1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/svc.c
4 *
5 * High-level RPC service routines
6 *
7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8 *
9 * Multiple threads pools and NUMAisation
10 * Copyright (c) 2006 Silicon Graphics, Inc.
11 * by Greg Banks <gnb@melbourne.sgi.com>
12 */
13
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31
32 #include <trace/events/sunrpc.h>
33
34 #include "fail.h"
35
36 #define RPCDBG_FACILITY RPCDBG_SVCDSP
37
38 static void svc_unregister(const struct svc_serv *serv, struct net *net);
39
40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
41
42 /*
43 * Mode for mapping cpus to pools.
44 */
45 enum {
46 SVC_POOL_AUTO = -1, /* choose one of the others */
47 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
48 * (legacy & UP mode) */
49 SVC_POOL_PERCPU, /* one pool per cpu */
50 SVC_POOL_PERNODE /* one pool per numa node */
51 };
52
53 /*
54 * Structure for mapping cpus to pools and vice versa.
55 * Setup once during sunrpc initialisation.
56 */
57
58 struct svc_pool_map {
59 int count; /* How many svc_servs use us */
60 int mode; /* Note: int not enum to avoid
61 * warnings about "enumeration value
62 * not handled in switch" */
63 unsigned int npools;
64 unsigned int *pool_to; /* maps pool id to cpu or node */
65 unsigned int *to_pool; /* maps cpu or node to pool id */
66 };
67
68 static struct svc_pool_map svc_pool_map = {
69 .mode = SVC_POOL_DEFAULT
70 };
71
72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
73
74 static int
param_set_pool_mode(const char * val,const struct kernel_param * kp)75 param_set_pool_mode(const char *val, const struct kernel_param *kp)
76 {
77 int *ip = (int *)kp->arg;
78 struct svc_pool_map *m = &svc_pool_map;
79 int err;
80
81 mutex_lock(&svc_pool_map_mutex);
82
83 err = -EBUSY;
84 if (m->count)
85 goto out;
86
87 err = 0;
88 if (!strncmp(val, "auto", 4))
89 *ip = SVC_POOL_AUTO;
90 else if (!strncmp(val, "global", 6))
91 *ip = SVC_POOL_GLOBAL;
92 else if (!strncmp(val, "percpu", 6))
93 *ip = SVC_POOL_PERCPU;
94 else if (!strncmp(val, "pernode", 7))
95 *ip = SVC_POOL_PERNODE;
96 else
97 err = -EINVAL;
98
99 out:
100 mutex_unlock(&svc_pool_map_mutex);
101 return err;
102 }
103
104 static int
param_get_pool_mode(char * buf,const struct kernel_param * kp)105 param_get_pool_mode(char *buf, const struct kernel_param *kp)
106 {
107 int *ip = (int *)kp->arg;
108
109 switch (*ip)
110 {
111 case SVC_POOL_AUTO:
112 return sysfs_emit(buf, "auto\n");
113 case SVC_POOL_GLOBAL:
114 return sysfs_emit(buf, "global\n");
115 case SVC_POOL_PERCPU:
116 return sysfs_emit(buf, "percpu\n");
117 case SVC_POOL_PERNODE:
118 return sysfs_emit(buf, "pernode\n");
119 default:
120 return sysfs_emit(buf, "%d\n", *ip);
121 }
122 }
123
124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
125 &svc_pool_map.mode, 0644);
126
127 /*
128 * Detect best pool mapping mode heuristically,
129 * according to the machine's topology.
130 */
131 static int
svc_pool_map_choose_mode(void)132 svc_pool_map_choose_mode(void)
133 {
134 unsigned int node;
135
136 if (nr_online_nodes > 1) {
137 /*
138 * Actually have multiple NUMA nodes,
139 * so split pools on NUMA node boundaries
140 */
141 return SVC_POOL_PERNODE;
142 }
143
144 node = first_online_node;
145 if (nr_cpus_node(node) > 2) {
146 /*
147 * Non-trivial SMP, or CONFIG_NUMA on
148 * non-NUMA hardware, e.g. with a generic
149 * x86_64 kernel on Xeons. In this case we
150 * want to divide the pools on cpu boundaries.
151 */
152 return SVC_POOL_PERCPU;
153 }
154
155 /* default: one global pool */
156 return SVC_POOL_GLOBAL;
157 }
158
159 /*
160 * Allocate the to_pool[] and pool_to[] arrays.
161 * Returns 0 on success or an errno.
162 */
163 static int
svc_pool_map_alloc_arrays(struct svc_pool_map * m,unsigned int maxpools)164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
165 {
166 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
167 if (!m->to_pool)
168 goto fail;
169 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
170 if (!m->pool_to)
171 goto fail_free;
172
173 return 0;
174
175 fail_free:
176 kfree(m->to_pool);
177 m->to_pool = NULL;
178 fail:
179 return -ENOMEM;
180 }
181
182 /*
183 * Initialise the pool map for SVC_POOL_PERCPU mode.
184 * Returns number of pools or <0 on error.
185 */
186 static int
svc_pool_map_init_percpu(struct svc_pool_map * m)187 svc_pool_map_init_percpu(struct svc_pool_map *m)
188 {
189 unsigned int maxpools = nr_cpu_ids;
190 unsigned int pidx = 0;
191 unsigned int cpu;
192 int err;
193
194 err = svc_pool_map_alloc_arrays(m, maxpools);
195 if (err)
196 return err;
197
198 for_each_online_cpu(cpu) {
199 BUG_ON(pidx >= maxpools);
200 m->to_pool[cpu] = pidx;
201 m->pool_to[pidx] = cpu;
202 pidx++;
203 }
204 /* cpus brought online later all get mapped to pool0, sorry */
205
206 return pidx;
207 };
208
209
210 /*
211 * Initialise the pool map for SVC_POOL_PERNODE mode.
212 * Returns number of pools or <0 on error.
213 */
214 static int
svc_pool_map_init_pernode(struct svc_pool_map * m)215 svc_pool_map_init_pernode(struct svc_pool_map *m)
216 {
217 unsigned int maxpools = nr_node_ids;
218 unsigned int pidx = 0;
219 unsigned int node;
220 int err;
221
222 err = svc_pool_map_alloc_arrays(m, maxpools);
223 if (err)
224 return err;
225
226 for_each_node_with_cpus(node) {
227 /* some architectures (e.g. SN2) have cpuless nodes */
228 BUG_ON(pidx > maxpools);
229 m->to_pool[node] = pidx;
230 m->pool_to[pidx] = node;
231 pidx++;
232 }
233 /* nodes brought online later all get mapped to pool0, sorry */
234
235 return pidx;
236 }
237
238
239 /*
240 * Add a reference to the global map of cpus to pools (and
241 * vice versa) if pools are in use.
242 * Initialise the map if we're the first user.
243 * Returns the number of pools. If this is '1', no reference
244 * was taken.
245 */
246 static unsigned int
svc_pool_map_get(void)247 svc_pool_map_get(void)
248 {
249 struct svc_pool_map *m = &svc_pool_map;
250 int npools = -1;
251
252 mutex_lock(&svc_pool_map_mutex);
253
254 if (m->count++) {
255 mutex_unlock(&svc_pool_map_mutex);
256 WARN_ON_ONCE(m->npools <= 1);
257 return m->npools;
258 }
259
260 if (m->mode == SVC_POOL_AUTO)
261 m->mode = svc_pool_map_choose_mode();
262
263 switch (m->mode) {
264 case SVC_POOL_PERCPU:
265 npools = svc_pool_map_init_percpu(m);
266 break;
267 case SVC_POOL_PERNODE:
268 npools = svc_pool_map_init_pernode(m);
269 break;
270 }
271
272 if (npools <= 0) {
273 /* default, or memory allocation failure */
274 npools = 1;
275 m->mode = SVC_POOL_GLOBAL;
276 }
277 m->npools = npools;
278
279 if (npools == 1)
280 /* service is unpooled, so doesn't hold a reference */
281 m->count--;
282
283 mutex_unlock(&svc_pool_map_mutex);
284 return npools;
285 }
286
287 /*
288 * Drop a reference to the global map of cpus to pools, if
289 * pools were in use, i.e. if npools > 1.
290 * When the last reference is dropped, the map data is
291 * freed; this allows the sysadmin to change the pool
292 * mode using the pool_mode module option without
293 * rebooting or re-loading sunrpc.ko.
294 */
295 static void
svc_pool_map_put(int npools)296 svc_pool_map_put(int npools)
297 {
298 struct svc_pool_map *m = &svc_pool_map;
299
300 if (npools <= 1)
301 return;
302 mutex_lock(&svc_pool_map_mutex);
303
304 if (!--m->count) {
305 kfree(m->to_pool);
306 m->to_pool = NULL;
307 kfree(m->pool_to);
308 m->pool_to = NULL;
309 m->npools = 0;
310 }
311
312 mutex_unlock(&svc_pool_map_mutex);
313 }
314
svc_pool_map_get_node(unsigned int pidx)315 static int svc_pool_map_get_node(unsigned int pidx)
316 {
317 const struct svc_pool_map *m = &svc_pool_map;
318
319 if (m->count) {
320 if (m->mode == SVC_POOL_PERCPU)
321 return cpu_to_node(m->pool_to[pidx]);
322 if (m->mode == SVC_POOL_PERNODE)
323 return m->pool_to[pidx];
324 }
325 return NUMA_NO_NODE;
326 }
327 /*
328 * Set the given thread's cpus_allowed mask so that it
329 * will only run on cpus in the given pool.
330 */
331 static inline void
svc_pool_map_set_cpumask(struct task_struct * task,unsigned int pidx)332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
333 {
334 struct svc_pool_map *m = &svc_pool_map;
335 unsigned int node = m->pool_to[pidx];
336
337 /*
338 * The caller checks for sv_nrpools > 1, which
339 * implies that we've been initialized.
340 */
341 WARN_ON_ONCE(m->count == 0);
342 if (m->count == 0)
343 return;
344
345 switch (m->mode) {
346 case SVC_POOL_PERCPU:
347 {
348 set_cpus_allowed_ptr(task, cpumask_of(node));
349 break;
350 }
351 case SVC_POOL_PERNODE:
352 {
353 set_cpus_allowed_ptr(task, cpumask_of_node(node));
354 break;
355 }
356 }
357 }
358
359 /**
360 * svc_pool_for_cpu - Select pool to run a thread on this cpu
361 * @serv: An RPC service
362 *
363 * Use the active CPU and the svc_pool_map's mode setting to
364 * select the svc thread pool to use. Once initialized, the
365 * svc_pool_map does not change.
366 *
367 * Return value:
368 * A pointer to an svc_pool
369 */
svc_pool_for_cpu(struct svc_serv * serv)370 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
371 {
372 struct svc_pool_map *m = &svc_pool_map;
373 int cpu = raw_smp_processor_id();
374 unsigned int pidx = 0;
375
376 if (serv->sv_nrpools <= 1)
377 return serv->sv_pools;
378
379 switch (m->mode) {
380 case SVC_POOL_PERCPU:
381 pidx = m->to_pool[cpu];
382 break;
383 case SVC_POOL_PERNODE:
384 pidx = m->to_pool[cpu_to_node(cpu)];
385 break;
386 }
387
388 return &serv->sv_pools[pidx % serv->sv_nrpools];
389 }
390
svc_rpcb_setup(struct svc_serv * serv,struct net * net)391 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
392 {
393 int err;
394
395 err = rpcb_create_local(net);
396 if (err)
397 return err;
398
399 /* Remove any stale portmap registrations */
400 svc_unregister(serv, net);
401 return 0;
402 }
403 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
404
svc_rpcb_cleanup(struct svc_serv * serv,struct net * net)405 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
406 {
407 svc_unregister(serv, net);
408 rpcb_put_local(net);
409 }
410 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
411
svc_uses_rpcbind(struct svc_serv * serv)412 static int svc_uses_rpcbind(struct svc_serv *serv)
413 {
414 struct svc_program *progp;
415 unsigned int i;
416
417 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
418 for (i = 0; i < progp->pg_nvers; i++) {
419 if (progp->pg_vers[i] == NULL)
420 continue;
421 if (!progp->pg_vers[i]->vs_hidden)
422 return 1;
423 }
424 }
425
426 return 0;
427 }
428
svc_bind(struct svc_serv * serv,struct net * net)429 int svc_bind(struct svc_serv *serv, struct net *net)
430 {
431 if (!svc_uses_rpcbind(serv))
432 return 0;
433 return svc_rpcb_setup(serv, net);
434 }
435 EXPORT_SYMBOL_GPL(svc_bind);
436
437 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
438 static void
__svc_init_bc(struct svc_serv * serv)439 __svc_init_bc(struct svc_serv *serv)
440 {
441 lwq_init(&serv->sv_cb_list);
442 }
443 #else
444 static void
__svc_init_bc(struct svc_serv * serv)445 __svc_init_bc(struct svc_serv *serv)
446 {
447 }
448 #endif
449
450 /*
451 * Create an RPC service
452 */
453 static struct svc_serv *
__svc_create(struct svc_program * prog,unsigned int bufsize,int npools,int (* threadfn)(void * data))454 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
455 int (*threadfn)(void *data))
456 {
457 struct svc_serv *serv;
458 unsigned int vers;
459 unsigned int xdrsize;
460 unsigned int i;
461
462 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
463 return NULL;
464 serv->sv_name = prog->pg_name;
465 serv->sv_program = prog;
466 serv->sv_stats = prog->pg_stats;
467 if (bufsize > RPCSVC_MAXPAYLOAD)
468 bufsize = RPCSVC_MAXPAYLOAD;
469 serv->sv_max_payload = bufsize? bufsize : 4096;
470 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
471 serv->sv_threadfn = threadfn;
472 xdrsize = 0;
473 while (prog) {
474 prog->pg_lovers = prog->pg_nvers-1;
475 for (vers=0; vers<prog->pg_nvers ; vers++)
476 if (prog->pg_vers[vers]) {
477 prog->pg_hivers = vers;
478 if (prog->pg_lovers > vers)
479 prog->pg_lovers = vers;
480 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
481 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
482 }
483 prog = prog->pg_next;
484 }
485 serv->sv_xdrsize = xdrsize;
486 INIT_LIST_HEAD(&serv->sv_tempsocks);
487 INIT_LIST_HEAD(&serv->sv_permsocks);
488 timer_setup(&serv->sv_temptimer, NULL, 0);
489 spin_lock_init(&serv->sv_lock);
490
491 __svc_init_bc(serv);
492
493 serv->sv_nrpools = npools;
494 serv->sv_pools =
495 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
496 GFP_KERNEL);
497 if (!serv->sv_pools) {
498 kfree(serv);
499 return NULL;
500 }
501
502 for (i = 0; i < serv->sv_nrpools; i++) {
503 struct svc_pool *pool = &serv->sv_pools[i];
504
505 dprintk("svc: initialising pool %u for %s\n",
506 i, serv->sv_name);
507
508 pool->sp_id = i;
509 lwq_init(&pool->sp_xprts);
510 INIT_LIST_HEAD(&pool->sp_all_threads);
511 init_llist_head(&pool->sp_idle_threads);
512
513 percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL);
514 percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
515 percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
516 }
517
518 return serv;
519 }
520
521 /**
522 * svc_create - Create an RPC service
523 * @prog: the RPC program the new service will handle
524 * @bufsize: maximum message size for @prog
525 * @threadfn: a function to service RPC requests for @prog
526 *
527 * Returns an instantiated struct svc_serv object or NULL.
528 */
svc_create(struct svc_program * prog,unsigned int bufsize,int (* threadfn)(void * data))529 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
530 int (*threadfn)(void *data))
531 {
532 return __svc_create(prog, bufsize, 1, threadfn);
533 }
534 EXPORT_SYMBOL_GPL(svc_create);
535
536 /**
537 * svc_create_pooled - Create an RPC service with pooled threads
538 * @prog: the RPC program the new service will handle
539 * @bufsize: maximum message size for @prog
540 * @threadfn: a function to service RPC requests for @prog
541 *
542 * Returns an instantiated struct svc_serv object or NULL.
543 */
svc_create_pooled(struct svc_program * prog,unsigned int bufsize,int (* threadfn)(void * data))544 struct svc_serv *svc_create_pooled(struct svc_program *prog,
545 unsigned int bufsize,
546 int (*threadfn)(void *data))
547 {
548 struct svc_serv *serv;
549 unsigned int npools = svc_pool_map_get();
550
551 serv = __svc_create(prog, bufsize, npools, threadfn);
552 if (!serv)
553 goto out_err;
554 return serv;
555 out_err:
556 svc_pool_map_put(npools);
557 return NULL;
558 }
559 EXPORT_SYMBOL_GPL(svc_create_pooled);
560
561 /*
562 * Destroy an RPC service. Should be called with appropriate locking to
563 * protect sv_permsocks and sv_tempsocks.
564 */
565 void
svc_destroy(struct svc_serv ** servp)566 svc_destroy(struct svc_serv **servp)
567 {
568 struct svc_serv *serv = *servp;
569 unsigned int i;
570
571 *servp = NULL;
572
573 dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
574 timer_shutdown_sync(&serv->sv_temptimer);
575
576 /*
577 * Remaining transports at this point are not expected.
578 */
579 WARN_ONCE(!list_empty(&serv->sv_permsocks),
580 "SVC: permsocks remain for %s\n", serv->sv_program->pg_name);
581 WARN_ONCE(!list_empty(&serv->sv_tempsocks),
582 "SVC: tempsocks remain for %s\n", serv->sv_program->pg_name);
583
584 cache_clean_deferred(serv);
585
586 svc_pool_map_put(serv->sv_nrpools);
587
588 for (i = 0; i < serv->sv_nrpools; i++) {
589 struct svc_pool *pool = &serv->sv_pools[i];
590
591 percpu_counter_destroy(&pool->sp_messages_arrived);
592 percpu_counter_destroy(&pool->sp_sockets_queued);
593 percpu_counter_destroy(&pool->sp_threads_woken);
594 }
595 kfree(serv->sv_pools);
596 kfree(serv);
597 }
598 EXPORT_SYMBOL_GPL(svc_destroy);
599
600 static bool
svc_init_buffer(struct svc_rqst * rqstp,unsigned int size,int node)601 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
602 {
603 unsigned long pages, ret;
604
605 /* bc_xprt uses fore channel allocated buffers */
606 if (svc_is_backchannel(rqstp))
607 return true;
608
609 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
610 * We assume one is at most one page
611 */
612 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
613 if (pages > RPCSVC_MAXPAGES)
614 pages = RPCSVC_MAXPAGES;
615
616 ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages,
617 rqstp->rq_pages);
618 return ret == pages;
619 }
620
621 /*
622 * Release an RPC server buffer
623 */
624 static void
svc_release_buffer(struct svc_rqst * rqstp)625 svc_release_buffer(struct svc_rqst *rqstp)
626 {
627 unsigned int i;
628
629 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
630 if (rqstp->rq_pages[i])
631 put_page(rqstp->rq_pages[i]);
632 }
633
634 struct svc_rqst *
svc_rqst_alloc(struct svc_serv * serv,struct svc_pool * pool,int node)635 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
636 {
637 struct svc_rqst *rqstp;
638
639 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
640 if (!rqstp)
641 return rqstp;
642
643 folio_batch_init(&rqstp->rq_fbatch);
644
645 rqstp->rq_server = serv;
646 rqstp->rq_pool = pool;
647
648 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
649 if (!rqstp->rq_scratch_page)
650 goto out_enomem;
651
652 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
653 if (!rqstp->rq_argp)
654 goto out_enomem;
655
656 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
657 if (!rqstp->rq_resp)
658 goto out_enomem;
659
660 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
661 goto out_enomem;
662
663 return rqstp;
664 out_enomem:
665 svc_rqst_free(rqstp);
666 return NULL;
667 }
668 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
669
670 static struct svc_rqst *
svc_prepare_thread(struct svc_serv * serv,struct svc_pool * pool,int node)671 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
672 {
673 struct svc_rqst *rqstp;
674
675 rqstp = svc_rqst_alloc(serv, pool, node);
676 if (!rqstp)
677 return ERR_PTR(-ENOMEM);
678
679 spin_lock_bh(&serv->sv_lock);
680 serv->sv_nrthreads += 1;
681 spin_unlock_bh(&serv->sv_lock);
682
683 atomic_inc(&pool->sp_nrthreads);
684
685 /* Protected by whatever lock the service uses when calling
686 * svc_set_num_threads()
687 */
688 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
689
690 return rqstp;
691 }
692
693 /**
694 * svc_pool_wake_idle_thread - Awaken an idle thread in @pool
695 * @pool: service thread pool
696 *
697 * Can be called from soft IRQ or process context. Finding an idle
698 * service thread and marking it BUSY is atomic with respect to
699 * other calls to svc_pool_wake_idle_thread().
700 *
701 */
svc_pool_wake_idle_thread(struct svc_pool * pool)702 void svc_pool_wake_idle_thread(struct svc_pool *pool)
703 {
704 struct svc_rqst *rqstp;
705 struct llist_node *ln;
706
707 rcu_read_lock();
708 ln = READ_ONCE(pool->sp_idle_threads.first);
709 if (ln) {
710 rqstp = llist_entry(ln, struct svc_rqst, rq_idle);
711 WRITE_ONCE(rqstp->rq_qtime, ktime_get());
712 if (!task_is_running(rqstp->rq_task)) {
713 wake_up_process(rqstp->rq_task);
714 trace_svc_wake_up(rqstp->rq_task->pid);
715 percpu_counter_inc(&pool->sp_threads_woken);
716 }
717 rcu_read_unlock();
718 return;
719 }
720 rcu_read_unlock();
721
722 }
723 EXPORT_SYMBOL_GPL(svc_pool_wake_idle_thread);
724
725 static struct svc_pool *
svc_pool_next(struct svc_serv * serv,struct svc_pool * pool,unsigned int * state)726 svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
727 {
728 return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools];
729 }
730
731 static struct svc_pool *
svc_pool_victim(struct svc_serv * serv,struct svc_pool * target_pool,unsigned int * state)732 svc_pool_victim(struct svc_serv *serv, struct svc_pool *target_pool,
733 unsigned int *state)
734 {
735 struct svc_pool *pool;
736 unsigned int i;
737
738 retry:
739 pool = target_pool;
740
741 if (pool != NULL) {
742 if (atomic_inc_not_zero(&pool->sp_nrthreads))
743 goto found_pool;
744 return NULL;
745 } else {
746 for (i = 0; i < serv->sv_nrpools; i++) {
747 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
748 if (atomic_inc_not_zero(&pool->sp_nrthreads))
749 goto found_pool;
750 }
751 return NULL;
752 }
753
754 found_pool:
755 set_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
756 set_bit(SP_NEED_VICTIM, &pool->sp_flags);
757 if (!atomic_dec_and_test(&pool->sp_nrthreads))
758 return pool;
759 /* Nothing left in this pool any more */
760 clear_bit(SP_NEED_VICTIM, &pool->sp_flags);
761 clear_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
762 goto retry;
763 }
764
765 static int
svc_start_kthreads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)766 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
767 {
768 struct svc_rqst *rqstp;
769 struct task_struct *task;
770 struct svc_pool *chosen_pool;
771 unsigned int state = serv->sv_nrthreads-1;
772 int node;
773
774 do {
775 nrservs--;
776 chosen_pool = svc_pool_next(serv, pool, &state);
777 node = svc_pool_map_get_node(chosen_pool->sp_id);
778
779 rqstp = svc_prepare_thread(serv, chosen_pool, node);
780 if (IS_ERR(rqstp))
781 return PTR_ERR(rqstp);
782 task = kthread_create_on_node(serv->sv_threadfn, rqstp,
783 node, "%s", serv->sv_name);
784 if (IS_ERR(task)) {
785 svc_exit_thread(rqstp);
786 return PTR_ERR(task);
787 }
788
789 rqstp->rq_task = task;
790 if (serv->sv_nrpools > 1)
791 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
792
793 svc_sock_update_bufs(serv);
794 wake_up_process(task);
795 } while (nrservs > 0);
796
797 return 0;
798 }
799
800 static int
svc_stop_kthreads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)801 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
802 {
803 unsigned int state = serv->sv_nrthreads-1;
804 struct svc_pool *victim;
805
806 do {
807 victim = svc_pool_victim(serv, pool, &state);
808 if (!victim)
809 break;
810 svc_pool_wake_idle_thread(victim);
811 wait_on_bit(&victim->sp_flags, SP_VICTIM_REMAINS,
812 TASK_IDLE);
813 nrservs++;
814 } while (nrservs < 0);
815 return 0;
816 }
817
818 /**
819 * svc_set_num_threads - adjust number of threads per RPC service
820 * @serv: RPC service to adjust
821 * @pool: Specific pool from which to choose threads, or NULL
822 * @nrservs: New number of threads for @serv (0 or less means kill all threads)
823 *
824 * Create or destroy threads to make the number of threads for @serv the
825 * given number. If @pool is non-NULL, change only threads in that pool;
826 * otherwise, round-robin between all pools for @serv. @serv's
827 * sv_nrthreads is adjusted for each thread created or destroyed.
828 *
829 * Caller must ensure mutual exclusion between this and server startup or
830 * shutdown.
831 *
832 * Returns zero on success or a negative errno if an error occurred while
833 * starting a thread.
834 */
835 int
svc_set_num_threads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)836 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
837 {
838 if (!pool)
839 nrservs -= serv->sv_nrthreads;
840 else
841 nrservs -= atomic_read(&pool->sp_nrthreads);
842
843 if (nrservs > 0)
844 return svc_start_kthreads(serv, pool, nrservs);
845 if (nrservs < 0)
846 return svc_stop_kthreads(serv, pool, nrservs);
847 return 0;
848 }
849 EXPORT_SYMBOL_GPL(svc_set_num_threads);
850
851 /**
852 * svc_rqst_replace_page - Replace one page in rq_pages[]
853 * @rqstp: svc_rqst with pages to replace
854 * @page: replacement page
855 *
856 * When replacing a page in rq_pages, batch the release of the
857 * replaced pages to avoid hammering the page allocator.
858 *
859 * Return values:
860 * %true: page replaced
861 * %false: array bounds checking failed
862 */
svc_rqst_replace_page(struct svc_rqst * rqstp,struct page * page)863 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
864 {
865 struct page **begin = rqstp->rq_pages;
866 struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES];
867
868 if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
869 trace_svc_replace_page_err(rqstp);
870 return false;
871 }
872
873 if (*rqstp->rq_next_page) {
874 if (!folio_batch_add(&rqstp->rq_fbatch,
875 page_folio(*rqstp->rq_next_page)))
876 __folio_batch_release(&rqstp->rq_fbatch);
877 }
878
879 get_page(page);
880 *(rqstp->rq_next_page++) = page;
881 return true;
882 }
883 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
884
885 /**
886 * svc_rqst_release_pages - Release Reply buffer pages
887 * @rqstp: RPC transaction context
888 *
889 * Release response pages that might still be in flight after
890 * svc_send, and any spliced filesystem-owned pages.
891 */
svc_rqst_release_pages(struct svc_rqst * rqstp)892 void svc_rqst_release_pages(struct svc_rqst *rqstp)
893 {
894 int i, count = rqstp->rq_next_page - rqstp->rq_respages;
895
896 if (count) {
897 release_pages(rqstp->rq_respages, count);
898 for (i = 0; i < count; i++)
899 rqstp->rq_respages[i] = NULL;
900 }
901 }
902
903 /*
904 * Called from a server thread as it's exiting. Caller must hold the "service
905 * mutex" for the service.
906 */
907 void
svc_rqst_free(struct svc_rqst * rqstp)908 svc_rqst_free(struct svc_rqst *rqstp)
909 {
910 folio_batch_release(&rqstp->rq_fbatch);
911 svc_release_buffer(rqstp);
912 if (rqstp->rq_scratch_page)
913 put_page(rqstp->rq_scratch_page);
914 kfree(rqstp->rq_resp);
915 kfree(rqstp->rq_argp);
916 kfree(rqstp->rq_auth_data);
917 kfree_rcu(rqstp, rq_rcu_head);
918 }
919 EXPORT_SYMBOL_GPL(svc_rqst_free);
920
921 void
svc_exit_thread(struct svc_rqst * rqstp)922 svc_exit_thread(struct svc_rqst *rqstp)
923 {
924 struct svc_serv *serv = rqstp->rq_server;
925 struct svc_pool *pool = rqstp->rq_pool;
926
927 list_del_rcu(&rqstp->rq_all);
928
929 atomic_dec(&pool->sp_nrthreads);
930
931 spin_lock_bh(&serv->sv_lock);
932 serv->sv_nrthreads -= 1;
933 spin_unlock_bh(&serv->sv_lock);
934 svc_sock_update_bufs(serv);
935
936 svc_rqst_free(rqstp);
937
938 clear_and_wake_up_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
939 }
940 EXPORT_SYMBOL_GPL(svc_exit_thread);
941
942 /*
943 * Register an "inet" protocol family netid with the local
944 * rpcbind daemon via an rpcbind v4 SET request.
945 *
946 * No netconfig infrastructure is available in the kernel, so
947 * we map IP_ protocol numbers to netids by hand.
948 *
949 * Returns zero on success; a negative errno value is returned
950 * if any error occurs.
951 */
__svc_rpcb_register4(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)952 static int __svc_rpcb_register4(struct net *net, const u32 program,
953 const u32 version,
954 const unsigned short protocol,
955 const unsigned short port)
956 {
957 const struct sockaddr_in sin = {
958 .sin_family = AF_INET,
959 .sin_addr.s_addr = htonl(INADDR_ANY),
960 .sin_port = htons(port),
961 };
962 const char *netid;
963 int error;
964
965 switch (protocol) {
966 case IPPROTO_UDP:
967 netid = RPCBIND_NETID_UDP;
968 break;
969 case IPPROTO_TCP:
970 netid = RPCBIND_NETID_TCP;
971 break;
972 default:
973 return -ENOPROTOOPT;
974 }
975
976 error = rpcb_v4_register(net, program, version,
977 (const struct sockaddr *)&sin, netid);
978
979 /*
980 * User space didn't support rpcbind v4, so retry this
981 * registration request with the legacy rpcbind v2 protocol.
982 */
983 if (error == -EPROTONOSUPPORT)
984 error = rpcb_register(net, program, version, protocol, port);
985
986 return error;
987 }
988
989 #if IS_ENABLED(CONFIG_IPV6)
990 /*
991 * Register an "inet6" protocol family netid with the local
992 * rpcbind daemon via an rpcbind v4 SET request.
993 *
994 * No netconfig infrastructure is available in the kernel, so
995 * we map IP_ protocol numbers to netids by hand.
996 *
997 * Returns zero on success; a negative errno value is returned
998 * if any error occurs.
999 */
__svc_rpcb_register6(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)1000 static int __svc_rpcb_register6(struct net *net, const u32 program,
1001 const u32 version,
1002 const unsigned short protocol,
1003 const unsigned short port)
1004 {
1005 const struct sockaddr_in6 sin6 = {
1006 .sin6_family = AF_INET6,
1007 .sin6_addr = IN6ADDR_ANY_INIT,
1008 .sin6_port = htons(port),
1009 };
1010 const char *netid;
1011 int error;
1012
1013 switch (protocol) {
1014 case IPPROTO_UDP:
1015 netid = RPCBIND_NETID_UDP6;
1016 break;
1017 case IPPROTO_TCP:
1018 netid = RPCBIND_NETID_TCP6;
1019 break;
1020 default:
1021 return -ENOPROTOOPT;
1022 }
1023
1024 error = rpcb_v4_register(net, program, version,
1025 (const struct sockaddr *)&sin6, netid);
1026
1027 /*
1028 * User space didn't support rpcbind version 4, so we won't
1029 * use a PF_INET6 listener.
1030 */
1031 if (error == -EPROTONOSUPPORT)
1032 error = -EAFNOSUPPORT;
1033
1034 return error;
1035 }
1036 #endif /* IS_ENABLED(CONFIG_IPV6) */
1037
1038 /*
1039 * Register a kernel RPC service via rpcbind version 4.
1040 *
1041 * Returns zero on success; a negative errno value is returned
1042 * if any error occurs.
1043 */
__svc_register(struct net * net,const char * progname,const u32 program,const u32 version,const int family,const unsigned short protocol,const unsigned short port)1044 static int __svc_register(struct net *net, const char *progname,
1045 const u32 program, const u32 version,
1046 const int family,
1047 const unsigned short protocol,
1048 const unsigned short port)
1049 {
1050 int error = -EAFNOSUPPORT;
1051
1052 switch (family) {
1053 case PF_INET:
1054 error = __svc_rpcb_register4(net, program, version,
1055 protocol, port);
1056 break;
1057 #if IS_ENABLED(CONFIG_IPV6)
1058 case PF_INET6:
1059 error = __svc_rpcb_register6(net, program, version,
1060 protocol, port);
1061 #endif
1062 }
1063
1064 trace_svc_register(progname, version, family, protocol, port, error);
1065 return error;
1066 }
1067
svc_rpcbind_set_version(struct net * net,const struct svc_program * progp,u32 version,int family,unsigned short proto,unsigned short port)1068 int svc_rpcbind_set_version(struct net *net,
1069 const struct svc_program *progp,
1070 u32 version, int family,
1071 unsigned short proto,
1072 unsigned short port)
1073 {
1074 return __svc_register(net, progp->pg_name, progp->pg_prog,
1075 version, family, proto, port);
1076
1077 }
1078 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1079
svc_generic_rpcbind_set(struct net * net,const struct svc_program * progp,u32 version,int family,unsigned short proto,unsigned short port)1080 int svc_generic_rpcbind_set(struct net *net,
1081 const struct svc_program *progp,
1082 u32 version, int family,
1083 unsigned short proto,
1084 unsigned short port)
1085 {
1086 const struct svc_version *vers = progp->pg_vers[version];
1087 int error;
1088
1089 if (vers == NULL)
1090 return 0;
1091
1092 if (vers->vs_hidden) {
1093 trace_svc_noregister(progp->pg_name, version, proto,
1094 port, family, 0);
1095 return 0;
1096 }
1097
1098 /*
1099 * Don't register a UDP port if we need congestion
1100 * control.
1101 */
1102 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1103 return 0;
1104
1105 error = svc_rpcbind_set_version(net, progp, version,
1106 family, proto, port);
1107
1108 return (vers->vs_rpcb_optnl) ? 0 : error;
1109 }
1110 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1111
1112 /**
1113 * svc_register - register an RPC service with the local portmapper
1114 * @serv: svc_serv struct for the service to register
1115 * @net: net namespace for the service to register
1116 * @family: protocol family of service's listener socket
1117 * @proto: transport protocol number to advertise
1118 * @port: port to advertise
1119 *
1120 * Service is registered for any address in the passed-in protocol family
1121 */
svc_register(const struct svc_serv * serv,struct net * net,const int family,const unsigned short proto,const unsigned short port)1122 int svc_register(const struct svc_serv *serv, struct net *net,
1123 const int family, const unsigned short proto,
1124 const unsigned short port)
1125 {
1126 struct svc_program *progp;
1127 unsigned int i;
1128 int error = 0;
1129
1130 WARN_ON_ONCE(proto == 0 && port == 0);
1131 if (proto == 0 && port == 0)
1132 return -EINVAL;
1133
1134 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1135 for (i = 0; i < progp->pg_nvers; i++) {
1136
1137 error = progp->pg_rpcbind_set(net, progp, i,
1138 family, proto, port);
1139 if (error < 0) {
1140 printk(KERN_WARNING "svc: failed to register "
1141 "%sv%u RPC service (errno %d).\n",
1142 progp->pg_name, i, -error);
1143 break;
1144 }
1145 }
1146 }
1147
1148 return error;
1149 }
1150
1151 /*
1152 * If user space is running rpcbind, it should take the v4 UNSET
1153 * and clear everything for this [program, version]. If user space
1154 * is running portmap, it will reject the v4 UNSET, but won't have
1155 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
1156 * in this case to clear all existing entries for [program, version].
1157 */
__svc_unregister(struct net * net,const u32 program,const u32 version,const char * progname)1158 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1159 const char *progname)
1160 {
1161 int error;
1162
1163 error = rpcb_v4_register(net, program, version, NULL, "");
1164
1165 /*
1166 * User space didn't support rpcbind v4, so retry this
1167 * request with the legacy rpcbind v2 protocol.
1168 */
1169 if (error == -EPROTONOSUPPORT)
1170 error = rpcb_register(net, program, version, 0, 0);
1171
1172 trace_svc_unregister(progname, version, error);
1173 }
1174
1175 /*
1176 * All netids, bind addresses and ports registered for [program, version]
1177 * are removed from the local rpcbind database (if the service is not
1178 * hidden) to make way for a new instance of the service.
1179 *
1180 * The result of unregistration is reported via dprintk for those who want
1181 * verification of the result, but is otherwise not important.
1182 */
svc_unregister(const struct svc_serv * serv,struct net * net)1183 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1184 {
1185 struct sighand_struct *sighand;
1186 struct svc_program *progp;
1187 unsigned long flags;
1188 unsigned int i;
1189
1190 clear_thread_flag(TIF_SIGPENDING);
1191
1192 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1193 for (i = 0; i < progp->pg_nvers; i++) {
1194 if (progp->pg_vers[i] == NULL)
1195 continue;
1196 if (progp->pg_vers[i]->vs_hidden)
1197 continue;
1198 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1199 }
1200 }
1201
1202 rcu_read_lock();
1203 sighand = rcu_dereference(current->sighand);
1204 spin_lock_irqsave(&sighand->siglock, flags);
1205 recalc_sigpending();
1206 spin_unlock_irqrestore(&sighand->siglock, flags);
1207 rcu_read_unlock();
1208 }
1209
1210 /*
1211 * dprintk the given error with the address of the client that caused it.
1212 */
1213 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1214 static __printf(2, 3)
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1215 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1216 {
1217 struct va_format vaf;
1218 va_list args;
1219 char buf[RPC_MAX_ADDRBUFLEN];
1220
1221 va_start(args, fmt);
1222
1223 vaf.fmt = fmt;
1224 vaf.va = &args;
1225
1226 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1227
1228 va_end(args);
1229 }
1230 #else
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1231 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1232 #endif
1233
1234 __be32
svc_generic_init_request(struct svc_rqst * rqstp,const struct svc_program * progp,struct svc_process_info * ret)1235 svc_generic_init_request(struct svc_rqst *rqstp,
1236 const struct svc_program *progp,
1237 struct svc_process_info *ret)
1238 {
1239 const struct svc_version *versp = NULL; /* compiler food */
1240 const struct svc_procedure *procp = NULL;
1241
1242 if (rqstp->rq_vers >= progp->pg_nvers )
1243 goto err_bad_vers;
1244 versp = progp->pg_vers[rqstp->rq_vers];
1245 if (!versp)
1246 goto err_bad_vers;
1247
1248 /*
1249 * Some protocol versions (namely NFSv4) require some form of
1250 * congestion control. (See RFC 7530 section 3.1 paragraph 2)
1251 * In other words, UDP is not allowed. We mark those when setting
1252 * up the svc_xprt, and verify that here.
1253 *
1254 * The spec is not very clear about what error should be returned
1255 * when someone tries to access a server that is listening on UDP
1256 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1257 * fit.
1258 */
1259 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1260 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1261 goto err_bad_vers;
1262
1263 if (rqstp->rq_proc >= versp->vs_nproc)
1264 goto err_bad_proc;
1265 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1266 if (!procp)
1267 goto err_bad_proc;
1268
1269 /* Initialize storage for argp and resp */
1270 memset(rqstp->rq_argp, 0, procp->pc_argzero);
1271 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1272
1273 /* Bump per-procedure stats counter */
1274 this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1275
1276 ret->dispatch = versp->vs_dispatch;
1277 return rpc_success;
1278 err_bad_vers:
1279 ret->mismatch.lovers = progp->pg_lovers;
1280 ret->mismatch.hivers = progp->pg_hivers;
1281 return rpc_prog_mismatch;
1282 err_bad_proc:
1283 return rpc_proc_unavail;
1284 }
1285 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1286
1287 /*
1288 * Common routine for processing the RPC request.
1289 */
1290 static int
svc_process_common(struct svc_rqst * rqstp)1291 svc_process_common(struct svc_rqst *rqstp)
1292 {
1293 struct xdr_stream *xdr = &rqstp->rq_res_stream;
1294 struct svc_program *progp;
1295 const struct svc_procedure *procp = NULL;
1296 struct svc_serv *serv = rqstp->rq_server;
1297 struct svc_process_info process;
1298 enum svc_auth_status auth_res;
1299 unsigned int aoffset;
1300 int rc;
1301 __be32 *p;
1302
1303 /* Will be turned off only when NFSv4 Sessions are used */
1304 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1305 clear_bit(RQ_DROPME, &rqstp->rq_flags);
1306
1307 /* Construct the first words of the reply: */
1308 svcxdr_init_encode(rqstp);
1309 xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1310 xdr_stream_encode_be32(xdr, rpc_reply);
1311
1312 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1313 if (unlikely(!p))
1314 goto err_short_len;
1315 if (*p++ != cpu_to_be32(RPC_VERSION))
1316 goto err_bad_rpc;
1317
1318 xdr_stream_encode_be32(xdr, rpc_msg_accepted);
1319
1320 rqstp->rq_prog = be32_to_cpup(p++);
1321 rqstp->rq_vers = be32_to_cpup(p++);
1322 rqstp->rq_proc = be32_to_cpup(p);
1323
1324 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1325 if (rqstp->rq_prog == progp->pg_prog)
1326 break;
1327
1328 /*
1329 * Decode auth data, and add verifier to reply buffer.
1330 * We do this before anything else in order to get a decent
1331 * auth verifier.
1332 */
1333 auth_res = svc_authenticate(rqstp);
1334 /* Also give the program a chance to reject this call: */
1335 if (auth_res == SVC_OK && progp)
1336 auth_res = progp->pg_authenticate(rqstp);
1337 trace_svc_authenticate(rqstp, auth_res);
1338 switch (auth_res) {
1339 case SVC_OK:
1340 break;
1341 case SVC_GARBAGE:
1342 goto err_garbage_args;
1343 case SVC_SYSERR:
1344 goto err_system_err;
1345 case SVC_DENIED:
1346 goto err_bad_auth;
1347 case SVC_CLOSE:
1348 goto close;
1349 case SVC_DROP:
1350 goto dropit;
1351 case SVC_COMPLETE:
1352 goto sendit;
1353 default:
1354 pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res);
1355 goto err_system_err;
1356 }
1357
1358 if (progp == NULL)
1359 goto err_bad_prog;
1360
1361 switch (progp->pg_init_request(rqstp, progp, &process)) {
1362 case rpc_success:
1363 break;
1364 case rpc_prog_unavail:
1365 goto err_bad_prog;
1366 case rpc_prog_mismatch:
1367 goto err_bad_vers;
1368 case rpc_proc_unavail:
1369 goto err_bad_proc;
1370 }
1371
1372 procp = rqstp->rq_procinfo;
1373 /* Should this check go into the dispatcher? */
1374 if (!procp || !procp->pc_func)
1375 goto err_bad_proc;
1376
1377 /* Syntactic check complete */
1378 serv->sv_stats->rpccnt++;
1379 trace_svc_process(rqstp, progp->pg_name);
1380
1381 aoffset = xdr_stream_pos(xdr);
1382
1383 /* un-reserve some of the out-queue now that we have a
1384 * better idea of reply size
1385 */
1386 if (procp->pc_xdrressize)
1387 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1388
1389 /* Call the function that processes the request. */
1390 rc = process.dispatch(rqstp);
1391 if (procp->pc_release)
1392 procp->pc_release(rqstp);
1393 xdr_finish_decode(xdr);
1394
1395 if (!rc)
1396 goto dropit;
1397 if (rqstp->rq_auth_stat != rpc_auth_ok)
1398 goto err_bad_auth;
1399
1400 if (*rqstp->rq_accept_statp != rpc_success)
1401 xdr_truncate_encode(xdr, aoffset);
1402
1403 if (procp->pc_encode == NULL)
1404 goto dropit;
1405
1406 sendit:
1407 if (svc_authorise(rqstp))
1408 goto close_xprt;
1409 return 1; /* Caller can now send it */
1410
1411 dropit:
1412 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1413 dprintk("svc: svc_process dropit\n");
1414 return 0;
1415
1416 close:
1417 svc_authorise(rqstp);
1418 close_xprt:
1419 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1420 svc_xprt_close(rqstp->rq_xprt);
1421 dprintk("svc: svc_process close\n");
1422 return 0;
1423
1424 err_short_len:
1425 svc_printk(rqstp, "short len %u, dropping request\n",
1426 rqstp->rq_arg.len);
1427 goto close_xprt;
1428
1429 err_bad_rpc:
1430 serv->sv_stats->rpcbadfmt++;
1431 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1432 xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1433 /* Only RPCv2 supported */
1434 xdr_stream_encode_u32(xdr, RPC_VERSION);
1435 xdr_stream_encode_u32(xdr, RPC_VERSION);
1436 return 1; /* don't wrap */
1437
1438 err_bad_auth:
1439 dprintk("svc: authentication failed (%d)\n",
1440 be32_to_cpu(rqstp->rq_auth_stat));
1441 serv->sv_stats->rpcbadauth++;
1442 /* Restore write pointer to location of reply status: */
1443 xdr_truncate_encode(xdr, XDR_UNIT * 2);
1444 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1445 xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1446 xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1447 goto sendit;
1448
1449 err_bad_prog:
1450 dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1451 serv->sv_stats->rpcbadfmt++;
1452 *rqstp->rq_accept_statp = rpc_prog_unavail;
1453 goto sendit;
1454
1455 err_bad_vers:
1456 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1457 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1458
1459 serv->sv_stats->rpcbadfmt++;
1460 *rqstp->rq_accept_statp = rpc_prog_mismatch;
1461
1462 /*
1463 * svc_authenticate() has already added the verifier and
1464 * advanced the stream just past rq_accept_statp.
1465 */
1466 xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1467 xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1468 goto sendit;
1469
1470 err_bad_proc:
1471 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1472
1473 serv->sv_stats->rpcbadfmt++;
1474 *rqstp->rq_accept_statp = rpc_proc_unavail;
1475 goto sendit;
1476
1477 err_garbage_args:
1478 svc_printk(rqstp, "failed to decode RPC header\n");
1479
1480 serv->sv_stats->rpcbadfmt++;
1481 *rqstp->rq_accept_statp = rpc_garbage_args;
1482 goto sendit;
1483
1484 err_system_err:
1485 serv->sv_stats->rpcbadfmt++;
1486 *rqstp->rq_accept_statp = rpc_system_err;
1487 goto sendit;
1488 }
1489
1490 /**
1491 * svc_process - Execute one RPC transaction
1492 * @rqstp: RPC transaction context
1493 *
1494 */
svc_process(struct svc_rqst * rqstp)1495 void svc_process(struct svc_rqst *rqstp)
1496 {
1497 struct kvec *resv = &rqstp->rq_res.head[0];
1498 __be32 *p;
1499
1500 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1501 if (!fail_sunrpc.ignore_server_disconnect &&
1502 should_fail(&fail_sunrpc.attr, 1))
1503 svc_xprt_deferred_close(rqstp->rq_xprt);
1504 #endif
1505
1506 /*
1507 * Setup response xdr_buf.
1508 * Initially it has just one page
1509 */
1510 rqstp->rq_next_page = &rqstp->rq_respages[1];
1511 resv->iov_base = page_address(rqstp->rq_respages[0]);
1512 resv->iov_len = 0;
1513 rqstp->rq_res.pages = rqstp->rq_next_page;
1514 rqstp->rq_res.len = 0;
1515 rqstp->rq_res.page_base = 0;
1516 rqstp->rq_res.page_len = 0;
1517 rqstp->rq_res.buflen = PAGE_SIZE;
1518 rqstp->rq_res.tail[0].iov_base = NULL;
1519 rqstp->rq_res.tail[0].iov_len = 0;
1520
1521 svcxdr_init_decode(rqstp);
1522 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1523 if (unlikely(!p))
1524 goto out_drop;
1525 rqstp->rq_xid = *p++;
1526 if (unlikely(*p != rpc_call))
1527 goto out_baddir;
1528
1529 if (!svc_process_common(rqstp))
1530 goto out_drop;
1531 svc_send(rqstp);
1532 return;
1533
1534 out_baddir:
1535 svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1536 be32_to_cpu(*p));
1537 rqstp->rq_server->sv_stats->rpcbadfmt++;
1538 out_drop:
1539 svc_drop(rqstp);
1540 }
1541
1542 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1543 /**
1544 * svc_process_bc - process a reverse-direction RPC request
1545 * @req: RPC request to be used for client-side processing
1546 * @rqstp: server-side execution context
1547 *
1548 */
svc_process_bc(struct rpc_rqst * req,struct svc_rqst * rqstp)1549 void svc_process_bc(struct rpc_rqst *req, struct svc_rqst *rqstp)
1550 {
1551 struct rpc_task *task;
1552 int proc_error;
1553 struct rpc_timeout timeout;
1554
1555 /* Build the svc_rqst used by the common processing routine */
1556 rqstp->rq_xid = req->rq_xid;
1557 rqstp->rq_prot = req->rq_xprt->prot;
1558 rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1559
1560 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1561 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1562 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1563 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1564
1565 /* Adjust the argument buffer length */
1566 rqstp->rq_arg.len = req->rq_private_buf.len;
1567 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1568 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1569 rqstp->rq_arg.page_len = 0;
1570 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1571 rqstp->rq_arg.page_len)
1572 rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1573 rqstp->rq_arg.head[0].iov_len;
1574 else
1575 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1576 rqstp->rq_arg.page_len;
1577
1578 /* Reset the response buffer */
1579 rqstp->rq_res.head[0].iov_len = 0;
1580
1581 /*
1582 * Skip the XID and calldir fields because they've already
1583 * been processed by the caller.
1584 */
1585 svcxdr_init_decode(rqstp);
1586 if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2))
1587 return;
1588
1589 /* Parse and execute the bc call */
1590 proc_error = svc_process_common(rqstp);
1591
1592 atomic_dec(&req->rq_xprt->bc_slot_count);
1593 if (!proc_error) {
1594 /* Processing error: drop the request */
1595 xprt_free_bc_request(req);
1596 return;
1597 }
1598 /* Finally, send the reply synchronously */
1599 if (rqstp->bc_to_initval > 0) {
1600 timeout.to_initval = rqstp->bc_to_initval;
1601 timeout.to_retries = rqstp->bc_to_retries;
1602 } else {
1603 timeout.to_initval = req->rq_xprt->timeout->to_initval;
1604 timeout.to_retries = req->rq_xprt->timeout->to_retries;
1605 }
1606 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1607 task = rpc_run_bc_task(req, &timeout);
1608
1609 if (IS_ERR(task))
1610 return;
1611
1612 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1613 rpc_put_task(task);
1614 }
1615 EXPORT_SYMBOL_GPL(svc_process_bc);
1616 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1617
1618 /**
1619 * svc_max_payload - Return transport-specific limit on the RPC payload
1620 * @rqstp: RPC transaction context
1621 *
1622 * Returns the maximum number of payload bytes the current transport
1623 * allows.
1624 */
svc_max_payload(const struct svc_rqst * rqstp)1625 u32 svc_max_payload(const struct svc_rqst *rqstp)
1626 {
1627 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1628
1629 if (rqstp->rq_server->sv_max_payload < max)
1630 max = rqstp->rq_server->sv_max_payload;
1631 return max;
1632 }
1633 EXPORT_SYMBOL_GPL(svc_max_payload);
1634
1635 /**
1636 * svc_proc_name - Return RPC procedure name in string form
1637 * @rqstp: svc_rqst to operate on
1638 *
1639 * Return value:
1640 * Pointer to a NUL-terminated string
1641 */
svc_proc_name(const struct svc_rqst * rqstp)1642 const char *svc_proc_name(const struct svc_rqst *rqstp)
1643 {
1644 if (rqstp && rqstp->rq_procinfo)
1645 return rqstp->rq_procinfo->pc_name;
1646 return "unknown";
1647 }
1648
1649
1650 /**
1651 * svc_encode_result_payload - mark a range of bytes as a result payload
1652 * @rqstp: svc_rqst to operate on
1653 * @offset: payload's byte offset in rqstp->rq_res
1654 * @length: size of payload, in bytes
1655 *
1656 * Returns zero on success, or a negative errno if a permanent
1657 * error occurred.
1658 */
svc_encode_result_payload(struct svc_rqst * rqstp,unsigned int offset,unsigned int length)1659 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1660 unsigned int length)
1661 {
1662 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1663 length);
1664 }
1665 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1666
1667 /**
1668 * svc_fill_write_vector - Construct data argument for VFS write call
1669 * @rqstp: svc_rqst to operate on
1670 * @payload: xdr_buf containing only the write data payload
1671 *
1672 * Fills in rqstp::rq_vec, and returns the number of elements.
1673 */
svc_fill_write_vector(struct svc_rqst * rqstp,struct xdr_buf * payload)1674 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1675 struct xdr_buf *payload)
1676 {
1677 struct page **pages = payload->pages;
1678 struct kvec *first = payload->head;
1679 struct kvec *vec = rqstp->rq_vec;
1680 size_t total = payload->len;
1681 unsigned int i;
1682
1683 /* Some types of transport can present the write payload
1684 * entirely in rq_arg.pages. In this case, @first is empty.
1685 */
1686 i = 0;
1687 if (first->iov_len) {
1688 vec[i].iov_base = first->iov_base;
1689 vec[i].iov_len = min_t(size_t, total, first->iov_len);
1690 total -= vec[i].iov_len;
1691 ++i;
1692 }
1693
1694 while (total) {
1695 vec[i].iov_base = page_address(*pages);
1696 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1697 total -= vec[i].iov_len;
1698 ++i;
1699 ++pages;
1700 }
1701
1702 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1703 return i;
1704 }
1705 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1706
1707 /**
1708 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1709 * @rqstp: svc_rqst to operate on
1710 * @first: buffer containing first section of pathname
1711 * @p: buffer containing remaining section of pathname
1712 * @total: total length of the pathname argument
1713 *
1714 * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1715 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1716 * the returned string.
1717 */
svc_fill_symlink_pathname(struct svc_rqst * rqstp,struct kvec * first,void * p,size_t total)1718 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1719 void *p, size_t total)
1720 {
1721 size_t len, remaining;
1722 char *result, *dst;
1723
1724 result = kmalloc(total + 1, GFP_KERNEL);
1725 if (!result)
1726 return ERR_PTR(-ESERVERFAULT);
1727
1728 dst = result;
1729 remaining = total;
1730
1731 len = min_t(size_t, total, first->iov_len);
1732 if (len) {
1733 memcpy(dst, first->iov_base, len);
1734 dst += len;
1735 remaining -= len;
1736 }
1737
1738 if (remaining) {
1739 len = min_t(size_t, remaining, PAGE_SIZE);
1740 memcpy(dst, p, len);
1741 dst += len;
1742 }
1743
1744 *dst = '\0';
1745
1746 /* Sanity check: Linux doesn't allow the pathname argument to
1747 * contain a NUL byte.
1748 */
1749 if (strlen(result) != total) {
1750 kfree(result);
1751 return ERR_PTR(-EINVAL);
1752 }
1753 return result;
1754 }
1755 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1756