1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * vpmu_counter_access - Test vPMU event counter access
4 *
5 * Copyright (c) 2023 Google LLC.
6 *
7 * This test checks if the guest can see the same number of the PMU event
8 * counters (PMCR_EL0.N) that userspace sets, if the guest can access
9 * those counters, and if the guest is prevented from accessing any
10 * other counters.
11 * It also checks if the userspace accesses to the PMU regsisters honor the
12 * PMCR.N value that's set for the guest.
13 * This test runs only when KVM_CAP_ARM_PMU_V3 is supported on the host.
14 */
15 #include <kvm_util.h>
16 #include <processor.h>
17 #include <test_util.h>
18 #include <vgic.h>
19 #include <perf/arm_pmuv3.h>
20 #include <linux/bitfield.h>
21
22 /* The max number of the PMU event counters (excluding the cycle counter) */
23 #define ARMV8_PMU_MAX_GENERAL_COUNTERS (ARMV8_PMU_MAX_COUNTERS - 1)
24
25 /* The cycle counter bit position that's common among the PMU registers */
26 #define ARMV8_PMU_CYCLE_IDX 31
27
28 struct vpmu_vm {
29 struct kvm_vm *vm;
30 struct kvm_vcpu *vcpu;
31 int gic_fd;
32 };
33
34 static struct vpmu_vm vpmu_vm;
35
36 struct pmreg_sets {
37 uint64_t set_reg_id;
38 uint64_t clr_reg_id;
39 };
40
41 #define PMREG_SET(set, clr) {.set_reg_id = set, .clr_reg_id = clr}
42
get_pmcr_n(uint64_t pmcr)43 static uint64_t get_pmcr_n(uint64_t pmcr)
44 {
45 return FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
46 }
47
set_pmcr_n(uint64_t * pmcr,uint64_t pmcr_n)48 static void set_pmcr_n(uint64_t *pmcr, uint64_t pmcr_n)
49 {
50 u64p_replace_bits((__u64 *) pmcr, pmcr_n, ARMV8_PMU_PMCR_N);
51 }
52
get_counters_mask(uint64_t n)53 static uint64_t get_counters_mask(uint64_t n)
54 {
55 uint64_t mask = BIT(ARMV8_PMU_CYCLE_IDX);
56
57 if (n)
58 mask |= GENMASK(n - 1, 0);
59 return mask;
60 }
61
62 /* Read PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
read_sel_evcntr(int sel)63 static inline unsigned long read_sel_evcntr(int sel)
64 {
65 write_sysreg(sel, pmselr_el0);
66 isb();
67 return read_sysreg(pmxevcntr_el0);
68 }
69
70 /* Write PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
write_sel_evcntr(int sel,unsigned long val)71 static inline void write_sel_evcntr(int sel, unsigned long val)
72 {
73 write_sysreg(sel, pmselr_el0);
74 isb();
75 write_sysreg(val, pmxevcntr_el0);
76 isb();
77 }
78
79 /* Read PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
read_sel_evtyper(int sel)80 static inline unsigned long read_sel_evtyper(int sel)
81 {
82 write_sysreg(sel, pmselr_el0);
83 isb();
84 return read_sysreg(pmxevtyper_el0);
85 }
86
87 /* Write PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
write_sel_evtyper(int sel,unsigned long val)88 static inline void write_sel_evtyper(int sel, unsigned long val)
89 {
90 write_sysreg(sel, pmselr_el0);
91 isb();
92 write_sysreg(val, pmxevtyper_el0);
93 isb();
94 }
95
enable_counter(int idx)96 static inline void enable_counter(int idx)
97 {
98 uint64_t v = read_sysreg(pmcntenset_el0);
99
100 write_sysreg(BIT(idx) | v, pmcntenset_el0);
101 isb();
102 }
103
disable_counter(int idx)104 static inline void disable_counter(int idx)
105 {
106 uint64_t v = read_sysreg(pmcntenset_el0);
107
108 write_sysreg(BIT(idx) | v, pmcntenclr_el0);
109 isb();
110 }
111
pmu_disable_reset(void)112 static void pmu_disable_reset(void)
113 {
114 uint64_t pmcr = read_sysreg(pmcr_el0);
115
116 /* Reset all counters, disabling them */
117 pmcr &= ~ARMV8_PMU_PMCR_E;
118 write_sysreg(pmcr | ARMV8_PMU_PMCR_P, pmcr_el0);
119 isb();
120 }
121
122 #define RETURN_READ_PMEVCNTRN(n) \
123 return read_sysreg(pmevcntr##n##_el0)
read_pmevcntrn(int n)124 static unsigned long read_pmevcntrn(int n)
125 {
126 PMEVN_SWITCH(n, RETURN_READ_PMEVCNTRN);
127 return 0;
128 }
129
130 #define WRITE_PMEVCNTRN(n) \
131 write_sysreg(val, pmevcntr##n##_el0)
write_pmevcntrn(int n,unsigned long val)132 static void write_pmevcntrn(int n, unsigned long val)
133 {
134 PMEVN_SWITCH(n, WRITE_PMEVCNTRN);
135 isb();
136 }
137
138 #define READ_PMEVTYPERN(n) \
139 return read_sysreg(pmevtyper##n##_el0)
read_pmevtypern(int n)140 static unsigned long read_pmevtypern(int n)
141 {
142 PMEVN_SWITCH(n, READ_PMEVTYPERN);
143 return 0;
144 }
145
146 #define WRITE_PMEVTYPERN(n) \
147 write_sysreg(val, pmevtyper##n##_el0)
write_pmevtypern(int n,unsigned long val)148 static void write_pmevtypern(int n, unsigned long val)
149 {
150 PMEVN_SWITCH(n, WRITE_PMEVTYPERN);
151 isb();
152 }
153
154 /*
155 * The pmc_accessor structure has pointers to PMEV{CNTR,TYPER}<n>_EL0
156 * accessors that test cases will use. Each of the accessors will
157 * either directly reads/writes PMEV{CNTR,TYPER}<n>_EL0
158 * (i.e. {read,write}_pmev{cnt,type}rn()), or reads/writes them through
159 * PMXEV{CNTR,TYPER}_EL0 (i.e. {read,write}_sel_ev{cnt,type}r()).
160 *
161 * This is used to test that combinations of those accessors provide
162 * the consistent behavior.
163 */
164 struct pmc_accessor {
165 /* A function to be used to read PMEVTCNTR<n>_EL0 */
166 unsigned long (*read_cntr)(int idx);
167 /* A function to be used to write PMEVTCNTR<n>_EL0 */
168 void (*write_cntr)(int idx, unsigned long val);
169 /* A function to be used to read PMEVTYPER<n>_EL0 */
170 unsigned long (*read_typer)(int idx);
171 /* A function to be used to write PMEVTYPER<n>_EL0 */
172 void (*write_typer)(int idx, unsigned long val);
173 };
174
175 struct pmc_accessor pmc_accessors[] = {
176 /* test with all direct accesses */
177 { read_pmevcntrn, write_pmevcntrn, read_pmevtypern, write_pmevtypern },
178 /* test with all indirect accesses */
179 { read_sel_evcntr, write_sel_evcntr, read_sel_evtyper, write_sel_evtyper },
180 /* read with direct accesses, and write with indirect accesses */
181 { read_pmevcntrn, write_sel_evcntr, read_pmevtypern, write_sel_evtyper },
182 /* read with indirect accesses, and write with direct accesses */
183 { read_sel_evcntr, write_pmevcntrn, read_sel_evtyper, write_pmevtypern },
184 };
185
186 /*
187 * Convert a pointer of pmc_accessor to an index in pmc_accessors[],
188 * assuming that the pointer is one of the entries in pmc_accessors[].
189 */
190 #define PMC_ACC_TO_IDX(acc) (acc - &pmc_accessors[0])
191
192 #define GUEST_ASSERT_BITMAP_REG(regname, mask, set_expected) \
193 { \
194 uint64_t _tval = read_sysreg(regname); \
195 \
196 if (set_expected) \
197 __GUEST_ASSERT((_tval & mask), \
198 "tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
199 _tval, mask, set_expected); \
200 else \
201 __GUEST_ASSERT(!(_tval & mask), \
202 "tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
203 _tval, mask, set_expected); \
204 }
205
206 /*
207 * Check if @mask bits in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers
208 * are set or cleared as specified in @set_expected.
209 */
check_bitmap_pmu_regs(uint64_t mask,bool set_expected)210 static void check_bitmap_pmu_regs(uint64_t mask, bool set_expected)
211 {
212 GUEST_ASSERT_BITMAP_REG(pmcntenset_el0, mask, set_expected);
213 GUEST_ASSERT_BITMAP_REG(pmcntenclr_el0, mask, set_expected);
214 GUEST_ASSERT_BITMAP_REG(pmintenset_el1, mask, set_expected);
215 GUEST_ASSERT_BITMAP_REG(pmintenclr_el1, mask, set_expected);
216 GUEST_ASSERT_BITMAP_REG(pmovsset_el0, mask, set_expected);
217 GUEST_ASSERT_BITMAP_REG(pmovsclr_el0, mask, set_expected);
218 }
219
220 /*
221 * Check if the bit in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers corresponding
222 * to the specified counter (@pmc_idx) can be read/written as expected.
223 * When @set_op is true, it tries to set the bit for the counter in
224 * those registers by writing the SET registers (the bit won't be set
225 * if the counter is not implemented though).
226 * Otherwise, it tries to clear the bits in the registers by writing
227 * the CLR registers.
228 * Then, it checks if the values indicated in the registers are as expected.
229 */
test_bitmap_pmu_regs(int pmc_idx,bool set_op)230 static void test_bitmap_pmu_regs(int pmc_idx, bool set_op)
231 {
232 uint64_t pmcr_n, test_bit = BIT(pmc_idx);
233 bool set_expected = false;
234
235 if (set_op) {
236 write_sysreg(test_bit, pmcntenset_el0);
237 write_sysreg(test_bit, pmintenset_el1);
238 write_sysreg(test_bit, pmovsset_el0);
239
240 /* The bit will be set only if the counter is implemented */
241 pmcr_n = get_pmcr_n(read_sysreg(pmcr_el0));
242 set_expected = (pmc_idx < pmcr_n) ? true : false;
243 } else {
244 write_sysreg(test_bit, pmcntenclr_el0);
245 write_sysreg(test_bit, pmintenclr_el1);
246 write_sysreg(test_bit, pmovsclr_el0);
247 }
248 check_bitmap_pmu_regs(test_bit, set_expected);
249 }
250
251 /*
252 * Tests for reading/writing registers for the (implemented) event counter
253 * specified by @pmc_idx.
254 */
test_access_pmc_regs(struct pmc_accessor * acc,int pmc_idx)255 static void test_access_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
256 {
257 uint64_t write_data, read_data;
258
259 /* Disable all PMCs and reset all PMCs to zero. */
260 pmu_disable_reset();
261
262 /*
263 * Tests for reading/writing {PMCNTEN,PMINTEN,PMOVS}{SET,CLR}_EL1.
264 */
265
266 /* Make sure that the bit in those registers are set to 0 */
267 test_bitmap_pmu_regs(pmc_idx, false);
268 /* Test if setting the bit in those registers works */
269 test_bitmap_pmu_regs(pmc_idx, true);
270 /* Test if clearing the bit in those registers works */
271 test_bitmap_pmu_regs(pmc_idx, false);
272
273 /*
274 * Tests for reading/writing the event type register.
275 */
276
277 /*
278 * Set the event type register to an arbitrary value just for testing
279 * of reading/writing the register.
280 * Arm ARM says that for the event from 0x0000 to 0x003F,
281 * the value indicated in the PMEVTYPER<n>_EL0.evtCount field is
282 * the value written to the field even when the specified event
283 * is not supported.
284 */
285 write_data = (ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMUV3_PERFCTR_INST_RETIRED);
286 acc->write_typer(pmc_idx, write_data);
287 read_data = acc->read_typer(pmc_idx);
288 __GUEST_ASSERT(read_data == write_data,
289 "pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
290 pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
291
292 /*
293 * Tests for reading/writing the event count register.
294 */
295
296 read_data = acc->read_cntr(pmc_idx);
297
298 /* The count value must be 0, as it is disabled and reset */
299 __GUEST_ASSERT(read_data == 0,
300 "pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx",
301 pmc_idx, PMC_ACC_TO_IDX(acc), read_data);
302
303 write_data = read_data + pmc_idx + 0x12345;
304 acc->write_cntr(pmc_idx, write_data);
305 read_data = acc->read_cntr(pmc_idx);
306 __GUEST_ASSERT(read_data == write_data,
307 "pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
308 pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
309 }
310
311 #define INVALID_EC (-1ul)
312 uint64_t expected_ec = INVALID_EC;
313
guest_sync_handler(struct ex_regs * regs)314 static void guest_sync_handler(struct ex_regs *regs)
315 {
316 uint64_t esr, ec;
317
318 esr = read_sysreg(esr_el1);
319 ec = (esr >> ESR_EC_SHIFT) & ESR_EC_MASK;
320
321 __GUEST_ASSERT(expected_ec == ec,
322 "PC: 0x%lx; ESR: 0x%lx; EC: 0x%lx; EC expected: 0x%lx",
323 regs->pc, esr, ec, expected_ec);
324
325 /* skip the trapping instruction */
326 regs->pc += 4;
327
328 /* Use INVALID_EC to indicate an exception occurred */
329 expected_ec = INVALID_EC;
330 }
331
332 /*
333 * Run the given operation that should trigger an exception with the
334 * given exception class. The exception handler (guest_sync_handler)
335 * will reset op_end_addr to 0, expected_ec to INVALID_EC, and skip
336 * the instruction that trapped.
337 */
338 #define TEST_EXCEPTION(ec, ops) \
339 ({ \
340 GUEST_ASSERT(ec != INVALID_EC); \
341 WRITE_ONCE(expected_ec, ec); \
342 dsb(ish); \
343 ops; \
344 GUEST_ASSERT(expected_ec == INVALID_EC); \
345 })
346
347 /*
348 * Tests for reading/writing registers for the unimplemented event counter
349 * specified by @pmc_idx (>= PMCR_EL0.N).
350 */
test_access_invalid_pmc_regs(struct pmc_accessor * acc,int pmc_idx)351 static void test_access_invalid_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
352 {
353 /*
354 * Reading/writing the event count/type registers should cause
355 * an UNDEFINED exception.
356 */
357 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_cntr(pmc_idx));
358 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_cntr(pmc_idx, 0));
359 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_typer(pmc_idx));
360 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_typer(pmc_idx, 0));
361 /*
362 * The bit corresponding to the (unimplemented) counter in
363 * {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers should be RAZ.
364 */
365 test_bitmap_pmu_regs(pmc_idx, 1);
366 test_bitmap_pmu_regs(pmc_idx, 0);
367 }
368
369 /*
370 * The guest is configured with PMUv3 with @expected_pmcr_n number of
371 * event counters.
372 * Check if @expected_pmcr_n is consistent with PMCR_EL0.N, and
373 * if reading/writing PMU registers for implemented or unimplemented
374 * counters works as expected.
375 */
guest_code(uint64_t expected_pmcr_n)376 static void guest_code(uint64_t expected_pmcr_n)
377 {
378 uint64_t pmcr, pmcr_n, unimp_mask;
379 int i, pmc;
380
381 __GUEST_ASSERT(expected_pmcr_n <= ARMV8_PMU_MAX_GENERAL_COUNTERS,
382 "Expected PMCR.N: 0x%lx; ARMv8 general counters: 0x%lx",
383 expected_pmcr_n, ARMV8_PMU_MAX_GENERAL_COUNTERS);
384
385 pmcr = read_sysreg(pmcr_el0);
386 pmcr_n = get_pmcr_n(pmcr);
387
388 /* Make sure that PMCR_EL0.N indicates the value userspace set */
389 __GUEST_ASSERT(pmcr_n == expected_pmcr_n,
390 "Expected PMCR.N: 0x%lx, PMCR.N: 0x%lx",
391 expected_pmcr_n, pmcr_n);
392
393 /*
394 * Make sure that (RAZ) bits corresponding to unimplemented event
395 * counters in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers are reset
396 * to zero.
397 * (NOTE: bits for implemented event counters are reset to UNKNOWN)
398 */
399 unimp_mask = GENMASK_ULL(ARMV8_PMU_MAX_GENERAL_COUNTERS - 1, pmcr_n);
400 check_bitmap_pmu_regs(unimp_mask, false);
401
402 /*
403 * Tests for reading/writing PMU registers for implemented counters.
404 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
405 */
406 for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
407 for (pmc = 0; pmc < pmcr_n; pmc++)
408 test_access_pmc_regs(&pmc_accessors[i], pmc);
409 }
410
411 /*
412 * Tests for reading/writing PMU registers for unimplemented counters.
413 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
414 */
415 for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
416 for (pmc = pmcr_n; pmc < ARMV8_PMU_MAX_GENERAL_COUNTERS; pmc++)
417 test_access_invalid_pmc_regs(&pmc_accessors[i], pmc);
418 }
419
420 GUEST_DONE();
421 }
422
423 #define GICD_BASE_GPA 0x8000000ULL
424 #define GICR_BASE_GPA 0x80A0000ULL
425
426 /* Create a VM that has one vCPU with PMUv3 configured. */
create_vpmu_vm(void * guest_code)427 static void create_vpmu_vm(void *guest_code)
428 {
429 struct kvm_vcpu_init init;
430 uint8_t pmuver, ec;
431 uint64_t dfr0, irq = 23;
432 struct kvm_device_attr irq_attr = {
433 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
434 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
435 .addr = (uint64_t)&irq,
436 };
437 struct kvm_device_attr init_attr = {
438 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
439 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
440 };
441
442 /* The test creates the vpmu_vm multiple times. Ensure a clean state */
443 memset(&vpmu_vm, 0, sizeof(vpmu_vm));
444
445 vpmu_vm.vm = vm_create(1);
446 vm_init_descriptor_tables(vpmu_vm.vm);
447 for (ec = 0; ec < ESR_EC_NUM; ec++) {
448 vm_install_sync_handler(vpmu_vm.vm, VECTOR_SYNC_CURRENT, ec,
449 guest_sync_handler);
450 }
451
452 /* Create vCPU with PMUv3 */
453 vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
454 init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
455 vpmu_vm.vcpu = aarch64_vcpu_add(vpmu_vm.vm, 0, &init, guest_code);
456 vcpu_init_descriptor_tables(vpmu_vm.vcpu);
457 vpmu_vm.gic_fd = vgic_v3_setup(vpmu_vm.vm, 1, 64,
458 GICD_BASE_GPA, GICR_BASE_GPA);
459 __TEST_REQUIRE(vpmu_vm.gic_fd >= 0,
460 "Failed to create vgic-v3, skipping");
461
462 /* Make sure that PMUv3 support is indicated in the ID register */
463 vcpu_get_reg(vpmu_vm.vcpu,
464 KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &dfr0);
465 pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0);
466 TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF &&
467 pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP,
468 "Unexpected PMUVER (0x%x) on the vCPU with PMUv3", pmuver);
469
470 /* Initialize vPMU */
471 vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &irq_attr);
472 vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &init_attr);
473 }
474
destroy_vpmu_vm(void)475 static void destroy_vpmu_vm(void)
476 {
477 close(vpmu_vm.gic_fd);
478 kvm_vm_free(vpmu_vm.vm);
479 }
480
run_vcpu(struct kvm_vcpu * vcpu,uint64_t pmcr_n)481 static void run_vcpu(struct kvm_vcpu *vcpu, uint64_t pmcr_n)
482 {
483 struct ucall uc;
484
485 vcpu_args_set(vcpu, 1, pmcr_n);
486 vcpu_run(vcpu);
487 switch (get_ucall(vcpu, &uc)) {
488 case UCALL_ABORT:
489 REPORT_GUEST_ASSERT(uc);
490 break;
491 case UCALL_DONE:
492 break;
493 default:
494 TEST_FAIL("Unknown ucall %lu", uc.cmd);
495 break;
496 }
497 }
498
test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n,bool expect_fail)499 static void test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n, bool expect_fail)
500 {
501 struct kvm_vcpu *vcpu;
502 uint64_t pmcr, pmcr_orig;
503
504 create_vpmu_vm(guest_code);
505 vcpu = vpmu_vm.vcpu;
506
507 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr_orig);
508 pmcr = pmcr_orig;
509
510 /*
511 * Setting a larger value of PMCR.N should not modify the field, and
512 * return a success.
513 */
514 set_pmcr_n(&pmcr, pmcr_n);
515 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), pmcr);
516 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
517
518 if (expect_fail)
519 TEST_ASSERT(pmcr_orig == pmcr,
520 "PMCR.N modified by KVM to a larger value (PMCR: 0x%lx) for pmcr_n: 0x%lx",
521 pmcr, pmcr_n);
522 else
523 TEST_ASSERT(pmcr_n == get_pmcr_n(pmcr),
524 "Failed to update PMCR.N to %lu (received: %lu)",
525 pmcr_n, get_pmcr_n(pmcr));
526 }
527
528 /*
529 * Create a guest with one vCPU, set the PMCR_EL0.N for the vCPU to @pmcr_n,
530 * and run the test.
531 */
run_access_test(uint64_t pmcr_n)532 static void run_access_test(uint64_t pmcr_n)
533 {
534 uint64_t sp;
535 struct kvm_vcpu *vcpu;
536 struct kvm_vcpu_init init;
537
538 pr_debug("Test with pmcr_n %lu\n", pmcr_n);
539
540 test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
541 vcpu = vpmu_vm.vcpu;
542
543 /* Save the initial sp to restore them later to run the guest again */
544 vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1), &sp);
545
546 run_vcpu(vcpu, pmcr_n);
547
548 /*
549 * Reset and re-initialize the vCPU, and run the guest code again to
550 * check if PMCR_EL0.N is preserved.
551 */
552 vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
553 init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
554 aarch64_vcpu_setup(vcpu, &init);
555 vcpu_init_descriptor_tables(vcpu);
556 vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), sp);
557 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
558
559 run_vcpu(vcpu, pmcr_n);
560
561 destroy_vpmu_vm();
562 }
563
564 static struct pmreg_sets validity_check_reg_sets[] = {
565 PMREG_SET(SYS_PMCNTENSET_EL0, SYS_PMCNTENCLR_EL0),
566 PMREG_SET(SYS_PMINTENSET_EL1, SYS_PMINTENCLR_EL1),
567 PMREG_SET(SYS_PMOVSSET_EL0, SYS_PMOVSCLR_EL0),
568 };
569
570 /*
571 * Create a VM, and check if KVM handles the userspace accesses of
572 * the PMU register sets in @validity_check_reg_sets[] correctly.
573 */
run_pmregs_validity_test(uint64_t pmcr_n)574 static void run_pmregs_validity_test(uint64_t pmcr_n)
575 {
576 int i;
577 struct kvm_vcpu *vcpu;
578 uint64_t set_reg_id, clr_reg_id, reg_val;
579 uint64_t valid_counters_mask, max_counters_mask;
580
581 test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
582 vcpu = vpmu_vm.vcpu;
583
584 valid_counters_mask = get_counters_mask(pmcr_n);
585 max_counters_mask = get_counters_mask(ARMV8_PMU_MAX_COUNTERS);
586
587 for (i = 0; i < ARRAY_SIZE(validity_check_reg_sets); i++) {
588 set_reg_id = validity_check_reg_sets[i].set_reg_id;
589 clr_reg_id = validity_check_reg_sets[i].clr_reg_id;
590
591 /*
592 * Test if the 'set' and 'clr' variants of the registers
593 * are initialized based on the number of valid counters.
594 */
595 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), ®_val);
596 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
597 "Initial read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
598 KVM_ARM64_SYS_REG(set_reg_id), reg_val);
599
600 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), ®_val);
601 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
602 "Initial read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
603 KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
604
605 /*
606 * Using the 'set' variant, force-set the register to the
607 * max number of possible counters and test if KVM discards
608 * the bits for unimplemented counters as it should.
609 */
610 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), max_counters_mask);
611
612 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), ®_val);
613 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
614 "Read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
615 KVM_ARM64_SYS_REG(set_reg_id), reg_val);
616
617 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), ®_val);
618 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
619 "Read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
620 KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
621 }
622
623 destroy_vpmu_vm();
624 }
625
626 /*
627 * Create a guest with one vCPU, and attempt to set the PMCR_EL0.N for
628 * the vCPU to @pmcr_n, which is larger than the host value.
629 * The attempt should fail as @pmcr_n is too big to set for the vCPU.
630 */
run_error_test(uint64_t pmcr_n)631 static void run_error_test(uint64_t pmcr_n)
632 {
633 pr_debug("Error test with pmcr_n %lu (larger than the host)\n", pmcr_n);
634
635 test_create_vpmu_vm_with_pmcr_n(pmcr_n, true);
636 destroy_vpmu_vm();
637 }
638
639 /*
640 * Return the default number of implemented PMU event counters excluding
641 * the cycle counter (i.e. PMCR_EL0.N value) for the guest.
642 */
get_pmcr_n_limit(void)643 static uint64_t get_pmcr_n_limit(void)
644 {
645 uint64_t pmcr;
646
647 create_vpmu_vm(guest_code);
648 vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
649 destroy_vpmu_vm();
650 return get_pmcr_n(pmcr);
651 }
652
main(void)653 int main(void)
654 {
655 uint64_t i, pmcr_n;
656
657 TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_PMU_V3));
658
659 pmcr_n = get_pmcr_n_limit();
660 for (i = 0; i <= pmcr_n; i++) {
661 run_access_test(i);
662 run_pmregs_validity_test(i);
663 }
664
665 for (i = pmcr_n + 1; i < ARMV8_PMU_MAX_COUNTERS; i++)
666 run_error_test(i);
667
668 return 0;
669 }
670