1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu_smt.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/sched/isolation.h>
22 #include <linux/xarray.h>
23 
24 #include <asm/cpu.h>
25 #include <asm/cputype.h>
26 #include <asm/topology.h>
27 
28 #ifdef CONFIG_ACPI
29 static bool __init acpi_cpu_is_threaded(int cpu)
30 {
31 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
32 
33 	/*
34 	 * if the PPTT doesn't have thread information, assume a homogeneous
35 	 * machine and return the current CPU's thread state.
36 	 */
37 	if (is_threaded < 0)
38 		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
39 
40 	return !!is_threaded;
41 }
42 
43 struct cpu_smt_info {
44 	unsigned int thread_num;
45 	int core_id;
46 };
47 
48 /*
49  * Propagate the topology information of the processor_topology_node tree to the
50  * cpu_topology array.
51  */
52 int __init parse_acpi_topology(void)
53 {
54 	unsigned int max_smt_thread_num = 1;
55 	struct cpu_smt_info *entry;
56 	struct xarray hetero_cpu;
57 	unsigned long hetero_id;
58 	int cpu, topology_id;
59 
60 	if (acpi_disabled)
61 		return 0;
62 
63 	xa_init(&hetero_cpu);
64 
65 	for_each_possible_cpu(cpu) {
66 		topology_id = find_acpi_cpu_topology(cpu, 0);
67 		if (topology_id < 0)
68 			return topology_id;
69 
70 		if (acpi_cpu_is_threaded(cpu)) {
71 			cpu_topology[cpu].thread_id = topology_id;
72 			topology_id = find_acpi_cpu_topology(cpu, 1);
73 			cpu_topology[cpu].core_id   = topology_id;
74 
75 			/*
76 			 * In the PPTT, CPUs below a node with the 'identical
77 			 * implementation' flag have the same number of threads.
78 			 * Count the number of threads for only one CPU (i.e.
79 			 * one core_id) among those with the same hetero_id.
80 			 * See the comment of find_acpi_cpu_topology_hetero_id()
81 			 * for more details.
82 			 *
83 			 * One entry is created for each node having:
84 			 * - the 'identical implementation' flag
85 			 * - its parent not having the flag
86 			 */
87 			hetero_id = find_acpi_cpu_topology_hetero_id(cpu);
88 			entry = xa_load(&hetero_cpu, hetero_id);
89 			if (!entry) {
90 				entry = kzalloc(sizeof(*entry), GFP_KERNEL);
91 				WARN_ON_ONCE(!entry);
92 
93 				if (entry) {
94 					entry->core_id = topology_id;
95 					entry->thread_num = 1;
96 					xa_store(&hetero_cpu, hetero_id,
97 						 entry, GFP_KERNEL);
98 				}
99 			} else if (entry->core_id == topology_id) {
100 				entry->thread_num++;
101 			}
102 		} else {
103 			cpu_topology[cpu].thread_id  = -1;
104 			cpu_topology[cpu].core_id    = topology_id;
105 		}
106 		topology_id = find_acpi_cpu_topology_cluster(cpu);
107 		cpu_topology[cpu].cluster_id = topology_id;
108 		topology_id = find_acpi_cpu_topology_package(cpu);
109 		cpu_topology[cpu].package_id = topology_id;
110 	}
111 
112 	/*
113 	 * This is a short loop since the number of XArray elements is the
114 	 * number of heterogeneous CPU clusters. On a homogeneous system
115 	 * there's only one entry in the XArray.
116 	 */
117 	xa_for_each(&hetero_cpu, hetero_id, entry) {
118 		max_smt_thread_num = max(max_smt_thread_num, entry->thread_num);
119 		xa_erase(&hetero_cpu, hetero_id);
120 		kfree(entry);
121 	}
122 
123 	cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
124 	xa_destroy(&hetero_cpu);
125 	return 0;
126 }
127 #endif
128 
129 #ifdef CONFIG_ARM64_AMU_EXTN
130 #define read_corecnt()	read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
131 #define read_constcnt()	read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
132 #else
133 #define read_corecnt()	(0UL)
134 #define read_constcnt()	(0UL)
135 #endif
136 
137 #undef pr_fmt
138 #define pr_fmt(fmt) "AMU: " fmt
139 
140 /*
141  * Ensure that amu_scale_freq_tick() will return SCHED_CAPACITY_SCALE until
142  * the CPU capacity and its associated frequency have been correctly
143  * initialized.
144  */
145 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale) =  1UL << (2 * SCHED_CAPACITY_SHIFT);
146 static cpumask_var_t amu_fie_cpus;
147 
148 struct amu_cntr_sample {
149 	u64		arch_const_cycles_prev;
150 	u64		arch_core_cycles_prev;
151 	unsigned long	last_scale_update;
152 };
153 
154 static DEFINE_PER_CPU_SHARED_ALIGNED(struct amu_cntr_sample, cpu_amu_samples);
155 
156 void update_freq_counters_refs(void)
157 {
158 	struct amu_cntr_sample *amu_sample = this_cpu_ptr(&cpu_amu_samples);
159 
160 	amu_sample->arch_core_cycles_prev = read_corecnt();
161 	amu_sample->arch_const_cycles_prev = read_constcnt();
162 }
163 
164 static inline bool freq_counters_valid(int cpu)
165 {
166 	struct amu_cntr_sample *amu_sample = per_cpu_ptr(&cpu_amu_samples, cpu);
167 
168 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
169 		return false;
170 
171 	if (!cpu_has_amu_feat(cpu)) {
172 		pr_debug("CPU%d: counters are not supported.\n", cpu);
173 		return false;
174 	}
175 
176 	if (unlikely(!amu_sample->arch_const_cycles_prev ||
177 		     !amu_sample->arch_core_cycles_prev)) {
178 		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
179 		return false;
180 	}
181 
182 	return true;
183 }
184 
185 void freq_inv_set_max_ratio(int cpu, u64 max_rate)
186 {
187 	u64 ratio, ref_rate = arch_timer_get_rate();
188 
189 	if (unlikely(!max_rate || !ref_rate)) {
190 		WARN_ONCE(1, "CPU%d: invalid maximum or reference frequency.\n",
191 			 cpu);
192 		return;
193 	}
194 
195 	/*
196 	 * Pre-compute the fixed ratio between the frequency of the constant
197 	 * reference counter and the maximum frequency of the CPU.
198 	 *
199 	 *			    ref_rate
200 	 * arch_max_freq_scale =   ---------- * SCHED_CAPACITY_SCALE²
201 	 *			    max_rate
202 	 *
203 	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
204 	 * in order to ensure a good resolution for arch_max_freq_scale for
205 	 * very low reference frequencies (down to the KHz range which should
206 	 * be unlikely).
207 	 */
208 	ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
209 	ratio = div64_u64(ratio, max_rate);
210 	if (!ratio) {
211 		WARN_ONCE(1, "Reference frequency too low.\n");
212 		return;
213 	}
214 
215 	WRITE_ONCE(per_cpu(arch_max_freq_scale, cpu), (unsigned long)ratio);
216 }
217 
218 static void amu_scale_freq_tick(void)
219 {
220 	struct amu_cntr_sample *amu_sample = this_cpu_ptr(&cpu_amu_samples);
221 	u64 prev_core_cnt, prev_const_cnt;
222 	u64 core_cnt, const_cnt, scale;
223 
224 	prev_const_cnt = amu_sample->arch_const_cycles_prev;
225 	prev_core_cnt = amu_sample->arch_core_cycles_prev;
226 
227 	update_freq_counters_refs();
228 
229 	const_cnt = amu_sample->arch_const_cycles_prev;
230 	core_cnt = amu_sample->arch_core_cycles_prev;
231 
232 	/*
233 	 * This should not happen unless the AMUs have been reset and the
234 	 * counter values have not been restored - unlikely
235 	 */
236 	if (unlikely(core_cnt <= prev_core_cnt ||
237 		     const_cnt <= prev_const_cnt))
238 		return;
239 
240 	/*
241 	 *	    /\core    arch_max_freq_scale
242 	 * scale =  ------- * --------------------
243 	 *	    /\const   SCHED_CAPACITY_SCALE
244 	 *
245 	 * See validate_cpu_freq_invariance_counters() for details on
246 	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
247 	 */
248 	scale = core_cnt - prev_core_cnt;
249 	scale *= this_cpu_read(arch_max_freq_scale);
250 	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
251 			  const_cnt - prev_const_cnt);
252 
253 	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
254 	this_cpu_write(arch_freq_scale, (unsigned long)scale);
255 
256 	amu_sample->last_scale_update = jiffies;
257 }
258 
259 static struct scale_freq_data amu_sfd = {
260 	.source = SCALE_FREQ_SOURCE_ARCH,
261 	.set_freq_scale = amu_scale_freq_tick,
262 };
263 
264 static __always_inline bool amu_fie_cpu_supported(unsigned int cpu)
265 {
266 	return cpumask_available(amu_fie_cpus) &&
267 		cpumask_test_cpu(cpu, amu_fie_cpus);
268 }
269 
270 void arch_cpu_idle_enter(void)
271 {
272 	unsigned int cpu = smp_processor_id();
273 
274 	if (!amu_fie_cpu_supported(cpu))
275 		return;
276 
277 	/* Kick in AMU update but only if one has not happened already */
278 	if (housekeeping_cpu(cpu, HK_TYPE_TICK) &&
279 	    time_is_before_jiffies(per_cpu(cpu_amu_samples.last_scale_update, cpu)))
280 		amu_scale_freq_tick();
281 }
282 
283 #define AMU_SAMPLE_EXP_MS	20
284 
285 int arch_freq_get_on_cpu(int cpu)
286 {
287 	struct amu_cntr_sample *amu_sample;
288 	unsigned int start_cpu = cpu;
289 	unsigned long last_update;
290 	unsigned int freq = 0;
291 	u64 scale;
292 
293 	if (!amu_fie_cpu_supported(cpu) || !arch_scale_freq_ref(cpu))
294 		return -EOPNOTSUPP;
295 
296 	while (1) {
297 
298 		amu_sample = per_cpu_ptr(&cpu_amu_samples, cpu);
299 
300 		last_update = amu_sample->last_scale_update;
301 
302 		/*
303 		 * For those CPUs that are in full dynticks mode, or those that have
304 		 * not seen tick for a while, try an alternative source for the counters
305 		 * (and thus freq scale), if available, for given policy: this boils
306 		 * down to identifying an active cpu within the same freq domain, if any.
307 		 */
308 		if (!housekeeping_cpu(cpu, HK_TYPE_TICK) ||
309 		    time_is_before_jiffies(last_update + msecs_to_jiffies(AMU_SAMPLE_EXP_MS))) {
310 			struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
311 			int ref_cpu;
312 
313 			if (!policy)
314 				return -EINVAL;
315 
316 			if (!cpumask_intersects(policy->related_cpus,
317 						housekeeping_cpumask(HK_TYPE_TICK))) {
318 				cpufreq_cpu_put(policy);
319 				return -EOPNOTSUPP;
320 			}
321 
322 			for_each_cpu_wrap(ref_cpu, policy->cpus, cpu + 1) {
323 				if (ref_cpu == start_cpu) {
324 					/* Prevent verifying same CPU twice */
325 					ref_cpu = nr_cpu_ids;
326 					break;
327 				}
328 				if (!idle_cpu(ref_cpu))
329 					break;
330 			}
331 
332 			cpufreq_cpu_put(policy);
333 
334 			if (ref_cpu >= nr_cpu_ids)
335 				/* No alternative to pull info from */
336 				return -EAGAIN;
337 
338 			cpu = ref_cpu;
339 		} else {
340 			break;
341 		}
342 	}
343 	/*
344 	 * Reversed computation to the one used to determine
345 	 * the arch_freq_scale value
346 	 * (see amu_scale_freq_tick for details)
347 	 */
348 	scale = arch_scale_freq_capacity(cpu);
349 	freq = scale * arch_scale_freq_ref(cpu);
350 	freq >>= SCHED_CAPACITY_SHIFT;
351 	return freq;
352 }
353 
354 static void amu_fie_setup(const struct cpumask *cpus)
355 {
356 	int cpu;
357 
358 	/* We are already set since the last insmod of cpufreq driver */
359 	if (cpumask_available(amu_fie_cpus) &&
360 	    unlikely(cpumask_subset(cpus, amu_fie_cpus)))
361 		return;
362 
363 	for_each_cpu(cpu, cpus)
364 		if (!freq_counters_valid(cpu))
365 			return;
366 
367 	if (!cpumask_available(amu_fie_cpus) &&
368 	    !zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
369 		WARN_ONCE(1, "Failed to allocate FIE cpumask for CPUs[%*pbl]\n",
370 			  cpumask_pr_args(cpus));
371 		return;
372 	}
373 
374 	cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
375 
376 	topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus);
377 
378 	pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
379 		 cpumask_pr_args(cpus));
380 }
381 
382 static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
383 				 void *data)
384 {
385 	struct cpufreq_policy *policy = data;
386 
387 	if (val == CPUFREQ_CREATE_POLICY)
388 		amu_fie_setup(policy->related_cpus);
389 
390 	/*
391 	 * We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
392 	 * counters don't have any dependency on cpufreq driver once we have
393 	 * initialized AMU support and enabled invariance. The AMU counters will
394 	 * keep on working just fine in the absence of the cpufreq driver, and
395 	 * for the CPUs for which there are no counters available, the last set
396 	 * value of arch_freq_scale will remain valid as that is the frequency
397 	 * those CPUs are running at.
398 	 */
399 
400 	return 0;
401 }
402 
403 static struct notifier_block init_amu_fie_notifier = {
404 	.notifier_call = init_amu_fie_callback,
405 };
406 
407 static int __init init_amu_fie(void)
408 {
409 	return cpufreq_register_notifier(&init_amu_fie_notifier,
410 					CPUFREQ_POLICY_NOTIFIER);
411 }
412 core_initcall(init_amu_fie);
413 
414 #ifdef CONFIG_ACPI_CPPC_LIB
415 #include <acpi/cppc_acpi.h>
416 
417 static void cpu_read_corecnt(void *val)
418 {
419 	/*
420 	 * A value of 0 can be returned if the current CPU does not support AMUs
421 	 * or if the counter is disabled for this CPU. A return value of 0 at
422 	 * counter read is properly handled as an error case by the users of the
423 	 * counter.
424 	 */
425 	*(u64 *)val = read_corecnt();
426 }
427 
428 static void cpu_read_constcnt(void *val)
429 {
430 	/*
431 	 * Return 0 if the current CPU is affected by erratum 2457168. A value
432 	 * of 0 is also returned if the current CPU does not support AMUs or if
433 	 * the counter is disabled. A return value of 0 at counter read is
434 	 * properly handled as an error case by the users of the counter.
435 	 */
436 	*(u64 *)val = this_cpu_has_cap(ARM64_WORKAROUND_2457168) ?
437 		      0UL : read_constcnt();
438 }
439 
440 static inline
441 int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
442 {
443 	/*
444 	 * Abort call on counterless CPU or when interrupts are
445 	 * disabled - can lead to deadlock in smp sync call.
446 	 */
447 	if (!cpu_has_amu_feat(cpu))
448 		return -EOPNOTSUPP;
449 
450 	if (WARN_ON_ONCE(irqs_disabled()))
451 		return -EPERM;
452 
453 	smp_call_function_single(cpu, func, val, 1);
454 
455 	return 0;
456 }
457 
458 /*
459  * Refer to drivers/acpi/cppc_acpi.c for the description of the functions
460  * below.
461  */
462 bool cpc_ffh_supported(void)
463 {
464 	int cpu = get_cpu_with_amu_feat();
465 
466 	/*
467 	 * FFH is considered supported if there is at least one present CPU that
468 	 * supports AMUs. Using FFH to read core and reference counters for CPUs
469 	 * that do not support AMUs, have counters disabled or that are affected
470 	 * by errata, will result in a return value of 0.
471 	 *
472 	 * This is done to allow any enabled and valid counters to be read
473 	 * through FFH, knowing that potentially returning 0 as counter value is
474 	 * properly handled by the users of these counters.
475 	 */
476 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
477 		return false;
478 
479 	return true;
480 }
481 
482 int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
483 {
484 	int ret = -EOPNOTSUPP;
485 
486 	switch ((u64)reg->address) {
487 	case 0x0:
488 		ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
489 		break;
490 	case 0x1:
491 		ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
492 		break;
493 	}
494 
495 	if (!ret) {
496 		*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
497 				    reg->bit_offset);
498 		*val >>= reg->bit_offset;
499 	}
500 
501 	return ret;
502 }
503 
504 int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
505 {
506 	return -EOPNOTSUPP;
507 }
508 #endif /* CONFIG_ACPI_CPPC_LIB */
509