sticky; we do not leave it until userspace 974 * explicitly marks the vCPU as runnable. Request that we suspend again 975 * later. 976 */ 977 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 978 979 /* 980 * Check to make sure the vCPU is actually runnable. If so, exit to 981 * userspace informing it of the wakeup condition. 982 */ 983 if (kvm_arch_vcpu_runnable(vcpu)) { 984 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 985 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 986 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 987 return 0; 988 } 989 990 /* 991 * Otherwise, we were unblocked to process a different event, such as a 992 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 993 * process the event. 994 */ 995 return 1; 996 } 997 998 /** 999 * check_vcpu_requests - check and handle pending vCPU requests 1000 * @vcpu: the VCPU pointer 1001 * 1002 * Return: 1 if we should enter the guest 1003 * 0 if we should exit to userspace 1004 * < 0 if we should exit to userspace, where the return value indicates 1005 * an error 1006 */ 1007 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 1008 { 1009 if (kvm_request_pending(vcpu)) { 1010 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 1011 return -EIO; 1012 1013 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1014 kvm_vcpu_sleep(vcpu); 1015 1016 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1017 kvm_reset_vcpu(vcpu); 1018 1019 /* 1020 * Clear IRQ_PENDING requests that were made to guarantee 1021 * that a VCPU sees new virtual interrupts. 1022 */ 1023 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1024 1025 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1026 kvm_update_stolen_time(vcpu); 1027 1028 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1029 /* The distributor enable bits were changed */ 1030 preempt_disable(); 1031 vgic_v4_put(vcpu); 1032 vgic_v4_load(vcpu); 1033 preempt_enable(); 1034 } 1035 1036 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1037 kvm_vcpu_reload_pmu(vcpu); 1038 1039 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1040 kvm_vcpu_pmu_restore_guest(vcpu); 1041 1042 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1043 return kvm_vcpu_suspend(vcpu); 1044 1045 if (kvm_dirty_ring_check_request(vcpu)) 1046 return 0; 1047 1048 check_nested_vcpu_requests(vcpu); 1049 } 1050 1051 return 1; 1052 } 1053 1054 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1055 { 1056 if (likely(!vcpu_mode_is_32bit(vcpu))) 1057 return false; 1058 1059 if (vcpu_has_nv(vcpu)) 1060 return true; 1061 1062 return !kvm_supports_32bit_el0(); 1063 } 1064 1065 /** 1066 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1067 * @vcpu: The VCPU pointer 1068 * @ret: Pointer to write optional return code 1069 * 1070 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1071 * and skip guest entry. 1072 * 1073 * This function disambiguates between two different types of exits: exits to a 1074 * preemptible + interruptible kernel context and exits to userspace. For an 1075 * exit to userspace, this function will write the return code to ret and return 1076 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1077 * for pending work and re-enter), return true without writing to ret. 1078 */ 1079 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1080 { 1081 struct kvm_run *run = vcpu->run; 1082 1083 /* 1084 * If we're using a userspace irqchip, then check if we need 1085 * to tell a userspace irqchip about timer or PMU level 1086 * changes and if so, exit to userspace (the actual level 1087 * state gets updated in kvm_timer_update_run and 1088 * kvm_pmu_update_run below). 1089 */ 1090 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1091 if (kvm_timer_should_notify_user(vcpu) || 1092 kvm_pmu_should_notify_user(vcpu)) { 1093 *ret = -EINTR; 1094 run->exit_reason = KVM_EXIT_INTR; 1095 return true; 1096 } 1097 } 1098 1099 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1100 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1101 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1102 run->fail_entry.cpu = smp_processor_id(); 1103 *ret = 0; 1104 return true; 1105 } 1106 1107 return kvm_request_pending(vcpu) || 1108 xfer_to_guest_mode_work_pending(); 1109 } 1110 1111 /* 1112 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1113 * the vCPU is running. 1114 * 1115 * This must be noinstr as instrumentation may make use of RCU, and this is not 1116 * safe during the EQS. 1117 */ 1118 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1119 { 1120 int ret; 1121 1122 guest_state_enter_irqoff(); 1123 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1124 guest_state_exit_irqoff(); 1125 1126 return ret; 1127 } 1128 1129 /** 1130 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1131 * @vcpu: The VCPU pointer 1132 * 1133 * This function is called through the VCPU_RUN ioctl called from user space. It 1134 * will execute VM code in a loop until the time slice for the process is used 1135 * or some emulation is needed from user space in which case the function will 1136 * return with return value 0 and with the kvm_run structure filled in with the 1137 * required data for the requested emulation. 1138 */ 1139 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1140 { 1141 struct kvm_run *run = vcpu->run; 1142 int ret; 1143 1144 if (run->exit_reason == KVM_EXIT_MMIO) { 1145 ret = kvm_handle_mmio_return(vcpu); 1146 if (ret <= 0) 1147 return ret; 1148 } 1149 1150 vcpu_load(vcpu); 1151 1152 if (!vcpu->wants_to_run) { 1153 ret = -EINTR; 1154 goto out; 1155 } 1156 1157 kvm_sigset_activate(vcpu); 1158 1159 ret = 1; 1160 run->exit_reason = KVM_EXIT_UNKNOWN; 1161 run->flags = 0; 1162 while (ret > 0) { 1163 /* 1164 * Check conditions before entering the guest 1165 */ 1166 ret = xfer_to_guest_mode_handle_work(vcpu); 1167 if (!ret) 1168 ret = 1; 1169 1170 if (ret > 0) 1171 ret = check_vcpu_requests(vcpu); 1172 1173 /* 1174 * Preparing the interrupts to be injected also 1175 * involves poking the GIC, which must be done in a 1176 * non-preemptible context. 1177 */ 1178 preempt_disable(); 1179 1180 if (kvm_vcpu_has_pmu(vcpu)) 1181 kvm_pmu_flush_hwstate(vcpu); 1182 1183 local_irq_disable(); 1184 1185 kvm_vgic_flush_hwstate(vcpu); 1186 1187 kvm_pmu_update_vcpu_events(vcpu); 1188 1189 /* 1190 * Ensure we set mode to IN_GUEST_MODE after we disable 1191 * interrupts and before the final VCPU requests check. 1192 * See the comment in kvm_vcpu_exiting_guest_mode() and 1193 * Documentation/virt/kvm/vcpu-requests.rst 1194 */ 1195 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1196 1197 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1198 vcpu->mode = OUTSIDE_GUEST_MODE; 1199 isb(); /* Ensure work in x_flush_hwstate is committed */ 1200 if (kvm_vcpu_has_pmu(vcpu)) 1201 kvm_pmu_sync_hwstate(vcpu); 1202 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1203 kvm_timer_sync_user(vcpu); 1204 kvm_vgic_sync_hwstate(vcpu); 1205 local_irq_enable(); 1206 preempt_enable(); 1207 continue; 1208 } 1209 1210 kvm_arch_vcpu_ctxflush_fp(vcpu); 1211 1212 /************************************************************** 1213 * Enter the guest 1214 */ 1215 trace_kvm_entry(*vcpu_pc(vcpu)); 1216 guest_timing_enter_irqoff(); 1217 1218 ret = kvm_arm_vcpu_enter_exit(vcpu); 1219 1220 vcpu->mode = OUTSIDE_GUEST_MODE; 1221 vcpu->stat.exits++; 1222 /* 1223 * Back from guest 1224 *************************************************************/ 1225 1226 /* 1227 * We must sync the PMU state before the vgic state so 1228 * that the vgic can properly sample the updated state of the 1229 * interrupt line. 1230 */ 1231 if (kvm_vcpu_has_pmu(vcpu)) 1232 kvm_pmu_sync_hwstate(vcpu); 1233 1234 /* 1235 * Sync the vgic state before syncing the timer state because 1236 * the timer code needs to know if the virtual timer 1237 * interrupts are active. 1238 */ 1239 kvm_vgic_sync_hwstate(vcpu); 1240 1241 /* 1242 * Sync the timer hardware state before enabling interrupts as 1243 * we don't want vtimer interrupts to race with syncing the 1244 * timer virtual interrupt state. 1245 */ 1246 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1247 kvm_timer_sync_user(vcpu); 1248 1249 if (is_hyp_ctxt(vcpu)) 1250 kvm_timer_sync_nested(vcpu); 1251 1252 kvm_arch_vcpu_ctxsync_fp(vcpu); 1253 1254 /* 1255 * We must ensure that any pending interrupts are taken before 1256 * we exit guest timing so that timer ticks are accounted as 1257 * guest time. Transiently unmask interrupts so that any 1258 * pending interrupts are taken. 1259 * 1260 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1261 * context synchronization event) is necessary to ensure that 1262 * pending interrupts are taken. 1263 */ 1264 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1265 local_irq_enable(); 1266 isb(); 1267 local_irq_disable(); 1268 } 1269 1270 guest_timing_exit_irqoff(); 1271 1272 local_irq_enable(); 1273 1274 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1275 1276 /* Exit types that need handling before we can be preempted */ 1277 handle_exit_early(vcpu, ret); 1278 1279 preempt_enable(); 1280 1281 /* 1282 * The ARMv8 architecture doesn't give the hypervisor 1283 * a mechanism to prevent a guest from dropping to AArch32 EL0 1284 * if implemented by the CPU. If we spot the guest in such 1285 * state and that we decided it wasn't supposed to do so (like 1286 * with the asymmetric AArch32 case), return to userspace with 1287 * a fatal error. 1288 */ 1289 if (vcpu_mode_is_bad_32bit(vcpu)) { 1290 /* 1291 * As we have caught the guest red-handed, decide that 1292 * it isn't fit for purpose anymore by making the vcpu 1293 * invalid. The VMM can try and fix it by issuing a 1294 * KVM_ARM_VCPU_INIT if it really wants to. 1295 */ 1296 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1297 ret = ARM_EXCEPTION_IL; 1298 } 1299 1300 ret = handle_exit(vcpu, ret); 1301 } 1302 1303 /* Tell userspace about in-kernel device output levels */ 1304 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1305 kvm_timer_update_run(vcpu); 1306 kvm_pmu_update_run(vcpu); 1307 } 1308 1309 kvm_sigset_deactivate(vcpu); 1310 1311 out: 1312 /* 1313 * In the unlikely event that we are returning to userspace 1314 * with pending exceptions or PC adjustment, commit these 1315 * adjustments in order to give userspace a consistent view of 1316 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1317 * being preempt-safe on VHE. 1318 */ 1319 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1320 vcpu_get_flag(vcpu, INCREMENT_PC))) 1321 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1322 1323 vcpu_put(vcpu); 1324 return ret; 1325 } 1326 1327 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1328 { 1329 int bit_index; 1330 bool set; 1331 unsigned long *hcr; 1332 1333 if (number == KVM_ARM_IRQ_CPU_IRQ) 1334 bit_index = __ffs(HCR_VI); 1335 else /* KVM_ARM_IRQ_CPU_FIQ */ 1336 bit_index = __ffs(HCR_VF); 1337 1338 hcr = vcpu_hcr(vcpu); 1339 if (level) 1340 set = test_and_set_bit(bit_index, hcr); 1341 else 1342 set = test_and_clear_bit(bit_index, hcr); 1343 1344 /* 1345 * If we didn't change anything, no need to wake up or kick other CPUs 1346 */ 1347 if (set == level) 1348 return 0; 1349 1350 /* 1351 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1352 * trigger a world-switch round on the running physical CPU to set the 1353 * virtual IRQ/FIQ fields in the HCR appropriately. 1354 */ 1355 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1356 kvm_vcpu_kick(vcpu); 1357 1358 return 0; 1359 } 1360 1361 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1362 bool line_status) 1363 { 1364 u32 irq = irq_level->irq; 1365 unsigned int irq_type, vcpu_id, irq_num; 1366 struct kvm_vcpu *vcpu = NULL; 1367 bool level = irq_level->level; 1368 1369 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1370 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1371 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1372 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1373 1374 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1375 1376 switch (irq_type) { 1377 case KVM_ARM_IRQ_TYPE_CPU: 1378 if (irqchip_in_kernel(kvm)) 1379 return -ENXIO; 1380 1381 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1382 if (!vcpu) 1383 return -EINVAL; 1384 1385 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1386 return -EINVAL; 1387 1388 return vcpu_interrupt_line(vcpu, irq_num, level); 1389 case KVM_ARM_IRQ_TYPE_PPI: 1390 if (!irqchip_in_kernel(kvm)) 1391 return -ENXIO; 1392 1393 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1394 if (!vcpu) 1395 return -EINVAL; 1396 1397 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1398 return -EINVAL; 1399 1400 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1401 case KVM_ARM_IRQ_TYPE_SPI: 1402 if (!irqchip_in_kernel(kvm)) 1403 return -ENXIO; 1404 1405 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1406 return -EINVAL; 1407 1408 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1409 } 1410 1411 return -EINVAL; 1412 } 1413 1414 static unsigned long system_supported_vcpu_features(void) 1415 { 1416 unsigned long features = KVM_VCPU_VALID_FEATURES; 1417 1418 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1419 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1420 1421 if (!kvm_supports_guest_pmuv3()) 1422 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1423 1424 if (!system_supports_sve()) 1425 clear_bit(KVM_ARM_VCPU_SVE, &features); 1426 1427 if (!kvm_has_full_ptr_auth()) { 1428 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1429 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1430 } 1431 1432 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1433 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1434 1435 return features; 1436 } 1437 1438 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1439 const struct kvm_vcpu_init *init) 1440 { 1441 unsigned long features = init->features[0]; 1442 int i; 1443 1444 if (features & ~KVM_VCPU_VALID_FEATURES) 1445 return -ENOENT; 1446 1447 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1448 if (init->features[i]) 1449 return -ENOENT; 1450 } 1451 1452 if (features & ~system_supported_vcpu_features()) 1453 return -EINVAL; 1454 1455 /* 1456 * For now make sure that both address/generic pointer authentication 1457 * features are requested by the userspace together. 1458 */ 1459 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1460 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1461 return -EINVAL; 1462 1463 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1464 return 0; 1465 1466 /* MTE is incompatible with AArch32 */ 1467 if (kvm_has_mte(vcpu->kvm)) 1468 return -EINVAL; 1469 1470 /* NV is incompatible with AArch32 */ 1471 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1472 return -EINVAL; 1473 1474 return 0; 1475 } 1476 1477 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1478 const struct kvm_vcpu_init *init) 1479 { 1480 unsigned long features = init->features[0]; 1481 1482 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1483 KVM_VCPU_MAX_FEATURES); 1484 } 1485 1486 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1487 { 1488 struct kvm *kvm = vcpu->kvm; 1489 int ret = 0; 1490 1491 /* 1492 * When the vCPU has a PMU, but no PMU is set for the guest 1493 * yet, set the default one. 1494 */ 1495 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1496 ret = kvm_arm_set_default_pmu(kvm); 1497 1498 /* Prepare for nested if required */ 1499 if (!ret && vcpu_has_nv(vcpu)) 1500 ret = kvm_vcpu_init_nested(vcpu); 1501 1502 return ret; 1503 } 1504 1505 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1506 const struct kvm_vcpu_init *init) 1507 { 1508 unsigned long features = init->features[0]; 1509 struct kvm *kvm = vcpu->kvm; 1510 int ret = -EINVAL; 1511 1512 mutex_lock(&kvm->arch.config_lock); 1513 1514 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1515 kvm_vcpu_init_changed(vcpu, init)) 1516 goto out_unlock; 1517 1518 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1519 1520 ret = kvm_setup_vcpu(vcpu); 1521 if (ret) 1522 goto out_unlock; 1523 1524 /* Now we know what it is, we can reset it. */ 1525 kvm_reset_vcpu(vcpu); 1526 1527 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1528 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1529 ret = 0; 1530 out_unlock: 1531 mutex_unlock(&kvm->arch.config_lock); 1532 return ret; 1533 } 1534 1535 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1536 const struct kvm_vcpu_init *init) 1537 { 1538 int ret; 1539 1540 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1541 init->target != kvm_target_cpu()) 1542 return -EINVAL; 1543 1544 ret = kvm_vcpu_init_check_features(vcpu, init); 1545 if (ret) 1546 return ret; 1547 1548 if (!kvm_vcpu_initialized(vcpu)) 1549 return __kvm_vcpu_set_target(vcpu, init); 1550 1551 if (kvm_vcpu_init_changed(vcpu, init)) 1552 return -EINVAL; 1553 1554 kvm_reset_vcpu(vcpu); 1555 return 0; 1556 } 1557 1558 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1559 struct kvm_vcpu_init *init) 1560 { 1561 bool power_off = false; 1562 int ret; 1563 1564 /* 1565 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1566 * reflecting it in the finalized feature set, thus limiting its scope 1567 * to a single KVM_ARM_VCPU_INIT call. 1568 */ 1569 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1570 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1571 power_off = true; 1572 } 1573 1574 ret = kvm_vcpu_set_target(vcpu, init); 1575 if (ret) 1576 return ret; 1577 1578 /* 1579 * Ensure a rebooted VM will fault in RAM pages and detect if the 1580 * guest MMU is turned off and flush the caches as needed. 1581 * 1582 * S2FWB enforces all memory accesses to RAM being cacheable, 1583 * ensuring that the data side is always coherent. We still 1584 * need to invalidate the I-cache though, as FWB does *not* 1585 * imply CTR_EL0.DIC. 1586 */ 1587 if (vcpu_has_run_once(vcpu)) { 1588 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1589 stage2_unmap_vm(vcpu->kvm); 1590 else 1591 icache_inval_all_pou(); 1592 } 1593 1594 vcpu_reset_hcr(vcpu); 1595 1596 /* 1597 * Handle the "start in power-off" case. 1598 */ 1599 spin_lock(&vcpu->arch.mp_state_lock); 1600 1601 if (power_off) 1602 __kvm_arm_vcpu_power_off(vcpu); 1603 else 1604 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1605 1606 spin_unlock(&vcpu->arch.mp_state_lock); 1607 1608 return 0; 1609 } 1610 1611 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1612 struct kvm_device_attr *attr) 1613 { 1614 int ret = -ENXIO; 1615 1616 switch (attr->group) { 1617 default: 1618 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1619 break; 1620 } 1621 1622 return ret; 1623 } 1624 1625 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1626 struct kvm_device_attr *attr) 1627 { 1628 int ret = -ENXIO; 1629 1630 switch (attr->group) { 1631 default: 1632 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1633 break; 1634 } 1635 1636 return ret; 1637 } 1638 1639 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1640 struct kvm_device_attr *attr) 1641 { 1642 int ret = -ENXIO; 1643 1644 switch (attr->group) { 1645 default: 1646 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1647 break; 1648 } 1649 1650 return ret; 1651 } 1652 1653 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1654 struct kvm_vcpu_events *events) 1655 { 1656 memset(events, 0, sizeof(*events)); 1657 1658 return __kvm_arm_vcpu_get_events(vcpu, events); 1659 } 1660 1661 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1662 struct kvm_vcpu_events *events) 1663 { 1664 int i; 1665 1666 /* check whether the reserved field is zero */ 1667 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1668 if (events->reserved[i]) 1669 return -EINVAL; 1670 1671 /* check whether the pad field is zero */ 1672 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1673 if (events->exception.pad[i]) 1674 return -EINVAL; 1675 1676 return __kvm_arm_vcpu_set_events(vcpu, events); 1677 } 1678 1679 long kvm_arch_vcpu_ioctl(struct file *filp, 1680 unsigned int ioctl, unsigned long arg) 1681 { 1682 struct kvm_vcpu *vcpu = filp->private_data; 1683 void __user *argp = (void __user *)arg; 1684 struct kvm_device_attr attr; 1685 long r; 1686 1687 switch (ioctl) { 1688 case KVM_ARM_VCPU_INIT: { 1689 struct kvm_vcpu_init init; 1690 1691 r = -EFAULT; 1692 if (copy_from_user(&init, argp, sizeof(init))) 1693 break; 1694 1695 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1696 break; 1697 } 1698 case KVM_SET_ONE_REG: 1699 case KVM_GET_ONE_REG: { 1700 struct kvm_one_reg reg; 1701 1702 r = -ENOEXEC; 1703 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1704 break; 1705 1706 r = -EFAULT; 1707 if (copy_from_user(®, argp, sizeof(reg))) 1708 break; 1709 1710 /* 1711 * We could owe a reset due to PSCI. Handle the pending reset 1712 * here to ensure userspace register accesses are ordered after 1713 * the reset. 1714 */ 1715 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1716 kvm_reset_vcpu(vcpu); 1717 1718 if (ioctl == KVM_SET_ONE_REG) 1719 r = kvm_arm_set_reg(vcpu, ®); 1720 else 1721 r = kvm_arm_get_reg(vcpu, ®); 1722 break; 1723 } 1724 case KVM_GET_REG_LIST: { 1725 struct kvm_reg_list __user *user_list = argp; 1726 struct kvm_reg_list reg_list; 1727 unsigned n; 1728 1729 r = -ENOEXEC; 1730 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1731 break; 1732 1733 r = -EPERM; 1734 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1735 break; 1736 1737 r = -EFAULT; 1738 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1739 break; 1740 n = reg_list.n; 1741 reg_list.n = kvm_arm_num_regs(vcpu); 1742 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1743 break; 1744 r = -E2BIG; 1745 if (n < reg_list.n) 1746 break; 1747 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1748 break; 1749 } 1750 case KVM_SET_DEVICE_ATTR: { 1751 r = -EFAULT; 1752 if (copy_from_user(&attr, argp, sizeof(attr))) 1753 break; 1754 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1755 break; 1756 } 1757 case KVM_GET_DEVICE_ATTR: { 1758 r = -EFAULT; 1759 if (copy_from_user(&attr, argp, sizeof(attr))) 1760 break; 1761 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1762 break; 1763 } 1764 case KVM_HAS_DEVICE_ATTR: { 1765 r = -EFAULT; 1766 if (copy_from_user(&attr, argp, sizeof(attr))) 1767 break; 1768 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1769 break; 1770 } 1771 case KVM_GET_VCPU_EVENTS: { 1772 struct kvm_vcpu_events events; 1773 1774 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1775 return -EINVAL; 1776 1777 if (copy_to_user(argp, &events, sizeof(events))) 1778 return -EFAULT; 1779 1780 return 0; 1781 } 1782 case KVM_SET_VCPU_EVENTS: { 1783 struct kvm_vcpu_events events; 1784 1785 if (copy_from_user(&events, argp, sizeof(events))) 1786 return -EFAULT; 1787 1788 return kvm_arm_vcpu_set_events(vcpu, &events); 1789 } 1790 case KVM_ARM_VCPU_FINALIZE: { 1791 int what; 1792 1793 if (!kvm_vcpu_initialized(vcpu)) 1794 return -ENOEXEC; 1795 1796 if (get_user(what, (const int __user *)argp)) 1797 return -EFAULT; 1798 1799 return kvm_arm_vcpu_finalize(vcpu, what); 1800 } 1801 default: 1802 r = -EINVAL; 1803 } 1804 1805 return r; 1806 } 1807 1808 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1809 { 1810 1811 } 1812 1813 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1814 struct kvm_arm_device_addr *dev_addr) 1815 { 1816 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1817 case KVM_ARM_DEVICE_VGIC_V2: 1818 if (!vgic_present) 1819 return -ENXIO; 1820 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1821 default: 1822 return -ENODEV; 1823 } 1824 } 1825 1826 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1827 { 1828 switch (attr->group) { 1829 case KVM_ARM_VM_SMCCC_CTRL: 1830 return kvm_vm_smccc_has_attr(kvm, attr); 1831 default: 1832 return -ENXIO; 1833 } 1834 } 1835 1836 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1837 { 1838 switch (attr->group) { 1839 case KVM_ARM_VM_SMCCC_CTRL: 1840 return kvm_vm_smccc_set_attr(kvm, attr); 1841 default: 1842 return -ENXIO; 1843 } 1844 } 1845 1846 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1847 { 1848 struct kvm *kvm = filp->private_data; 1849 void __user *argp = (void __user *)arg; 1850 struct kvm_device_attr attr; 1851 1852 switch (ioctl) { 1853 case KVM_CREATE_IRQCHIP: { 1854 int ret; 1855 if (!vgic_present) 1856 return -ENXIO; 1857 mutex_lock(&kvm->lock); 1858 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1859 mutex_unlock(&kvm->lock); 1860 return ret; 1861 } 1862 case KVM_ARM_SET_DEVICE_ADDR: { 1863 struct kvm_arm_device_addr dev_addr; 1864 1865 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1866 return -EFAULT; 1867 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1868 } 1869 case KVM_ARM_PREFERRED_TARGET: { 1870 struct kvm_vcpu_init init = { 1871 .target = KVM_ARM_TARGET_GENERIC_V8, 1872 }; 1873 1874 if (copy_to_user(argp, &init, sizeof(init))) 1875 return -EFAULT; 1876 1877 return 0; 1878 } 1879 case KVM_ARM_MTE_COPY_TAGS: { 1880 struct kvm_arm_copy_mte_tags copy_tags; 1881 1882 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1883 return -EFAULT; 1884 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1885 } 1886 case KVM_ARM_SET_COUNTER_OFFSET: { 1887 struct kvm_arm_counter_offset offset; 1888 1889 if (copy_from_user(&offset, argp, sizeof(offset))) 1890 return -EFAULT; 1891 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1892 } 1893 case KVM_HAS_DEVICE_ATTR: { 1894 if (copy_from_user(&attr, argp, sizeof(attr))) 1895 return -EFAULT; 1896 1897 return kvm_vm_has_attr(kvm, &attr); 1898 } 1899 case KVM_SET_DEVICE_ATTR: { 1900 if (copy_from_user(&attr, argp, sizeof(attr))) 1901 return -EFAULT; 1902 1903 return kvm_vm_set_attr(kvm, &attr); 1904 } 1905 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1906 struct reg_mask_range range; 1907 1908 if (copy_from_user(&range, argp, sizeof(range))) 1909 return -EFAULT; 1910 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1911 } 1912 default: 1913 return -EINVAL; 1914 } 1915 } 1916 1917 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1918 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1919 { 1920 struct kvm_vcpu *tmp_vcpu; 1921 1922 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1923 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1924 mutex_unlock(&tmp_vcpu->mutex); 1925 } 1926 } 1927 1928 void unlock_all_vcpus(struct kvm *kvm) 1929 { 1930 lockdep_assert_held(&kvm->lock); 1931 1932 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1933 } 1934 1935 /* Returns true if all vcpus were locked, false otherwise */ 1936 bool lock_all_vcpus(struct kvm *kvm) 1937 { 1938 struct kvm_vcpu *tmp_vcpu; 1939 unsigned long c; 1940 1941 lockdep_assert_held(&kvm->lock); 1942 1943 /* 1944 * Any time a vcpu is in an ioctl (including running), the 1945 * core KVM code tries to grab the vcpu->mutex. 1946 * 1947 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1948 * other VCPUs can fiddle with the state while we access it. 1949 */ 1950 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1951 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1952 unlock_vcpus(kvm, c - 1); 1953 return false; 1954 } 1955 } 1956 1957 return true; 1958 } 1959 1960 static unsigned long nvhe_percpu_size(void) 1961 { 1962 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1963 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1964 } 1965 1966 static unsigned long nvhe_percpu_order(void) 1967 { 1968 unsigned long size = nvhe_percpu_size(); 1969 1970 return size ? get_order(size) : 0; 1971 } 1972 1973 static size_t pkvm_host_sve_state_order(void) 1974 { 1975 return get_order(pkvm_host_sve_state_size()); 1976 } 1977 1978 /* A lookup table holding the hypervisor VA for each vector slot */ 1979 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1980 1981 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1982 { 1983 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1984 } 1985 1986 static int kvm_init_vector_slots(void) 1987 { 1988 int err; 1989 void *base; 1990 1991 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1992 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1993 1994 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1995 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1996 1997 if (kvm_system_needs_idmapped_vectors() && 1998 !is_protected_kvm_enabled()) { 1999 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 2000 __BP_HARDEN_HYP_VECS_SZ, &base); 2001 if (err) 2002 return err; 2003 } 2004 2005 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 2006 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 2007 return 0; 2008 } 2009 2010 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 2011 { 2012 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2013 unsigned long tcr; 2014 2015 /* 2016 * Calculate the raw per-cpu offset without a translation from the 2017 * kernel's mapping to the linear mapping, and store it in tpidr_el2 2018 * so that we can use adr_l to access per-cpu variables in EL2. 2019 * Also drop the KASAN tag which gets in the way... 2020 */ 2021 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 2022 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 2023 2024 params->mair_el2 = read_sysreg(mair_el1); 2025 2026 tcr = read_sysreg(tcr_el1); 2027 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 2028 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK); 2029 tcr |= TCR_EPD1_MASK; 2030 } else { 2031 unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr); 2032 2033 tcr &= TCR_EL2_MASK; 2034 tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips); 2035 if (lpa2_is_enabled()) 2036 tcr |= TCR_EL2_DS; 2037 } 2038 tcr |= TCR_T0SZ(hyp_va_bits); 2039 params->tcr_el2 = tcr; 2040 2041 params->pgd_pa = kvm_mmu_get_httbr(); 2042 if (is_protected_kvm_enabled()) 2043 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2044 else 2045 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2046 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2047 params->hcr_el2 |= HCR_E2H; 2048 params->vttbr = params->vtcr = 0; 2049 2050 /* 2051 * Flush the init params from the data cache because the struct will 2052 * be read while the MMU is off. 2053 */ 2054 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2055 } 2056 2057 static void hyp_install_host_vector(void) 2058 { 2059 struct kvm_nvhe_init_params *params; 2060 struct arm_smccc_res res; 2061 2062 /* Switch from the HYP stub to our own HYP init vector */ 2063 __hyp_set_vectors(kvm_get_idmap_vector()); 2064 2065 /* 2066 * Call initialization code, and switch to the full blown HYP code. 2067 * If the cpucaps haven't been finalized yet, something has gone very 2068 * wrong, and hyp will crash and burn when it uses any 2069 * cpus_have_*_cap() wrapper. 2070 */ 2071 BUG_ON(!system_capabilities_finalized()); 2072 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2073 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2074 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2075 } 2076 2077 static void cpu_init_hyp_mode(void) 2078 { 2079 hyp_install_host_vector(); 2080 2081 /* 2082 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2083 * at EL2. 2084 */ 2085 if (this_cpu_has_cap(ARM64_SSBS) && 2086 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2087 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2088 } 2089 } 2090 2091 static void cpu_hyp_reset(void) 2092 { 2093 if (!is_kernel_in_hyp_mode()) 2094 __hyp_reset_vectors(); 2095 } 2096 2097 /* 2098 * EL2 vectors can be mapped and rerouted in a number of ways, 2099 * depending on the kernel configuration and CPU present: 2100 * 2101 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2102 * placed in one of the vector slots, which is executed before jumping 2103 * to the real vectors. 2104 * 2105 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2106 * containing the hardening sequence is mapped next to the idmap page, 2107 * and executed before jumping to the real vectors. 2108 * 2109 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2110 * empty slot is selected, mapped next to the idmap page, and 2111 * executed before jumping to the real vectors. 2112 * 2113 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2114 * VHE, as we don't have hypervisor-specific mappings. If the system 2115 * is VHE and yet selects this capability, it will be ignored. 2116 */ 2117 static void cpu_set_hyp_vector(void) 2118 { 2119 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2120 void *vector = hyp_spectre_vector_selector[data->slot]; 2121 2122 if (!is_protected_kvm_enabled()) 2123 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2124 else 2125 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2126 } 2127 2128 static void cpu_hyp_init_context(void) 2129 { 2130 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2131 kvm_init_host_debug_data(); 2132 2133 if (!is_kernel_in_hyp_mode()) 2134 cpu_init_hyp_mode(); 2135 } 2136 2137 static void cpu_hyp_init_features(void) 2138 { 2139 cpu_set_hyp_vector(); 2140 2141 if (is_kernel_in_hyp_mode()) 2142 kvm_timer_init_vhe(); 2143 2144 if (vgic_present) 2145 kvm_vgic_init_cpu_hardware(); 2146 } 2147 2148 static void cpu_hyp_reinit(void) 2149 { 2150 cpu_hyp_reset(); 2151 cpu_hyp_init_context(); 2152 cpu_hyp_init_features(); 2153 } 2154 2155 static void cpu_hyp_init(void *discard) 2156 { 2157 if (!__this_cpu_read(kvm_hyp_initialized)) { 2158 cpu_hyp_reinit(); 2159 __this_cpu_write(kvm_hyp_initialized, 1); 2160 } 2161 } 2162 2163 static void cpu_hyp_uninit(void *discard) 2164 { 2165 if (__this_cpu_read(kvm_hyp_initialized)) { 2166 cpu_hyp_reset(); 2167 __this_cpu_write(kvm_hyp_initialized, 0); 2168 } 2169 } 2170 2171 int kvm_arch_enable_virtualization_cpu(void) 2172 { 2173 /* 2174 * Most calls to this function are made with migration 2175 * disabled, but not with preemption disabled. The former is 2176 * enough to ensure correctness, but most of the helpers 2177 * expect the later and will throw a tantrum otherwise. 2178 */ 2179 preempt_disable(); 2180 2181 cpu_hyp_init(NULL); 2182 2183 kvm_vgic_cpu_up(); 2184 kvm_timer_cpu_up(); 2185 2186 preempt_enable(); 2187 2188 return 0; 2189 } 2190 2191 void kvm_arch_disable_virtualization_cpu(void) 2192 { 2193 kvm_timer_cpu_down(); 2194 kvm_vgic_cpu_down(); 2195 2196 if (!is_protected_kvm_enabled()) 2197 cpu_hyp_uninit(NULL); 2198 } 2199 2200 #ifdef CONFIG_CPU_PM 2201 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2202 unsigned long cmd, 2203 void *v) 2204 { 2205 /* 2206 * kvm_hyp_initialized is left with its old value over 2207 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2208 * re-enable hyp. 2209 */ 2210 switch (cmd) { 2211 case CPU_PM_ENTER: 2212 if (__this_cpu_read(kvm_hyp_initialized)) 2213 /* 2214 * don't update kvm_hyp_initialized here 2215 * so that the hyp will be re-enabled 2216 * when we resume. See below. 2217 */ 2218 cpu_hyp_reset(); 2219 2220 return NOTIFY_OK; 2221 case CPU_PM_ENTER_FAILED: 2222 case CPU_PM_EXIT: 2223 if (__this_cpu_read(kvm_hyp_initialized)) 2224 /* The hyp was enabled before suspend. */ 2225 cpu_hyp_reinit(); 2226 2227 return NOTIFY_OK; 2228 2229 default: 2230 return NOTIFY_DONE; 2231 } 2232 } 2233 2234 static struct notifier_block hyp_init_cpu_pm_nb = { 2235 .notifier_call = hyp_init_cpu_pm_notifier, 2236 }; 2237 2238 static void __init hyp_cpu_pm_init(void) 2239 { 2240 if (!is_protected_kvm_enabled()) 2241 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2242 } 2243 static void __init hyp_cpu_pm_exit(void) 2244 { 2245 if (!is_protected_kvm_enabled()) 2246 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2247 } 2248 #else 2249 static inline void __init hyp_cpu_pm_init(void) 2250 { 2251 } 2252 static inline void __init hyp_cpu_pm_exit(void) 2253 { 2254 } 2255 #endif 2256 2257 static void __init init_cpu_logical_map(void) 2258 { 2259 unsigned int cpu; 2260 2261 /* 2262 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2263 * Only copy the set of online CPUs whose features have been checked 2264 * against the finalized system capabilities. The hypervisor will not 2265 * allow any other CPUs from the `possible` set to boot. 2266 */ 2267 for_each_online_cpu(cpu) 2268 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2269 } 2270 2271 #define init_psci_0_1_impl_state(config, what) \ 2272 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2273 2274 static bool __init init_psci_relay(void) 2275 { 2276 /* 2277 * If PSCI has not been initialized, protected KVM cannot install 2278 * itself on newly booted CPUs. 2279 */ 2280 if (!psci_ops.get_version) { 2281 kvm_err("Cannot initialize protected mode without PSCI\n"); 2282 return false; 2283 } 2284 2285 kvm_host_psci_config.version = psci_ops.get_version(); 2286 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2287 2288 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2289 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2290 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2291 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2292 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2293 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2294 } 2295 return true; 2296 } 2297 2298 static int __init init_subsystems(void) 2299 { 2300 int err = 0; 2301 2302 /* 2303 * Enable hardware so that subsystem initialisation can access EL2. 2304 */ 2305 on_each_cpu(cpu_hyp_init, NULL, 1); 2306 2307 /* 2308 * Register CPU lower-power notifier 2309 */ 2310 hyp_cpu_pm_init(); 2311 2312 /* 2313 * Init HYP view of VGIC 2314 */ 2315 err = kvm_vgic_hyp_init(); 2316 switch (err) { 2317 case 0: 2318 vgic_present = true; 2319 break; 2320 case -ENODEV: 2321 case -ENXIO: 2322 /* 2323 * No VGIC? No pKVM for you. 2324 * 2325 * Protected mode assumes that VGICv3 is present, so no point 2326 * in trying to hobble along if vgic initialization fails. 2327 */ 2328 if (is_protected_kvm_enabled()) 2329 goto out; 2330 2331 /* 2332 * Otherwise, userspace could choose to implement a GIC for its 2333 * guest on non-cooperative hardware. 2334 */ 2335 vgic_present = false; 2336 err = 0; 2337 break; 2338 default: 2339 goto out; 2340 } 2341 2342 if (kvm_mode == KVM_MODE_NV && 2343 !(vgic_present && kvm_vgic_global_state.type == VGIC_V3)) { 2344 kvm_err("NV support requires GICv3, giving up\n"); 2345 err = -EINVAL; 2346 goto out; 2347 } 2348 2349 /* 2350 * Init HYP architected timer support 2351 */ 2352 err = kvm_timer_hyp_init(vgic_present); 2353 if (err) 2354 goto out; 2355 2356 kvm_register_perf_callbacks(NULL); 2357 2358 out: 2359 if (err) 2360 hyp_cpu_pm_exit(); 2361 2362 if (err || !is_protected_kvm_enabled()) 2363 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2364 2365 return err; 2366 } 2367 2368 static void __init teardown_subsystems(void) 2369 { 2370 kvm_unregister_perf_callbacks(); 2371 hyp_cpu_pm_exit(); 2372 } 2373 2374 static void __init teardown_hyp_mode(void) 2375 { 2376 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2377 int cpu; 2378 2379 free_hyp_pgds(); 2380 for_each_possible_cpu(cpu) { 2381 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); 2382 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2383 2384 if (free_sve) { 2385 struct cpu_sve_state *sve_state; 2386 2387 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2388 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2389 } 2390 } 2391 } 2392 2393 static int __init do_pkvm_init(u32 hyp_va_bits) 2394 { 2395 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2396 int ret; 2397 2398 preempt_disable(); 2399 cpu_hyp_init_context(); 2400 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2401 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2402 hyp_va_bits); 2403 cpu_hyp_init_features(); 2404 2405 /* 2406 * The stub hypercalls are now disabled, so set our local flag to 2407 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2408 */ 2409 __this_cpu_write(kvm_hyp_initialized, 1); 2410 preempt_enable(); 2411 2412 return ret; 2413 } 2414 2415 static u64 get_hyp_id_aa64pfr0_el1(void) 2416 { 2417 /* 2418 * Track whether the system isn't affected by spectre/meltdown in the 2419 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2420 * Although this is per-CPU, we make it global for simplicity, e.g., not 2421 * to have to worry about vcpu migration. 2422 * 2423 * Unlike for non-protected VMs, userspace cannot override this for 2424 * protected VMs. 2425 */ 2426 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2427 2428 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2429 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2430 2431 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2432 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2433 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2434 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2435 2436 return val; 2437 } 2438 2439 static void kvm_hyp_init_symbols(void) 2440 { 2441 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2442 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2443 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2444 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2445 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2446 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2447 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2448 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2449 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2450 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2451 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2452 2453 /* 2454 * Flush entire BSS since part of its data containing init symbols is read 2455 * while the MMU is off. 2456 */ 2457 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start), 2458 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start)); 2459 } 2460 2461 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2462 { 2463 void *addr = phys_to_virt(hyp_mem_base); 2464 int ret; 2465 2466 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2467 if (ret) 2468 return ret; 2469 2470 ret = do_pkvm_init(hyp_va_bits); 2471 if (ret) 2472 return ret; 2473 2474 free_hyp_pgds(); 2475 2476 return 0; 2477 } 2478 2479 static int init_pkvm_host_sve_state(void) 2480 { 2481 int cpu; 2482 2483 if (!system_supports_sve()) 2484 return 0; 2485 2486 /* Allocate pages for host sve state in protected mode. */ 2487 for_each_possible_cpu(cpu) { 2488 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2489 2490 if (!page) 2491 return -ENOMEM; 2492 2493 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2494 } 2495 2496 /* 2497 * Don't map the pages in hyp since these are only used in protected 2498 * mode, which will (re)create its own mapping when initialized. 2499 */ 2500 2501 return 0; 2502 } 2503 2504 /* 2505 * Finalizes the initialization of hyp mode, once everything else is initialized 2506 * and the initialziation process cannot fail. 2507 */ 2508 static void finalize_init_hyp_mode(void) 2509 { 2510 int cpu; 2511 2512 if (system_supports_sve() && is_protected_kvm_enabled()) { 2513 for_each_possible_cpu(cpu) { 2514 struct cpu_sve_state *sve_state; 2515 2516 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2517 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2518 kern_hyp_va(sve_state); 2519 } 2520 } 2521 } 2522 2523 static void pkvm_hyp_init_ptrauth(void) 2524 { 2525 struct kvm_cpu_context *hyp_ctxt; 2526 int cpu; 2527 2528 for_each_possible_cpu(cpu) { 2529 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2530 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2531 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2532 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2533 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2534 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2535 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2536 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2537 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2538 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2539 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2540 } 2541 } 2542 2543 /* Inits Hyp-mode on all online CPUs */ 2544 static int __init init_hyp_mode(void) 2545 { 2546 u32 hyp_va_bits; 2547 int cpu; 2548 int err = -ENOMEM; 2549 2550 /* 2551 * The protected Hyp-mode cannot be initialized if the memory pool 2552 * allocation has failed. 2553 */ 2554 if (is_protected_kvm_enabled() && !hyp_mem_base) 2555 goto out_err; 2556 2557 /* 2558 * Allocate Hyp PGD and setup Hyp identity mapping 2559 */ 2560 err = kvm_mmu_init(&hyp_va_bits); 2561 if (err) 2562 goto out_err; 2563 2564 /* 2565 * Allocate stack pages for Hypervisor-mode 2566 */ 2567 for_each_possible_cpu(cpu) { 2568 unsigned long stack_base; 2569 2570 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); 2571 if (!stack_base) { 2572 err = -ENOMEM; 2573 goto out_err; 2574 } 2575 2576 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; 2577 } 2578 2579 /* 2580 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2581 */ 2582 for_each_possible_cpu(cpu) { 2583 struct page *page; 2584 void *page_addr; 2585 2586 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2587 if (!page) { 2588 err = -ENOMEM; 2589 goto out_err; 2590 } 2591 2592 page_addr = page_address(page); 2593 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2594 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2595 } 2596 2597 /* 2598 * Map the Hyp-code called directly from the host 2599 */ 2600 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2601 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2602 if (err) { 2603 kvm_err("Cannot map world-switch code\n"); 2604 goto out_err; 2605 } 2606 2607 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2608 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2609 if (err) { 2610 kvm_err("Cannot map .hyp.rodata section\n"); 2611 goto out_err; 2612 } 2613 2614 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2615 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2616 if (err) { 2617 kvm_err("Cannot map rodata section\n"); 2618 goto out_err; 2619 } 2620 2621 /* 2622 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2623 * section thanks to an assertion in the linker script. Map it RW and 2624 * the rest of .bss RO. 2625 */ 2626 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2627 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2628 if (err) { 2629 kvm_err("Cannot map hyp bss section: %d\n", err); 2630 goto out_err; 2631 } 2632 2633 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2634 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2635 if (err) { 2636 kvm_err("Cannot map bss section\n"); 2637 goto out_err; 2638 } 2639 2640 /* 2641 * Map the Hyp stack pages 2642 */ 2643 for_each_possible_cpu(cpu) { 2644 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2645 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); 2646 2647 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); 2648 if (err) { 2649 kvm_err("Cannot map hyp stack\n"); 2650 goto out_err; 2651 } 2652 2653 /* 2654 * Save the stack PA in nvhe_init_params. This will be needed 2655 * to recreate the stack mapping in protected nVHE mode. 2656 * __hyp_pa() won't do the right thing there, since the stack 2657 * has been mapped in the flexible private VA space. 2658 */ 2659 params->stack_pa = __pa(stack_base); 2660 } 2661 2662 for_each_possible_cpu(cpu) { 2663 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2664 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2665 2666 /* Map Hyp percpu pages */ 2667 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2668 if (err) { 2669 kvm_err("Cannot map hyp percpu region\n"); 2670 goto out_err; 2671 } 2672 2673 /* Prepare the CPU initialization parameters */ 2674 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2675 } 2676 2677 kvm_hyp_init_symbols(); 2678 2679 if (is_protected_kvm_enabled()) { 2680 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2681 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2682 pkvm_hyp_init_ptrauth(); 2683 2684 init_cpu_logical_map(); 2685 2686 if (!init_psci_relay()) { 2687 err = -ENODEV; 2688 goto out_err; 2689 } 2690 2691 err = init_pkvm_host_sve_state(); 2692 if (err) 2693 goto out_err; 2694 2695 err = kvm_hyp_init_protection(hyp_va_bits); 2696 if (err) { 2697 kvm_err("Failed to init hyp memory protection\n"); 2698 goto out_err; 2699 } 2700 } 2701 2702 return 0; 2703 2704 out_err: 2705 teardown_hyp_mode(); 2706 kvm_err("error initializing Hyp mode: %d\n", err); 2707 return err; 2708 } 2709 2710 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2711 { 2712 struct kvm_vcpu *vcpu = NULL; 2713 struct kvm_mpidr_data *data; 2714 unsigned long i; 2715 2716 mpidr &= MPIDR_HWID_BITMASK; 2717 2718 rcu_read_lock(); 2719 data = rcu_dereference(kvm->arch.mpidr_data); 2720 2721 if (data) { 2722 u16 idx = kvm_mpidr_index(data, mpidr); 2723 2724 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2725 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2726 vcpu = NULL; 2727 } 2728 2729 rcu_read_unlock(); 2730 2731 if (vcpu) 2732 return vcpu; 2733 2734 kvm_for_each_vcpu(i, vcpu, kvm) { 2735 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2736 return vcpu; 2737 } 2738 return NULL; 2739 } 2740 2741 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2742 { 2743 return irqchip_in_kernel(kvm); 2744 } 2745 2746 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2747 struct irq_bypass_producer *prod) 2748 { 2749 struct kvm_kernel_irqfd *irqfd = 2750 container_of(cons, struct kvm_kernel_irqfd, consumer); 2751 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2752 2753 /* 2754 * The only thing we have a chance of directly-injecting is LPIs. Maybe 2755 * one day... 2756 */ 2757 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2758 return 0; 2759 2760 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2761 &irqfd->irq_entry); 2762 } 2763 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2764 struct irq_bypass_producer *prod) 2765 { 2766 struct kvm_kernel_irqfd *irqfd = 2767 container_of(cons, struct kvm_kernel_irqfd, consumer); 2768 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2769 2770 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2771 return; 2772 2773 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2774 &irqfd->irq_entry); 2775 } 2776 2777 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2778 { 2779 struct kvm_kernel_irqfd *irqfd = 2780 container_of(cons, struct kvm_kernel_irqfd, consumer); 2781 2782 kvm_arm_halt_guest(irqfd->kvm); 2783 } 2784 2785 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2786 { 2787 struct kvm_kernel_irqfd *irqfd = 2788 container_of(cons, struct kvm_kernel_irqfd, consumer); 2789 2790 kvm_arm_resume_guest(irqfd->kvm); 2791 } 2792 2793 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2794 static __init int kvm_arm_init(void) 2795 { 2796 int err; 2797 bool in_hyp_mode; 2798 2799 if (!is_hyp_mode_available()) { 2800 kvm_info("HYP mode not available\n"); 2801 return -ENODEV; 2802 } 2803 2804 if (kvm_get_mode() == KVM_MODE_NONE) { 2805 kvm_info("KVM disabled from command line\n"); 2806 return -ENODEV; 2807 } 2808 2809 err = kvm_sys_reg_table_init(); 2810 if (err) { 2811 kvm_info("Error initializing system register tables"); 2812 return err; 2813 } 2814 2815 in_hyp_mode = is_kernel_in_hyp_mode(); 2816 2817 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2818 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2819 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2820 "Only trusted guests should be used on this system.\n"); 2821 2822 err = kvm_set_ipa_limit(); 2823 if (err) 2824 return err; 2825 2826 err = kvm_arm_init_sve(); 2827 if (err) 2828 return err; 2829 2830 err = kvm_arm_vmid_alloc_init(); 2831 if (err) { 2832 kvm_err("Failed to initialize VMID allocator.\n"); 2833 return err; 2834 } 2835 2836 if (!in_hyp_mode) { 2837 err = init_hyp_mode(); 2838 if (err) 2839 goto out_err; 2840 } 2841 2842 err = kvm_init_vector_slots(); 2843 if (err) { 2844 kvm_err("Cannot initialise vector slots\n"); 2845 goto out_hyp; 2846 } 2847 2848 err = init_subsystems(); 2849 if (err) 2850 goto out_hyp; 2851 2852 kvm_info("%s%sVHE%s mode initialized successfully\n", 2853 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2854 "Protected " : "Hyp "), 2855 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2856 "h" : "n"), 2857 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": ""); 2858 2859 /* 2860 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2861 * hypervisor protection is finalized. 2862 */ 2863 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2864 if (err) 2865 goto out_subs; 2866 2867 /* 2868 * This should be called after initialization is done and failure isn't 2869 * possible anymore. 2870 */ 2871 if (!in_hyp_mode) 2872 finalize_init_hyp_mode(); 2873 2874 kvm_arm_initialised = true; 2875 2876 return 0; 2877 2878 out_subs: 2879 teardown_subsystems(); 2880 out_hyp: 2881 if (!in_hyp_mode) 2882 teardown_hyp_mode(); 2883 out_err: 2884 kvm_arm_vmid_alloc_free(); 2885 return err; 2886 } 2887 2888 static int __init early_kvm_mode_cfg(char *arg) 2889 { 2890 if (!arg) 2891 return -EINVAL; 2892 2893 if (strcmp(arg, "none") == 0) { 2894 kvm_mode = KVM_MODE_NONE; 2895 return 0; 2896 } 2897 2898 if (!is_hyp_mode_available()) { 2899 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2900 return 0; 2901 } 2902 2903 if (strcmp(arg, "protected") == 0) { 2904 if (!is_kernel_in_hyp_mode()) 2905 kvm_mode = KVM_MODE_PROTECTED; 2906 else 2907 pr_warn_once("Protected KVM not available with VHE\n"); 2908 2909 return 0; 2910 } 2911 2912 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2913 kvm_mode = KVM_MODE_DEFAULT; 2914 return 0; 2915 } 2916 2917 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2918 kvm_mode = KVM_MODE_NV; 2919 return 0; 2920 } 2921 2922 return -EINVAL; 2923 } 2924 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2925 2926 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2927 { 2928 if (!arg) 2929 return -EINVAL; 2930 2931 if (strcmp(arg, "trap") == 0) { 2932 *p = KVM_WFX_TRAP; 2933 return 0; 2934 } 2935 2936 if (strcmp(arg, "notrap") == 0) { 2937 *p = KVM_WFX_NOTRAP; 2938 return 0; 2939 } 2940 2941 return -EINVAL; 2942 } 2943 2944 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2945 { 2946 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2947 } 2948 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2949 2950 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2951 { 2952 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2953 } 2954 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2955 2956 enum kvm_mode kvm_get_mode(void) 2957 { 2958 return kvm_mode; 2959 } 2960 2961 module_init(kvm_arm_init); 2962