1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 #include "sys_regs.h" 50 51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 52 53 enum kvm_wfx_trap_policy { 54 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 55 KVM_WFX_NOTRAP, 56 KVM_WFX_TRAP, 57 }; 58 59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 61 62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 63 64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 66 67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 68 69 static bool vgic_present, kvm_arm_initialised; 70 71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 72 73 bool is_kvm_arm_initialised(void) 74 { 75 return kvm_arm_initialised; 76 } 77 78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 79 { 80 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 81 } 82 83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 84 struct kvm_enable_cap *cap) 85 { 86 int r = -EINVAL; 87 88 if (cap->flags) 89 return -EINVAL; 90 91 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap)) 92 return -EINVAL; 93 94 switch (cap->cap) { 95 case KVM_CAP_ARM_NISV_TO_USER: 96 r = 0; 97 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 98 &kvm->arch.flags); 99 break; 100 case KVM_CAP_ARM_MTE: 101 mutex_lock(&kvm->lock); 102 if (system_supports_mte() && !kvm->created_vcpus) { 103 r = 0; 104 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 105 } 106 mutex_unlock(&kvm->lock); 107 break; 108 case KVM_CAP_ARM_SYSTEM_SUSPEND: 109 r = 0; 110 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 111 break; 112 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 113 mutex_lock(&kvm->slots_lock); 114 /* 115 * To keep things simple, allow changing the chunk 116 * size only when no memory slots have been created. 117 */ 118 if (kvm_are_all_memslots_empty(kvm)) { 119 u64 new_cap = cap->args[0]; 120 121 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 122 r = 0; 123 kvm->arch.mmu.split_page_chunk_size = new_cap; 124 } 125 } 126 mutex_unlock(&kvm->slots_lock); 127 break; 128 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 129 mutex_lock(&kvm->lock); 130 if (!kvm->created_vcpus) { 131 r = 0; 132 set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags); 133 } 134 mutex_unlock(&kvm->lock); 135 break; 136 default: 137 break; 138 } 139 140 return r; 141 } 142 143 static int kvm_arm_default_max_vcpus(void) 144 { 145 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 146 } 147 148 /** 149 * kvm_arch_init_vm - initializes a VM data structure 150 * @kvm: pointer to the KVM struct 151 * @type: kvm device type 152 */ 153 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 154 { 155 int ret; 156 157 mutex_init(&kvm->arch.config_lock); 158 159 #ifdef CONFIG_LOCKDEP 160 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 161 mutex_lock(&kvm->lock); 162 mutex_lock(&kvm->arch.config_lock); 163 mutex_unlock(&kvm->arch.config_lock); 164 mutex_unlock(&kvm->lock); 165 #endif 166 167 kvm_init_nested(kvm); 168 169 ret = kvm_share_hyp(kvm, kvm + 1); 170 if (ret) 171 return ret; 172 173 ret = pkvm_init_host_vm(kvm); 174 if (ret) 175 goto err_unshare_kvm; 176 177 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 178 ret = -ENOMEM; 179 goto err_unshare_kvm; 180 } 181 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 182 183 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 184 if (ret) 185 goto err_free_cpumask; 186 187 kvm_vgic_early_init(kvm); 188 189 kvm_timer_init_vm(kvm); 190 191 /* The maximum number of VCPUs is limited by the host's GIC model */ 192 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 193 194 kvm_arm_init_hypercalls(kvm); 195 196 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 197 198 return 0; 199 200 err_free_cpumask: 201 free_cpumask_var(kvm->arch.supported_cpus); 202 err_unshare_kvm: 203 kvm_unshare_hyp(kvm, kvm + 1); 204 return ret; 205 } 206 207 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 208 { 209 return VM_FAULT_SIGBUS; 210 } 211 212 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 213 { 214 kvm_sys_regs_create_debugfs(kvm); 215 kvm_s2_ptdump_create_debugfs(kvm); 216 } 217 218 static void kvm_destroy_mpidr_data(struct kvm *kvm) 219 { 220 struct kvm_mpidr_data *data; 221 222 mutex_lock(&kvm->arch.config_lock); 223 224 data = rcu_dereference_protected(kvm->arch.mpidr_data, 225 lockdep_is_held(&kvm->arch.config_lock)); 226 if (data) { 227 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 228 synchronize_rcu(); 229 kfree(data); 230 } 231 232 mutex_unlock(&kvm->arch.config_lock); 233 } 234 235 /** 236 * kvm_arch_destroy_vm - destroy the VM data structure 237 * @kvm: pointer to the KVM struct 238 */ 239 void kvm_arch_destroy_vm(struct kvm *kvm) 240 { 241 bitmap_free(kvm->arch.pmu_filter); 242 free_cpumask_var(kvm->arch.supported_cpus); 243 244 kvm_vgic_destroy(kvm); 245 246 if (is_protected_kvm_enabled()) 247 pkvm_destroy_hyp_vm(kvm); 248 249 kvm_destroy_mpidr_data(kvm); 250 251 kfree(kvm->arch.sysreg_masks); 252 kvm_destroy_vcpus(kvm); 253 254 kvm_unshare_hyp(kvm, kvm + 1); 255 256 kvm_arm_teardown_hypercalls(kvm); 257 } 258 259 static bool kvm_has_full_ptr_auth(void) 260 { 261 bool apa, gpa, api, gpi, apa3, gpa3; 262 u64 isar1, isar2, val; 263 264 /* 265 * Check that: 266 * 267 * - both Address and Generic auth are implemented for a given 268 * algorithm (Q5, IMPDEF or Q3) 269 * - only a single algorithm is implemented. 270 */ 271 if (!system_has_full_ptr_auth()) 272 return false; 273 274 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 275 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 276 277 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 278 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 279 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 280 281 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 282 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 283 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 284 285 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 286 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 287 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 288 289 return (apa == gpa && api == gpi && apa3 == gpa3 && 290 (apa + api + apa3) == 1); 291 } 292 293 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 294 { 295 int r; 296 297 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext)) 298 return 0; 299 300 switch (ext) { 301 case KVM_CAP_IRQCHIP: 302 r = vgic_present; 303 break; 304 case KVM_CAP_IOEVENTFD: 305 case KVM_CAP_USER_MEMORY: 306 case KVM_CAP_SYNC_MMU: 307 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 308 case KVM_CAP_ONE_REG: 309 case KVM_CAP_ARM_PSCI: 310 case KVM_CAP_ARM_PSCI_0_2: 311 case KVM_CAP_READONLY_MEM: 312 case KVM_CAP_MP_STATE: 313 case KVM_CAP_IMMEDIATE_EXIT: 314 case KVM_CAP_VCPU_EVENTS: 315 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 316 case KVM_CAP_ARM_NISV_TO_USER: 317 case KVM_CAP_ARM_INJECT_EXT_DABT: 318 case KVM_CAP_SET_GUEST_DEBUG: 319 case KVM_CAP_VCPU_ATTRIBUTES: 320 case KVM_CAP_PTP_KVM: 321 case KVM_CAP_ARM_SYSTEM_SUSPEND: 322 case KVM_CAP_IRQFD_RESAMPLE: 323 case KVM_CAP_COUNTER_OFFSET: 324 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 325 r = 1; 326 break; 327 case KVM_CAP_SET_GUEST_DEBUG2: 328 return KVM_GUESTDBG_VALID_MASK; 329 case KVM_CAP_ARM_SET_DEVICE_ADDR: 330 r = 1; 331 break; 332 case KVM_CAP_NR_VCPUS: 333 /* 334 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 335 * architectures, as it does not always bound it to 336 * KVM_CAP_MAX_VCPUS. It should not matter much because 337 * this is just an advisory value. 338 */ 339 r = min_t(unsigned int, num_online_cpus(), 340 kvm_arm_default_max_vcpus()); 341 break; 342 case KVM_CAP_MAX_VCPUS: 343 case KVM_CAP_MAX_VCPU_ID: 344 if (kvm) 345 r = kvm->max_vcpus; 346 else 347 r = kvm_arm_default_max_vcpus(); 348 break; 349 case KVM_CAP_MSI_DEVID: 350 if (!kvm) 351 r = -EINVAL; 352 else 353 r = kvm->arch.vgic.msis_require_devid; 354 break; 355 case KVM_CAP_ARM_USER_IRQ: 356 /* 357 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 358 * (bump this number if adding more devices) 359 */ 360 r = 1; 361 break; 362 case KVM_CAP_ARM_MTE: 363 r = system_supports_mte(); 364 break; 365 case KVM_CAP_STEAL_TIME: 366 r = kvm_arm_pvtime_supported(); 367 break; 368 case KVM_CAP_ARM_EL1_32BIT: 369 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 370 break; 371 case KVM_CAP_ARM_EL2: 372 r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT); 373 break; 374 case KVM_CAP_ARM_EL2_E2H0: 375 r = cpus_have_final_cap(ARM64_HAS_HCR_NV1); 376 break; 377 case KVM_CAP_GUEST_DEBUG_HW_BPS: 378 r = get_num_brps(); 379 break; 380 case KVM_CAP_GUEST_DEBUG_HW_WPS: 381 r = get_num_wrps(); 382 break; 383 case KVM_CAP_ARM_PMU_V3: 384 r = kvm_supports_guest_pmuv3(); 385 break; 386 case KVM_CAP_ARM_INJECT_SERROR_ESR: 387 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 388 break; 389 case KVM_CAP_ARM_VM_IPA_SIZE: 390 r = get_kvm_ipa_limit(); 391 break; 392 case KVM_CAP_ARM_SVE: 393 r = system_supports_sve(); 394 break; 395 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 396 case KVM_CAP_ARM_PTRAUTH_GENERIC: 397 r = kvm_has_full_ptr_auth(); 398 break; 399 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 400 if (kvm) 401 r = kvm->arch.mmu.split_page_chunk_size; 402 else 403 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 404 break; 405 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 406 r = kvm_supported_block_sizes(); 407 break; 408 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 409 r = BIT(0); 410 break; 411 default: 412 r = 0; 413 } 414 415 return r; 416 } 417 418 long kvm_arch_dev_ioctl(struct file *filp, 419 unsigned int ioctl, unsigned long arg) 420 { 421 return -EINVAL; 422 } 423 424 struct kvm *kvm_arch_alloc_vm(void) 425 { 426 size_t sz = sizeof(struct kvm); 427 428 if (!has_vhe()) 429 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 430 431 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 432 } 433 434 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 435 { 436 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 437 return -EBUSY; 438 439 if (id >= kvm->max_vcpus) 440 return -EINVAL; 441 442 return 0; 443 } 444 445 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 446 { 447 int err; 448 449 spin_lock_init(&vcpu->arch.mp_state_lock); 450 451 #ifdef CONFIG_LOCKDEP 452 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 453 mutex_lock(&vcpu->mutex); 454 mutex_lock(&vcpu->kvm->arch.config_lock); 455 mutex_unlock(&vcpu->kvm->arch.config_lock); 456 mutex_unlock(&vcpu->mutex); 457 #endif 458 459 /* Force users to call KVM_ARM_VCPU_INIT */ 460 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 461 462 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 463 464 /* Set up the timer */ 465 kvm_timer_vcpu_init(vcpu); 466 467 kvm_pmu_vcpu_init(vcpu); 468 469 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 470 471 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 472 473 /* 474 * This vCPU may have been created after mpidr_data was initialized. 475 * Throw out the pre-computed mappings if that is the case which forces 476 * KVM to fall back to iteratively searching the vCPUs. 477 */ 478 kvm_destroy_mpidr_data(vcpu->kvm); 479 480 err = kvm_vgic_vcpu_init(vcpu); 481 if (err) 482 return err; 483 484 err = kvm_share_hyp(vcpu, vcpu + 1); 485 if (err) 486 kvm_vgic_vcpu_destroy(vcpu); 487 488 return err; 489 } 490 491 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 492 { 493 } 494 495 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 496 { 497 if (!is_protected_kvm_enabled()) 498 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 499 else 500 free_hyp_memcache(&vcpu->arch.pkvm_memcache); 501 kvm_timer_vcpu_terminate(vcpu); 502 kvm_pmu_vcpu_destroy(vcpu); 503 kvm_vgic_vcpu_destroy(vcpu); 504 kvm_arm_vcpu_destroy(vcpu); 505 } 506 507 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 508 { 509 510 } 511 512 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 513 { 514 515 } 516 517 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 518 { 519 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 520 /* 521 * Either we're running an L2 guest, and the API/APK bits come 522 * from L1's HCR_EL2, or API/APK are both set. 523 */ 524 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 525 u64 val; 526 527 val = __vcpu_sys_reg(vcpu, HCR_EL2); 528 val &= (HCR_API | HCR_APK); 529 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 530 vcpu->arch.hcr_el2 |= val; 531 } else { 532 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 533 } 534 535 /* 536 * Save the host keys if there is any chance for the guest 537 * to use pauth, as the entry code will reload the guest 538 * keys in that case. 539 */ 540 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 541 struct kvm_cpu_context *ctxt; 542 543 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 544 ptrauth_save_keys(ctxt); 545 } 546 } 547 } 548 549 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 550 { 551 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 552 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 553 554 return single_task_running() && 555 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 556 vcpu->kvm->arch.vgic.nassgireq); 557 } 558 559 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 560 { 561 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 562 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 563 564 return single_task_running(); 565 } 566 567 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 568 { 569 struct kvm_s2_mmu *mmu; 570 int *last_ran; 571 572 if (is_protected_kvm_enabled()) 573 goto nommu; 574 575 if (vcpu_has_nv(vcpu)) 576 kvm_vcpu_load_hw_mmu(vcpu); 577 578 mmu = vcpu->arch.hw_mmu; 579 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 580 581 /* 582 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2, 583 * which happens eagerly in VHE. 584 * 585 * Also, the VMID allocator only preserves VMIDs that are active at the 586 * time of rollover, so KVM might need to grab a new VMID for the MMU if 587 * this is called from kvm_sched_in(). 588 */ 589 kvm_arm_vmid_update(&mmu->vmid); 590 591 /* 592 * We guarantee that both TLBs and I-cache are private to each 593 * vcpu. If detecting that a vcpu from the same VM has 594 * previously run on the same physical CPU, call into the 595 * hypervisor code to nuke the relevant contexts. 596 * 597 * We might get preempted before the vCPU actually runs, but 598 * over-invalidation doesn't affect correctness. 599 */ 600 if (*last_ran != vcpu->vcpu_idx) { 601 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 602 *last_ran = vcpu->vcpu_idx; 603 } 604 605 nommu: 606 vcpu->cpu = cpu; 607 608 /* 609 * The timer must be loaded before the vgic to correctly set up physical 610 * interrupt deactivation in nested state (e.g. timer interrupt). 611 */ 612 kvm_timer_vcpu_load(vcpu); 613 kvm_vgic_load(vcpu); 614 kvm_vcpu_load_debug(vcpu); 615 if (has_vhe()) 616 kvm_vcpu_load_vhe(vcpu); 617 kvm_arch_vcpu_load_fp(vcpu); 618 kvm_vcpu_pmu_restore_guest(vcpu); 619 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 620 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 621 622 if (kvm_vcpu_should_clear_twe(vcpu)) 623 vcpu->arch.hcr_el2 &= ~HCR_TWE; 624 else 625 vcpu->arch.hcr_el2 |= HCR_TWE; 626 627 if (kvm_vcpu_should_clear_twi(vcpu)) 628 vcpu->arch.hcr_el2 &= ~HCR_TWI; 629 else 630 vcpu->arch.hcr_el2 |= HCR_TWI; 631 632 vcpu_set_pauth_traps(vcpu); 633 634 if (is_protected_kvm_enabled()) { 635 kvm_call_hyp_nvhe(__pkvm_vcpu_load, 636 vcpu->kvm->arch.pkvm.handle, 637 vcpu->vcpu_idx, vcpu->arch.hcr_el2); 638 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, 639 &vcpu->arch.vgic_cpu.vgic_v3); 640 } 641 642 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 643 vcpu_set_on_unsupported_cpu(vcpu); 644 } 645 646 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 647 { 648 if (is_protected_kvm_enabled()) { 649 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, 650 &vcpu->arch.vgic_cpu.vgic_v3); 651 kvm_call_hyp_nvhe(__pkvm_vcpu_put); 652 } 653 654 kvm_vcpu_put_debug(vcpu); 655 kvm_arch_vcpu_put_fp(vcpu); 656 if (has_vhe()) 657 kvm_vcpu_put_vhe(vcpu); 658 kvm_timer_vcpu_put(vcpu); 659 kvm_vgic_put(vcpu); 660 kvm_vcpu_pmu_restore_host(vcpu); 661 if (vcpu_has_nv(vcpu)) 662 kvm_vcpu_put_hw_mmu(vcpu); 663 kvm_arm_vmid_clear_active(); 664 665 vcpu_clear_on_unsupported_cpu(vcpu); 666 vcpu->cpu = -1; 667 } 668 669 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 670 { 671 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 672 kvm_make_request(KVM_REQ_SLEEP, vcpu); 673 kvm_vcpu_kick(vcpu); 674 } 675 676 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 677 { 678 spin_lock(&vcpu->arch.mp_state_lock); 679 __kvm_arm_vcpu_power_off(vcpu); 680 spin_unlock(&vcpu->arch.mp_state_lock); 681 } 682 683 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 684 { 685 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 686 } 687 688 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 689 { 690 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 691 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 692 kvm_vcpu_kick(vcpu); 693 } 694 695 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 696 { 697 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 698 } 699 700 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 701 struct kvm_mp_state *mp_state) 702 { 703 *mp_state = READ_ONCE(vcpu->arch.mp_state); 704 705 return 0; 706 } 707 708 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 709 struct kvm_mp_state *mp_state) 710 { 711 int ret = 0; 712 713 spin_lock(&vcpu->arch.mp_state_lock); 714 715 switch (mp_state->mp_state) { 716 case KVM_MP_STATE_RUNNABLE: 717 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 718 break; 719 case KVM_MP_STATE_STOPPED: 720 __kvm_arm_vcpu_power_off(vcpu); 721 break; 722 case KVM_MP_STATE_SUSPENDED: 723 kvm_arm_vcpu_suspend(vcpu); 724 break; 725 default: 726 ret = -EINVAL; 727 } 728 729 spin_unlock(&vcpu->arch.mp_state_lock); 730 731 return ret; 732 } 733 734 /** 735 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 736 * @v: The VCPU pointer 737 * 738 * If the guest CPU is not waiting for interrupts or an interrupt line is 739 * asserted, the CPU is by definition runnable. 740 */ 741 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 742 { 743 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 744 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 745 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 746 } 747 748 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 749 { 750 return vcpu_mode_priv(vcpu); 751 } 752 753 #ifdef CONFIG_GUEST_PERF_EVENTS 754 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 755 { 756 return *vcpu_pc(vcpu); 757 } 758 #endif 759 760 static void kvm_init_mpidr_data(struct kvm *kvm) 761 { 762 struct kvm_mpidr_data *data = NULL; 763 unsigned long c, mask, nr_entries; 764 u64 aff_set = 0, aff_clr = ~0UL; 765 struct kvm_vcpu *vcpu; 766 767 mutex_lock(&kvm->arch.config_lock); 768 769 if (rcu_access_pointer(kvm->arch.mpidr_data) || 770 atomic_read(&kvm->online_vcpus) == 1) 771 goto out; 772 773 kvm_for_each_vcpu(c, vcpu, kvm) { 774 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 775 aff_set |= aff; 776 aff_clr &= aff; 777 } 778 779 /* 780 * A significant bit can be either 0 or 1, and will only appear in 781 * aff_set. Use aff_clr to weed out the useless stuff. 782 */ 783 mask = aff_set ^ aff_clr; 784 nr_entries = BIT_ULL(hweight_long(mask)); 785 786 /* 787 * Don't let userspace fool us. If we need more than a single page 788 * to describe the compressed MPIDR array, just fall back to the 789 * iterative method. Single vcpu VMs do not need this either. 790 */ 791 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 792 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 793 GFP_KERNEL_ACCOUNT); 794 795 if (!data) 796 goto out; 797 798 data->mpidr_mask = mask; 799 800 kvm_for_each_vcpu(c, vcpu, kvm) { 801 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 802 u16 index = kvm_mpidr_index(data, aff); 803 804 data->cmpidr_to_idx[index] = c; 805 } 806 807 rcu_assign_pointer(kvm->arch.mpidr_data, data); 808 out: 809 mutex_unlock(&kvm->arch.config_lock); 810 } 811 812 /* 813 * Handle both the initialisation that is being done when the vcpu is 814 * run for the first time, as well as the updates that must be 815 * performed each time we get a new thread dealing with this vcpu. 816 */ 817 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 818 { 819 struct kvm *kvm = vcpu->kvm; 820 int ret; 821 822 if (!kvm_vcpu_initialized(vcpu)) 823 return -ENOEXEC; 824 825 if (!kvm_arm_vcpu_is_finalized(vcpu)) 826 return -EPERM; 827 828 ret = kvm_arch_vcpu_run_map_fp(vcpu); 829 if (ret) 830 return ret; 831 832 if (likely(vcpu_has_run_once(vcpu))) 833 return 0; 834 835 kvm_init_mpidr_data(kvm); 836 837 if (likely(irqchip_in_kernel(kvm))) { 838 /* 839 * Map the VGIC hardware resources before running a vcpu the 840 * first time on this VM. 841 */ 842 ret = kvm_vgic_map_resources(kvm); 843 if (ret) 844 return ret; 845 } 846 847 ret = kvm_finalize_sys_regs(vcpu); 848 if (ret) 849 return ret; 850 851 if (vcpu_has_nv(vcpu)) { 852 ret = kvm_vcpu_allocate_vncr_tlb(vcpu); 853 if (ret) 854 return ret; 855 856 ret = kvm_vgic_vcpu_nv_init(vcpu); 857 if (ret) 858 return ret; 859 } 860 861 /* 862 * This needs to happen after any restriction has been applied 863 * to the feature set. 864 */ 865 kvm_calculate_traps(vcpu); 866 867 ret = kvm_timer_enable(vcpu); 868 if (ret) 869 return ret; 870 871 if (kvm_vcpu_has_pmu(vcpu)) { 872 ret = kvm_arm_pmu_v3_enable(vcpu); 873 if (ret) 874 return ret; 875 } 876 877 if (is_protected_kvm_enabled()) { 878 ret = pkvm_create_hyp_vm(kvm); 879 if (ret) 880 return ret; 881 882 ret = pkvm_create_hyp_vcpu(vcpu); 883 if (ret) 884 return ret; 885 } 886 887 mutex_lock(&kvm->arch.config_lock); 888 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 889 mutex_unlock(&kvm->arch.config_lock); 890 891 return ret; 892 } 893 894 bool kvm_arch_intc_initialized(struct kvm *kvm) 895 { 896 return vgic_initialized(kvm); 897 } 898 899 void kvm_arm_halt_guest(struct kvm *kvm) 900 { 901 unsigned long i; 902 struct kvm_vcpu *vcpu; 903 904 kvm_for_each_vcpu(i, vcpu, kvm) 905 vcpu->arch.pause = true; 906 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 907 } 908 909 void kvm_arm_resume_guest(struct kvm *kvm) 910 { 911 unsigned long i; 912 struct kvm_vcpu *vcpu; 913 914 kvm_for_each_vcpu(i, vcpu, kvm) { 915 vcpu->arch.pause = false; 916 __kvm_vcpu_wake_up(vcpu); 917 } 918 } 919 920 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 921 { 922 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 923 924 rcuwait_wait_event(wait, 925 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 926 TASK_INTERRUPTIBLE); 927 928 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 929 /* Awaken to handle a signal, request we sleep again later. */ 930 kvm_make_request(KVM_REQ_SLEEP, vcpu); 931 } 932 933 /* 934 * Make sure we will observe a potential reset request if we've 935 * observed a change to the power state. Pairs with the smp_wmb() in 936 * kvm_psci_vcpu_on(). 937 */ 938 smp_rmb(); 939 } 940 941 /** 942 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 943 * @vcpu: The VCPU pointer 944 * 945 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 946 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 947 * on when a wake event arrives, e.g. there may already be a pending wake event. 948 */ 949 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 950 { 951 /* 952 * Sync back the state of the GIC CPU interface so that we have 953 * the latest PMR and group enables. This ensures that 954 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 955 * we have pending interrupts, e.g. when determining if the 956 * vCPU should block. 957 * 958 * For the same reason, we want to tell GICv4 that we need 959 * doorbells to be signalled, should an interrupt become pending. 960 */ 961 preempt_disable(); 962 vcpu_set_flag(vcpu, IN_WFI); 963 kvm_vgic_put(vcpu); 964 preempt_enable(); 965 966 kvm_vcpu_halt(vcpu); 967 vcpu_clear_flag(vcpu, IN_WFIT); 968 969 preempt_disable(); 970 vcpu_clear_flag(vcpu, IN_WFI); 971 kvm_vgic_load(vcpu); 972 preempt_enable(); 973 } 974 975 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 976 { 977 if (!kvm_arm_vcpu_suspended(vcpu)) 978 return 1; 979 980 kvm_vcpu_wfi(vcpu); 981 982 /* 983 * The suspend state is sticky; we do not leave it until userspace 984 * explicitly marks the vCPU as runnable. Request that we suspend again 985 * later. 986 */ 987 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 988 989 /* 990 * Check to make sure the vCPU is actually runnable. If so, exit to 991 * userspace informing it of the wakeup condition. 992 */ 993 if (kvm_arch_vcpu_runnable(vcpu)) { 994 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 995 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 996 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 997 return 0; 998 } 999 1000 /* 1001 * Otherwise, we were unblocked to process a different event, such as a 1002 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 1003 * process the event. 1004 */ 1005 return 1; 1006 } 1007 1008 /** 1009 * check_vcpu_requests - check and handle pending vCPU requests 1010 * @vcpu: the VCPU pointer 1011 * 1012 * Return: 1 if we should enter the guest 1013 * 0 if we should exit to userspace 1014 * < 0 if we should exit to userspace, where the return value indicates 1015 * an error 1016 */ 1017 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 1018 { 1019 if (kvm_request_pending(vcpu)) { 1020 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 1021 return -EIO; 1022 1023 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1024 kvm_vcpu_sleep(vcpu); 1025 1026 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1027 kvm_reset_vcpu(vcpu); 1028 1029 /* 1030 * Clear IRQ_PENDING requests that were made to guarantee 1031 * that a VCPU sees new virtual interrupts. 1032 */ 1033 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1034 1035 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1036 kvm_update_stolen_time(vcpu); 1037 1038 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1039 /* The distributor enable bits were changed */ 1040 preempt_disable(); 1041 vgic_v4_put(vcpu); 1042 vgic_v4_load(vcpu); 1043 preempt_enable(); 1044 } 1045 1046 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1047 kvm_vcpu_reload_pmu(vcpu); 1048 1049 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1050 kvm_vcpu_pmu_restore_guest(vcpu); 1051 1052 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1053 return kvm_vcpu_suspend(vcpu); 1054 1055 if (kvm_dirty_ring_check_request(vcpu)) 1056 return 0; 1057 1058 check_nested_vcpu_requests(vcpu); 1059 } 1060 1061 return 1; 1062 } 1063 1064 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1065 { 1066 if (likely(!vcpu_mode_is_32bit(vcpu))) 1067 return false; 1068 1069 if (vcpu_has_nv(vcpu)) 1070 return true; 1071 1072 return !kvm_supports_32bit_el0(); 1073 } 1074 1075 /** 1076 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1077 * @vcpu: The VCPU pointer 1078 * @ret: Pointer to write optional return code 1079 * 1080 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1081 * and skip guest entry. 1082 * 1083 * This function disambiguates between two different types of exits: exits to a 1084 * preemptible + interruptible kernel context and exits to userspace. For an 1085 * exit to userspace, this function will write the return code to ret and return 1086 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1087 * for pending work and re-enter), return true without writing to ret. 1088 */ 1089 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1090 { 1091 struct kvm_run *run = vcpu->run; 1092 1093 /* 1094 * If we're using a userspace irqchip, then check if we need 1095 * to tell a userspace irqchip about timer or PMU level 1096 * changes and if so, exit to userspace (the actual level 1097 * state gets updated in kvm_timer_update_run and 1098 * kvm_pmu_update_run below). 1099 */ 1100 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1101 if (kvm_timer_should_notify_user(vcpu) || 1102 kvm_pmu_should_notify_user(vcpu)) { 1103 *ret = -EINTR; 1104 run->exit_reason = KVM_EXIT_INTR; 1105 return true; 1106 } 1107 } 1108 1109 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1110 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1111 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1112 run->fail_entry.cpu = smp_processor_id(); 1113 *ret = 0; 1114 return true; 1115 } 1116 1117 return kvm_request_pending(vcpu) || 1118 xfer_to_guest_mode_work_pending(); 1119 } 1120 1121 /* 1122 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1123 * the vCPU is running. 1124 * 1125 * This must be noinstr as instrumentation may make use of RCU, and this is not 1126 * safe during the EQS. 1127 */ 1128 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1129 { 1130 int ret; 1131 1132 guest_state_enter_irqoff(); 1133 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1134 guest_state_exit_irqoff(); 1135 1136 return ret; 1137 } 1138 1139 /** 1140 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1141 * @vcpu: The VCPU pointer 1142 * 1143 * This function is called through the VCPU_RUN ioctl called from user space. It 1144 * will execute VM code in a loop until the time slice for the process is used 1145 * or some emulation is needed from user space in which case the function will 1146 * return with return value 0 and with the kvm_run structure filled in with the 1147 * required data for the requested emulation. 1148 */ 1149 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1150 { 1151 struct kvm_run *run = vcpu->run; 1152 int ret; 1153 1154 if (run->exit_reason == KVM_EXIT_MMIO) { 1155 ret = kvm_handle_mmio_return(vcpu); 1156 if (ret <= 0) 1157 return ret; 1158 } 1159 1160 vcpu_load(vcpu); 1161 1162 if (!vcpu->wants_to_run) { 1163 ret = -EINTR; 1164 goto out; 1165 } 1166 1167 kvm_sigset_activate(vcpu); 1168 1169 ret = 1; 1170 run->exit_reason = KVM_EXIT_UNKNOWN; 1171 run->flags = 0; 1172 while (ret > 0) { 1173 /* 1174 * Check conditions before entering the guest 1175 */ 1176 ret = xfer_to_guest_mode_handle_work(vcpu); 1177 if (!ret) 1178 ret = 1; 1179 1180 if (ret > 0) 1181 ret = check_vcpu_requests(vcpu); 1182 1183 /* 1184 * Preparing the interrupts to be injected also 1185 * involves poking the GIC, which must be done in a 1186 * non-preemptible context. 1187 */ 1188 preempt_disable(); 1189 1190 if (kvm_vcpu_has_pmu(vcpu)) 1191 kvm_pmu_flush_hwstate(vcpu); 1192 1193 local_irq_disable(); 1194 1195 kvm_vgic_flush_hwstate(vcpu); 1196 1197 kvm_pmu_update_vcpu_events(vcpu); 1198 1199 /* 1200 * Ensure we set mode to IN_GUEST_MODE after we disable 1201 * interrupts and before the final VCPU requests check. 1202 * See the comment in kvm_vcpu_exiting_guest_mode() and 1203 * Documentation/virt/kvm/vcpu-requests.rst 1204 */ 1205 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1206 1207 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1208 vcpu->mode = OUTSIDE_GUEST_MODE; 1209 isb(); /* Ensure work in x_flush_hwstate is committed */ 1210 if (kvm_vcpu_has_pmu(vcpu)) 1211 kvm_pmu_sync_hwstate(vcpu); 1212 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1213 kvm_timer_sync_user(vcpu); 1214 kvm_vgic_sync_hwstate(vcpu); 1215 local_irq_enable(); 1216 preempt_enable(); 1217 continue; 1218 } 1219 1220 kvm_arch_vcpu_ctxflush_fp(vcpu); 1221 1222 /************************************************************** 1223 * Enter the guest 1224 */ 1225 trace_kvm_entry(*vcpu_pc(vcpu)); 1226 guest_timing_enter_irqoff(); 1227 1228 ret = kvm_arm_vcpu_enter_exit(vcpu); 1229 1230 vcpu->mode = OUTSIDE_GUEST_MODE; 1231 vcpu->stat.exits++; 1232 /* 1233 * Back from guest 1234 *************************************************************/ 1235 1236 /* 1237 * We must sync the PMU state before the vgic state so 1238 * that the vgic can properly sample the updated state of the 1239 * interrupt line. 1240 */ 1241 if (kvm_vcpu_has_pmu(vcpu)) 1242 kvm_pmu_sync_hwstate(vcpu); 1243 1244 /* 1245 * Sync the vgic state before syncing the timer state because 1246 * the timer code needs to know if the virtual timer 1247 * interrupts are active. 1248 */ 1249 kvm_vgic_sync_hwstate(vcpu); 1250 1251 /* 1252 * Sync the timer hardware state before enabling interrupts as 1253 * we don't want vtimer interrupts to race with syncing the 1254 * timer virtual interrupt state. 1255 */ 1256 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1257 kvm_timer_sync_user(vcpu); 1258 1259 if (is_hyp_ctxt(vcpu)) 1260 kvm_timer_sync_nested(vcpu); 1261 1262 kvm_arch_vcpu_ctxsync_fp(vcpu); 1263 1264 /* 1265 * We must ensure that any pending interrupts are taken before 1266 * we exit guest timing so that timer ticks are accounted as 1267 * guest time. Transiently unmask interrupts so that any 1268 * pending interrupts are taken. 1269 * 1270 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1271 * context synchronization event) is necessary to ensure that 1272 * pending interrupts are taken. 1273 */ 1274 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1275 local_irq_enable(); 1276 isb(); 1277 local_irq_disable(); 1278 } 1279 1280 guest_timing_exit_irqoff(); 1281 1282 local_irq_enable(); 1283 1284 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1285 1286 /* Exit types that need handling before we can be preempted */ 1287 handle_exit_early(vcpu, ret); 1288 1289 preempt_enable(); 1290 1291 /* 1292 * The ARMv8 architecture doesn't give the hypervisor 1293 * a mechanism to prevent a guest from dropping to AArch32 EL0 1294 * if implemented by the CPU. If we spot the guest in such 1295 * state and that we decided it wasn't supposed to do so (like 1296 * with the asymmetric AArch32 case), return to userspace with 1297 * a fatal error. 1298 */ 1299 if (vcpu_mode_is_bad_32bit(vcpu)) { 1300 /* 1301 * As we have caught the guest red-handed, decide that 1302 * it isn't fit for purpose anymore by making the vcpu 1303 * invalid. The VMM can try and fix it by issuing a 1304 * KVM_ARM_VCPU_INIT if it really wants to. 1305 */ 1306 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1307 ret = ARM_EXCEPTION_IL; 1308 } 1309 1310 ret = handle_exit(vcpu, ret); 1311 } 1312 1313 /* Tell userspace about in-kernel device output levels */ 1314 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1315 kvm_timer_update_run(vcpu); 1316 kvm_pmu_update_run(vcpu); 1317 } 1318 1319 kvm_sigset_deactivate(vcpu); 1320 1321 out: 1322 /* 1323 * In the unlikely event that we are returning to userspace 1324 * with pending exceptions or PC adjustment, commit these 1325 * adjustments in order to give userspace a consistent view of 1326 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1327 * being preempt-safe on VHE. 1328 */ 1329 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1330 vcpu_get_flag(vcpu, INCREMENT_PC))) 1331 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1332 1333 vcpu_put(vcpu); 1334 return ret; 1335 } 1336 1337 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1338 { 1339 int bit_index; 1340 bool set; 1341 unsigned long *hcr; 1342 1343 if (number == KVM_ARM_IRQ_CPU_IRQ) 1344 bit_index = __ffs(HCR_VI); 1345 else /* KVM_ARM_IRQ_CPU_FIQ */ 1346 bit_index = __ffs(HCR_VF); 1347 1348 hcr = vcpu_hcr(vcpu); 1349 if (level) 1350 set = test_and_set_bit(bit_index, hcr); 1351 else 1352 set = test_and_clear_bit(bit_index, hcr); 1353 1354 /* 1355 * If we didn't change anything, no need to wake up or kick other CPUs 1356 */ 1357 if (set == level) 1358 return 0; 1359 1360 /* 1361 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1362 * trigger a world-switch round on the running physical CPU to set the 1363 * virtual IRQ/FIQ fields in the HCR appropriately. 1364 */ 1365 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1366 kvm_vcpu_kick(vcpu); 1367 1368 return 0; 1369 } 1370 1371 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1372 bool line_status) 1373 { 1374 u32 irq = irq_level->irq; 1375 unsigned int irq_type, vcpu_id, irq_num; 1376 struct kvm_vcpu *vcpu = NULL; 1377 bool level = irq_level->level; 1378 1379 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1380 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1381 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1382 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1383 1384 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1385 1386 switch (irq_type) { 1387 case KVM_ARM_IRQ_TYPE_CPU: 1388 if (irqchip_in_kernel(kvm)) 1389 return -ENXIO; 1390 1391 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1392 if (!vcpu) 1393 return -EINVAL; 1394 1395 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1396 return -EINVAL; 1397 1398 return vcpu_interrupt_line(vcpu, irq_num, level); 1399 case KVM_ARM_IRQ_TYPE_PPI: 1400 if (!irqchip_in_kernel(kvm)) 1401 return -ENXIO; 1402 1403 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1404 if (!vcpu) 1405 return -EINVAL; 1406 1407 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1408 return -EINVAL; 1409 1410 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1411 case KVM_ARM_IRQ_TYPE_SPI: 1412 if (!irqchip_in_kernel(kvm)) 1413 return -ENXIO; 1414 1415 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1416 return -EINVAL; 1417 1418 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1419 } 1420 1421 return -EINVAL; 1422 } 1423 1424 static unsigned long system_supported_vcpu_features(void) 1425 { 1426 unsigned long features = KVM_VCPU_VALID_FEATURES; 1427 1428 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1429 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1430 1431 if (!kvm_supports_guest_pmuv3()) 1432 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1433 1434 if (!system_supports_sve()) 1435 clear_bit(KVM_ARM_VCPU_SVE, &features); 1436 1437 if (!kvm_has_full_ptr_auth()) { 1438 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1439 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1440 } 1441 1442 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1443 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1444 1445 return features; 1446 } 1447 1448 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1449 const struct kvm_vcpu_init *init) 1450 { 1451 unsigned long features = init->features[0]; 1452 int i; 1453 1454 if (features & ~KVM_VCPU_VALID_FEATURES) 1455 return -ENOENT; 1456 1457 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1458 if (init->features[i]) 1459 return -ENOENT; 1460 } 1461 1462 if (features & ~system_supported_vcpu_features()) 1463 return -EINVAL; 1464 1465 /* 1466 * For now make sure that both address/generic pointer authentication 1467 * features are requested by the userspace together. 1468 */ 1469 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1470 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1471 return -EINVAL; 1472 1473 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1474 return 0; 1475 1476 /* MTE is incompatible with AArch32 */ 1477 if (kvm_has_mte(vcpu->kvm)) 1478 return -EINVAL; 1479 1480 /* NV is incompatible with AArch32 */ 1481 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1482 return -EINVAL; 1483 1484 return 0; 1485 } 1486 1487 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1488 const struct kvm_vcpu_init *init) 1489 { 1490 unsigned long features = init->features[0]; 1491 1492 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1493 KVM_VCPU_MAX_FEATURES); 1494 } 1495 1496 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1497 { 1498 struct kvm *kvm = vcpu->kvm; 1499 int ret = 0; 1500 1501 /* 1502 * When the vCPU has a PMU, but no PMU is set for the guest 1503 * yet, set the default one. 1504 */ 1505 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1506 ret = kvm_arm_set_default_pmu(kvm); 1507 1508 /* Prepare for nested if required */ 1509 if (!ret && vcpu_has_nv(vcpu)) 1510 ret = kvm_vcpu_init_nested(vcpu); 1511 1512 return ret; 1513 } 1514 1515 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1516 const struct kvm_vcpu_init *init) 1517 { 1518 unsigned long features = init->features[0]; 1519 struct kvm *kvm = vcpu->kvm; 1520 int ret = -EINVAL; 1521 1522 mutex_lock(&kvm->arch.config_lock); 1523 1524 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1525 kvm_vcpu_init_changed(vcpu, init)) 1526 goto out_unlock; 1527 1528 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1529 1530 ret = kvm_setup_vcpu(vcpu); 1531 if (ret) 1532 goto out_unlock; 1533 1534 /* Now we know what it is, we can reset it. */ 1535 kvm_reset_vcpu(vcpu); 1536 1537 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1538 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1539 ret = 0; 1540 out_unlock: 1541 mutex_unlock(&kvm->arch.config_lock); 1542 return ret; 1543 } 1544 1545 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1546 const struct kvm_vcpu_init *init) 1547 { 1548 int ret; 1549 1550 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1551 init->target != kvm_target_cpu()) 1552 return -EINVAL; 1553 1554 ret = kvm_vcpu_init_check_features(vcpu, init); 1555 if (ret) 1556 return ret; 1557 1558 if (!kvm_vcpu_initialized(vcpu)) 1559 return __kvm_vcpu_set_target(vcpu, init); 1560 1561 if (kvm_vcpu_init_changed(vcpu, init)) 1562 return -EINVAL; 1563 1564 kvm_reset_vcpu(vcpu); 1565 return 0; 1566 } 1567 1568 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1569 struct kvm_vcpu_init *init) 1570 { 1571 bool power_off = false; 1572 int ret; 1573 1574 /* 1575 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1576 * reflecting it in the finalized feature set, thus limiting its scope 1577 * to a single KVM_ARM_VCPU_INIT call. 1578 */ 1579 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1580 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1581 power_off = true; 1582 } 1583 1584 ret = kvm_vcpu_set_target(vcpu, init); 1585 if (ret) 1586 return ret; 1587 1588 /* 1589 * Ensure a rebooted VM will fault in RAM pages and detect if the 1590 * guest MMU is turned off and flush the caches as needed. 1591 * 1592 * S2FWB enforces all memory accesses to RAM being cacheable, 1593 * ensuring that the data side is always coherent. We still 1594 * need to invalidate the I-cache though, as FWB does *not* 1595 * imply CTR_EL0.DIC. 1596 */ 1597 if (vcpu_has_run_once(vcpu)) { 1598 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1599 stage2_unmap_vm(vcpu->kvm); 1600 else 1601 icache_inval_all_pou(); 1602 } 1603 1604 vcpu_reset_hcr(vcpu); 1605 1606 /* 1607 * Handle the "start in power-off" case. 1608 */ 1609 spin_lock(&vcpu->arch.mp_state_lock); 1610 1611 if (power_off) 1612 __kvm_arm_vcpu_power_off(vcpu); 1613 else 1614 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1615 1616 spin_unlock(&vcpu->arch.mp_state_lock); 1617 1618 return 0; 1619 } 1620 1621 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1622 struct kvm_device_attr *attr) 1623 { 1624 int ret = -ENXIO; 1625 1626 switch (attr->group) { 1627 default: 1628 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1629 break; 1630 } 1631 1632 return ret; 1633 } 1634 1635 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1636 struct kvm_device_attr *attr) 1637 { 1638 int ret = -ENXIO; 1639 1640 switch (attr->group) { 1641 default: 1642 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1643 break; 1644 } 1645 1646 return ret; 1647 } 1648 1649 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1650 struct kvm_device_attr *attr) 1651 { 1652 int ret = -ENXIO; 1653 1654 switch (attr->group) { 1655 default: 1656 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1657 break; 1658 } 1659 1660 return ret; 1661 } 1662 1663 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1664 struct kvm_vcpu_events *events) 1665 { 1666 memset(events, 0, sizeof(*events)); 1667 1668 return __kvm_arm_vcpu_get_events(vcpu, events); 1669 } 1670 1671 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1672 struct kvm_vcpu_events *events) 1673 { 1674 int i; 1675 1676 /* check whether the reserved field is zero */ 1677 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1678 if (events->reserved[i]) 1679 return -EINVAL; 1680 1681 /* check whether the pad field is zero */ 1682 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1683 if (events->exception.pad[i]) 1684 return -EINVAL; 1685 1686 return __kvm_arm_vcpu_set_events(vcpu, events); 1687 } 1688 1689 long kvm_arch_vcpu_ioctl(struct file *filp, 1690 unsigned int ioctl, unsigned long arg) 1691 { 1692 struct kvm_vcpu *vcpu = filp->private_data; 1693 void __user *argp = (void __user *)arg; 1694 struct kvm_device_attr attr; 1695 long r; 1696 1697 switch (ioctl) { 1698 case KVM_ARM_VCPU_INIT: { 1699 struct kvm_vcpu_init init; 1700 1701 r = -EFAULT; 1702 if (copy_from_user(&init, argp, sizeof(init))) 1703 break; 1704 1705 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1706 break; 1707 } 1708 case KVM_SET_ONE_REG: 1709 case KVM_GET_ONE_REG: { 1710 struct kvm_one_reg reg; 1711 1712 r = -ENOEXEC; 1713 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1714 break; 1715 1716 r = -EFAULT; 1717 if (copy_from_user(®, argp, sizeof(reg))) 1718 break; 1719 1720 /* 1721 * We could owe a reset due to PSCI. Handle the pending reset 1722 * here to ensure userspace register accesses are ordered after 1723 * the reset. 1724 */ 1725 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1726 kvm_reset_vcpu(vcpu); 1727 1728 if (ioctl == KVM_SET_ONE_REG) 1729 r = kvm_arm_set_reg(vcpu, ®); 1730 else 1731 r = kvm_arm_get_reg(vcpu, ®); 1732 break; 1733 } 1734 case KVM_GET_REG_LIST: { 1735 struct kvm_reg_list __user *user_list = argp; 1736 struct kvm_reg_list reg_list; 1737 unsigned n; 1738 1739 r = -ENOEXEC; 1740 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1741 break; 1742 1743 r = -EPERM; 1744 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1745 break; 1746 1747 r = -EFAULT; 1748 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1749 break; 1750 n = reg_list.n; 1751 reg_list.n = kvm_arm_num_regs(vcpu); 1752 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1753 break; 1754 r = -E2BIG; 1755 if (n < reg_list.n) 1756 break; 1757 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1758 break; 1759 } 1760 case KVM_SET_DEVICE_ATTR: { 1761 r = -EFAULT; 1762 if (copy_from_user(&attr, argp, sizeof(attr))) 1763 break; 1764 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1765 break; 1766 } 1767 case KVM_GET_DEVICE_ATTR: { 1768 r = -EFAULT; 1769 if (copy_from_user(&attr, argp, sizeof(attr))) 1770 break; 1771 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1772 break; 1773 } 1774 case KVM_HAS_DEVICE_ATTR: { 1775 r = -EFAULT; 1776 if (copy_from_user(&attr, argp, sizeof(attr))) 1777 break; 1778 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1779 break; 1780 } 1781 case KVM_GET_VCPU_EVENTS: { 1782 struct kvm_vcpu_events events; 1783 1784 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1785 return -EINVAL; 1786 1787 if (copy_to_user(argp, &events, sizeof(events))) 1788 return -EFAULT; 1789 1790 return 0; 1791 } 1792 case KVM_SET_VCPU_EVENTS: { 1793 struct kvm_vcpu_events events; 1794 1795 if (copy_from_user(&events, argp, sizeof(events))) 1796 return -EFAULT; 1797 1798 return kvm_arm_vcpu_set_events(vcpu, &events); 1799 } 1800 case KVM_ARM_VCPU_FINALIZE: { 1801 int what; 1802 1803 if (!kvm_vcpu_initialized(vcpu)) 1804 return -ENOEXEC; 1805 1806 if (get_user(what, (const int __user *)argp)) 1807 return -EFAULT; 1808 1809 return kvm_arm_vcpu_finalize(vcpu, what); 1810 } 1811 default: 1812 r = -EINVAL; 1813 } 1814 1815 return r; 1816 } 1817 1818 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1819 { 1820 1821 } 1822 1823 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1824 struct kvm_arm_device_addr *dev_addr) 1825 { 1826 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1827 case KVM_ARM_DEVICE_VGIC_V2: 1828 if (!vgic_present) 1829 return -ENXIO; 1830 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1831 default: 1832 return -ENODEV; 1833 } 1834 } 1835 1836 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1837 { 1838 switch (attr->group) { 1839 case KVM_ARM_VM_SMCCC_CTRL: 1840 return kvm_vm_smccc_has_attr(kvm, attr); 1841 default: 1842 return -ENXIO; 1843 } 1844 } 1845 1846 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1847 { 1848 switch (attr->group) { 1849 case KVM_ARM_VM_SMCCC_CTRL: 1850 return kvm_vm_smccc_set_attr(kvm, attr); 1851 default: 1852 return -ENXIO; 1853 } 1854 } 1855 1856 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1857 { 1858 struct kvm *kvm = filp->private_data; 1859 void __user *argp = (void __user *)arg; 1860 struct kvm_device_attr attr; 1861 1862 switch (ioctl) { 1863 case KVM_CREATE_IRQCHIP: { 1864 int ret; 1865 if (!vgic_present) 1866 return -ENXIO; 1867 mutex_lock(&kvm->lock); 1868 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1869 mutex_unlock(&kvm->lock); 1870 return ret; 1871 } 1872 case KVM_ARM_SET_DEVICE_ADDR: { 1873 struct kvm_arm_device_addr dev_addr; 1874 1875 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1876 return -EFAULT; 1877 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1878 } 1879 case KVM_ARM_PREFERRED_TARGET: { 1880 struct kvm_vcpu_init init = { 1881 .target = KVM_ARM_TARGET_GENERIC_V8, 1882 }; 1883 1884 if (copy_to_user(argp, &init, sizeof(init))) 1885 return -EFAULT; 1886 1887 return 0; 1888 } 1889 case KVM_ARM_MTE_COPY_TAGS: { 1890 struct kvm_arm_copy_mte_tags copy_tags; 1891 1892 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1893 return -EFAULT; 1894 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1895 } 1896 case KVM_ARM_SET_COUNTER_OFFSET: { 1897 struct kvm_arm_counter_offset offset; 1898 1899 if (copy_from_user(&offset, argp, sizeof(offset))) 1900 return -EFAULT; 1901 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1902 } 1903 case KVM_HAS_DEVICE_ATTR: { 1904 if (copy_from_user(&attr, argp, sizeof(attr))) 1905 return -EFAULT; 1906 1907 return kvm_vm_has_attr(kvm, &attr); 1908 } 1909 case KVM_SET_DEVICE_ATTR: { 1910 if (copy_from_user(&attr, argp, sizeof(attr))) 1911 return -EFAULT; 1912 1913 return kvm_vm_set_attr(kvm, &attr); 1914 } 1915 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1916 struct reg_mask_range range; 1917 1918 if (copy_from_user(&range, argp, sizeof(range))) 1919 return -EFAULT; 1920 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1921 } 1922 default: 1923 return -EINVAL; 1924 } 1925 } 1926 1927 static unsigned long nvhe_percpu_size(void) 1928 { 1929 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1930 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1931 } 1932 1933 static unsigned long nvhe_percpu_order(void) 1934 { 1935 unsigned long size = nvhe_percpu_size(); 1936 1937 return size ? get_order(size) : 0; 1938 } 1939 1940 static size_t pkvm_host_sve_state_order(void) 1941 { 1942 return get_order(pkvm_host_sve_state_size()); 1943 } 1944 1945 /* A lookup table holding the hypervisor VA for each vector slot */ 1946 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1947 1948 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1949 { 1950 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1951 } 1952 1953 static int kvm_init_vector_slots(void) 1954 { 1955 int err; 1956 void *base; 1957 1958 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1959 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1960 1961 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1962 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1963 1964 if (kvm_system_needs_idmapped_vectors() && 1965 !is_protected_kvm_enabled()) { 1966 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1967 __BP_HARDEN_HYP_VECS_SZ, &base); 1968 if (err) 1969 return err; 1970 } 1971 1972 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1973 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1974 return 0; 1975 } 1976 1977 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 1978 { 1979 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1980 unsigned long tcr; 1981 1982 /* 1983 * Calculate the raw per-cpu offset without a translation from the 1984 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1985 * so that we can use adr_l to access per-cpu variables in EL2. 1986 * Also drop the KASAN tag which gets in the way... 1987 */ 1988 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1989 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1990 1991 params->mair_el2 = read_sysreg(mair_el1); 1992 1993 tcr = read_sysreg(tcr_el1); 1994 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 1995 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK); 1996 tcr |= TCR_EPD1_MASK; 1997 } else { 1998 unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr); 1999 2000 tcr &= TCR_EL2_MASK; 2001 tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips); 2002 if (lpa2_is_enabled()) 2003 tcr |= TCR_EL2_DS; 2004 } 2005 tcr |= TCR_T0SZ(hyp_va_bits); 2006 params->tcr_el2 = tcr; 2007 2008 params->pgd_pa = kvm_mmu_get_httbr(); 2009 if (is_protected_kvm_enabled()) 2010 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2011 else 2012 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2013 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2014 params->hcr_el2 |= HCR_E2H; 2015 params->vttbr = params->vtcr = 0; 2016 2017 /* 2018 * Flush the init params from the data cache because the struct will 2019 * be read while the MMU is off. 2020 */ 2021 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2022 } 2023 2024 static void hyp_install_host_vector(void) 2025 { 2026 struct kvm_nvhe_init_params *params; 2027 struct arm_smccc_res res; 2028 2029 /* Switch from the HYP stub to our own HYP init vector */ 2030 __hyp_set_vectors(kvm_get_idmap_vector()); 2031 2032 /* 2033 * Call initialization code, and switch to the full blown HYP code. 2034 * If the cpucaps haven't been finalized yet, something has gone very 2035 * wrong, and hyp will crash and burn when it uses any 2036 * cpus_have_*_cap() wrapper. 2037 */ 2038 BUG_ON(!system_capabilities_finalized()); 2039 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2040 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2041 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2042 } 2043 2044 static void cpu_init_hyp_mode(void) 2045 { 2046 hyp_install_host_vector(); 2047 2048 /* 2049 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2050 * at EL2. 2051 */ 2052 if (this_cpu_has_cap(ARM64_SSBS) && 2053 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2054 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2055 } 2056 } 2057 2058 static void cpu_hyp_reset(void) 2059 { 2060 if (!is_kernel_in_hyp_mode()) 2061 __hyp_reset_vectors(); 2062 } 2063 2064 /* 2065 * EL2 vectors can be mapped and rerouted in a number of ways, 2066 * depending on the kernel configuration and CPU present: 2067 * 2068 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2069 * placed in one of the vector slots, which is executed before jumping 2070 * to the real vectors. 2071 * 2072 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2073 * containing the hardening sequence is mapped next to the idmap page, 2074 * and executed before jumping to the real vectors. 2075 * 2076 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2077 * empty slot is selected, mapped next to the idmap page, and 2078 * executed before jumping to the real vectors. 2079 * 2080 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2081 * VHE, as we don't have hypervisor-specific mappings. If the system 2082 * is VHE and yet selects this capability, it will be ignored. 2083 */ 2084 static void cpu_set_hyp_vector(void) 2085 { 2086 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2087 void *vector = hyp_spectre_vector_selector[data->slot]; 2088 2089 if (!is_protected_kvm_enabled()) 2090 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2091 else 2092 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2093 } 2094 2095 static void cpu_hyp_init_context(void) 2096 { 2097 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2098 kvm_init_host_debug_data(); 2099 2100 if (!is_kernel_in_hyp_mode()) 2101 cpu_init_hyp_mode(); 2102 } 2103 2104 static void cpu_hyp_init_features(void) 2105 { 2106 cpu_set_hyp_vector(); 2107 2108 if (is_kernel_in_hyp_mode()) 2109 kvm_timer_init_vhe(); 2110 2111 if (vgic_present) 2112 kvm_vgic_init_cpu_hardware(); 2113 } 2114 2115 static void cpu_hyp_reinit(void) 2116 { 2117 cpu_hyp_reset(); 2118 cpu_hyp_init_context(); 2119 cpu_hyp_init_features(); 2120 } 2121 2122 static void cpu_hyp_init(void *discard) 2123 { 2124 if (!__this_cpu_read(kvm_hyp_initialized)) { 2125 cpu_hyp_reinit(); 2126 __this_cpu_write(kvm_hyp_initialized, 1); 2127 } 2128 } 2129 2130 static void cpu_hyp_uninit(void *discard) 2131 { 2132 if (__this_cpu_read(kvm_hyp_initialized)) { 2133 cpu_hyp_reset(); 2134 __this_cpu_write(kvm_hyp_initialized, 0); 2135 } 2136 } 2137 2138 int kvm_arch_enable_virtualization_cpu(void) 2139 { 2140 /* 2141 * Most calls to this function are made with migration 2142 * disabled, but not with preemption disabled. The former is 2143 * enough to ensure correctness, but most of the helpers 2144 * expect the later and will throw a tantrum otherwise. 2145 */ 2146 preempt_disable(); 2147 2148 cpu_hyp_init(NULL); 2149 2150 kvm_vgic_cpu_up(); 2151 kvm_timer_cpu_up(); 2152 2153 preempt_enable(); 2154 2155 return 0; 2156 } 2157 2158 void kvm_arch_disable_virtualization_cpu(void) 2159 { 2160 kvm_timer_cpu_down(); 2161 kvm_vgic_cpu_down(); 2162 2163 if (!is_protected_kvm_enabled()) 2164 cpu_hyp_uninit(NULL); 2165 } 2166 2167 #ifdef CONFIG_CPU_PM 2168 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2169 unsigned long cmd, 2170 void *v) 2171 { 2172 /* 2173 * kvm_hyp_initialized is left with its old value over 2174 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2175 * re-enable hyp. 2176 */ 2177 switch (cmd) { 2178 case CPU_PM_ENTER: 2179 if (__this_cpu_read(kvm_hyp_initialized)) 2180 /* 2181 * don't update kvm_hyp_initialized here 2182 * so that the hyp will be re-enabled 2183 * when we resume. See below. 2184 */ 2185 cpu_hyp_reset(); 2186 2187 return NOTIFY_OK; 2188 case CPU_PM_ENTER_FAILED: 2189 case CPU_PM_EXIT: 2190 if (__this_cpu_read(kvm_hyp_initialized)) 2191 /* The hyp was enabled before suspend. */ 2192 cpu_hyp_reinit(); 2193 2194 return NOTIFY_OK; 2195 2196 default: 2197 return NOTIFY_DONE; 2198 } 2199 } 2200 2201 static struct notifier_block hyp_init_cpu_pm_nb = { 2202 .notifier_call = hyp_init_cpu_pm_notifier, 2203 }; 2204 2205 static void __init hyp_cpu_pm_init(void) 2206 { 2207 if (!is_protected_kvm_enabled()) 2208 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2209 } 2210 static void __init hyp_cpu_pm_exit(void) 2211 { 2212 if (!is_protected_kvm_enabled()) 2213 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2214 } 2215 #else 2216 static inline void __init hyp_cpu_pm_init(void) 2217 { 2218 } 2219 static inline void __init hyp_cpu_pm_exit(void) 2220 { 2221 } 2222 #endif 2223 2224 static void __init init_cpu_logical_map(void) 2225 { 2226 unsigned int cpu; 2227 2228 /* 2229 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2230 * Only copy the set of online CPUs whose features have been checked 2231 * against the finalized system capabilities. The hypervisor will not 2232 * allow any other CPUs from the `possible` set to boot. 2233 */ 2234 for_each_online_cpu(cpu) 2235 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2236 } 2237 2238 #define init_psci_0_1_impl_state(config, what) \ 2239 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2240 2241 static bool __init init_psci_relay(void) 2242 { 2243 /* 2244 * If PSCI has not been initialized, protected KVM cannot install 2245 * itself on newly booted CPUs. 2246 */ 2247 if (!psci_ops.get_version) { 2248 kvm_err("Cannot initialize protected mode without PSCI\n"); 2249 return false; 2250 } 2251 2252 kvm_host_psci_config.version = psci_ops.get_version(); 2253 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2254 2255 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2256 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2257 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2258 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2259 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2260 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2261 } 2262 return true; 2263 } 2264 2265 static int __init init_subsystems(void) 2266 { 2267 int err = 0; 2268 2269 /* 2270 * Enable hardware so that subsystem initialisation can access EL2. 2271 */ 2272 on_each_cpu(cpu_hyp_init, NULL, 1); 2273 2274 /* 2275 * Register CPU lower-power notifier 2276 */ 2277 hyp_cpu_pm_init(); 2278 2279 /* 2280 * Init HYP view of VGIC 2281 */ 2282 err = kvm_vgic_hyp_init(); 2283 switch (err) { 2284 case 0: 2285 vgic_present = true; 2286 break; 2287 case -ENODEV: 2288 case -ENXIO: 2289 /* 2290 * No VGIC? No pKVM for you. 2291 * 2292 * Protected mode assumes that VGICv3 is present, so no point 2293 * in trying to hobble along if vgic initialization fails. 2294 */ 2295 if (is_protected_kvm_enabled()) 2296 goto out; 2297 2298 /* 2299 * Otherwise, userspace could choose to implement a GIC for its 2300 * guest on non-cooperative hardware. 2301 */ 2302 vgic_present = false; 2303 err = 0; 2304 break; 2305 default: 2306 goto out; 2307 } 2308 2309 if (kvm_mode == KVM_MODE_NV && 2310 !(vgic_present && kvm_vgic_global_state.type == VGIC_V3)) { 2311 kvm_err("NV support requires GICv3, giving up\n"); 2312 err = -EINVAL; 2313 goto out; 2314 } 2315 2316 /* 2317 * Init HYP architected timer support 2318 */ 2319 err = kvm_timer_hyp_init(vgic_present); 2320 if (err) 2321 goto out; 2322 2323 kvm_register_perf_callbacks(NULL); 2324 2325 out: 2326 if (err) 2327 hyp_cpu_pm_exit(); 2328 2329 if (err || !is_protected_kvm_enabled()) 2330 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2331 2332 return err; 2333 } 2334 2335 static void __init teardown_subsystems(void) 2336 { 2337 kvm_unregister_perf_callbacks(); 2338 hyp_cpu_pm_exit(); 2339 } 2340 2341 static void __init teardown_hyp_mode(void) 2342 { 2343 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2344 int cpu; 2345 2346 free_hyp_pgds(); 2347 for_each_possible_cpu(cpu) { 2348 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); 2349 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2350 2351 if (free_sve) { 2352 struct cpu_sve_state *sve_state; 2353 2354 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2355 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2356 } 2357 } 2358 } 2359 2360 static int __init do_pkvm_init(u32 hyp_va_bits) 2361 { 2362 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2363 int ret; 2364 2365 preempt_disable(); 2366 cpu_hyp_init_context(); 2367 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2368 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2369 hyp_va_bits); 2370 cpu_hyp_init_features(); 2371 2372 /* 2373 * The stub hypercalls are now disabled, so set our local flag to 2374 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2375 */ 2376 __this_cpu_write(kvm_hyp_initialized, 1); 2377 preempt_enable(); 2378 2379 return ret; 2380 } 2381 2382 static u64 get_hyp_id_aa64pfr0_el1(void) 2383 { 2384 /* 2385 * Track whether the system isn't affected by spectre/meltdown in the 2386 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2387 * Although this is per-CPU, we make it global for simplicity, e.g., not 2388 * to have to worry about vcpu migration. 2389 * 2390 * Unlike for non-protected VMs, userspace cannot override this for 2391 * protected VMs. 2392 */ 2393 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2394 2395 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2396 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2397 2398 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2399 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2400 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2401 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2402 2403 return val; 2404 } 2405 2406 static void kvm_hyp_init_symbols(void) 2407 { 2408 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2409 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2410 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2411 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2412 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2413 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2414 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2415 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2416 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2417 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2418 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2419 2420 /* Propagate the FGT state to the the nVHE side */ 2421 kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks; 2422 kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks; 2423 kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks; 2424 kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks; 2425 kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks; 2426 kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks; 2427 kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks; 2428 kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks; 2429 kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks; 2430 kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks; 2431 kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks; 2432 2433 /* 2434 * Flush entire BSS since part of its data containing init symbols is read 2435 * while the MMU is off. 2436 */ 2437 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start), 2438 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start)); 2439 } 2440 2441 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2442 { 2443 void *addr = phys_to_virt(hyp_mem_base); 2444 int ret; 2445 2446 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2447 if (ret) 2448 return ret; 2449 2450 ret = do_pkvm_init(hyp_va_bits); 2451 if (ret) 2452 return ret; 2453 2454 free_hyp_pgds(); 2455 2456 return 0; 2457 } 2458 2459 static int init_pkvm_host_sve_state(void) 2460 { 2461 int cpu; 2462 2463 if (!system_supports_sve()) 2464 return 0; 2465 2466 /* Allocate pages for host sve state in protected mode. */ 2467 for_each_possible_cpu(cpu) { 2468 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2469 2470 if (!page) 2471 return -ENOMEM; 2472 2473 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2474 } 2475 2476 /* 2477 * Don't map the pages in hyp since these are only used in protected 2478 * mode, which will (re)create its own mapping when initialized. 2479 */ 2480 2481 return 0; 2482 } 2483 2484 /* 2485 * Finalizes the initialization of hyp mode, once everything else is initialized 2486 * and the initialziation process cannot fail. 2487 */ 2488 static void finalize_init_hyp_mode(void) 2489 { 2490 int cpu; 2491 2492 if (system_supports_sve() && is_protected_kvm_enabled()) { 2493 for_each_possible_cpu(cpu) { 2494 struct cpu_sve_state *sve_state; 2495 2496 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2497 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2498 kern_hyp_va(sve_state); 2499 } 2500 } 2501 } 2502 2503 static void pkvm_hyp_init_ptrauth(void) 2504 { 2505 struct kvm_cpu_context *hyp_ctxt; 2506 int cpu; 2507 2508 for_each_possible_cpu(cpu) { 2509 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2510 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2511 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2512 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2513 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2514 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2515 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2516 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2517 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2518 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2519 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2520 } 2521 } 2522 2523 /* Inits Hyp-mode on all online CPUs */ 2524 static int __init init_hyp_mode(void) 2525 { 2526 u32 hyp_va_bits; 2527 int cpu; 2528 int err = -ENOMEM; 2529 2530 /* 2531 * The protected Hyp-mode cannot be initialized if the memory pool 2532 * allocation has failed. 2533 */ 2534 if (is_protected_kvm_enabled() && !hyp_mem_base) 2535 goto out_err; 2536 2537 /* 2538 * Allocate Hyp PGD and setup Hyp identity mapping 2539 */ 2540 err = kvm_mmu_init(&hyp_va_bits); 2541 if (err) 2542 goto out_err; 2543 2544 /* 2545 * Allocate stack pages for Hypervisor-mode 2546 */ 2547 for_each_possible_cpu(cpu) { 2548 unsigned long stack_base; 2549 2550 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); 2551 if (!stack_base) { 2552 err = -ENOMEM; 2553 goto out_err; 2554 } 2555 2556 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; 2557 } 2558 2559 /* 2560 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2561 */ 2562 for_each_possible_cpu(cpu) { 2563 struct page *page; 2564 void *page_addr; 2565 2566 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2567 if (!page) { 2568 err = -ENOMEM; 2569 goto out_err; 2570 } 2571 2572 page_addr = page_address(page); 2573 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2574 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2575 } 2576 2577 /* 2578 * Map the Hyp-code called directly from the host 2579 */ 2580 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2581 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2582 if (err) { 2583 kvm_err("Cannot map world-switch code\n"); 2584 goto out_err; 2585 } 2586 2587 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start), 2588 kvm_ksym_ref(__hyp_data_end), PAGE_HYP); 2589 if (err) { 2590 kvm_err("Cannot map .hyp.data section\n"); 2591 goto out_err; 2592 } 2593 2594 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2595 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2596 if (err) { 2597 kvm_err("Cannot map .hyp.rodata section\n"); 2598 goto out_err; 2599 } 2600 2601 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2602 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2603 if (err) { 2604 kvm_err("Cannot map rodata section\n"); 2605 goto out_err; 2606 } 2607 2608 /* 2609 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2610 * section thanks to an assertion in the linker script. Map it RW and 2611 * the rest of .bss RO. 2612 */ 2613 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2614 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2615 if (err) { 2616 kvm_err("Cannot map hyp bss section: %d\n", err); 2617 goto out_err; 2618 } 2619 2620 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2621 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2622 if (err) { 2623 kvm_err("Cannot map bss section\n"); 2624 goto out_err; 2625 } 2626 2627 /* 2628 * Map the Hyp stack pages 2629 */ 2630 for_each_possible_cpu(cpu) { 2631 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2632 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); 2633 2634 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); 2635 if (err) { 2636 kvm_err("Cannot map hyp stack\n"); 2637 goto out_err; 2638 } 2639 2640 /* 2641 * Save the stack PA in nvhe_init_params. This will be needed 2642 * to recreate the stack mapping in protected nVHE mode. 2643 * __hyp_pa() won't do the right thing there, since the stack 2644 * has been mapped in the flexible private VA space. 2645 */ 2646 params->stack_pa = __pa(stack_base); 2647 } 2648 2649 for_each_possible_cpu(cpu) { 2650 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2651 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2652 2653 /* Map Hyp percpu pages */ 2654 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2655 if (err) { 2656 kvm_err("Cannot map hyp percpu region\n"); 2657 goto out_err; 2658 } 2659 2660 /* Prepare the CPU initialization parameters */ 2661 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2662 } 2663 2664 kvm_hyp_init_symbols(); 2665 2666 if (is_protected_kvm_enabled()) { 2667 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2668 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2669 pkvm_hyp_init_ptrauth(); 2670 2671 init_cpu_logical_map(); 2672 2673 if (!init_psci_relay()) { 2674 err = -ENODEV; 2675 goto out_err; 2676 } 2677 2678 err = init_pkvm_host_sve_state(); 2679 if (err) 2680 goto out_err; 2681 2682 err = kvm_hyp_init_protection(hyp_va_bits); 2683 if (err) { 2684 kvm_err("Failed to init hyp memory protection\n"); 2685 goto out_err; 2686 } 2687 } 2688 2689 return 0; 2690 2691 out_err: 2692 teardown_hyp_mode(); 2693 kvm_err("error initializing Hyp mode: %d\n", err); 2694 return err; 2695 } 2696 2697 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2698 { 2699 struct kvm_vcpu *vcpu = NULL; 2700 struct kvm_mpidr_data *data; 2701 unsigned long i; 2702 2703 mpidr &= MPIDR_HWID_BITMASK; 2704 2705 rcu_read_lock(); 2706 data = rcu_dereference(kvm->arch.mpidr_data); 2707 2708 if (data) { 2709 u16 idx = kvm_mpidr_index(data, mpidr); 2710 2711 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2712 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2713 vcpu = NULL; 2714 } 2715 2716 rcu_read_unlock(); 2717 2718 if (vcpu) 2719 return vcpu; 2720 2721 kvm_for_each_vcpu(i, vcpu, kvm) { 2722 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2723 return vcpu; 2724 } 2725 return NULL; 2726 } 2727 2728 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2729 { 2730 return irqchip_in_kernel(kvm); 2731 } 2732 2733 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2734 struct irq_bypass_producer *prod) 2735 { 2736 struct kvm_kernel_irqfd *irqfd = 2737 container_of(cons, struct kvm_kernel_irqfd, consumer); 2738 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2739 2740 /* 2741 * The only thing we have a chance of directly-injecting is LPIs. Maybe 2742 * one day... 2743 */ 2744 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2745 return 0; 2746 2747 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2748 &irqfd->irq_entry); 2749 } 2750 2751 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2752 struct irq_bypass_producer *prod) 2753 { 2754 struct kvm_kernel_irqfd *irqfd = 2755 container_of(cons, struct kvm_kernel_irqfd, consumer); 2756 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2757 2758 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2759 return; 2760 2761 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq); 2762 } 2763 2764 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 2765 struct kvm_kernel_irq_routing_entry *new) 2766 { 2767 if (old->type != KVM_IRQ_ROUTING_MSI || 2768 new->type != KVM_IRQ_ROUTING_MSI) 2769 return true; 2770 2771 return memcmp(&old->msi, &new->msi, sizeof(new->msi)); 2772 } 2773 2774 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2775 uint32_t guest_irq, bool set) 2776 { 2777 /* 2778 * Remapping the vLPI requires taking the its_lock mutex to resolve 2779 * the new translation. We're in spinlock land at this point, so no 2780 * chance of resolving the translation. 2781 * 2782 * Unmap the vLPI and fall back to software LPI injection. 2783 */ 2784 return kvm_vgic_v4_unset_forwarding(kvm, host_irq); 2785 } 2786 2787 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2788 { 2789 struct kvm_kernel_irqfd *irqfd = 2790 container_of(cons, struct kvm_kernel_irqfd, consumer); 2791 2792 kvm_arm_halt_guest(irqfd->kvm); 2793 } 2794 2795 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2796 { 2797 struct kvm_kernel_irqfd *irqfd = 2798 container_of(cons, struct kvm_kernel_irqfd, consumer); 2799 2800 kvm_arm_resume_guest(irqfd->kvm); 2801 } 2802 2803 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2804 static __init int kvm_arm_init(void) 2805 { 2806 int err; 2807 bool in_hyp_mode; 2808 2809 if (!is_hyp_mode_available()) { 2810 kvm_info("HYP mode not available\n"); 2811 return -ENODEV; 2812 } 2813 2814 if (kvm_get_mode() == KVM_MODE_NONE) { 2815 kvm_info("KVM disabled from command line\n"); 2816 return -ENODEV; 2817 } 2818 2819 err = kvm_sys_reg_table_init(); 2820 if (err) { 2821 kvm_info("Error initializing system register tables"); 2822 return err; 2823 } 2824 2825 in_hyp_mode = is_kernel_in_hyp_mode(); 2826 2827 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2828 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2829 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2830 "Only trusted guests should be used on this system.\n"); 2831 2832 err = kvm_set_ipa_limit(); 2833 if (err) 2834 return err; 2835 2836 err = kvm_arm_init_sve(); 2837 if (err) 2838 return err; 2839 2840 err = kvm_arm_vmid_alloc_init(); 2841 if (err) { 2842 kvm_err("Failed to initialize VMID allocator.\n"); 2843 return err; 2844 } 2845 2846 if (!in_hyp_mode) { 2847 err = init_hyp_mode(); 2848 if (err) 2849 goto out_err; 2850 } 2851 2852 err = kvm_init_vector_slots(); 2853 if (err) { 2854 kvm_err("Cannot initialise vector slots\n"); 2855 goto out_hyp; 2856 } 2857 2858 err = init_subsystems(); 2859 if (err) 2860 goto out_hyp; 2861 2862 kvm_info("%s%sVHE%s mode initialized successfully\n", 2863 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2864 "Protected " : "Hyp "), 2865 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2866 "h" : "n"), 2867 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": ""); 2868 2869 /* 2870 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2871 * hypervisor protection is finalized. 2872 */ 2873 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2874 if (err) 2875 goto out_subs; 2876 2877 /* 2878 * This should be called after initialization is done and failure isn't 2879 * possible anymore. 2880 */ 2881 if (!in_hyp_mode) 2882 finalize_init_hyp_mode(); 2883 2884 kvm_arm_initialised = true; 2885 2886 return 0; 2887 2888 out_subs: 2889 teardown_subsystems(); 2890 out_hyp: 2891 if (!in_hyp_mode) 2892 teardown_hyp_mode(); 2893 out_err: 2894 kvm_arm_vmid_alloc_free(); 2895 return err; 2896 } 2897 2898 static int __init early_kvm_mode_cfg(char *arg) 2899 { 2900 if (!arg) 2901 return -EINVAL; 2902 2903 if (strcmp(arg, "none") == 0) { 2904 kvm_mode = KVM_MODE_NONE; 2905 return 0; 2906 } 2907 2908 if (!is_hyp_mode_available()) { 2909 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2910 return 0; 2911 } 2912 2913 if (strcmp(arg, "protected") == 0) { 2914 if (!is_kernel_in_hyp_mode()) 2915 kvm_mode = KVM_MODE_PROTECTED; 2916 else 2917 pr_warn_once("Protected KVM not available with VHE\n"); 2918 2919 return 0; 2920 } 2921 2922 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2923 kvm_mode = KVM_MODE_DEFAULT; 2924 return 0; 2925 } 2926 2927 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2928 kvm_mode = KVM_MODE_NV; 2929 return 0; 2930 } 2931 2932 return -EINVAL; 2933 } 2934 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2935 2936 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2937 { 2938 if (!arg) 2939 return -EINVAL; 2940 2941 if (strcmp(arg, "trap") == 0) { 2942 *p = KVM_WFX_TRAP; 2943 return 0; 2944 } 2945 2946 if (strcmp(arg, "notrap") == 0) { 2947 *p = KVM_WFX_NOTRAP; 2948 return 0; 2949 } 2950 2951 return -EINVAL; 2952 } 2953 2954 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2955 { 2956 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2957 } 2958 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2959 2960 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2961 { 2962 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2963 } 2964 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2965 2966 enum kvm_mode kvm_get_mode(void) 2967 { 2968 return kvm_mode; 2969 } 2970 2971 module_init(kvm_arm_init); 2972