1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 #include "shuffle.h"
59 #include "page_reporting.h"
60
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
63
64 /* No special request */
65 #define FPI_NONE ((__force fpi_t)0)
66
67 /*
68 * Skip free page reporting notification for the (possibly merged) page.
69 * This does not hinder free page reporting from grabbing the page,
70 * reporting it and marking it "reported" - it only skips notifying
71 * the free page reporting infrastructure about a newly freed page. For
72 * example, used when temporarily pulling a page from a freelist and
73 * putting it back unmodified.
74 */
75 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
76
77 /*
78 * Place the (possibly merged) page to the tail of the freelist. Will ignore
79 * page shuffling (relevant code - e.g., memory onlining - is expected to
80 * shuffle the whole zone).
81 *
82 * Note: No code should rely on this flag for correctness - it's purely
83 * to allow for optimizations when handing back either fresh pages
84 * (memory onlining) or untouched pages (page isolation, free page
85 * reporting).
86 */
87 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
88
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
92
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
94 /*
95 * On SMP, spin_trylock is sufficient protection.
96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
97 */
98 #define pcp_trylock_prepare(flags) do { } while (0)
99 #define pcp_trylock_finish(flag) do { } while (0)
100 #else
101
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags) local_irq_save(flags)
104 #define pcp_trylock_finish(flags) local_irq_restore(flags)
105 #endif
106
107 /*
108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109 * a migration causing the wrong PCP to be locked and remote memory being
110 * potentially allocated, pin the task to the CPU for the lookup+lock.
111 * preempt_disable is used on !RT because it is faster than migrate_disable.
112 * migrate_disable is used on RT because otherwise RT spinlock usage is
113 * interfered with and a high priority task cannot preempt the allocator.
114 */
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin() preempt_disable()
117 #define pcpu_task_unpin() preempt_enable()
118 #else
119 #define pcpu_task_pin() migrate_disable()
120 #define pcpu_task_unpin() migrate_enable()
121 #endif
122
123 /*
124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125 * Return value should be used with equivalent unlock helper.
126 */
127 #define pcpu_spin_lock(type, member, ptr) \
128 ({ \
129 type *_ret; \
130 pcpu_task_pin(); \
131 _ret = this_cpu_ptr(ptr); \
132 spin_lock(&_ret->member); \
133 _ret; \
134 })
135
136 #define pcpu_spin_trylock(type, member, ptr) \
137 ({ \
138 type *_ret; \
139 pcpu_task_pin(); \
140 _ret = this_cpu_ptr(ptr); \
141 if (!spin_trylock(&_ret->member)) { \
142 pcpu_task_unpin(); \
143 _ret = NULL; \
144 } \
145 _ret; \
146 })
147
148 #define pcpu_spin_unlock(member, ptr) \
149 ({ \
150 spin_unlock(&ptr->member); \
151 pcpu_task_unpin(); \
152 })
153
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr) \
156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
157
158 #define pcp_spin_trylock(ptr) \
159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
160
161 #define pcp_spin_unlock(ptr) \
162 pcpu_spin_unlock(lock, ptr)
163
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
167 #endif
168
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
170
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
172 /*
173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176 * defined in <linux/topology.h>.
177 */
178 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
180 #endif
181
182 static DEFINE_MUTEX(pcpu_drain_mutex);
183
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
187 #endif
188
189 /*
190 * Array of node states.
191 */
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 [N_POSSIBLE] = NODE_MASK_ALL,
194 [N_ONLINE] = { { [0] = 1UL } },
195 #ifndef CONFIG_NUMA
196 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 [N_HIGH_MEMORY] = { { [0] = 1UL } },
199 #endif
200 [N_MEMORY] = { { [0] = 1UL } },
201 [N_CPU] = { { [0] = 1UL } },
202 #endif /* NUMA */
203 };
204 EXPORT_SYMBOL(node_states);
205
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
207
208 /*
209 * A cached value of the page's pageblock's migratetype, used when the page is
210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212 * Also the migratetype set in the page does not necessarily match the pcplist
213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214 * other index - this ensures that it will be put on the correct CMA freelist.
215 */
get_pcppage_migratetype(struct page * page)216 static inline int get_pcppage_migratetype(struct page *page)
217 {
218 return page->index;
219 }
220
set_pcppage_migratetype(struct page * page,int migratetype)221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
222 {
223 page->index = migratetype;
224 }
225
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
228 #endif
229
230 static void __free_pages_ok(struct page *page, unsigned int order,
231 fpi_t fpi_flags);
232
233 /*
234 * results with 256, 32 in the lowmem_reserve sysctl:
235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236 * 1G machine -> (16M dma, 784M normal, 224M high)
237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
240 *
241 * TBD: should special case ZONE_DMA32 machines here - in those we normally
242 * don't need any ZONE_NORMAL reservation
243 */
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
246 [ZONE_DMA] = 256,
247 #endif
248 #ifdef CONFIG_ZONE_DMA32
249 [ZONE_DMA32] = 256,
250 #endif
251 [ZONE_NORMAL] = 32,
252 #ifdef CONFIG_HIGHMEM
253 [ZONE_HIGHMEM] = 0,
254 #endif
255 [ZONE_MOVABLE] = 0,
256 };
257
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
260 "DMA",
261 #endif
262 #ifdef CONFIG_ZONE_DMA32
263 "DMA32",
264 #endif
265 "Normal",
266 #ifdef CONFIG_HIGHMEM
267 "HighMem",
268 #endif
269 "Movable",
270 #ifdef CONFIG_ZONE_DEVICE
271 "Device",
272 #endif
273 };
274
275 const char * const migratetype_names[MIGRATE_TYPES] = {
276 "Unmovable",
277 "Movable",
278 "Reclaimable",
279 "HighAtomic",
280 #ifdef CONFIG_CMA
281 "CMA",
282 #endif
283 #ifdef CONFIG_MEMORY_ISOLATION
284 "Isolate",
285 #endif
286 };
287
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
292
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
294 int movable_zone;
295 EXPORT_SYMBOL(movable_zone);
296
297 #if MAX_NUMNODES > 1
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
302 #endif
303
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
309
310 int page_group_by_mobility_disabled __read_mostly;
311
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
313 /*
314 * During boot we initialize deferred pages on-demand, as needed, but once
315 * page_alloc_init_late() has finished, the deferred pages are all initialized,
316 * and we can permanently disable that path.
317 */
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
319
deferred_pages_enabled(void)320 static inline bool deferred_pages_enabled(void)
321 {
322 return static_branch_unlikely(&deferred_pages);
323 }
324
325 /*
326 * deferred_grow_zone() is __init, but it is called from
327 * get_page_from_freelist() during early boot until deferred_pages permanently
328 * disables this call. This is why we have refdata wrapper to avoid warning,
329 * and to ensure that the function body gets unloaded.
330 */
331 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)332 _deferred_grow_zone(struct zone *zone, unsigned int order)
333 {
334 return deferred_grow_zone(zone, order);
335 }
336 #else
deferred_pages_enabled(void)337 static inline bool deferred_pages_enabled(void)
338 {
339 return false;
340 }
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
342
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
345 unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 return section_to_usemap(__pfn_to_section(pfn));
349 #else
350 return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
352 }
353
pfn_to_bitidx(const struct page * page,unsigned long pfn)354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
355 {
356 #ifdef CONFIG_SPARSEMEM
357 pfn &= (PAGES_PER_SECTION-1);
358 #else
359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 }
363
364 /**
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @mask: mask of bits that the caller is interested in
369 *
370 * Return: pageblock_bits flags
371 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 unsigned long pfn, unsigned long mask)
374 {
375 unsigned long *bitmap;
376 unsigned long bitidx, word_bitidx;
377 unsigned long word;
378
379 bitmap = get_pageblock_bitmap(page, pfn);
380 bitidx = pfn_to_bitidx(page, pfn);
381 word_bitidx = bitidx / BITS_PER_LONG;
382 bitidx &= (BITS_PER_LONG-1);
383 /*
384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 * a consistent read of the memory array, so that results, even though
386 * racy, are not corrupted.
387 */
388 word = READ_ONCE(bitmap[word_bitidx]);
389 return (word >> bitidx) & mask;
390 }
391
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
393 unsigned long pfn)
394 {
395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
396 }
397
398 /**
399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400 * @page: The page within the block of interest
401 * @flags: The flags to set
402 * @pfn: The target page frame number
403 * @mask: mask of bits that the caller is interested in
404 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
406 unsigned long pfn,
407 unsigned long mask)
408 {
409 unsigned long *bitmap;
410 unsigned long bitidx, word_bitidx;
411 unsigned long word;
412
413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
415
416 bitmap = get_pageblock_bitmap(page, pfn);
417 bitidx = pfn_to_bitidx(page, pfn);
418 word_bitidx = bitidx / BITS_PER_LONG;
419 bitidx &= (BITS_PER_LONG-1);
420
421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
422
423 mask <<= bitidx;
424 flags <<= bitidx;
425
426 word = READ_ONCE(bitmap[word_bitidx]);
427 do {
428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
429 }
430
set_pageblock_migratetype(struct page * page,int migratetype)431 void set_pageblock_migratetype(struct page *page, int migratetype)
432 {
433 if (unlikely(page_group_by_mobility_disabled &&
434 migratetype < MIGRATE_PCPTYPES))
435 migratetype = MIGRATE_UNMOVABLE;
436
437 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 page_to_pfn(page), MIGRATETYPE_MASK);
439 }
440
441 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
443 {
444 int ret;
445 unsigned seq;
446 unsigned long pfn = page_to_pfn(page);
447 unsigned long sp, start_pfn;
448
449 do {
450 seq = zone_span_seqbegin(zone);
451 start_pfn = zone->zone_start_pfn;
452 sp = zone->spanned_pages;
453 ret = !zone_spans_pfn(zone, pfn);
454 } while (zone_span_seqretry(zone, seq));
455
456 if (ret)
457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 pfn, zone_to_nid(zone), zone->name,
459 start_pfn, start_pfn + sp);
460
461 return ret;
462 }
463
464 /*
465 * Temporary debugging check for pages not lying within a given zone.
466 */
bad_range(struct zone * zone,struct page * page)467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
468 {
469 if (page_outside_zone_boundaries(zone, page))
470 return 1;
471 if (zone != page_zone(page))
472 return 1;
473
474 return 0;
475 }
476 #else
bad_range(struct zone * zone,struct page * page)477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
478 {
479 return 0;
480 }
481 #endif
482
bad_page(struct page * page,const char * reason)483 static void bad_page(struct page *page, const char *reason)
484 {
485 static unsigned long resume;
486 static unsigned long nr_shown;
487 static unsigned long nr_unshown;
488
489 /*
490 * Allow a burst of 60 reports, then keep quiet for that minute;
491 * or allow a steady drip of one report per second.
492 */
493 if (nr_shown == 60) {
494 if (time_before(jiffies, resume)) {
495 nr_unshown++;
496 goto out;
497 }
498 if (nr_unshown) {
499 pr_alert(
500 "BUG: Bad page state: %lu messages suppressed\n",
501 nr_unshown);
502 nr_unshown = 0;
503 }
504 nr_shown = 0;
505 }
506 if (nr_shown++ == 0)
507 resume = jiffies + 60 * HZ;
508
509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
510 current->comm, page_to_pfn(page));
511 dump_page(page, reason);
512
513 print_modules();
514 dump_stack();
515 out:
516 /* Leave bad fields for debug, except PageBuddy could make trouble */
517 page_mapcount_reset(page); /* remove PageBuddy */
518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
519 }
520
order_to_pindex(int migratetype,int order)521 static inline unsigned int order_to_pindex(int migratetype, int order)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 VM_BUG_ON(order != pageblock_order);
526 return NR_LOWORDER_PCP_LISTS;
527 }
528 #else
529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
530 #endif
531
532 return (MIGRATE_PCPTYPES * order) + migratetype;
533 }
534
pindex_to_order(unsigned int pindex)535 static inline int pindex_to_order(unsigned int pindex)
536 {
537 int order = pindex / MIGRATE_PCPTYPES;
538
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 if (pindex == NR_LOWORDER_PCP_LISTS)
541 order = pageblock_order;
542 #else
543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
544 #endif
545
546 return order;
547 }
548
pcp_allowed_order(unsigned int order)549 static inline bool pcp_allowed_order(unsigned int order)
550 {
551 if (order <= PAGE_ALLOC_COSTLY_ORDER)
552 return true;
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 if (order == pageblock_order)
555 return true;
556 #endif
557 return false;
558 }
559
free_the_page(struct page * page,unsigned int order)560 static inline void free_the_page(struct page *page, unsigned int order)
561 {
562 if (pcp_allowed_order(order)) /* Via pcp? */
563 free_unref_page(page, order);
564 else
565 __free_pages_ok(page, order, FPI_NONE);
566 }
567
568 /*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572 *
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575 *
576 * The first tail page's ->compound_order holds the order of allocation.
577 * This usage means that zero-order pages may not be compound.
578 */
579
prep_compound_page(struct page * page,unsigned int order)580 void prep_compound_page(struct page *page, unsigned int order)
581 {
582 int i;
583 int nr_pages = 1 << order;
584
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++)
587 prep_compound_tail(page, i);
588
589 prep_compound_head(page, order);
590 }
591
destroy_large_folio(struct folio * folio)592 void destroy_large_folio(struct folio *folio)
593 {
594 if (folio_test_hugetlb(folio)) {
595 free_huge_folio(folio);
596 return;
597 }
598
599 if (folio_test_large_rmappable(folio))
600 folio_undo_large_rmappable(folio);
601
602 mem_cgroup_uncharge(folio);
603 free_the_page(&folio->page, folio_order(folio));
604 }
605
set_buddy_order(struct page * page,unsigned int order)606 static inline void set_buddy_order(struct page *page, unsigned int order)
607 {
608 set_page_private(page, order);
609 __SetPageBuddy(page);
610 }
611
612 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 struct capture_control *capc = current->capture_control;
616
617 return unlikely(capc) &&
618 !(current->flags & PF_KTHREAD) &&
619 !capc->page &&
620 capc->cc->zone == zone ? capc : NULL;
621 }
622
623 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)624 compaction_capture(struct capture_control *capc, struct page *page,
625 int order, int migratetype)
626 {
627 if (!capc || order != capc->cc->order)
628 return false;
629
630 /* Do not accidentally pollute CMA or isolated regions*/
631 if (is_migrate_cma(migratetype) ||
632 is_migrate_isolate(migratetype))
633 return false;
634
635 /*
636 * Do not let lower order allocations pollute a movable pageblock.
637 * This might let an unmovable request use a reclaimable pageblock
638 * and vice-versa but no more than normal fallback logic which can
639 * have trouble finding a high-order free page.
640 */
641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
642 return false;
643
644 capc->page = page;
645 return true;
646 }
647
648 #else
task_capc(struct zone * zone)649 static inline struct capture_control *task_capc(struct zone *zone)
650 {
651 return NULL;
652 }
653
654 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)655 compaction_capture(struct capture_control *capc, struct page *page,
656 int order, int migratetype)
657 {
658 return false;
659 }
660 #endif /* CONFIG_COMPACTION */
661
662 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 unsigned int order, int migratetype)
665 {
666 struct free_area *area = &zone->free_area[order];
667
668 list_add(&page->buddy_list, &area->free_list[migratetype]);
669 area->nr_free++;
670 }
671
672 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 unsigned int order, int migratetype)
675 {
676 struct free_area *area = &zone->free_area[order];
677
678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
679 area->nr_free++;
680 }
681
682 /*
683 * Used for pages which are on another list. Move the pages to the tail
684 * of the list - so the moved pages won't immediately be considered for
685 * allocation again (e.g., optimization for memory onlining).
686 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 unsigned int order, int migratetype)
689 {
690 struct free_area *area = &zone->free_area[order];
691
692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
693 }
694
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
696 unsigned int order)
697 {
698 /* clear reported state and update reported page count */
699 if (page_reported(page))
700 __ClearPageReported(page);
701
702 list_del(&page->buddy_list);
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
705 zone->free_area[order].nr_free--;
706 }
707
get_page_from_free_area(struct free_area * area,int migratetype)708 static inline struct page *get_page_from_free_area(struct free_area *area,
709 int migratetype)
710 {
711 return list_first_entry_or_null(&area->free_list[migratetype],
712 struct page, buddy_list);
713 }
714
715 /*
716 * If this is not the largest possible page, check if the buddy
717 * of the next-highest order is free. If it is, it's possible
718 * that pages are being freed that will coalesce soon. In case,
719 * that is happening, add the free page to the tail of the list
720 * so it's less likely to be used soon and more likely to be merged
721 * as a higher order page
722 */
723 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 struct page *page, unsigned int order)
726 {
727 unsigned long higher_page_pfn;
728 struct page *higher_page;
729
730 if (order >= MAX_PAGE_ORDER - 1)
731 return false;
732
733 higher_page_pfn = buddy_pfn & pfn;
734 higher_page = page + (higher_page_pfn - pfn);
735
736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
737 NULL) != NULL;
738 }
739
740 /*
741 * Freeing function for a buddy system allocator.
742 *
743 * The concept of a buddy system is to maintain direct-mapped table
744 * (containing bit values) for memory blocks of various "orders".
745 * The bottom level table contains the map for the smallest allocatable
746 * units of memory (here, pages), and each level above it describes
747 * pairs of units from the levels below, hence, "buddies".
748 * At a high level, all that happens here is marking the table entry
749 * at the bottom level available, and propagating the changes upward
750 * as necessary, plus some accounting needed to play nicely with other
751 * parts of the VM system.
752 * At each level, we keep a list of pages, which are heads of continuous
753 * free pages of length of (1 << order) and marked with PageBuddy.
754 * Page's order is recorded in page_private(page) field.
755 * So when we are allocating or freeing one, we can derive the state of the
756 * other. That is, if we allocate a small block, and both were
757 * free, the remainder of the region must be split into blocks.
758 * If a block is freed, and its buddy is also free, then this
759 * triggers coalescing into a block of larger size.
760 *
761 * -- nyc
762 */
763
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)764 static inline void __free_one_page(struct page *page,
765 unsigned long pfn,
766 struct zone *zone, unsigned int order,
767 int migratetype, fpi_t fpi_flags)
768 {
769 struct capture_control *capc = task_capc(zone);
770 unsigned long buddy_pfn = 0;
771 unsigned long combined_pfn;
772 struct page *buddy;
773 bool to_tail;
774
775 VM_BUG_ON(!zone_is_initialized(zone));
776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
777
778 VM_BUG_ON(migratetype == -1);
779 if (likely(!is_migrate_isolate(migratetype)))
780 __mod_zone_freepage_state(zone, 1 << order, migratetype);
781
782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 VM_BUG_ON_PAGE(bad_range(zone, page), page);
784
785 while (order < MAX_PAGE_ORDER) {
786 if (compaction_capture(capc, page, order, migratetype)) {
787 __mod_zone_freepage_state(zone, -(1 << order),
788 migratetype);
789 return;
790 }
791
792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
793 if (!buddy)
794 goto done_merging;
795
796 if (unlikely(order >= pageblock_order)) {
797 /*
798 * We want to prevent merge between freepages on pageblock
799 * without fallbacks and normal pageblock. Without this,
800 * pageblock isolation could cause incorrect freepage or CMA
801 * accounting or HIGHATOMIC accounting.
802 */
803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
804
805 if (migratetype != buddy_mt
806 && (!migratetype_is_mergeable(migratetype) ||
807 !migratetype_is_mergeable(buddy_mt)))
808 goto done_merging;
809 }
810
811 /*
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
814 */
815 if (page_is_guard(buddy))
816 clear_page_guard(zone, buddy, order, migratetype);
817 else
818 del_page_from_free_list(buddy, zone, order);
819 combined_pfn = buddy_pfn & pfn;
820 page = page + (combined_pfn - pfn);
821 pfn = combined_pfn;
822 order++;
823 }
824
825 done_merging:
826 set_buddy_order(page, order);
827
828 if (fpi_flags & FPI_TO_TAIL)
829 to_tail = true;
830 else if (is_shuffle_order(order))
831 to_tail = shuffle_pick_tail();
832 else
833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
834
835 if (to_tail)
836 add_to_free_list_tail(page, zone, order, migratetype);
837 else
838 add_to_free_list(page, zone, order, migratetype);
839
840 /* Notify page reporting subsystem of freed page */
841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 page_reporting_notify_free(order);
843 }
844
845 /**
846 * split_free_page() -- split a free page at split_pfn_offset
847 * @free_page: the original free page
848 * @order: the order of the page
849 * @split_pfn_offset: split offset within the page
850 *
851 * Return -ENOENT if the free page is changed, otherwise 0
852 *
853 * It is used when the free page crosses two pageblocks with different migratetypes
854 * at split_pfn_offset within the page. The split free page will be put into
855 * separate migratetype lists afterwards. Otherwise, the function achieves
856 * nothing.
857 */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)858 int split_free_page(struct page *free_page,
859 unsigned int order, unsigned long split_pfn_offset)
860 {
861 struct zone *zone = page_zone(free_page);
862 unsigned long free_page_pfn = page_to_pfn(free_page);
863 unsigned long pfn;
864 unsigned long flags;
865 int free_page_order;
866 int mt;
867 int ret = 0;
868
869 if (split_pfn_offset == 0)
870 return ret;
871
872 spin_lock_irqsave(&zone->lock, flags);
873
874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
875 ret = -ENOENT;
876 goto out;
877 }
878
879 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 if (likely(!is_migrate_isolate(mt)))
881 __mod_zone_freepage_state(zone, -(1UL << order), mt);
882
883 del_page_from_free_list(free_page, zone, order);
884 for (pfn = free_page_pfn;
885 pfn < free_page_pfn + (1UL << order);) {
886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
887
888 free_page_order = min_t(unsigned int,
889 pfn ? __ffs(pfn) : order,
890 __fls(split_pfn_offset));
891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
892 mt, FPI_NONE);
893 pfn += 1UL << free_page_order;
894 split_pfn_offset -= (1UL << free_page_order);
895 /* we have done the first part, now switch to second part */
896 if (split_pfn_offset == 0)
897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
898 }
899 out:
900 spin_unlock_irqrestore(&zone->lock, flags);
901 return ret;
902 }
903 /*
904 * A bad page could be due to a number of fields. Instead of multiple branches,
905 * try and check multiple fields with one check. The caller must do a detailed
906 * check if necessary.
907 */
page_expected_state(struct page * page,unsigned long check_flags)908 static inline bool page_expected_state(struct page *page,
909 unsigned long check_flags)
910 {
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
912 return false;
913
914 if (unlikely((unsigned long)page->mapping |
915 page_ref_count(page) |
916 #ifdef CONFIG_MEMCG
917 page->memcg_data |
918 #endif
919 #ifdef CONFIG_PAGE_POOL
920 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
921 #endif
922 (page->flags & check_flags)))
923 return false;
924
925 return true;
926 }
927
page_bad_reason(struct page * page,unsigned long flags)928 static const char *page_bad_reason(struct page *page, unsigned long flags)
929 {
930 const char *bad_reason = NULL;
931
932 if (unlikely(atomic_read(&page->_mapcount) != -1))
933 bad_reason = "nonzero mapcount";
934 if (unlikely(page->mapping != NULL))
935 bad_reason = "non-NULL mapping";
936 if (unlikely(page_ref_count(page) != 0))
937 bad_reason = "nonzero _refcount";
938 if (unlikely(page->flags & flags)) {
939 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
940 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
941 else
942 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
943 }
944 #ifdef CONFIG_MEMCG
945 if (unlikely(page->memcg_data))
946 bad_reason = "page still charged to cgroup";
947 #endif
948 #ifdef CONFIG_PAGE_POOL
949 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
950 bad_reason = "page_pool leak";
951 #endif
952 return bad_reason;
953 }
954
free_page_is_bad_report(struct page * page)955 static void free_page_is_bad_report(struct page *page)
956 {
957 bad_page(page,
958 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
959 }
960
free_page_is_bad(struct page * page)961 static inline bool free_page_is_bad(struct page *page)
962 {
963 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
964 return false;
965
966 /* Something has gone sideways, find it */
967 free_page_is_bad_report(page);
968 return true;
969 }
970
is_check_pages_enabled(void)971 static inline bool is_check_pages_enabled(void)
972 {
973 return static_branch_unlikely(&check_pages_enabled);
974 }
975
free_tail_page_prepare(struct page * head_page,struct page * page)976 static int free_tail_page_prepare(struct page *head_page, struct page *page)
977 {
978 struct folio *folio = (struct folio *)head_page;
979 int ret = 1;
980
981 /*
982 * We rely page->lru.next never has bit 0 set, unless the page
983 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
984 */
985 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
986
987 if (!is_check_pages_enabled()) {
988 ret = 0;
989 goto out;
990 }
991 switch (page - head_page) {
992 case 1:
993 /* the first tail page: these may be in place of ->mapping */
994 if (unlikely(folio_entire_mapcount(folio))) {
995 bad_page(page, "nonzero entire_mapcount");
996 goto out;
997 }
998 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
999 bad_page(page, "nonzero nr_pages_mapped");
1000 goto out;
1001 }
1002 if (unlikely(atomic_read(&folio->_pincount))) {
1003 bad_page(page, "nonzero pincount");
1004 goto out;
1005 }
1006 break;
1007 case 2:
1008 /*
1009 * the second tail page: ->mapping is
1010 * deferred_list.next -- ignore value.
1011 */
1012 break;
1013 default:
1014 if (page->mapping != TAIL_MAPPING) {
1015 bad_page(page, "corrupted mapping in tail page");
1016 goto out;
1017 }
1018 break;
1019 }
1020 if (unlikely(!PageTail(page))) {
1021 bad_page(page, "PageTail not set");
1022 goto out;
1023 }
1024 if (unlikely(compound_head(page) != head_page)) {
1025 bad_page(page, "compound_head not consistent");
1026 goto out;
1027 }
1028 ret = 0;
1029 out:
1030 page->mapping = NULL;
1031 clear_compound_head(page);
1032 return ret;
1033 }
1034
1035 /*
1036 * Skip KASAN memory poisoning when either:
1037 *
1038 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1039 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1040 * using page tags instead (see below).
1041 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1042 * that error detection is disabled for accesses via the page address.
1043 *
1044 * Pages will have match-all tags in the following circumstances:
1045 *
1046 * 1. Pages are being initialized for the first time, including during deferred
1047 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1048 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1049 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1050 * 3. The allocation was excluded from being checked due to sampling,
1051 * see the call to kasan_unpoison_pages.
1052 *
1053 * Poisoning pages during deferred memory init will greatly lengthen the
1054 * process and cause problem in large memory systems as the deferred pages
1055 * initialization is done with interrupt disabled.
1056 *
1057 * Assuming that there will be no reference to those newly initialized
1058 * pages before they are ever allocated, this should have no effect on
1059 * KASAN memory tracking as the poison will be properly inserted at page
1060 * allocation time. The only corner case is when pages are allocated by
1061 * on-demand allocation and then freed again before the deferred pages
1062 * initialization is done, but this is not likely to happen.
1063 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1064 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1065 {
1066 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1067 return deferred_pages_enabled();
1068
1069 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1070 }
1071
kernel_init_pages(struct page * page,int numpages)1072 static void kernel_init_pages(struct page *page, int numpages)
1073 {
1074 int i;
1075
1076 /* s390's use of memset() could override KASAN redzones. */
1077 kasan_disable_current();
1078 for (i = 0; i < numpages; i++)
1079 clear_highpage_kasan_tagged(page + i);
1080 kasan_enable_current();
1081 }
1082
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1083 static __always_inline bool free_pages_prepare(struct page *page,
1084 unsigned int order, fpi_t fpi_flags)
1085 {
1086 int bad = 0;
1087 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1088 bool init = want_init_on_free();
1089 bool compound = PageCompound(page);
1090
1091 VM_BUG_ON_PAGE(PageTail(page), page);
1092
1093 trace_mm_page_free(page, order);
1094 kmsan_free_page(page, order);
1095
1096 if (memcg_kmem_online() && PageMemcgKmem(page))
1097 __memcg_kmem_uncharge_page(page, order);
1098
1099 if (unlikely(PageHWPoison(page)) && !order) {
1100 /* Do not let hwpoison pages hit pcplists/buddy */
1101 reset_page_owner(page, order);
1102 page_table_check_free(page, order);
1103 return false;
1104 }
1105
1106 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1107
1108 /*
1109 * Check tail pages before head page information is cleared to
1110 * avoid checking PageCompound for order-0 pages.
1111 */
1112 if (unlikely(order)) {
1113 int i;
1114
1115 if (compound)
1116 page[1].flags &= ~PAGE_FLAGS_SECOND;
1117 for (i = 1; i < (1 << order); i++) {
1118 if (compound)
1119 bad += free_tail_page_prepare(page, page + i);
1120 if (is_check_pages_enabled()) {
1121 if (free_page_is_bad(page + i)) {
1122 bad++;
1123 continue;
1124 }
1125 }
1126 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127 }
1128 }
1129 if (PageMappingFlags(page))
1130 page->mapping = NULL;
1131 if (is_check_pages_enabled()) {
1132 if (free_page_is_bad(page))
1133 bad++;
1134 if (bad)
1135 return false;
1136 }
1137
1138 page_cpupid_reset_last(page);
1139 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140 reset_page_owner(page, order);
1141 page_table_check_free(page, order);
1142
1143 if (!PageHighMem(page)) {
1144 debug_check_no_locks_freed(page_address(page),
1145 PAGE_SIZE << order);
1146 debug_check_no_obj_freed(page_address(page),
1147 PAGE_SIZE << order);
1148 }
1149
1150 kernel_poison_pages(page, 1 << order);
1151
1152 /*
1153 * As memory initialization might be integrated into KASAN,
1154 * KASAN poisoning and memory initialization code must be
1155 * kept together to avoid discrepancies in behavior.
1156 *
1157 * With hardware tag-based KASAN, memory tags must be set before the
1158 * page becomes unavailable via debug_pagealloc or arch_free_page.
1159 */
1160 if (!skip_kasan_poison) {
1161 kasan_poison_pages(page, order, init);
1162
1163 /* Memory is already initialized if KASAN did it internally. */
1164 if (kasan_has_integrated_init())
1165 init = false;
1166 }
1167 if (init)
1168 kernel_init_pages(page, 1 << order);
1169
1170 /*
1171 * arch_free_page() can make the page's contents inaccessible. s390
1172 * does this. So nothing which can access the page's contents should
1173 * happen after this.
1174 */
1175 arch_free_page(page, order);
1176
1177 debug_pagealloc_unmap_pages(page, 1 << order);
1178
1179 return true;
1180 }
1181
1182 /*
1183 * Frees a number of pages from the PCP lists
1184 * Assumes all pages on list are in same zone.
1185 * count is the number of pages to free.
1186 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1187 static void free_pcppages_bulk(struct zone *zone, int count,
1188 struct per_cpu_pages *pcp,
1189 int pindex)
1190 {
1191 unsigned long flags;
1192 unsigned int order;
1193 bool isolated_pageblocks;
1194 struct page *page;
1195
1196 /*
1197 * Ensure proper count is passed which otherwise would stuck in the
1198 * below while (list_empty(list)) loop.
1199 */
1200 count = min(pcp->count, count);
1201
1202 /* Ensure requested pindex is drained first. */
1203 pindex = pindex - 1;
1204
1205 spin_lock_irqsave(&zone->lock, flags);
1206 isolated_pageblocks = has_isolate_pageblock(zone);
1207
1208 while (count > 0) {
1209 struct list_head *list;
1210 int nr_pages;
1211
1212 /* Remove pages from lists in a round-robin fashion. */
1213 do {
1214 if (++pindex > NR_PCP_LISTS - 1)
1215 pindex = 0;
1216 list = &pcp->lists[pindex];
1217 } while (list_empty(list));
1218
1219 order = pindex_to_order(pindex);
1220 nr_pages = 1 << order;
1221 do {
1222 int mt;
1223
1224 page = list_last_entry(list, struct page, pcp_list);
1225 mt = get_pcppage_migratetype(page);
1226
1227 /* must delete to avoid corrupting pcp list */
1228 list_del(&page->pcp_list);
1229 count -= nr_pages;
1230 pcp->count -= nr_pages;
1231
1232 /* MIGRATE_ISOLATE page should not go to pcplists */
1233 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1234 /* Pageblock could have been isolated meanwhile */
1235 if (unlikely(isolated_pageblocks))
1236 mt = get_pageblock_migratetype(page);
1237
1238 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1239 trace_mm_page_pcpu_drain(page, order, mt);
1240 } while (count > 0 && !list_empty(list));
1241 }
1242
1243 spin_unlock_irqrestore(&zone->lock, flags);
1244 }
1245
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1246 static void free_one_page(struct zone *zone,
1247 struct page *page, unsigned long pfn,
1248 unsigned int order,
1249 int migratetype, fpi_t fpi_flags)
1250 {
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&zone->lock, flags);
1254 if (unlikely(has_isolate_pageblock(zone) ||
1255 is_migrate_isolate(migratetype))) {
1256 migratetype = get_pfnblock_migratetype(page, pfn);
1257 }
1258 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1259 spin_unlock_irqrestore(&zone->lock, flags);
1260 }
1261
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1262 static void __free_pages_ok(struct page *page, unsigned int order,
1263 fpi_t fpi_flags)
1264 {
1265 int migratetype;
1266 unsigned long pfn = page_to_pfn(page);
1267 struct zone *zone = page_zone(page);
1268
1269 if (!free_pages_prepare(page, order, fpi_flags))
1270 return;
1271
1272 /*
1273 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1274 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1275 * This will reduce the lock holding time.
1276 */
1277 migratetype = get_pfnblock_migratetype(page, pfn);
1278
1279 free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1280
1281 __count_vm_events(PGFREE, 1 << order);
1282 }
1283
__free_pages_core(struct page * page,unsigned int order)1284 void __free_pages_core(struct page *page, unsigned int order)
1285 {
1286 unsigned int nr_pages = 1 << order;
1287 struct page *p = page;
1288 unsigned int loop;
1289
1290 /*
1291 * When initializing the memmap, __init_single_page() sets the refcount
1292 * of all pages to 1 ("allocated"/"not free"). We have to set the
1293 * refcount of all involved pages to 0.
1294 */
1295 prefetchw(p);
1296 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297 prefetchw(p + 1);
1298 __ClearPageReserved(p);
1299 set_page_count(p, 0);
1300 }
1301 __ClearPageReserved(p);
1302 set_page_count(p, 0);
1303
1304 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1305
1306 if (page_contains_unaccepted(page, order)) {
1307 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1308 return;
1309
1310 accept_page(page, order);
1311 }
1312
1313 /*
1314 * Bypass PCP and place fresh pages right to the tail, primarily
1315 * relevant for memory onlining.
1316 */
1317 __free_pages_ok(page, order, FPI_TO_TAIL);
1318 }
1319
1320 /*
1321 * Check that the whole (or subset of) a pageblock given by the interval of
1322 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1323 * with the migration of free compaction scanner.
1324 *
1325 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1326 *
1327 * It's possible on some configurations to have a setup like node0 node1 node0
1328 * i.e. it's possible that all pages within a zones range of pages do not
1329 * belong to a single zone. We assume that a border between node0 and node1
1330 * can occur within a single pageblock, but not a node0 node1 node0
1331 * interleaving within a single pageblock. It is therefore sufficient to check
1332 * the first and last page of a pageblock and avoid checking each individual
1333 * page in a pageblock.
1334 *
1335 * Note: the function may return non-NULL struct page even for a page block
1336 * which contains a memory hole (i.e. there is no physical memory for a subset
1337 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1338 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1339 * even though the start pfn is online and valid. This should be safe most of
1340 * the time because struct pages are still initialized via init_unavailable_range()
1341 * and pfn walkers shouldn't touch any physical memory range for which they do
1342 * not recognize any specific metadata in struct pages.
1343 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1344 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345 unsigned long end_pfn, struct zone *zone)
1346 {
1347 struct page *start_page;
1348 struct page *end_page;
1349
1350 /* end_pfn is one past the range we are checking */
1351 end_pfn--;
1352
1353 if (!pfn_valid(end_pfn))
1354 return NULL;
1355
1356 start_page = pfn_to_online_page(start_pfn);
1357 if (!start_page)
1358 return NULL;
1359
1360 if (page_zone(start_page) != zone)
1361 return NULL;
1362
1363 end_page = pfn_to_page(end_pfn);
1364
1365 /* This gives a shorter code than deriving page_zone(end_page) */
1366 if (page_zone_id(start_page) != page_zone_id(end_page))
1367 return NULL;
1368
1369 return start_page;
1370 }
1371
1372 /*
1373 * The order of subdivision here is critical for the IO subsystem.
1374 * Please do not alter this order without good reasons and regression
1375 * testing. Specifically, as large blocks of memory are subdivided,
1376 * the order in which smaller blocks are delivered depends on the order
1377 * they're subdivided in this function. This is the primary factor
1378 * influencing the order in which pages are delivered to the IO
1379 * subsystem according to empirical testing, and this is also justified
1380 * by considering the behavior of a buddy system containing a single
1381 * large block of memory acted on by a series of small allocations.
1382 * This behavior is a critical factor in sglist merging's success.
1383 *
1384 * -- nyc
1385 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1386 static inline void expand(struct zone *zone, struct page *page,
1387 int low, int high, int migratetype)
1388 {
1389 unsigned long size = 1 << high;
1390
1391 while (high > low) {
1392 high--;
1393 size >>= 1;
1394 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1395
1396 /*
1397 * Mark as guard pages (or page), that will allow to
1398 * merge back to allocator when buddy will be freed.
1399 * Corresponding page table entries will not be touched,
1400 * pages will stay not present in virtual address space
1401 */
1402 if (set_page_guard(zone, &page[size], high, migratetype))
1403 continue;
1404
1405 add_to_free_list(&page[size], zone, high, migratetype);
1406 set_buddy_order(&page[size], high);
1407 }
1408 }
1409
check_new_page_bad(struct page * page)1410 static void check_new_page_bad(struct page *page)
1411 {
1412 if (unlikely(page->flags & __PG_HWPOISON)) {
1413 /* Don't complain about hwpoisoned pages */
1414 page_mapcount_reset(page); /* remove PageBuddy */
1415 return;
1416 }
1417
1418 bad_page(page,
1419 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1420 }
1421
1422 /*
1423 * This page is about to be returned from the page allocator
1424 */
check_new_page(struct page * page)1425 static int check_new_page(struct page *page)
1426 {
1427 if (likely(page_expected_state(page,
1428 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1429 return 0;
1430
1431 check_new_page_bad(page);
1432 return 1;
1433 }
1434
check_new_pages(struct page * page,unsigned int order)1435 static inline bool check_new_pages(struct page *page, unsigned int order)
1436 {
1437 if (is_check_pages_enabled()) {
1438 for (int i = 0; i < (1 << order); i++) {
1439 struct page *p = page + i;
1440
1441 if (check_new_page(p))
1442 return true;
1443 }
1444 }
1445
1446 return false;
1447 }
1448
should_skip_kasan_unpoison(gfp_t flags)1449 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1450 {
1451 /* Don't skip if a software KASAN mode is enabled. */
1452 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1453 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1454 return false;
1455
1456 /* Skip, if hardware tag-based KASAN is not enabled. */
1457 if (!kasan_hw_tags_enabled())
1458 return true;
1459
1460 /*
1461 * With hardware tag-based KASAN enabled, skip if this has been
1462 * requested via __GFP_SKIP_KASAN.
1463 */
1464 return flags & __GFP_SKIP_KASAN;
1465 }
1466
should_skip_init(gfp_t flags)1467 static inline bool should_skip_init(gfp_t flags)
1468 {
1469 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1470 if (!kasan_hw_tags_enabled())
1471 return false;
1472
1473 /* For hardware tag-based KASAN, skip if requested. */
1474 return (flags & __GFP_SKIP_ZERO);
1475 }
1476
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1477 inline void post_alloc_hook(struct page *page, unsigned int order,
1478 gfp_t gfp_flags)
1479 {
1480 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1481 !should_skip_init(gfp_flags);
1482 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1483 int i;
1484
1485 set_page_private(page, 0);
1486 set_page_refcounted(page);
1487
1488 arch_alloc_page(page, order);
1489 debug_pagealloc_map_pages(page, 1 << order);
1490
1491 /*
1492 * Page unpoisoning must happen before memory initialization.
1493 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1494 * allocations and the page unpoisoning code will complain.
1495 */
1496 kernel_unpoison_pages(page, 1 << order);
1497
1498 /*
1499 * As memory initialization might be integrated into KASAN,
1500 * KASAN unpoisoning and memory initializion code must be
1501 * kept together to avoid discrepancies in behavior.
1502 */
1503
1504 /*
1505 * If memory tags should be zeroed
1506 * (which happens only when memory should be initialized as well).
1507 */
1508 if (zero_tags) {
1509 /* Initialize both memory and memory tags. */
1510 for (i = 0; i != 1 << order; ++i)
1511 tag_clear_highpage(page + i);
1512
1513 /* Take note that memory was initialized by the loop above. */
1514 init = false;
1515 }
1516 if (!should_skip_kasan_unpoison(gfp_flags) &&
1517 kasan_unpoison_pages(page, order, init)) {
1518 /* Take note that memory was initialized by KASAN. */
1519 if (kasan_has_integrated_init())
1520 init = false;
1521 } else {
1522 /*
1523 * If memory tags have not been set by KASAN, reset the page
1524 * tags to ensure page_address() dereferencing does not fault.
1525 */
1526 for (i = 0; i != 1 << order; ++i)
1527 page_kasan_tag_reset(page + i);
1528 }
1529 /* If memory is still not initialized, initialize it now. */
1530 if (init)
1531 kernel_init_pages(page, 1 << order);
1532
1533 set_page_owner(page, order, gfp_flags);
1534 page_table_check_alloc(page, order);
1535 }
1536
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1537 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1538 unsigned int alloc_flags)
1539 {
1540 post_alloc_hook(page, order, gfp_flags);
1541
1542 if (order && (gfp_flags & __GFP_COMP))
1543 prep_compound_page(page, order);
1544
1545 /*
1546 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1547 * allocate the page. The expectation is that the caller is taking
1548 * steps that will free more memory. The caller should avoid the page
1549 * being used for !PFMEMALLOC purposes.
1550 */
1551 if (alloc_flags & ALLOC_NO_WATERMARKS)
1552 set_page_pfmemalloc(page);
1553 else
1554 clear_page_pfmemalloc(page);
1555 }
1556
1557 /*
1558 * Go through the free lists for the given migratetype and remove
1559 * the smallest available page from the freelists
1560 */
1561 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1562 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1563 int migratetype)
1564 {
1565 unsigned int current_order;
1566 struct free_area *area;
1567 struct page *page;
1568
1569 /* Find a page of the appropriate size in the preferred list */
1570 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1571 area = &(zone->free_area[current_order]);
1572 page = get_page_from_free_area(area, migratetype);
1573 if (!page)
1574 continue;
1575 del_page_from_free_list(page, zone, current_order);
1576 expand(zone, page, order, current_order, migratetype);
1577 set_pcppage_migratetype(page, migratetype);
1578 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1579 pcp_allowed_order(order) &&
1580 migratetype < MIGRATE_PCPTYPES);
1581 return page;
1582 }
1583
1584 return NULL;
1585 }
1586
1587
1588 /*
1589 * This array describes the order lists are fallen back to when
1590 * the free lists for the desirable migrate type are depleted
1591 *
1592 * The other migratetypes do not have fallbacks.
1593 */
1594 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1595 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1596 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1597 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1598 };
1599
1600 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1601 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1602 unsigned int order)
1603 {
1604 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1605 }
1606 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1607 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608 unsigned int order) { return NULL; }
1609 #endif
1610
1611 /*
1612 * Move the free pages in a range to the freelist tail of the requested type.
1613 * Note that start_page and end_pages are not aligned on a pageblock
1614 * boundary. If alignment is required, use move_freepages_block()
1615 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1616 static int move_freepages(struct zone *zone,
1617 unsigned long start_pfn, unsigned long end_pfn,
1618 int migratetype, int *num_movable)
1619 {
1620 struct page *page;
1621 unsigned long pfn;
1622 unsigned int order;
1623 int pages_moved = 0;
1624
1625 for (pfn = start_pfn; pfn <= end_pfn;) {
1626 page = pfn_to_page(pfn);
1627 if (!PageBuddy(page)) {
1628 /*
1629 * We assume that pages that could be isolated for
1630 * migration are movable. But we don't actually try
1631 * isolating, as that would be expensive.
1632 */
1633 if (num_movable &&
1634 (PageLRU(page) || __PageMovable(page)))
1635 (*num_movable)++;
1636 pfn++;
1637 continue;
1638 }
1639
1640 /* Make sure we are not inadvertently changing nodes */
1641 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1642 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1643
1644 order = buddy_order(page);
1645 move_to_free_list(page, zone, order, migratetype);
1646 pfn += 1 << order;
1647 pages_moved += 1 << order;
1648 }
1649
1650 return pages_moved;
1651 }
1652
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1653 int move_freepages_block(struct zone *zone, struct page *page,
1654 int migratetype, int *num_movable)
1655 {
1656 unsigned long start_pfn, end_pfn, pfn;
1657
1658 if (num_movable)
1659 *num_movable = 0;
1660
1661 pfn = page_to_pfn(page);
1662 start_pfn = pageblock_start_pfn(pfn);
1663 end_pfn = pageblock_end_pfn(pfn) - 1;
1664
1665 /* Do not cross zone boundaries */
1666 if (!zone_spans_pfn(zone, start_pfn))
1667 start_pfn = pfn;
1668 if (!zone_spans_pfn(zone, end_pfn))
1669 return 0;
1670
1671 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1672 num_movable);
1673 }
1674
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1675 static void change_pageblock_range(struct page *pageblock_page,
1676 int start_order, int migratetype)
1677 {
1678 int nr_pageblocks = 1 << (start_order - pageblock_order);
1679
1680 while (nr_pageblocks--) {
1681 set_pageblock_migratetype(pageblock_page, migratetype);
1682 pageblock_page += pageblock_nr_pages;
1683 }
1684 }
1685
1686 /*
1687 * When we are falling back to another migratetype during allocation, try to
1688 * steal extra free pages from the same pageblocks to satisfy further
1689 * allocations, instead of polluting multiple pageblocks.
1690 *
1691 * If we are stealing a relatively large buddy page, it is likely there will
1692 * be more free pages in the pageblock, so try to steal them all. For
1693 * reclaimable and unmovable allocations, we steal regardless of page size,
1694 * as fragmentation caused by those allocations polluting movable pageblocks
1695 * is worse than movable allocations stealing from unmovable and reclaimable
1696 * pageblocks.
1697 */
can_steal_fallback(unsigned int order,int start_mt)1698 static bool can_steal_fallback(unsigned int order, int start_mt)
1699 {
1700 /*
1701 * Leaving this order check is intended, although there is
1702 * relaxed order check in next check. The reason is that
1703 * we can actually steal whole pageblock if this condition met,
1704 * but, below check doesn't guarantee it and that is just heuristic
1705 * so could be changed anytime.
1706 */
1707 if (order >= pageblock_order)
1708 return true;
1709
1710 if (order >= pageblock_order / 2 ||
1711 start_mt == MIGRATE_RECLAIMABLE ||
1712 start_mt == MIGRATE_UNMOVABLE ||
1713 page_group_by_mobility_disabled)
1714 return true;
1715
1716 return false;
1717 }
1718
boost_watermark(struct zone * zone)1719 static inline bool boost_watermark(struct zone *zone)
1720 {
1721 unsigned long max_boost;
1722
1723 if (!watermark_boost_factor)
1724 return false;
1725 /*
1726 * Don't bother in zones that are unlikely to produce results.
1727 * On small machines, including kdump capture kernels running
1728 * in a small area, boosting the watermark can cause an out of
1729 * memory situation immediately.
1730 */
1731 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1732 return false;
1733
1734 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1735 watermark_boost_factor, 10000);
1736
1737 /*
1738 * high watermark may be uninitialised if fragmentation occurs
1739 * very early in boot so do not boost. We do not fall
1740 * through and boost by pageblock_nr_pages as failing
1741 * allocations that early means that reclaim is not going
1742 * to help and it may even be impossible to reclaim the
1743 * boosted watermark resulting in a hang.
1744 */
1745 if (!max_boost)
1746 return false;
1747
1748 max_boost = max(pageblock_nr_pages, max_boost);
1749
1750 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1751 max_boost);
1752
1753 return true;
1754 }
1755
1756 /*
1757 * This function implements actual steal behaviour. If order is large enough,
1758 * we can steal whole pageblock. If not, we first move freepages in this
1759 * pageblock to our migratetype and determine how many already-allocated pages
1760 * are there in the pageblock with a compatible migratetype. If at least half
1761 * of pages are free or compatible, we can change migratetype of the pageblock
1762 * itself, so pages freed in the future will be put on the correct free list.
1763 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1764 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1765 unsigned int alloc_flags, int start_type, bool whole_block)
1766 {
1767 unsigned int current_order = buddy_order(page);
1768 int free_pages, movable_pages, alike_pages;
1769 int old_block_type;
1770
1771 old_block_type = get_pageblock_migratetype(page);
1772
1773 /*
1774 * This can happen due to races and we want to prevent broken
1775 * highatomic accounting.
1776 */
1777 if (is_migrate_highatomic(old_block_type))
1778 goto single_page;
1779
1780 /* Take ownership for orders >= pageblock_order */
1781 if (current_order >= pageblock_order) {
1782 change_pageblock_range(page, current_order, start_type);
1783 goto single_page;
1784 }
1785
1786 /*
1787 * Boost watermarks to increase reclaim pressure to reduce the
1788 * likelihood of future fallbacks. Wake kswapd now as the node
1789 * may be balanced overall and kswapd will not wake naturally.
1790 */
1791 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1792 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1793
1794 /* We are not allowed to try stealing from the whole block */
1795 if (!whole_block)
1796 goto single_page;
1797
1798 free_pages = move_freepages_block(zone, page, start_type,
1799 &movable_pages);
1800 /* moving whole block can fail due to zone boundary conditions */
1801 if (!free_pages)
1802 goto single_page;
1803
1804 /*
1805 * Determine how many pages are compatible with our allocation.
1806 * For movable allocation, it's the number of movable pages which
1807 * we just obtained. For other types it's a bit more tricky.
1808 */
1809 if (start_type == MIGRATE_MOVABLE) {
1810 alike_pages = movable_pages;
1811 } else {
1812 /*
1813 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1814 * to MOVABLE pageblock, consider all non-movable pages as
1815 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1816 * vice versa, be conservative since we can't distinguish the
1817 * exact migratetype of non-movable pages.
1818 */
1819 if (old_block_type == MIGRATE_MOVABLE)
1820 alike_pages = pageblock_nr_pages
1821 - (free_pages + movable_pages);
1822 else
1823 alike_pages = 0;
1824 }
1825 /*
1826 * If a sufficient number of pages in the block are either free or of
1827 * compatible migratability as our allocation, claim the whole block.
1828 */
1829 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1830 page_group_by_mobility_disabled)
1831 set_pageblock_migratetype(page, start_type);
1832
1833 return;
1834
1835 single_page:
1836 move_to_free_list(page, zone, current_order, start_type);
1837 }
1838
1839 /*
1840 * Check whether there is a suitable fallback freepage with requested order.
1841 * If only_stealable is true, this function returns fallback_mt only if
1842 * we can steal other freepages all together. This would help to reduce
1843 * fragmentation due to mixed migratetype pages in one pageblock.
1844 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1845 int find_suitable_fallback(struct free_area *area, unsigned int order,
1846 int migratetype, bool only_stealable, bool *can_steal)
1847 {
1848 int i;
1849 int fallback_mt;
1850
1851 if (area->nr_free == 0)
1852 return -1;
1853
1854 *can_steal = false;
1855 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1856 fallback_mt = fallbacks[migratetype][i];
1857 if (free_area_empty(area, fallback_mt))
1858 continue;
1859
1860 if (can_steal_fallback(order, migratetype))
1861 *can_steal = true;
1862
1863 if (!only_stealable)
1864 return fallback_mt;
1865
1866 if (*can_steal)
1867 return fallback_mt;
1868 }
1869
1870 return -1;
1871 }
1872
1873 /*
1874 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1875 * there are no empty page blocks that contain a page with a suitable order
1876 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1877 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1878 {
1879 int mt;
1880 unsigned long max_managed, flags;
1881
1882 /*
1883 * The number reserved as: minimum is 1 pageblock, maximum is
1884 * roughly 1% of a zone. But if 1% of a zone falls below a
1885 * pageblock size, then don't reserve any pageblocks.
1886 * Check is race-prone but harmless.
1887 */
1888 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1889 return;
1890 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1891 if (zone->nr_reserved_highatomic >= max_managed)
1892 return;
1893
1894 spin_lock_irqsave(&zone->lock, flags);
1895
1896 /* Recheck the nr_reserved_highatomic limit under the lock */
1897 if (zone->nr_reserved_highatomic >= max_managed)
1898 goto out_unlock;
1899
1900 /* Yoink! */
1901 mt = get_pageblock_migratetype(page);
1902 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1903 if (migratetype_is_mergeable(mt)) {
1904 zone->nr_reserved_highatomic += pageblock_nr_pages;
1905 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1906 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1907 }
1908
1909 out_unlock:
1910 spin_unlock_irqrestore(&zone->lock, flags);
1911 }
1912
1913 /*
1914 * Used when an allocation is about to fail under memory pressure. This
1915 * potentially hurts the reliability of high-order allocations when under
1916 * intense memory pressure but failed atomic allocations should be easier
1917 * to recover from than an OOM.
1918 *
1919 * If @force is true, try to unreserve a pageblock even though highatomic
1920 * pageblock is exhausted.
1921 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1922 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1923 bool force)
1924 {
1925 struct zonelist *zonelist = ac->zonelist;
1926 unsigned long flags;
1927 struct zoneref *z;
1928 struct zone *zone;
1929 struct page *page;
1930 int order;
1931 bool ret;
1932
1933 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1934 ac->nodemask) {
1935 /*
1936 * Preserve at least one pageblock unless memory pressure
1937 * is really high.
1938 */
1939 if (!force && zone->nr_reserved_highatomic <=
1940 pageblock_nr_pages)
1941 continue;
1942
1943 spin_lock_irqsave(&zone->lock, flags);
1944 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1945 struct free_area *area = &(zone->free_area[order]);
1946
1947 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1948 if (!page)
1949 continue;
1950
1951 /*
1952 * In page freeing path, migratetype change is racy so
1953 * we can counter several free pages in a pageblock
1954 * in this loop although we changed the pageblock type
1955 * from highatomic to ac->migratetype. So we should
1956 * adjust the count once.
1957 */
1958 if (is_migrate_highatomic_page(page)) {
1959 /*
1960 * It should never happen but changes to
1961 * locking could inadvertently allow a per-cpu
1962 * drain to add pages to MIGRATE_HIGHATOMIC
1963 * while unreserving so be safe and watch for
1964 * underflows.
1965 */
1966 zone->nr_reserved_highatomic -= min(
1967 pageblock_nr_pages,
1968 zone->nr_reserved_highatomic);
1969 }
1970
1971 /*
1972 * Convert to ac->migratetype and avoid the normal
1973 * pageblock stealing heuristics. Minimally, the caller
1974 * is doing the work and needs the pages. More
1975 * importantly, if the block was always converted to
1976 * MIGRATE_UNMOVABLE or another type then the number
1977 * of pageblocks that cannot be completely freed
1978 * may increase.
1979 */
1980 set_pageblock_migratetype(page, ac->migratetype);
1981 ret = move_freepages_block(zone, page, ac->migratetype,
1982 NULL);
1983 if (ret) {
1984 spin_unlock_irqrestore(&zone->lock, flags);
1985 return ret;
1986 }
1987 }
1988 spin_unlock_irqrestore(&zone->lock, flags);
1989 }
1990
1991 return false;
1992 }
1993
1994 /*
1995 * Try finding a free buddy page on the fallback list and put it on the free
1996 * list of requested migratetype, possibly along with other pages from the same
1997 * block, depending on fragmentation avoidance heuristics. Returns true if
1998 * fallback was found so that __rmqueue_smallest() can grab it.
1999 *
2000 * The use of signed ints for order and current_order is a deliberate
2001 * deviation from the rest of this file, to make the for loop
2002 * condition simpler.
2003 */
2004 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2006 unsigned int alloc_flags)
2007 {
2008 struct free_area *area;
2009 int current_order;
2010 int min_order = order;
2011 struct page *page;
2012 int fallback_mt;
2013 bool can_steal;
2014
2015 /*
2016 * Do not steal pages from freelists belonging to other pageblocks
2017 * i.e. orders < pageblock_order. If there are no local zones free,
2018 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2019 */
2020 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2021 min_order = pageblock_order;
2022
2023 /*
2024 * Find the largest available free page in the other list. This roughly
2025 * approximates finding the pageblock with the most free pages, which
2026 * would be too costly to do exactly.
2027 */
2028 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2029 --current_order) {
2030 area = &(zone->free_area[current_order]);
2031 fallback_mt = find_suitable_fallback(area, current_order,
2032 start_migratetype, false, &can_steal);
2033 if (fallback_mt == -1)
2034 continue;
2035
2036 /*
2037 * We cannot steal all free pages from the pageblock and the
2038 * requested migratetype is movable. In that case it's better to
2039 * steal and split the smallest available page instead of the
2040 * largest available page, because even if the next movable
2041 * allocation falls back into a different pageblock than this
2042 * one, it won't cause permanent fragmentation.
2043 */
2044 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2045 && current_order > order)
2046 goto find_smallest;
2047
2048 goto do_steal;
2049 }
2050
2051 return false;
2052
2053 find_smallest:
2054 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2055 area = &(zone->free_area[current_order]);
2056 fallback_mt = find_suitable_fallback(area, current_order,
2057 start_migratetype, false, &can_steal);
2058 if (fallback_mt != -1)
2059 break;
2060 }
2061
2062 /*
2063 * This should not happen - we already found a suitable fallback
2064 * when looking for the largest page.
2065 */
2066 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2067
2068 do_steal:
2069 page = get_page_from_free_area(area, fallback_mt);
2070
2071 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2072 can_steal);
2073
2074 trace_mm_page_alloc_extfrag(page, order, current_order,
2075 start_migratetype, fallback_mt);
2076
2077 return true;
2078
2079 }
2080
2081 /*
2082 * Do the hard work of removing an element from the buddy allocator.
2083 * Call me with the zone->lock already held.
2084 */
2085 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2087 unsigned int alloc_flags)
2088 {
2089 struct page *page;
2090
2091 if (IS_ENABLED(CONFIG_CMA)) {
2092 /*
2093 * Balance movable allocations between regular and CMA areas by
2094 * allocating from CMA when over half of the zone's free memory
2095 * is in the CMA area.
2096 */
2097 if (alloc_flags & ALLOC_CMA &&
2098 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2099 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2100 page = __rmqueue_cma_fallback(zone, order);
2101 if (page)
2102 return page;
2103 }
2104 }
2105 retry:
2106 page = __rmqueue_smallest(zone, order, migratetype);
2107 if (unlikely(!page)) {
2108 if (alloc_flags & ALLOC_CMA)
2109 page = __rmqueue_cma_fallback(zone, order);
2110
2111 if (!page && __rmqueue_fallback(zone, order, migratetype,
2112 alloc_flags))
2113 goto retry;
2114 }
2115 return page;
2116 }
2117
2118 /*
2119 * Obtain a specified number of elements from the buddy allocator, all under
2120 * a single hold of the lock, for efficiency. Add them to the supplied list.
2121 * Returns the number of new pages which were placed at *list.
2122 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2124 unsigned long count, struct list_head *list,
2125 int migratetype, unsigned int alloc_flags)
2126 {
2127 unsigned long flags;
2128 int i;
2129
2130 spin_lock_irqsave(&zone->lock, flags);
2131 for (i = 0; i < count; ++i) {
2132 struct page *page = __rmqueue(zone, order, migratetype,
2133 alloc_flags);
2134 if (unlikely(page == NULL))
2135 break;
2136
2137 /*
2138 * Split buddy pages returned by expand() are received here in
2139 * physical page order. The page is added to the tail of
2140 * caller's list. From the callers perspective, the linked list
2141 * is ordered by page number under some conditions. This is
2142 * useful for IO devices that can forward direction from the
2143 * head, thus also in the physical page order. This is useful
2144 * for IO devices that can merge IO requests if the physical
2145 * pages are ordered properly.
2146 */
2147 list_add_tail(&page->pcp_list, list);
2148 if (is_migrate_cma(get_pcppage_migratetype(page)))
2149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2150 -(1 << order));
2151 }
2152
2153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2154 spin_unlock_irqrestore(&zone->lock, flags);
2155
2156 return i;
2157 }
2158
2159 /*
2160 * Called from the vmstat counter updater to decay the PCP high.
2161 * Return whether there are addition works to do.
2162 */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2163 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2164 {
2165 int high_min, to_drain, batch;
2166 int todo = 0;
2167
2168 high_min = READ_ONCE(pcp->high_min);
2169 batch = READ_ONCE(pcp->batch);
2170 /*
2171 * Decrease pcp->high periodically to try to free possible
2172 * idle PCP pages. And, avoid to free too many pages to
2173 * control latency. This caps pcp->high decrement too.
2174 */
2175 if (pcp->high > high_min) {
2176 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2177 pcp->high - (pcp->high >> 3), high_min);
2178 if (pcp->high > high_min)
2179 todo++;
2180 }
2181
2182 to_drain = pcp->count - pcp->high;
2183 if (to_drain > 0) {
2184 spin_lock(&pcp->lock);
2185 free_pcppages_bulk(zone, to_drain, pcp, 0);
2186 spin_unlock(&pcp->lock);
2187 todo++;
2188 }
2189
2190 return todo;
2191 }
2192
2193 #ifdef CONFIG_NUMA
2194 /*
2195 * Called from the vmstat counter updater to drain pagesets of this
2196 * currently executing processor on remote nodes after they have
2197 * expired.
2198 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2199 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2200 {
2201 int to_drain, batch;
2202
2203 batch = READ_ONCE(pcp->batch);
2204 to_drain = min(pcp->count, batch);
2205 if (to_drain > 0) {
2206 spin_lock(&pcp->lock);
2207 free_pcppages_bulk(zone, to_drain, pcp, 0);
2208 spin_unlock(&pcp->lock);
2209 }
2210 }
2211 #endif
2212
2213 /*
2214 * Drain pcplists of the indicated processor and zone.
2215 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2216 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2217 {
2218 struct per_cpu_pages *pcp;
2219
2220 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2221 if (pcp->count) {
2222 spin_lock(&pcp->lock);
2223 free_pcppages_bulk(zone, pcp->count, pcp, 0);
2224 spin_unlock(&pcp->lock);
2225 }
2226 }
2227
2228 /*
2229 * Drain pcplists of all zones on the indicated processor.
2230 */
drain_pages(unsigned int cpu)2231 static void drain_pages(unsigned int cpu)
2232 {
2233 struct zone *zone;
2234
2235 for_each_populated_zone(zone) {
2236 drain_pages_zone(cpu, zone);
2237 }
2238 }
2239
2240 /*
2241 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2242 */
drain_local_pages(struct zone * zone)2243 void drain_local_pages(struct zone *zone)
2244 {
2245 int cpu = smp_processor_id();
2246
2247 if (zone)
2248 drain_pages_zone(cpu, zone);
2249 else
2250 drain_pages(cpu);
2251 }
2252
2253 /*
2254 * The implementation of drain_all_pages(), exposing an extra parameter to
2255 * drain on all cpus.
2256 *
2257 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2258 * not empty. The check for non-emptiness can however race with a free to
2259 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2260 * that need the guarantee that every CPU has drained can disable the
2261 * optimizing racy check.
2262 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2263 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2264 {
2265 int cpu;
2266
2267 /*
2268 * Allocate in the BSS so we won't require allocation in
2269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2270 */
2271 static cpumask_t cpus_with_pcps;
2272
2273 /*
2274 * Do not drain if one is already in progress unless it's specific to
2275 * a zone. Such callers are primarily CMA and memory hotplug and need
2276 * the drain to be complete when the call returns.
2277 */
2278 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2279 if (!zone)
2280 return;
2281 mutex_lock(&pcpu_drain_mutex);
2282 }
2283
2284 /*
2285 * We don't care about racing with CPU hotplug event
2286 * as offline notification will cause the notified
2287 * cpu to drain that CPU pcps and on_each_cpu_mask
2288 * disables preemption as part of its processing
2289 */
2290 for_each_online_cpu(cpu) {
2291 struct per_cpu_pages *pcp;
2292 struct zone *z;
2293 bool has_pcps = false;
2294
2295 if (force_all_cpus) {
2296 /*
2297 * The pcp.count check is racy, some callers need a
2298 * guarantee that no cpu is missed.
2299 */
2300 has_pcps = true;
2301 } else if (zone) {
2302 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303 if (pcp->count)
2304 has_pcps = true;
2305 } else {
2306 for_each_populated_zone(z) {
2307 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2308 if (pcp->count) {
2309 has_pcps = true;
2310 break;
2311 }
2312 }
2313 }
2314
2315 if (has_pcps)
2316 cpumask_set_cpu(cpu, &cpus_with_pcps);
2317 else
2318 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2319 }
2320
2321 for_each_cpu(cpu, &cpus_with_pcps) {
2322 if (zone)
2323 drain_pages_zone(cpu, zone);
2324 else
2325 drain_pages(cpu);
2326 }
2327
2328 mutex_unlock(&pcpu_drain_mutex);
2329 }
2330
2331 /*
2332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333 *
2334 * When zone parameter is non-NULL, spill just the single zone's pages.
2335 */
drain_all_pages(struct zone * zone)2336 void drain_all_pages(struct zone *zone)
2337 {
2338 __drain_all_pages(zone, false);
2339 }
2340
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2341 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2342 unsigned int order)
2343 {
2344 int migratetype;
2345
2346 if (!free_pages_prepare(page, order, FPI_NONE))
2347 return false;
2348
2349 migratetype = get_pfnblock_migratetype(page, pfn);
2350 set_pcppage_migratetype(page, migratetype);
2351 return true;
2352 }
2353
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2354 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2355 {
2356 int min_nr_free, max_nr_free;
2357
2358 /* Free as much as possible if batch freeing high-order pages. */
2359 if (unlikely(free_high))
2360 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2361
2362 /* Check for PCP disabled or boot pageset */
2363 if (unlikely(high < batch))
2364 return 1;
2365
2366 /* Leave at least pcp->batch pages on the list */
2367 min_nr_free = batch;
2368 max_nr_free = high - batch;
2369
2370 /*
2371 * Increase the batch number to the number of the consecutive
2372 * freed pages to reduce zone lock contention.
2373 */
2374 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2375
2376 return batch;
2377 }
2378
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2379 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2380 int batch, bool free_high)
2381 {
2382 int high, high_min, high_max;
2383
2384 high_min = READ_ONCE(pcp->high_min);
2385 high_max = READ_ONCE(pcp->high_max);
2386 high = pcp->high = clamp(pcp->high, high_min, high_max);
2387
2388 if (unlikely(!high))
2389 return 0;
2390
2391 if (unlikely(free_high)) {
2392 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2393 high_min);
2394 return 0;
2395 }
2396
2397 /*
2398 * If reclaim is active, limit the number of pages that can be
2399 * stored on pcp lists
2400 */
2401 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2402 int free_count = max_t(int, pcp->free_count, batch);
2403
2404 pcp->high = max(high - free_count, high_min);
2405 return min(batch << 2, pcp->high);
2406 }
2407
2408 if (high_min == high_max)
2409 return high;
2410
2411 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2412 int free_count = max_t(int, pcp->free_count, batch);
2413
2414 pcp->high = max(high - free_count, high_min);
2415 high = max(pcp->count, high_min);
2416 } else if (pcp->count >= high) {
2417 int need_high = pcp->free_count + batch;
2418
2419 /* pcp->high should be large enough to hold batch freed pages */
2420 if (pcp->high < need_high)
2421 pcp->high = clamp(need_high, high_min, high_max);
2422 }
2423
2424 return high;
2425 }
2426
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2427 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2428 struct page *page, int migratetype,
2429 unsigned int order)
2430 {
2431 int high, batch;
2432 int pindex;
2433 bool free_high = false;
2434
2435 /*
2436 * On freeing, reduce the number of pages that are batch allocated.
2437 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2438 * allocations.
2439 */
2440 pcp->alloc_factor >>= 1;
2441 __count_vm_events(PGFREE, 1 << order);
2442 pindex = order_to_pindex(migratetype, order);
2443 list_add(&page->pcp_list, &pcp->lists[pindex]);
2444 pcp->count += 1 << order;
2445
2446 batch = READ_ONCE(pcp->batch);
2447 /*
2448 * As high-order pages other than THP's stored on PCP can contribute
2449 * to fragmentation, limit the number stored when PCP is heavily
2450 * freeing without allocation. The remainder after bulk freeing
2451 * stops will be drained from vmstat refresh context.
2452 */
2453 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2454 free_high = (pcp->free_count >= batch &&
2455 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2456 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2457 pcp->count >= READ_ONCE(batch)));
2458 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2459 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2460 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2461 }
2462 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2463 pcp->free_count += (1 << order);
2464 high = nr_pcp_high(pcp, zone, batch, free_high);
2465 if (pcp->count >= high) {
2466 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2467 pcp, pindex);
2468 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2469 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2470 ZONE_MOVABLE, 0))
2471 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2472 }
2473 }
2474
2475 /*
2476 * Free a pcp page
2477 */
free_unref_page(struct page * page,unsigned int order)2478 void free_unref_page(struct page *page, unsigned int order)
2479 {
2480 unsigned long __maybe_unused UP_flags;
2481 struct per_cpu_pages *pcp;
2482 struct zone *zone;
2483 unsigned long pfn = page_to_pfn(page);
2484 int migratetype, pcpmigratetype;
2485
2486 if (!free_unref_page_prepare(page, pfn, order))
2487 return;
2488
2489 /*
2490 * We only track unmovable, reclaimable and movable on pcp lists.
2491 * Place ISOLATE pages on the isolated list because they are being
2492 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2493 * get those areas back if necessary. Otherwise, we may have to free
2494 * excessively into the page allocator
2495 */
2496 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2497 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2498 if (unlikely(is_migrate_isolate(migratetype))) {
2499 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2500 return;
2501 }
2502 pcpmigratetype = MIGRATE_MOVABLE;
2503 }
2504
2505 zone = page_zone(page);
2506 pcp_trylock_prepare(UP_flags);
2507 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2508 if (pcp) {
2509 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2510 pcp_spin_unlock(pcp);
2511 } else {
2512 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2513 }
2514 pcp_trylock_finish(UP_flags);
2515 }
2516
2517 /*
2518 * Free a list of 0-order pages
2519 */
free_unref_page_list(struct list_head * list)2520 void free_unref_page_list(struct list_head *list)
2521 {
2522 unsigned long __maybe_unused UP_flags;
2523 struct page *page, *next;
2524 struct per_cpu_pages *pcp = NULL;
2525 struct zone *locked_zone = NULL;
2526 int batch_count = 0;
2527 int migratetype;
2528
2529 /* Prepare pages for freeing */
2530 list_for_each_entry_safe(page, next, list, lru) {
2531 unsigned long pfn = page_to_pfn(page);
2532 if (!free_unref_page_prepare(page, pfn, 0)) {
2533 list_del(&page->lru);
2534 continue;
2535 }
2536
2537 /*
2538 * Free isolated pages directly to the allocator, see
2539 * comment in free_unref_page.
2540 */
2541 migratetype = get_pcppage_migratetype(page);
2542 if (unlikely(is_migrate_isolate(migratetype))) {
2543 list_del(&page->lru);
2544 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2545 continue;
2546 }
2547 }
2548
2549 list_for_each_entry_safe(page, next, list, lru) {
2550 struct zone *zone = page_zone(page);
2551
2552 list_del(&page->lru);
2553 migratetype = get_pcppage_migratetype(page);
2554
2555 /*
2556 * Either different zone requiring a different pcp lock or
2557 * excessive lock hold times when freeing a large list of
2558 * pages.
2559 */
2560 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2561 if (pcp) {
2562 pcp_spin_unlock(pcp);
2563 pcp_trylock_finish(UP_flags);
2564 }
2565
2566 batch_count = 0;
2567
2568 /*
2569 * trylock is necessary as pages may be getting freed
2570 * from IRQ or SoftIRQ context after an IO completion.
2571 */
2572 pcp_trylock_prepare(UP_flags);
2573 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2574 if (unlikely(!pcp)) {
2575 pcp_trylock_finish(UP_flags);
2576 free_one_page(zone, page, page_to_pfn(page),
2577 0, migratetype, FPI_NONE);
2578 locked_zone = NULL;
2579 continue;
2580 }
2581 locked_zone = zone;
2582 }
2583
2584 /*
2585 * Non-isolated types over MIGRATE_PCPTYPES get added
2586 * to the MIGRATE_MOVABLE pcp list.
2587 */
2588 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2589 migratetype = MIGRATE_MOVABLE;
2590
2591 trace_mm_page_free_batched(page);
2592 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2593 batch_count++;
2594 }
2595
2596 if (pcp) {
2597 pcp_spin_unlock(pcp);
2598 pcp_trylock_finish(UP_flags);
2599 }
2600 }
2601
2602 /*
2603 * split_page takes a non-compound higher-order page, and splits it into
2604 * n (1<<order) sub-pages: page[0..n]
2605 * Each sub-page must be freed individually.
2606 *
2607 * Note: this is probably too low level an operation for use in drivers.
2608 * Please consult with lkml before using this in your driver.
2609 */
split_page(struct page * page,unsigned int order)2610 void split_page(struct page *page, unsigned int order)
2611 {
2612 int i;
2613
2614 VM_BUG_ON_PAGE(PageCompound(page), page);
2615 VM_BUG_ON_PAGE(!page_count(page), page);
2616
2617 for (i = 1; i < (1 << order); i++)
2618 set_page_refcounted(page + i);
2619 split_page_owner(page, 1 << order);
2620 split_page_memcg(page, 1 << order);
2621 }
2622 EXPORT_SYMBOL_GPL(split_page);
2623
__isolate_free_page(struct page * page,unsigned int order)2624 int __isolate_free_page(struct page *page, unsigned int order)
2625 {
2626 struct zone *zone = page_zone(page);
2627 int mt = get_pageblock_migratetype(page);
2628
2629 if (!is_migrate_isolate(mt)) {
2630 unsigned long watermark;
2631 /*
2632 * Obey watermarks as if the page was being allocated. We can
2633 * emulate a high-order watermark check with a raised order-0
2634 * watermark, because we already know our high-order page
2635 * exists.
2636 */
2637 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2638 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2639 return 0;
2640
2641 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2642 }
2643
2644 del_page_from_free_list(page, zone, order);
2645
2646 /*
2647 * Set the pageblock if the isolated page is at least half of a
2648 * pageblock
2649 */
2650 if (order >= pageblock_order - 1) {
2651 struct page *endpage = page + (1 << order) - 1;
2652 for (; page < endpage; page += pageblock_nr_pages) {
2653 int mt = get_pageblock_migratetype(page);
2654 /*
2655 * Only change normal pageblocks (i.e., they can merge
2656 * with others)
2657 */
2658 if (migratetype_is_mergeable(mt))
2659 set_pageblock_migratetype(page,
2660 MIGRATE_MOVABLE);
2661 }
2662 }
2663
2664 return 1UL << order;
2665 }
2666
2667 /**
2668 * __putback_isolated_page - Return a now-isolated page back where we got it
2669 * @page: Page that was isolated
2670 * @order: Order of the isolated page
2671 * @mt: The page's pageblock's migratetype
2672 *
2673 * This function is meant to return a page pulled from the free lists via
2674 * __isolate_free_page back to the free lists they were pulled from.
2675 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2676 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2677 {
2678 struct zone *zone = page_zone(page);
2679
2680 /* zone lock should be held when this function is called */
2681 lockdep_assert_held(&zone->lock);
2682
2683 /* Return isolated page to tail of freelist. */
2684 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2685 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2686 }
2687
2688 /*
2689 * Update NUMA hit/miss statistics
2690 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2691 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2692 long nr_account)
2693 {
2694 #ifdef CONFIG_NUMA
2695 enum numa_stat_item local_stat = NUMA_LOCAL;
2696
2697 /* skip numa counters update if numa stats is disabled */
2698 if (!static_branch_likely(&vm_numa_stat_key))
2699 return;
2700
2701 if (zone_to_nid(z) != numa_node_id())
2702 local_stat = NUMA_OTHER;
2703
2704 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2705 __count_numa_events(z, NUMA_HIT, nr_account);
2706 else {
2707 __count_numa_events(z, NUMA_MISS, nr_account);
2708 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2709 }
2710 __count_numa_events(z, local_stat, nr_account);
2711 #endif
2712 }
2713
2714 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2715 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2716 unsigned int order, unsigned int alloc_flags,
2717 int migratetype)
2718 {
2719 struct page *page;
2720 unsigned long flags;
2721
2722 do {
2723 page = NULL;
2724 spin_lock_irqsave(&zone->lock, flags);
2725 if (alloc_flags & ALLOC_HIGHATOMIC)
2726 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2727 if (!page) {
2728 page = __rmqueue(zone, order, migratetype, alloc_flags);
2729
2730 /*
2731 * If the allocation fails, allow OOM handling access
2732 * to HIGHATOMIC reserves as failing now is worse than
2733 * failing a high-order atomic allocation in the
2734 * future.
2735 */
2736 if (!page && (alloc_flags & ALLOC_OOM))
2737 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2738
2739 if (!page) {
2740 spin_unlock_irqrestore(&zone->lock, flags);
2741 return NULL;
2742 }
2743 }
2744 __mod_zone_freepage_state(zone, -(1 << order),
2745 get_pcppage_migratetype(page));
2746 spin_unlock_irqrestore(&zone->lock, flags);
2747 } while (check_new_pages(page, order));
2748
2749 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2750 zone_statistics(preferred_zone, zone, 1);
2751
2752 return page;
2753 }
2754
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2755 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2756 {
2757 int high, base_batch, batch, max_nr_alloc;
2758 int high_max, high_min;
2759
2760 base_batch = READ_ONCE(pcp->batch);
2761 high_min = READ_ONCE(pcp->high_min);
2762 high_max = READ_ONCE(pcp->high_max);
2763 high = pcp->high = clamp(pcp->high, high_min, high_max);
2764
2765 /* Check for PCP disabled or boot pageset */
2766 if (unlikely(high < base_batch))
2767 return 1;
2768
2769 if (order)
2770 batch = base_batch;
2771 else
2772 batch = (base_batch << pcp->alloc_factor);
2773
2774 /*
2775 * If we had larger pcp->high, we could avoid to allocate from
2776 * zone.
2777 */
2778 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2779 high = pcp->high = min(high + batch, high_max);
2780
2781 if (!order) {
2782 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2783 /*
2784 * Double the number of pages allocated each time there is
2785 * subsequent allocation of order-0 pages without any freeing.
2786 */
2787 if (batch <= max_nr_alloc &&
2788 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2789 pcp->alloc_factor++;
2790 batch = min(batch, max_nr_alloc);
2791 }
2792
2793 /*
2794 * Scale batch relative to order if batch implies free pages
2795 * can be stored on the PCP. Batch can be 1 for small zones or
2796 * for boot pagesets which should never store free pages as
2797 * the pages may belong to arbitrary zones.
2798 */
2799 if (batch > 1)
2800 batch = max(batch >> order, 2);
2801
2802 return batch;
2803 }
2804
2805 /* Remove page from the per-cpu list, caller must protect the list */
2806 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2807 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2808 int migratetype,
2809 unsigned int alloc_flags,
2810 struct per_cpu_pages *pcp,
2811 struct list_head *list)
2812 {
2813 struct page *page;
2814
2815 do {
2816 if (list_empty(list)) {
2817 int batch = nr_pcp_alloc(pcp, zone, order);
2818 int alloced;
2819
2820 alloced = rmqueue_bulk(zone, order,
2821 batch, list,
2822 migratetype, alloc_flags);
2823
2824 pcp->count += alloced << order;
2825 if (unlikely(list_empty(list)))
2826 return NULL;
2827 }
2828
2829 page = list_first_entry(list, struct page, pcp_list);
2830 list_del(&page->pcp_list);
2831 pcp->count -= 1 << order;
2832 } while (check_new_pages(page, order));
2833
2834 return page;
2835 }
2836
2837 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2838 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2839 struct zone *zone, unsigned int order,
2840 int migratetype, unsigned int alloc_flags)
2841 {
2842 struct per_cpu_pages *pcp;
2843 struct list_head *list;
2844 struct page *page;
2845 unsigned long __maybe_unused UP_flags;
2846
2847 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2848 pcp_trylock_prepare(UP_flags);
2849 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2850 if (!pcp) {
2851 pcp_trylock_finish(UP_flags);
2852 return NULL;
2853 }
2854
2855 /*
2856 * On allocation, reduce the number of pages that are batch freed.
2857 * See nr_pcp_free() where free_factor is increased for subsequent
2858 * frees.
2859 */
2860 pcp->free_count >>= 1;
2861 list = &pcp->lists[order_to_pindex(migratetype, order)];
2862 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2863 pcp_spin_unlock(pcp);
2864 pcp_trylock_finish(UP_flags);
2865 if (page) {
2866 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2867 zone_statistics(preferred_zone, zone, 1);
2868 }
2869 return page;
2870 }
2871
2872 /*
2873 * Allocate a page from the given zone.
2874 * Use pcplists for THP or "cheap" high-order allocations.
2875 */
2876
2877 /*
2878 * Do not instrument rmqueue() with KMSAN. This function may call
2879 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2880 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2881 * may call rmqueue() again, which will result in a deadlock.
2882 */
2883 __no_sanitize_memory
2884 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2885 struct page *rmqueue(struct zone *preferred_zone,
2886 struct zone *zone, unsigned int order,
2887 gfp_t gfp_flags, unsigned int alloc_flags,
2888 int migratetype)
2889 {
2890 struct page *page;
2891
2892 /*
2893 * We most definitely don't want callers attempting to
2894 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895 */
2896 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2897
2898 if (likely(pcp_allowed_order(order))) {
2899 page = rmqueue_pcplist(preferred_zone, zone, order,
2900 migratetype, alloc_flags);
2901 if (likely(page))
2902 goto out;
2903 }
2904
2905 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2906 migratetype);
2907
2908 out:
2909 /* Separate test+clear to avoid unnecessary atomics */
2910 if ((alloc_flags & ALLOC_KSWAPD) &&
2911 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2912 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2913 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2914 }
2915
2916 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2917 return page;
2918 }
2919
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2920 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2921 {
2922 return __should_fail_alloc_page(gfp_mask, order);
2923 }
2924 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2925
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2926 static inline long __zone_watermark_unusable_free(struct zone *z,
2927 unsigned int order, unsigned int alloc_flags)
2928 {
2929 long unusable_free = (1 << order) - 1;
2930
2931 /*
2932 * If the caller does not have rights to reserves below the min
2933 * watermark then subtract the high-atomic reserves. This will
2934 * over-estimate the size of the atomic reserve but it avoids a search.
2935 */
2936 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2937 unusable_free += z->nr_reserved_highatomic;
2938
2939 #ifdef CONFIG_CMA
2940 /* If allocation can't use CMA areas don't use free CMA pages */
2941 if (!(alloc_flags & ALLOC_CMA))
2942 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2943 #endif
2944 #ifdef CONFIG_UNACCEPTED_MEMORY
2945 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2946 #endif
2947
2948 return unusable_free;
2949 }
2950
2951 /*
2952 * Return true if free base pages are above 'mark'. For high-order checks it
2953 * will return true of the order-0 watermark is reached and there is at least
2954 * one free page of a suitable size. Checking now avoids taking the zone lock
2955 * to check in the allocation paths if no pages are free.
2956 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2957 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2958 int highest_zoneidx, unsigned int alloc_flags,
2959 long free_pages)
2960 {
2961 long min = mark;
2962 int o;
2963
2964 /* free_pages may go negative - that's OK */
2965 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2966
2967 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2968 /*
2969 * __GFP_HIGH allows access to 50% of the min reserve as well
2970 * as OOM.
2971 */
2972 if (alloc_flags & ALLOC_MIN_RESERVE) {
2973 min -= min / 2;
2974
2975 /*
2976 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2977 * access more reserves than just __GFP_HIGH. Other
2978 * non-blocking allocations requests such as GFP_NOWAIT
2979 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2980 * access to the min reserve.
2981 */
2982 if (alloc_flags & ALLOC_NON_BLOCK)
2983 min -= min / 4;
2984 }
2985
2986 /*
2987 * OOM victims can try even harder than the normal reserve
2988 * users on the grounds that it's definitely going to be in
2989 * the exit path shortly and free memory. Any allocation it
2990 * makes during the free path will be small and short-lived.
2991 */
2992 if (alloc_flags & ALLOC_OOM)
2993 min -= min / 2;
2994 }
2995
2996 /*
2997 * Check watermarks for an order-0 allocation request. If these
2998 * are not met, then a high-order request also cannot go ahead
2999 * even if a suitable page happened to be free.
3000 */
3001 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3002 return false;
3003
3004 /* If this is an order-0 request then the watermark is fine */
3005 if (!order)
3006 return true;
3007
3008 /* For a high-order request, check at least one suitable page is free */
3009 for (o = order; o < NR_PAGE_ORDERS; o++) {
3010 struct free_area *area = &z->free_area[o];
3011 int mt;
3012
3013 if (!area->nr_free)
3014 continue;
3015
3016 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3017 if (!free_area_empty(area, mt))
3018 return true;
3019 }
3020
3021 #ifdef CONFIG_CMA
3022 if ((alloc_flags & ALLOC_CMA) &&
3023 !free_area_empty(area, MIGRATE_CMA)) {
3024 return true;
3025 }
3026 #endif
3027 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3028 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3029 return true;
3030 }
3031 }
3032 return false;
3033 }
3034
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3035 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3036 int highest_zoneidx, unsigned int alloc_flags)
3037 {
3038 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3039 zone_page_state(z, NR_FREE_PAGES));
3040 }
3041
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3042 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3043 unsigned long mark, int highest_zoneidx,
3044 unsigned int alloc_flags, gfp_t gfp_mask)
3045 {
3046 long free_pages;
3047
3048 free_pages = zone_page_state(z, NR_FREE_PAGES);
3049
3050 /*
3051 * Fast check for order-0 only. If this fails then the reserves
3052 * need to be calculated.
3053 */
3054 if (!order) {
3055 long usable_free;
3056 long reserved;
3057
3058 usable_free = free_pages;
3059 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3060
3061 /* reserved may over estimate high-atomic reserves. */
3062 usable_free -= min(usable_free, reserved);
3063 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3064 return true;
3065 }
3066
3067 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3068 free_pages))
3069 return true;
3070
3071 /*
3072 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3073 * when checking the min watermark. The min watermark is the
3074 * point where boosting is ignored so that kswapd is woken up
3075 * when below the low watermark.
3076 */
3077 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3078 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3079 mark = z->_watermark[WMARK_MIN];
3080 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3081 alloc_flags, free_pages);
3082 }
3083
3084 return false;
3085 }
3086
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3087 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3088 unsigned long mark, int highest_zoneidx)
3089 {
3090 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3091
3092 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3093 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3094
3095 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3096 free_pages);
3097 }
3098
3099 #ifdef CONFIG_NUMA
3100 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3101
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3102 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3103 {
3104 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3105 node_reclaim_distance;
3106 }
3107 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3108 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109 {
3110 return true;
3111 }
3112 #endif /* CONFIG_NUMA */
3113
3114 /*
3115 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3116 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3117 * premature use of a lower zone may cause lowmem pressure problems that
3118 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3119 * probably too small. It only makes sense to spread allocations to avoid
3120 * fragmentation between the Normal and DMA32 zones.
3121 */
3122 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3123 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3124 {
3125 unsigned int alloc_flags;
3126
3127 /*
3128 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3129 * to save a branch.
3130 */
3131 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3132
3133 #ifdef CONFIG_ZONE_DMA32
3134 if (!zone)
3135 return alloc_flags;
3136
3137 if (zone_idx(zone) != ZONE_NORMAL)
3138 return alloc_flags;
3139
3140 /*
3141 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3142 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3143 * on UMA that if Normal is populated then so is DMA32.
3144 */
3145 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3146 if (nr_online_nodes > 1 && !populated_zone(--zone))
3147 return alloc_flags;
3148
3149 alloc_flags |= ALLOC_NOFRAGMENT;
3150 #endif /* CONFIG_ZONE_DMA32 */
3151 return alloc_flags;
3152 }
3153
3154 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3155 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3156 unsigned int alloc_flags)
3157 {
3158 #ifdef CONFIG_CMA
3159 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3160 alloc_flags |= ALLOC_CMA;
3161 #endif
3162 return alloc_flags;
3163 }
3164
3165 /*
3166 * get_page_from_freelist goes through the zonelist trying to allocate
3167 * a page.
3168 */
3169 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3170 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3171 const struct alloc_context *ac)
3172 {
3173 struct zoneref *z;
3174 struct zone *zone;
3175 struct pglist_data *last_pgdat = NULL;
3176 bool last_pgdat_dirty_ok = false;
3177 bool no_fallback;
3178
3179 retry:
3180 /*
3181 * Scan zonelist, looking for a zone with enough free.
3182 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3183 */
3184 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3185 z = ac->preferred_zoneref;
3186 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3187 ac->nodemask) {
3188 struct page *page;
3189 unsigned long mark;
3190
3191 if (cpusets_enabled() &&
3192 (alloc_flags & ALLOC_CPUSET) &&
3193 !__cpuset_zone_allowed(zone, gfp_mask))
3194 continue;
3195 /*
3196 * When allocating a page cache page for writing, we
3197 * want to get it from a node that is within its dirty
3198 * limit, such that no single node holds more than its
3199 * proportional share of globally allowed dirty pages.
3200 * The dirty limits take into account the node's
3201 * lowmem reserves and high watermark so that kswapd
3202 * should be able to balance it without having to
3203 * write pages from its LRU list.
3204 *
3205 * XXX: For now, allow allocations to potentially
3206 * exceed the per-node dirty limit in the slowpath
3207 * (spread_dirty_pages unset) before going into reclaim,
3208 * which is important when on a NUMA setup the allowed
3209 * nodes are together not big enough to reach the
3210 * global limit. The proper fix for these situations
3211 * will require awareness of nodes in the
3212 * dirty-throttling and the flusher threads.
3213 */
3214 if (ac->spread_dirty_pages) {
3215 if (last_pgdat != zone->zone_pgdat) {
3216 last_pgdat = zone->zone_pgdat;
3217 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3218 }
3219
3220 if (!last_pgdat_dirty_ok)
3221 continue;
3222 }
3223
3224 if (no_fallback && nr_online_nodes > 1 &&
3225 zone != ac->preferred_zoneref->zone) {
3226 int local_nid;
3227
3228 /*
3229 * If moving to a remote node, retry but allow
3230 * fragmenting fallbacks. Locality is more important
3231 * than fragmentation avoidance.
3232 */
3233 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3234 if (zone_to_nid(zone) != local_nid) {
3235 alloc_flags &= ~ALLOC_NOFRAGMENT;
3236 goto retry;
3237 }
3238 }
3239
3240 /*
3241 * Detect whether the number of free pages is below high
3242 * watermark. If so, we will decrease pcp->high and free
3243 * PCP pages in free path to reduce the possibility of
3244 * premature page reclaiming. Detection is done here to
3245 * avoid to do that in hotter free path.
3246 */
3247 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3248 goto check_alloc_wmark;
3249
3250 mark = high_wmark_pages(zone);
3251 if (zone_watermark_fast(zone, order, mark,
3252 ac->highest_zoneidx, alloc_flags,
3253 gfp_mask))
3254 goto try_this_zone;
3255 else
3256 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3257
3258 check_alloc_wmark:
3259 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3260 if (!zone_watermark_fast(zone, order, mark,
3261 ac->highest_zoneidx, alloc_flags,
3262 gfp_mask)) {
3263 int ret;
3264
3265 if (has_unaccepted_memory()) {
3266 if (try_to_accept_memory(zone, order))
3267 goto try_this_zone;
3268 }
3269
3270 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3271 /*
3272 * Watermark failed for this zone, but see if we can
3273 * grow this zone if it contains deferred pages.
3274 */
3275 if (deferred_pages_enabled()) {
3276 if (_deferred_grow_zone(zone, order))
3277 goto try_this_zone;
3278 }
3279 #endif
3280 /* Checked here to keep the fast path fast */
3281 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3282 if (alloc_flags & ALLOC_NO_WATERMARKS)
3283 goto try_this_zone;
3284
3285 if (!node_reclaim_enabled() ||
3286 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3287 continue;
3288
3289 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3290 switch (ret) {
3291 case NODE_RECLAIM_NOSCAN:
3292 /* did not scan */
3293 continue;
3294 case NODE_RECLAIM_FULL:
3295 /* scanned but unreclaimable */
3296 continue;
3297 default:
3298 /* did we reclaim enough */
3299 if (zone_watermark_ok(zone, order, mark,
3300 ac->highest_zoneidx, alloc_flags))
3301 goto try_this_zone;
3302
3303 continue;
3304 }
3305 }
3306
3307 try_this_zone:
3308 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3309 gfp_mask, alloc_flags, ac->migratetype);
3310 if (page) {
3311 prep_new_page(page, order, gfp_mask, alloc_flags);
3312
3313 /*
3314 * If this is a high-order atomic allocation then check
3315 * if the pageblock should be reserved for the future
3316 */
3317 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3318 reserve_highatomic_pageblock(page, zone);
3319
3320 return page;
3321 } else {
3322 if (has_unaccepted_memory()) {
3323 if (try_to_accept_memory(zone, order))
3324 goto try_this_zone;
3325 }
3326
3327 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3328 /* Try again if zone has deferred pages */
3329 if (deferred_pages_enabled()) {
3330 if (_deferred_grow_zone(zone, order))
3331 goto try_this_zone;
3332 }
3333 #endif
3334 }
3335 }
3336
3337 /*
3338 * It's possible on a UMA machine to get through all zones that are
3339 * fragmented. If avoiding fragmentation, reset and try again.
3340 */
3341 if (no_fallback) {
3342 alloc_flags &= ~ALLOC_NOFRAGMENT;
3343 goto retry;
3344 }
3345
3346 return NULL;
3347 }
3348
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3349 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3350 {
3351 unsigned int filter = SHOW_MEM_FILTER_NODES;
3352
3353 /*
3354 * This documents exceptions given to allocations in certain
3355 * contexts that are allowed to allocate outside current's set
3356 * of allowed nodes.
3357 */
3358 if (!(gfp_mask & __GFP_NOMEMALLOC))
3359 if (tsk_is_oom_victim(current) ||
3360 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3361 filter &= ~SHOW_MEM_FILTER_NODES;
3362 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3363 filter &= ~SHOW_MEM_FILTER_NODES;
3364
3365 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3366 }
3367
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3368 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3369 {
3370 struct va_format vaf;
3371 va_list args;
3372 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3373
3374 if ((gfp_mask & __GFP_NOWARN) ||
3375 !__ratelimit(&nopage_rs) ||
3376 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3377 return;
3378
3379 va_start(args, fmt);
3380 vaf.fmt = fmt;
3381 vaf.va = &args;
3382 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3383 current->comm, &vaf, gfp_mask, &gfp_mask,
3384 nodemask_pr_args(nodemask));
3385 va_end(args);
3386
3387 cpuset_print_current_mems_allowed();
3388 pr_cont("\n");
3389 dump_stack();
3390 warn_alloc_show_mem(gfp_mask, nodemask);
3391 }
3392
3393 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3394 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3395 unsigned int alloc_flags,
3396 const struct alloc_context *ac)
3397 {
3398 struct page *page;
3399
3400 page = get_page_from_freelist(gfp_mask, order,
3401 alloc_flags|ALLOC_CPUSET, ac);
3402 /*
3403 * fallback to ignore cpuset restriction if our nodes
3404 * are depleted
3405 */
3406 if (!page)
3407 page = get_page_from_freelist(gfp_mask, order,
3408 alloc_flags, ac);
3409
3410 return page;
3411 }
3412
3413 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3414 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3415 const struct alloc_context *ac, unsigned long *did_some_progress)
3416 {
3417 struct oom_control oc = {
3418 .zonelist = ac->zonelist,
3419 .nodemask = ac->nodemask,
3420 .memcg = NULL,
3421 .gfp_mask = gfp_mask,
3422 .order = order,
3423 };
3424 struct page *page;
3425
3426 *did_some_progress = 0;
3427
3428 /*
3429 * Acquire the oom lock. If that fails, somebody else is
3430 * making progress for us.
3431 */
3432 if (!mutex_trylock(&oom_lock)) {
3433 *did_some_progress = 1;
3434 schedule_timeout_uninterruptible(1);
3435 return NULL;
3436 }
3437
3438 /*
3439 * Go through the zonelist yet one more time, keep very high watermark
3440 * here, this is only to catch a parallel oom killing, we must fail if
3441 * we're still under heavy pressure. But make sure that this reclaim
3442 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3443 * allocation which will never fail due to oom_lock already held.
3444 */
3445 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3446 ~__GFP_DIRECT_RECLAIM, order,
3447 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3448 if (page)
3449 goto out;
3450
3451 /* Coredumps can quickly deplete all memory reserves */
3452 if (current->flags & PF_DUMPCORE)
3453 goto out;
3454 /* The OOM killer will not help higher order allocs */
3455 if (order > PAGE_ALLOC_COSTLY_ORDER)
3456 goto out;
3457 /*
3458 * We have already exhausted all our reclaim opportunities without any
3459 * success so it is time to admit defeat. We will skip the OOM killer
3460 * because it is very likely that the caller has a more reasonable
3461 * fallback than shooting a random task.
3462 *
3463 * The OOM killer may not free memory on a specific node.
3464 */
3465 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3466 goto out;
3467 /* The OOM killer does not needlessly kill tasks for lowmem */
3468 if (ac->highest_zoneidx < ZONE_NORMAL)
3469 goto out;
3470 if (pm_suspended_storage())
3471 goto out;
3472 /*
3473 * XXX: GFP_NOFS allocations should rather fail than rely on
3474 * other request to make a forward progress.
3475 * We are in an unfortunate situation where out_of_memory cannot
3476 * do much for this context but let's try it to at least get
3477 * access to memory reserved if the current task is killed (see
3478 * out_of_memory). Once filesystems are ready to handle allocation
3479 * failures more gracefully we should just bail out here.
3480 */
3481
3482 /* Exhausted what can be done so it's blame time */
3483 if (out_of_memory(&oc) ||
3484 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3485 *did_some_progress = 1;
3486
3487 /*
3488 * Help non-failing allocations by giving them access to memory
3489 * reserves
3490 */
3491 if (gfp_mask & __GFP_NOFAIL)
3492 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3493 ALLOC_NO_WATERMARKS, ac);
3494 }
3495 out:
3496 mutex_unlock(&oom_lock);
3497 return page;
3498 }
3499
3500 /*
3501 * Maximum number of compaction retries with a progress before OOM
3502 * killer is consider as the only way to move forward.
3503 */
3504 #define MAX_COMPACT_RETRIES 16
3505
3506 #ifdef CONFIG_COMPACTION
3507 /* Try memory compaction for high-order allocations before reclaim */
3508 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3509 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3510 unsigned int alloc_flags, const struct alloc_context *ac,
3511 enum compact_priority prio, enum compact_result *compact_result)
3512 {
3513 struct page *page = NULL;
3514 unsigned long pflags;
3515 unsigned int noreclaim_flag;
3516
3517 if (!order)
3518 return NULL;
3519
3520 psi_memstall_enter(&pflags);
3521 delayacct_compact_start();
3522 noreclaim_flag = memalloc_noreclaim_save();
3523
3524 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3525 prio, &page);
3526
3527 memalloc_noreclaim_restore(noreclaim_flag);
3528 psi_memstall_leave(&pflags);
3529 delayacct_compact_end();
3530
3531 if (*compact_result == COMPACT_SKIPPED)
3532 return NULL;
3533 /*
3534 * At least in one zone compaction wasn't deferred or skipped, so let's
3535 * count a compaction stall
3536 */
3537 count_vm_event(COMPACTSTALL);
3538
3539 /* Prep a captured page if available */
3540 if (page)
3541 prep_new_page(page, order, gfp_mask, alloc_flags);
3542
3543 /* Try get a page from the freelist if available */
3544 if (!page)
3545 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3546
3547 if (page) {
3548 struct zone *zone = page_zone(page);
3549
3550 zone->compact_blockskip_flush = false;
3551 compaction_defer_reset(zone, order, true);
3552 count_vm_event(COMPACTSUCCESS);
3553 return page;
3554 }
3555
3556 /*
3557 * It's bad if compaction run occurs and fails. The most likely reason
3558 * is that pages exist, but not enough to satisfy watermarks.
3559 */
3560 count_vm_event(COMPACTFAIL);
3561
3562 cond_resched();
3563
3564 return NULL;
3565 }
3566
3567 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3568 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3569 enum compact_result compact_result,
3570 enum compact_priority *compact_priority,
3571 int *compaction_retries)
3572 {
3573 int max_retries = MAX_COMPACT_RETRIES;
3574 int min_priority;
3575 bool ret = false;
3576 int retries = *compaction_retries;
3577 enum compact_priority priority = *compact_priority;
3578
3579 if (!order)
3580 return false;
3581
3582 if (fatal_signal_pending(current))
3583 return false;
3584
3585 /*
3586 * Compaction was skipped due to a lack of free order-0
3587 * migration targets. Continue if reclaim can help.
3588 */
3589 if (compact_result == COMPACT_SKIPPED) {
3590 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3591 goto out;
3592 }
3593
3594 /*
3595 * Compaction managed to coalesce some page blocks, but the
3596 * allocation failed presumably due to a race. Retry some.
3597 */
3598 if (compact_result == COMPACT_SUCCESS) {
3599 /*
3600 * !costly requests are much more important than
3601 * __GFP_RETRY_MAYFAIL costly ones because they are de
3602 * facto nofail and invoke OOM killer to move on while
3603 * costly can fail and users are ready to cope with
3604 * that. 1/4 retries is rather arbitrary but we would
3605 * need much more detailed feedback from compaction to
3606 * make a better decision.
3607 */
3608 if (order > PAGE_ALLOC_COSTLY_ORDER)
3609 max_retries /= 4;
3610
3611 if (++(*compaction_retries) <= max_retries) {
3612 ret = true;
3613 goto out;
3614 }
3615 }
3616
3617 /*
3618 * Compaction failed. Retry with increasing priority.
3619 */
3620 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3621 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3622
3623 if (*compact_priority > min_priority) {
3624 (*compact_priority)--;
3625 *compaction_retries = 0;
3626 ret = true;
3627 }
3628 out:
3629 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3630 return ret;
3631 }
3632 #else
3633 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3634 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3635 unsigned int alloc_flags, const struct alloc_context *ac,
3636 enum compact_priority prio, enum compact_result *compact_result)
3637 {
3638 *compact_result = COMPACT_SKIPPED;
3639 return NULL;
3640 }
3641
3642 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3643 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3644 enum compact_result compact_result,
3645 enum compact_priority *compact_priority,
3646 int *compaction_retries)
3647 {
3648 struct zone *zone;
3649 struct zoneref *z;
3650
3651 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3652 return false;
3653
3654 /*
3655 * There are setups with compaction disabled which would prefer to loop
3656 * inside the allocator rather than hit the oom killer prematurely.
3657 * Let's give them a good hope and keep retrying while the order-0
3658 * watermarks are OK.
3659 */
3660 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3661 ac->highest_zoneidx, ac->nodemask) {
3662 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3663 ac->highest_zoneidx, alloc_flags))
3664 return true;
3665 }
3666 return false;
3667 }
3668 #endif /* CONFIG_COMPACTION */
3669
3670 #ifdef CONFIG_LOCKDEP
3671 static struct lockdep_map __fs_reclaim_map =
3672 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3673
__need_reclaim(gfp_t gfp_mask)3674 static bool __need_reclaim(gfp_t gfp_mask)
3675 {
3676 /* no reclaim without waiting on it */
3677 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3678 return false;
3679
3680 /* this guy won't enter reclaim */
3681 if (current->flags & PF_MEMALLOC)
3682 return false;
3683
3684 if (gfp_mask & __GFP_NOLOCKDEP)
3685 return false;
3686
3687 return true;
3688 }
3689
__fs_reclaim_acquire(unsigned long ip)3690 void __fs_reclaim_acquire(unsigned long ip)
3691 {
3692 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3693 }
3694
__fs_reclaim_release(unsigned long ip)3695 void __fs_reclaim_release(unsigned long ip)
3696 {
3697 lock_release(&__fs_reclaim_map, ip);
3698 }
3699
fs_reclaim_acquire(gfp_t gfp_mask)3700 void fs_reclaim_acquire(gfp_t gfp_mask)
3701 {
3702 gfp_mask = current_gfp_context(gfp_mask);
3703
3704 if (__need_reclaim(gfp_mask)) {
3705 if (gfp_mask & __GFP_FS)
3706 __fs_reclaim_acquire(_RET_IP_);
3707
3708 #ifdef CONFIG_MMU_NOTIFIER
3709 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3710 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3711 #endif
3712
3713 }
3714 }
3715 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3716
fs_reclaim_release(gfp_t gfp_mask)3717 void fs_reclaim_release(gfp_t gfp_mask)
3718 {
3719 gfp_mask = current_gfp_context(gfp_mask);
3720
3721 if (__need_reclaim(gfp_mask)) {
3722 if (gfp_mask & __GFP_FS)
3723 __fs_reclaim_release(_RET_IP_);
3724 }
3725 }
3726 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3727 #endif
3728
3729 /*
3730 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3731 * have been rebuilt so allocation retries. Reader side does not lock and
3732 * retries the allocation if zonelist changes. Writer side is protected by the
3733 * embedded spin_lock.
3734 */
3735 static DEFINE_SEQLOCK(zonelist_update_seq);
3736
zonelist_iter_begin(void)3737 static unsigned int zonelist_iter_begin(void)
3738 {
3739 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3740 return read_seqbegin(&zonelist_update_seq);
3741
3742 return 0;
3743 }
3744
check_retry_zonelist(unsigned int seq)3745 static unsigned int check_retry_zonelist(unsigned int seq)
3746 {
3747 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3748 return read_seqretry(&zonelist_update_seq, seq);
3749
3750 return seq;
3751 }
3752
3753 /* Perform direct synchronous page reclaim */
3754 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3755 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756 const struct alloc_context *ac)
3757 {
3758 unsigned int noreclaim_flag;
3759 unsigned long progress;
3760
3761 cond_resched();
3762
3763 /* We now go into synchronous reclaim */
3764 cpuset_memory_pressure_bump();
3765 fs_reclaim_acquire(gfp_mask);
3766 noreclaim_flag = memalloc_noreclaim_save();
3767
3768 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3769 ac->nodemask);
3770
3771 memalloc_noreclaim_restore(noreclaim_flag);
3772 fs_reclaim_release(gfp_mask);
3773
3774 cond_resched();
3775
3776 return progress;
3777 }
3778
3779 /* The really slow allocator path where we enter direct reclaim */
3780 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3781 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3782 unsigned int alloc_flags, const struct alloc_context *ac,
3783 unsigned long *did_some_progress)
3784 {
3785 struct page *page = NULL;
3786 unsigned long pflags;
3787 bool drained = false;
3788
3789 psi_memstall_enter(&pflags);
3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 if (unlikely(!(*did_some_progress)))
3792 goto out;
3793
3794 retry:
3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796
3797 /*
3798 * If an allocation failed after direct reclaim, it could be because
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them and try again
3801 */
3802 if (!page && !drained) {
3803 unreserve_highatomic_pageblock(ac, false);
3804 drain_all_pages(NULL);
3805 drained = true;
3806 goto retry;
3807 }
3808 out:
3809 psi_memstall_leave(&pflags);
3810
3811 return page;
3812 }
3813
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3814 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3815 const struct alloc_context *ac)
3816 {
3817 struct zoneref *z;
3818 struct zone *zone;
3819 pg_data_t *last_pgdat = NULL;
3820 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3821
3822 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3823 ac->nodemask) {
3824 if (!managed_zone(zone))
3825 continue;
3826 if (last_pgdat != zone->zone_pgdat) {
3827 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3828 last_pgdat = zone->zone_pgdat;
3829 }
3830 }
3831 }
3832
3833 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3834 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3835 {
3836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3837
3838 /*
3839 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3840 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3841 * to save two branches.
3842 */
3843 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3844 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3845
3846 /*
3847 * The caller may dip into page reserves a bit more if the caller
3848 * cannot run direct reclaim, or if the caller has realtime scheduling
3849 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3850 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3851 */
3852 alloc_flags |= (__force int)
3853 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3854
3855 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3856 /*
3857 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3858 * if it can't schedule.
3859 */
3860 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3861 alloc_flags |= ALLOC_NON_BLOCK;
3862
3863 if (order > 0)
3864 alloc_flags |= ALLOC_HIGHATOMIC;
3865 }
3866
3867 /*
3868 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3869 * GFP_ATOMIC) rather than fail, see the comment for
3870 * cpuset_node_allowed().
3871 */
3872 if (alloc_flags & ALLOC_MIN_RESERVE)
3873 alloc_flags &= ~ALLOC_CPUSET;
3874 } else if (unlikely(rt_task(current)) && in_task())
3875 alloc_flags |= ALLOC_MIN_RESERVE;
3876
3877 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3878
3879 return alloc_flags;
3880 }
3881
oom_reserves_allowed(struct task_struct * tsk)3882 static bool oom_reserves_allowed(struct task_struct *tsk)
3883 {
3884 if (!tsk_is_oom_victim(tsk))
3885 return false;
3886
3887 /*
3888 * !MMU doesn't have oom reaper so give access to memory reserves
3889 * only to the thread with TIF_MEMDIE set
3890 */
3891 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3892 return false;
3893
3894 return true;
3895 }
3896
3897 /*
3898 * Distinguish requests which really need access to full memory
3899 * reserves from oom victims which can live with a portion of it
3900 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3901 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3902 {
3903 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3904 return 0;
3905 if (gfp_mask & __GFP_MEMALLOC)
3906 return ALLOC_NO_WATERMARKS;
3907 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3908 return ALLOC_NO_WATERMARKS;
3909 if (!in_interrupt()) {
3910 if (current->flags & PF_MEMALLOC)
3911 return ALLOC_NO_WATERMARKS;
3912 else if (oom_reserves_allowed(current))
3913 return ALLOC_OOM;
3914 }
3915
3916 return 0;
3917 }
3918
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3919 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3920 {
3921 return !!__gfp_pfmemalloc_flags(gfp_mask);
3922 }
3923
3924 /*
3925 * Checks whether it makes sense to retry the reclaim to make a forward progress
3926 * for the given allocation request.
3927 *
3928 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3929 * without success, or when we couldn't even meet the watermark if we
3930 * reclaimed all remaining pages on the LRU lists.
3931 *
3932 * Returns true if a retry is viable or false to enter the oom path.
3933 */
3934 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3935 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3936 struct alloc_context *ac, int alloc_flags,
3937 bool did_some_progress, int *no_progress_loops)
3938 {
3939 struct zone *zone;
3940 struct zoneref *z;
3941 bool ret = false;
3942
3943 /*
3944 * Costly allocations might have made a progress but this doesn't mean
3945 * their order will become available due to high fragmentation so
3946 * always increment the no progress counter for them
3947 */
3948 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3949 *no_progress_loops = 0;
3950 else
3951 (*no_progress_loops)++;
3952
3953 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3954 goto out;
3955
3956
3957 /*
3958 * Keep reclaiming pages while there is a chance this will lead
3959 * somewhere. If none of the target zones can satisfy our allocation
3960 * request even if all reclaimable pages are considered then we are
3961 * screwed and have to go OOM.
3962 */
3963 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3964 ac->highest_zoneidx, ac->nodemask) {
3965 unsigned long available;
3966 unsigned long reclaimable;
3967 unsigned long min_wmark = min_wmark_pages(zone);
3968 bool wmark;
3969
3970 available = reclaimable = zone_reclaimable_pages(zone);
3971 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3972
3973 /*
3974 * Would the allocation succeed if we reclaimed all
3975 * reclaimable pages?
3976 */
3977 wmark = __zone_watermark_ok(zone, order, min_wmark,
3978 ac->highest_zoneidx, alloc_flags, available);
3979 trace_reclaim_retry_zone(z, order, reclaimable,
3980 available, min_wmark, *no_progress_loops, wmark);
3981 if (wmark) {
3982 ret = true;
3983 break;
3984 }
3985 }
3986
3987 /*
3988 * Memory allocation/reclaim might be called from a WQ context and the
3989 * current implementation of the WQ concurrency control doesn't
3990 * recognize that a particular WQ is congested if the worker thread is
3991 * looping without ever sleeping. Therefore we have to do a short sleep
3992 * here rather than calling cond_resched().
3993 */
3994 if (current->flags & PF_WQ_WORKER)
3995 schedule_timeout_uninterruptible(1);
3996 else
3997 cond_resched();
3998 out:
3999 /* Before OOM, exhaust highatomic_reserve */
4000 if (!ret)
4001 return unreserve_highatomic_pageblock(ac, true);
4002
4003 return ret;
4004 }
4005
4006 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4007 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4008 {
4009 /*
4010 * It's possible that cpuset's mems_allowed and the nodemask from
4011 * mempolicy don't intersect. This should be normally dealt with by
4012 * policy_nodemask(), but it's possible to race with cpuset update in
4013 * such a way the check therein was true, and then it became false
4014 * before we got our cpuset_mems_cookie here.
4015 * This assumes that for all allocations, ac->nodemask can come only
4016 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4017 * when it does not intersect with the cpuset restrictions) or the
4018 * caller can deal with a violated nodemask.
4019 */
4020 if (cpusets_enabled() && ac->nodemask &&
4021 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4022 ac->nodemask = NULL;
4023 return true;
4024 }
4025
4026 /*
4027 * When updating a task's mems_allowed or mempolicy nodemask, it is
4028 * possible to race with parallel threads in such a way that our
4029 * allocation can fail while the mask is being updated. If we are about
4030 * to fail, check if the cpuset changed during allocation and if so,
4031 * retry.
4032 */
4033 if (read_mems_allowed_retry(cpuset_mems_cookie))
4034 return true;
4035
4036 return false;
4037 }
4038
4039 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4040 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4041 struct alloc_context *ac)
4042 {
4043 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4044 bool can_compact = gfp_compaction_allowed(gfp_mask);
4045 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4046 struct page *page = NULL;
4047 unsigned int alloc_flags;
4048 unsigned long did_some_progress;
4049 enum compact_priority compact_priority;
4050 enum compact_result compact_result;
4051 int compaction_retries;
4052 int no_progress_loops;
4053 unsigned int cpuset_mems_cookie;
4054 unsigned int zonelist_iter_cookie;
4055 int reserve_flags;
4056
4057 restart:
4058 compaction_retries = 0;
4059 no_progress_loops = 0;
4060 compact_priority = DEF_COMPACT_PRIORITY;
4061 cpuset_mems_cookie = read_mems_allowed_begin();
4062 zonelist_iter_cookie = zonelist_iter_begin();
4063
4064 /*
4065 * The fast path uses conservative alloc_flags to succeed only until
4066 * kswapd needs to be woken up, and to avoid the cost of setting up
4067 * alloc_flags precisely. So we do that now.
4068 */
4069 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4070
4071 /*
4072 * We need to recalculate the starting point for the zonelist iterator
4073 * because we might have used different nodemask in the fast path, or
4074 * there was a cpuset modification and we are retrying - otherwise we
4075 * could end up iterating over non-eligible zones endlessly.
4076 */
4077 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4078 ac->highest_zoneidx, ac->nodemask);
4079 if (!ac->preferred_zoneref->zone)
4080 goto nopage;
4081
4082 /*
4083 * Check for insane configurations where the cpuset doesn't contain
4084 * any suitable zone to satisfy the request - e.g. non-movable
4085 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4086 */
4087 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4088 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4089 ac->highest_zoneidx,
4090 &cpuset_current_mems_allowed);
4091 if (!z->zone)
4092 goto nopage;
4093 }
4094
4095 if (alloc_flags & ALLOC_KSWAPD)
4096 wake_all_kswapds(order, gfp_mask, ac);
4097
4098 /*
4099 * The adjusted alloc_flags might result in immediate success, so try
4100 * that first
4101 */
4102 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4103 if (page)
4104 goto got_pg;
4105
4106 /*
4107 * For costly allocations, try direct compaction first, as it's likely
4108 * that we have enough base pages and don't need to reclaim. For non-
4109 * movable high-order allocations, do that as well, as compaction will
4110 * try prevent permanent fragmentation by migrating from blocks of the
4111 * same migratetype.
4112 * Don't try this for allocations that are allowed to ignore
4113 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4114 */
4115 if (can_direct_reclaim && can_compact &&
4116 (costly_order ||
4117 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4118 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4119 page = __alloc_pages_direct_compact(gfp_mask, order,
4120 alloc_flags, ac,
4121 INIT_COMPACT_PRIORITY,
4122 &compact_result);
4123 if (page)
4124 goto got_pg;
4125
4126 /*
4127 * Checks for costly allocations with __GFP_NORETRY, which
4128 * includes some THP page fault allocations
4129 */
4130 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4131 /*
4132 * If allocating entire pageblock(s) and compaction
4133 * failed because all zones are below low watermarks
4134 * or is prohibited because it recently failed at this
4135 * order, fail immediately unless the allocator has
4136 * requested compaction and reclaim retry.
4137 *
4138 * Reclaim is
4139 * - potentially very expensive because zones are far
4140 * below their low watermarks or this is part of very
4141 * bursty high order allocations,
4142 * - not guaranteed to help because isolate_freepages()
4143 * may not iterate over freed pages as part of its
4144 * linear scan, and
4145 * - unlikely to make entire pageblocks free on its
4146 * own.
4147 */
4148 if (compact_result == COMPACT_SKIPPED ||
4149 compact_result == COMPACT_DEFERRED)
4150 goto nopage;
4151
4152 /*
4153 * Looks like reclaim/compaction is worth trying, but
4154 * sync compaction could be very expensive, so keep
4155 * using async compaction.
4156 */
4157 compact_priority = INIT_COMPACT_PRIORITY;
4158 }
4159 }
4160
4161 retry:
4162 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4163 if (alloc_flags & ALLOC_KSWAPD)
4164 wake_all_kswapds(order, gfp_mask, ac);
4165
4166 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4167 if (reserve_flags)
4168 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4169 (alloc_flags & ALLOC_KSWAPD);
4170
4171 /*
4172 * Reset the nodemask and zonelist iterators if memory policies can be
4173 * ignored. These allocations are high priority and system rather than
4174 * user oriented.
4175 */
4176 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4177 ac->nodemask = NULL;
4178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4179 ac->highest_zoneidx, ac->nodemask);
4180 }
4181
4182 /* Attempt with potentially adjusted zonelist and alloc_flags */
4183 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4184 if (page)
4185 goto got_pg;
4186
4187 /* Caller is not willing to reclaim, we can't balance anything */
4188 if (!can_direct_reclaim)
4189 goto nopage;
4190
4191 /* Avoid recursion of direct reclaim */
4192 if (current->flags & PF_MEMALLOC)
4193 goto nopage;
4194
4195 /* Try direct reclaim and then allocating */
4196 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4197 &did_some_progress);
4198 if (page)
4199 goto got_pg;
4200
4201 /* Try direct compaction and then allocating */
4202 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4203 compact_priority, &compact_result);
4204 if (page)
4205 goto got_pg;
4206
4207 /* Do not loop if specifically requested */
4208 if (gfp_mask & __GFP_NORETRY)
4209 goto nopage;
4210
4211 /*
4212 * Do not retry costly high order allocations unless they are
4213 * __GFP_RETRY_MAYFAIL and we can compact
4214 */
4215 if (costly_order && (!can_compact ||
4216 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4217 goto nopage;
4218
4219 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4220 did_some_progress > 0, &no_progress_loops))
4221 goto retry;
4222
4223 /*
4224 * It doesn't make any sense to retry for the compaction if the order-0
4225 * reclaim is not able to make any progress because the current
4226 * implementation of the compaction depends on the sufficient amount
4227 * of free memory (see __compaction_suitable)
4228 */
4229 if (did_some_progress > 0 && can_compact &&
4230 should_compact_retry(ac, order, alloc_flags,
4231 compact_result, &compact_priority,
4232 &compaction_retries))
4233 goto retry;
4234
4235
4236 /*
4237 * Deal with possible cpuset update races or zonelist updates to avoid
4238 * a unnecessary OOM kill.
4239 */
4240 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4241 check_retry_zonelist(zonelist_iter_cookie))
4242 goto restart;
4243
4244 /* Reclaim has failed us, start killing things */
4245 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4246 if (page)
4247 goto got_pg;
4248
4249 /* Avoid allocations with no watermarks from looping endlessly */
4250 if (tsk_is_oom_victim(current) &&
4251 (alloc_flags & ALLOC_OOM ||
4252 (gfp_mask & __GFP_NOMEMALLOC)))
4253 goto nopage;
4254
4255 /* Retry as long as the OOM killer is making progress */
4256 if (did_some_progress) {
4257 no_progress_loops = 0;
4258 goto retry;
4259 }
4260
4261 nopage:
4262 /*
4263 * Deal with possible cpuset update races or zonelist updates to avoid
4264 * a unnecessary OOM kill.
4265 */
4266 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4267 check_retry_zonelist(zonelist_iter_cookie))
4268 goto restart;
4269
4270 /*
4271 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4272 * we always retry
4273 */
4274 if (gfp_mask & __GFP_NOFAIL) {
4275 /*
4276 * All existing users of the __GFP_NOFAIL are blockable, so warn
4277 * of any new users that actually require GFP_NOWAIT
4278 */
4279 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4280 goto fail;
4281
4282 /*
4283 * PF_MEMALLOC request from this context is rather bizarre
4284 * because we cannot reclaim anything and only can loop waiting
4285 * for somebody to do a work for us
4286 */
4287 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4288
4289 /*
4290 * non failing costly orders are a hard requirement which we
4291 * are not prepared for much so let's warn about these users
4292 * so that we can identify them and convert them to something
4293 * else.
4294 */
4295 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4296
4297 /*
4298 * Help non-failing allocations by giving some access to memory
4299 * reserves normally used for high priority non-blocking
4300 * allocations but do not use ALLOC_NO_WATERMARKS because this
4301 * could deplete whole memory reserves which would just make
4302 * the situation worse.
4303 */
4304 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4305 if (page)
4306 goto got_pg;
4307
4308 cond_resched();
4309 goto retry;
4310 }
4311 fail:
4312 warn_alloc(gfp_mask, ac->nodemask,
4313 "page allocation failure: order:%u", order);
4314 got_pg:
4315 return page;
4316 }
4317
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4318 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4319 int preferred_nid, nodemask_t *nodemask,
4320 struct alloc_context *ac, gfp_t *alloc_gfp,
4321 unsigned int *alloc_flags)
4322 {
4323 ac->highest_zoneidx = gfp_zone(gfp_mask);
4324 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4325 ac->nodemask = nodemask;
4326 ac->migratetype = gfp_migratetype(gfp_mask);
4327
4328 if (cpusets_enabled()) {
4329 *alloc_gfp |= __GFP_HARDWALL;
4330 /*
4331 * When we are in the interrupt context, it is irrelevant
4332 * to the current task context. It means that any node ok.
4333 */
4334 if (in_task() && !ac->nodemask)
4335 ac->nodemask = &cpuset_current_mems_allowed;
4336 else
4337 *alloc_flags |= ALLOC_CPUSET;
4338 }
4339
4340 might_alloc(gfp_mask);
4341
4342 if (should_fail_alloc_page(gfp_mask, order))
4343 return false;
4344
4345 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4346
4347 /* Dirty zone balancing only done in the fast path */
4348 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4349
4350 /*
4351 * The preferred zone is used for statistics but crucially it is
4352 * also used as the starting point for the zonelist iterator. It
4353 * may get reset for allocations that ignore memory policies.
4354 */
4355 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4356 ac->highest_zoneidx, ac->nodemask);
4357
4358 return true;
4359 }
4360
4361 /*
4362 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4363 * @gfp: GFP flags for the allocation
4364 * @preferred_nid: The preferred NUMA node ID to allocate from
4365 * @nodemask: Set of nodes to allocate from, may be NULL
4366 * @nr_pages: The number of pages desired on the list or array
4367 * @page_list: Optional list to store the allocated pages
4368 * @page_array: Optional array to store the pages
4369 *
4370 * This is a batched version of the page allocator that attempts to
4371 * allocate nr_pages quickly. Pages are added to page_list if page_list
4372 * is not NULL, otherwise it is assumed that the page_array is valid.
4373 *
4374 * For lists, nr_pages is the number of pages that should be allocated.
4375 *
4376 * For arrays, only NULL elements are populated with pages and nr_pages
4377 * is the maximum number of pages that will be stored in the array.
4378 *
4379 * Returns the number of pages on the list or array.
4380 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4381 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4382 nodemask_t *nodemask, int nr_pages,
4383 struct list_head *page_list,
4384 struct page **page_array)
4385 {
4386 struct page *page;
4387 unsigned long __maybe_unused UP_flags;
4388 struct zone *zone;
4389 struct zoneref *z;
4390 struct per_cpu_pages *pcp;
4391 struct list_head *pcp_list;
4392 struct alloc_context ac;
4393 gfp_t alloc_gfp;
4394 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4395 int nr_populated = 0, nr_account = 0;
4396
4397 /*
4398 * Skip populated array elements to determine if any pages need
4399 * to be allocated before disabling IRQs.
4400 */
4401 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4402 nr_populated++;
4403
4404 /* No pages requested? */
4405 if (unlikely(nr_pages <= 0))
4406 goto out;
4407
4408 /* Already populated array? */
4409 if (unlikely(page_array && nr_pages - nr_populated == 0))
4410 goto out;
4411
4412 /* Bulk allocator does not support memcg accounting. */
4413 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4414 goto failed;
4415
4416 /* Use the single page allocator for one page. */
4417 if (nr_pages - nr_populated == 1)
4418 goto failed;
4419
4420 #ifdef CONFIG_PAGE_OWNER
4421 /*
4422 * PAGE_OWNER may recurse into the allocator to allocate space to
4423 * save the stack with pagesets.lock held. Releasing/reacquiring
4424 * removes much of the performance benefit of bulk allocation so
4425 * force the caller to allocate one page at a time as it'll have
4426 * similar performance to added complexity to the bulk allocator.
4427 */
4428 if (static_branch_unlikely(&page_owner_inited))
4429 goto failed;
4430 #endif
4431
4432 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4433 gfp &= gfp_allowed_mask;
4434 alloc_gfp = gfp;
4435 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4436 goto out;
4437 gfp = alloc_gfp;
4438
4439 /* Find an allowed local zone that meets the low watermark. */
4440 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4441 unsigned long mark;
4442
4443 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4444 !__cpuset_zone_allowed(zone, gfp)) {
4445 continue;
4446 }
4447
4448 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4449 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4450 goto failed;
4451 }
4452
4453 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4454 if (zone_watermark_fast(zone, 0, mark,
4455 zonelist_zone_idx(ac.preferred_zoneref),
4456 alloc_flags, gfp)) {
4457 break;
4458 }
4459 }
4460
4461 /*
4462 * If there are no allowed local zones that meets the watermarks then
4463 * try to allocate a single page and reclaim if necessary.
4464 */
4465 if (unlikely(!zone))
4466 goto failed;
4467
4468 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4469 pcp_trylock_prepare(UP_flags);
4470 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4471 if (!pcp)
4472 goto failed_irq;
4473
4474 /* Attempt the batch allocation */
4475 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4476 while (nr_populated < nr_pages) {
4477
4478 /* Skip existing pages */
4479 if (page_array && page_array[nr_populated]) {
4480 nr_populated++;
4481 continue;
4482 }
4483
4484 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4485 pcp, pcp_list);
4486 if (unlikely(!page)) {
4487 /* Try and allocate at least one page */
4488 if (!nr_account) {
4489 pcp_spin_unlock(pcp);
4490 goto failed_irq;
4491 }
4492 break;
4493 }
4494 nr_account++;
4495
4496 prep_new_page(page, 0, gfp, 0);
4497 if (page_list)
4498 list_add(&page->lru, page_list);
4499 else
4500 page_array[nr_populated] = page;
4501 nr_populated++;
4502 }
4503
4504 pcp_spin_unlock(pcp);
4505 pcp_trylock_finish(UP_flags);
4506
4507 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4508 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4509
4510 out:
4511 return nr_populated;
4512
4513 failed_irq:
4514 pcp_trylock_finish(UP_flags);
4515
4516 failed:
4517 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4518 if (page) {
4519 if (page_list)
4520 list_add(&page->lru, page_list);
4521 else
4522 page_array[nr_populated] = page;
4523 nr_populated++;
4524 }
4525
4526 goto out;
4527 }
4528 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4529
4530 /*
4531 * This is the 'heart' of the zoned buddy allocator.
4532 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4533 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4534 nodemask_t *nodemask)
4535 {
4536 struct page *page;
4537 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4538 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4539 struct alloc_context ac = { };
4540
4541 /*
4542 * There are several places where we assume that the order value is sane
4543 * so bail out early if the request is out of bound.
4544 */
4545 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4546 return NULL;
4547
4548 gfp &= gfp_allowed_mask;
4549 /*
4550 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4551 * resp. GFP_NOIO which has to be inherited for all allocation requests
4552 * from a particular context which has been marked by
4553 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4554 * movable zones are not used during allocation.
4555 */
4556 gfp = current_gfp_context(gfp);
4557 alloc_gfp = gfp;
4558 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4559 &alloc_gfp, &alloc_flags))
4560 return NULL;
4561
4562 /*
4563 * Forbid the first pass from falling back to types that fragment
4564 * memory until all local zones are considered.
4565 */
4566 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4567
4568 /* First allocation attempt */
4569 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4570 if (likely(page))
4571 goto out;
4572
4573 alloc_gfp = gfp;
4574 ac.spread_dirty_pages = false;
4575
4576 /*
4577 * Restore the original nodemask if it was potentially replaced with
4578 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4579 */
4580 ac.nodemask = nodemask;
4581
4582 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4583
4584 out:
4585 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4586 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4587 __free_pages(page, order);
4588 page = NULL;
4589 }
4590
4591 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4592 kmsan_alloc_page(page, order, alloc_gfp);
4593
4594 return page;
4595 }
4596 EXPORT_SYMBOL(__alloc_pages);
4597
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4598 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4599 nodemask_t *nodemask)
4600 {
4601 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4602 preferred_nid, nodemask);
4603 return page_rmappable_folio(page);
4604 }
4605 EXPORT_SYMBOL(__folio_alloc);
4606
4607 /*
4608 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4609 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4610 * you need to access high mem.
4611 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4612 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4613 {
4614 struct page *page;
4615
4616 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4617 if (!page)
4618 return 0;
4619 return (unsigned long) page_address(page);
4620 }
4621 EXPORT_SYMBOL(__get_free_pages);
4622
get_zeroed_page(gfp_t gfp_mask)4623 unsigned long get_zeroed_page(gfp_t gfp_mask)
4624 {
4625 return __get_free_page(gfp_mask | __GFP_ZERO);
4626 }
4627 EXPORT_SYMBOL(get_zeroed_page);
4628
4629 /**
4630 * __free_pages - Free pages allocated with alloc_pages().
4631 * @page: The page pointer returned from alloc_pages().
4632 * @order: The order of the allocation.
4633 *
4634 * This function can free multi-page allocations that are not compound
4635 * pages. It does not check that the @order passed in matches that of
4636 * the allocation, so it is easy to leak memory. Freeing more memory
4637 * than was allocated will probably emit a warning.
4638 *
4639 * If the last reference to this page is speculative, it will be released
4640 * by put_page() which only frees the first page of a non-compound
4641 * allocation. To prevent the remaining pages from being leaked, we free
4642 * the subsequent pages here. If you want to use the page's reference
4643 * count to decide when to free the allocation, you should allocate a
4644 * compound page, and use put_page() instead of __free_pages().
4645 *
4646 * Context: May be called in interrupt context or while holding a normal
4647 * spinlock, but not in NMI context or while holding a raw spinlock.
4648 */
__free_pages(struct page * page,unsigned int order)4649 void __free_pages(struct page *page, unsigned int order)
4650 {
4651 /* get PageHead before we drop reference */
4652 int head = PageHead(page);
4653
4654 if (put_page_testzero(page))
4655 free_the_page(page, order);
4656 else if (!head)
4657 while (order-- > 0)
4658 free_the_page(page + (1 << order), order);
4659 }
4660 EXPORT_SYMBOL(__free_pages);
4661
free_pages(unsigned long addr,unsigned int order)4662 void free_pages(unsigned long addr, unsigned int order)
4663 {
4664 if (addr != 0) {
4665 VM_BUG_ON(!virt_addr_valid((void *)addr));
4666 __free_pages(virt_to_page((void *)addr), order);
4667 }
4668 }
4669
4670 EXPORT_SYMBOL(free_pages);
4671
4672 /*
4673 * Page Fragment:
4674 * An arbitrary-length arbitrary-offset area of memory which resides
4675 * within a 0 or higher order page. Multiple fragments within that page
4676 * are individually refcounted, in the page's reference counter.
4677 *
4678 * The page_frag functions below provide a simple allocation framework for
4679 * page fragments. This is used by the network stack and network device
4680 * drivers to provide a backing region of memory for use as either an
4681 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4682 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4683 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4684 gfp_t gfp_mask)
4685 {
4686 struct page *page = NULL;
4687 gfp_t gfp = gfp_mask;
4688
4689 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4690 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4691 __GFP_NOMEMALLOC;
4692 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4693 PAGE_FRAG_CACHE_MAX_ORDER);
4694 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4695 #endif
4696 if (unlikely(!page))
4697 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4698
4699 nc->va = page ? page_address(page) : NULL;
4700
4701 return page;
4702 }
4703
__page_frag_cache_drain(struct page * page,unsigned int count)4704 void __page_frag_cache_drain(struct page *page, unsigned int count)
4705 {
4706 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4707
4708 if (page_ref_sub_and_test(page, count))
4709 free_the_page(page, compound_order(page));
4710 }
4711 EXPORT_SYMBOL(__page_frag_cache_drain);
4712
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4713 void *page_frag_alloc_align(struct page_frag_cache *nc,
4714 unsigned int fragsz, gfp_t gfp_mask,
4715 unsigned int align_mask)
4716 {
4717 unsigned int size = PAGE_SIZE;
4718 struct page *page;
4719 int offset;
4720
4721 if (unlikely(!nc->va)) {
4722 refill:
4723 page = __page_frag_cache_refill(nc, gfp_mask);
4724 if (!page)
4725 return NULL;
4726
4727 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4728 /* if size can vary use size else just use PAGE_SIZE */
4729 size = nc->size;
4730 #endif
4731 /* Even if we own the page, we do not use atomic_set().
4732 * This would break get_page_unless_zero() users.
4733 */
4734 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4735
4736 /* reset page count bias and offset to start of new frag */
4737 nc->pfmemalloc = page_is_pfmemalloc(page);
4738 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4739 nc->offset = size;
4740 }
4741
4742 offset = nc->offset - fragsz;
4743 if (unlikely(offset < 0)) {
4744 page = virt_to_page(nc->va);
4745
4746 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4747 goto refill;
4748
4749 if (unlikely(nc->pfmemalloc)) {
4750 free_the_page(page, compound_order(page));
4751 goto refill;
4752 }
4753
4754 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4755 /* if size can vary use size else just use PAGE_SIZE */
4756 size = nc->size;
4757 #endif
4758 /* OK, page count is 0, we can safely set it */
4759 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4760
4761 /* reset page count bias and offset to start of new frag */
4762 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4763 offset = size - fragsz;
4764 if (unlikely(offset < 0)) {
4765 /*
4766 * The caller is trying to allocate a fragment
4767 * with fragsz > PAGE_SIZE but the cache isn't big
4768 * enough to satisfy the request, this may
4769 * happen in low memory conditions.
4770 * We don't release the cache page because
4771 * it could make memory pressure worse
4772 * so we simply return NULL here.
4773 */
4774 return NULL;
4775 }
4776 }
4777
4778 nc->pagecnt_bias--;
4779 offset &= align_mask;
4780 nc->offset = offset;
4781
4782 return nc->va + offset;
4783 }
4784 EXPORT_SYMBOL(page_frag_alloc_align);
4785
4786 /*
4787 * Frees a page fragment allocated out of either a compound or order 0 page.
4788 */
page_frag_free(void * addr)4789 void page_frag_free(void *addr)
4790 {
4791 struct page *page = virt_to_head_page(addr);
4792
4793 if (unlikely(put_page_testzero(page)))
4794 free_the_page(page, compound_order(page));
4795 }
4796 EXPORT_SYMBOL(page_frag_free);
4797
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4798 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4799 size_t size)
4800 {
4801 if (addr) {
4802 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4803 struct page *page = virt_to_page((void *)addr);
4804 struct page *last = page + nr;
4805
4806 split_page_owner(page, 1 << order);
4807 split_page_memcg(page, 1 << order);
4808 while (page < --last)
4809 set_page_refcounted(last);
4810
4811 last = page + (1UL << order);
4812 for (page += nr; page < last; page++)
4813 __free_pages_ok(page, 0, FPI_TO_TAIL);
4814 }
4815 return (void *)addr;
4816 }
4817
4818 /**
4819 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4820 * @size: the number of bytes to allocate
4821 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4822 *
4823 * This function is similar to alloc_pages(), except that it allocates the
4824 * minimum number of pages to satisfy the request. alloc_pages() can only
4825 * allocate memory in power-of-two pages.
4826 *
4827 * This function is also limited by MAX_PAGE_ORDER.
4828 *
4829 * Memory allocated by this function must be released by free_pages_exact().
4830 *
4831 * Return: pointer to the allocated area or %NULL in case of error.
4832 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4833 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4834 {
4835 unsigned int order = get_order(size);
4836 unsigned long addr;
4837
4838 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4839 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4840
4841 addr = __get_free_pages(gfp_mask, order);
4842 return make_alloc_exact(addr, order, size);
4843 }
4844 EXPORT_SYMBOL(alloc_pages_exact);
4845
4846 /**
4847 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4848 * pages on a node.
4849 * @nid: the preferred node ID where memory should be allocated
4850 * @size: the number of bytes to allocate
4851 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4852 *
4853 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4854 * back.
4855 *
4856 * Return: pointer to the allocated area or %NULL in case of error.
4857 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4858 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4859 {
4860 unsigned int order = get_order(size);
4861 struct page *p;
4862
4863 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4864 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4865
4866 p = alloc_pages_node(nid, gfp_mask, order);
4867 if (!p)
4868 return NULL;
4869 return make_alloc_exact((unsigned long)page_address(p), order, size);
4870 }
4871
4872 /**
4873 * free_pages_exact - release memory allocated via alloc_pages_exact()
4874 * @virt: the value returned by alloc_pages_exact.
4875 * @size: size of allocation, same value as passed to alloc_pages_exact().
4876 *
4877 * Release the memory allocated by a previous call to alloc_pages_exact.
4878 */
free_pages_exact(void * virt,size_t size)4879 void free_pages_exact(void *virt, size_t size)
4880 {
4881 unsigned long addr = (unsigned long)virt;
4882 unsigned long end = addr + PAGE_ALIGN(size);
4883
4884 while (addr < end) {
4885 free_page(addr);
4886 addr += PAGE_SIZE;
4887 }
4888 }
4889 EXPORT_SYMBOL(free_pages_exact);
4890
4891 /**
4892 * nr_free_zone_pages - count number of pages beyond high watermark
4893 * @offset: The zone index of the highest zone
4894 *
4895 * nr_free_zone_pages() counts the number of pages which are beyond the
4896 * high watermark within all zones at or below a given zone index. For each
4897 * zone, the number of pages is calculated as:
4898 *
4899 * nr_free_zone_pages = managed_pages - high_pages
4900 *
4901 * Return: number of pages beyond high watermark.
4902 */
nr_free_zone_pages(int offset)4903 static unsigned long nr_free_zone_pages(int offset)
4904 {
4905 struct zoneref *z;
4906 struct zone *zone;
4907
4908 /* Just pick one node, since fallback list is circular */
4909 unsigned long sum = 0;
4910
4911 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4912
4913 for_each_zone_zonelist(zone, z, zonelist, offset) {
4914 unsigned long size = zone_managed_pages(zone);
4915 unsigned long high = high_wmark_pages(zone);
4916 if (size > high)
4917 sum += size - high;
4918 }
4919
4920 return sum;
4921 }
4922
4923 /**
4924 * nr_free_buffer_pages - count number of pages beyond high watermark
4925 *
4926 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4927 * watermark within ZONE_DMA and ZONE_NORMAL.
4928 *
4929 * Return: number of pages beyond high watermark within ZONE_DMA and
4930 * ZONE_NORMAL.
4931 */
nr_free_buffer_pages(void)4932 unsigned long nr_free_buffer_pages(void)
4933 {
4934 return nr_free_zone_pages(gfp_zone(GFP_USER));
4935 }
4936 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4937
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4938 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4939 {
4940 zoneref->zone = zone;
4941 zoneref->zone_idx = zone_idx(zone);
4942 }
4943
4944 /*
4945 * Builds allocation fallback zone lists.
4946 *
4947 * Add all populated zones of a node to the zonelist.
4948 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4949 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4950 {
4951 struct zone *zone;
4952 enum zone_type zone_type = MAX_NR_ZONES;
4953 int nr_zones = 0;
4954
4955 do {
4956 zone_type--;
4957 zone = pgdat->node_zones + zone_type;
4958 if (populated_zone(zone)) {
4959 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4960 check_highest_zone(zone_type);
4961 }
4962 } while (zone_type);
4963
4964 return nr_zones;
4965 }
4966
4967 #ifdef CONFIG_NUMA
4968
__parse_numa_zonelist_order(char * s)4969 static int __parse_numa_zonelist_order(char *s)
4970 {
4971 /*
4972 * We used to support different zonelists modes but they turned
4973 * out to be just not useful. Let's keep the warning in place
4974 * if somebody still use the cmd line parameter so that we do
4975 * not fail it silently
4976 */
4977 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4978 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4979 return -EINVAL;
4980 }
4981 return 0;
4982 }
4983
4984 static char numa_zonelist_order[] = "Node";
4985 #define NUMA_ZONELIST_ORDER_LEN 16
4986 /*
4987 * sysctl handler for numa_zonelist_order
4988 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4989 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4990 void *buffer, size_t *length, loff_t *ppos)
4991 {
4992 if (write)
4993 return __parse_numa_zonelist_order(buffer);
4994 return proc_dostring(table, write, buffer, length, ppos);
4995 }
4996
4997 static int node_load[MAX_NUMNODES];
4998
4999 /**
5000 * find_next_best_node - find the next node that should appear in a given node's fallback list
5001 * @node: node whose fallback list we're appending
5002 * @used_node_mask: nodemask_t of already used nodes
5003 *
5004 * We use a number of factors to determine which is the next node that should
5005 * appear on a given node's fallback list. The node should not have appeared
5006 * already in @node's fallback list, and it should be the next closest node
5007 * according to the distance array (which contains arbitrary distance values
5008 * from each node to each node in the system), and should also prefer nodes
5009 * with no CPUs, since presumably they'll have very little allocation pressure
5010 * on them otherwise.
5011 *
5012 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5013 */
find_next_best_node(int node,nodemask_t * used_node_mask)5014 int find_next_best_node(int node, nodemask_t *used_node_mask)
5015 {
5016 int n, val;
5017 int min_val = INT_MAX;
5018 int best_node = NUMA_NO_NODE;
5019
5020 /*
5021 * Use the local node if we haven't already, but for memoryless local
5022 * node, we should skip it and fall back to other nodes.
5023 */
5024 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5025 node_set(node, *used_node_mask);
5026 return node;
5027 }
5028
5029 for_each_node_state(n, N_MEMORY) {
5030
5031 /* Don't want a node to appear more than once */
5032 if (node_isset(n, *used_node_mask))
5033 continue;
5034
5035 /* Use the distance array to find the distance */
5036 val = node_distance(node, n);
5037
5038 /* Penalize nodes under us ("prefer the next node") */
5039 val += (n < node);
5040
5041 /* Give preference to headless and unused nodes */
5042 if (!cpumask_empty(cpumask_of_node(n)))
5043 val += PENALTY_FOR_NODE_WITH_CPUS;
5044
5045 /* Slight preference for less loaded node */
5046 val *= MAX_NUMNODES;
5047 val += node_load[n];
5048
5049 if (val < min_val) {
5050 min_val = val;
5051 best_node = n;
5052 }
5053 }
5054
5055 if (best_node >= 0)
5056 node_set(best_node, *used_node_mask);
5057
5058 return best_node;
5059 }
5060
5061
5062 /*
5063 * Build zonelists ordered by node and zones within node.
5064 * This results in maximum locality--normal zone overflows into local
5065 * DMA zone, if any--but risks exhausting DMA zone.
5066 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5067 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5068 unsigned nr_nodes)
5069 {
5070 struct zoneref *zonerefs;
5071 int i;
5072
5073 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5074
5075 for (i = 0; i < nr_nodes; i++) {
5076 int nr_zones;
5077
5078 pg_data_t *node = NODE_DATA(node_order[i]);
5079
5080 nr_zones = build_zonerefs_node(node, zonerefs);
5081 zonerefs += nr_zones;
5082 }
5083 zonerefs->zone = NULL;
5084 zonerefs->zone_idx = 0;
5085 }
5086
5087 /*
5088 * Build gfp_thisnode zonelists
5089 */
build_thisnode_zonelists(pg_data_t * pgdat)5090 static void build_thisnode_zonelists(pg_data_t *pgdat)
5091 {
5092 struct zoneref *zonerefs;
5093 int nr_zones;
5094
5095 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5096 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5097 zonerefs += nr_zones;
5098 zonerefs->zone = NULL;
5099 zonerefs->zone_idx = 0;
5100 }
5101
5102 /*
5103 * Build zonelists ordered by zone and nodes within zones.
5104 * This results in conserving DMA zone[s] until all Normal memory is
5105 * exhausted, but results in overflowing to remote node while memory
5106 * may still exist in local DMA zone.
5107 */
5108
build_zonelists(pg_data_t * pgdat)5109 static void build_zonelists(pg_data_t *pgdat)
5110 {
5111 static int node_order[MAX_NUMNODES];
5112 int node, nr_nodes = 0;
5113 nodemask_t used_mask = NODE_MASK_NONE;
5114 int local_node, prev_node;
5115
5116 /* NUMA-aware ordering of nodes */
5117 local_node = pgdat->node_id;
5118 prev_node = local_node;
5119
5120 memset(node_order, 0, sizeof(node_order));
5121 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5122 /*
5123 * We don't want to pressure a particular node.
5124 * So adding penalty to the first node in same
5125 * distance group to make it round-robin.
5126 */
5127 if (node_distance(local_node, node) !=
5128 node_distance(local_node, prev_node))
5129 node_load[node] += 1;
5130
5131 node_order[nr_nodes++] = node;
5132 prev_node = node;
5133 }
5134
5135 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5136 build_thisnode_zonelists(pgdat);
5137 pr_info("Fallback order for Node %d: ", local_node);
5138 for (node = 0; node < nr_nodes; node++)
5139 pr_cont("%d ", node_order[node]);
5140 pr_cont("\n");
5141 }
5142
5143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5144 /*
5145 * Return node id of node used for "local" allocations.
5146 * I.e., first node id of first zone in arg node's generic zonelist.
5147 * Used for initializing percpu 'numa_mem', which is used primarily
5148 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5149 */
local_memory_node(int node)5150 int local_memory_node(int node)
5151 {
5152 struct zoneref *z;
5153
5154 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5155 gfp_zone(GFP_KERNEL),
5156 NULL);
5157 return zone_to_nid(z->zone);
5158 }
5159 #endif
5160
5161 static void setup_min_unmapped_ratio(void);
5162 static void setup_min_slab_ratio(void);
5163 #else /* CONFIG_NUMA */
5164
build_zonelists(pg_data_t * pgdat)5165 static void build_zonelists(pg_data_t *pgdat)
5166 {
5167 int node, local_node;
5168 struct zoneref *zonerefs;
5169 int nr_zones;
5170
5171 local_node = pgdat->node_id;
5172
5173 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5174 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5175 zonerefs += nr_zones;
5176
5177 /*
5178 * Now we build the zonelist so that it contains the zones
5179 * of all the other nodes.
5180 * We don't want to pressure a particular node, so when
5181 * building the zones for node N, we make sure that the
5182 * zones coming right after the local ones are those from
5183 * node N+1 (modulo N)
5184 */
5185 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5186 if (!node_online(node))
5187 continue;
5188 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5189 zonerefs += nr_zones;
5190 }
5191 for (node = 0; node < local_node; node++) {
5192 if (!node_online(node))
5193 continue;
5194 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5195 zonerefs += nr_zones;
5196 }
5197
5198 zonerefs->zone = NULL;
5199 zonerefs->zone_idx = 0;
5200 }
5201
5202 #endif /* CONFIG_NUMA */
5203
5204 /*
5205 * Boot pageset table. One per cpu which is going to be used for all
5206 * zones and all nodes. The parameters will be set in such a way
5207 * that an item put on a list will immediately be handed over to
5208 * the buddy list. This is safe since pageset manipulation is done
5209 * with interrupts disabled.
5210 *
5211 * The boot_pagesets must be kept even after bootup is complete for
5212 * unused processors and/or zones. They do play a role for bootstrapping
5213 * hotplugged processors.
5214 *
5215 * zoneinfo_show() and maybe other functions do
5216 * not check if the processor is online before following the pageset pointer.
5217 * Other parts of the kernel may not check if the zone is available.
5218 */
5219 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5220 /* These effectively disable the pcplists in the boot pageset completely */
5221 #define BOOT_PAGESET_HIGH 0
5222 #define BOOT_PAGESET_BATCH 1
5223 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5224 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5225
__build_all_zonelists(void * data)5226 static void __build_all_zonelists(void *data)
5227 {
5228 int nid;
5229 int __maybe_unused cpu;
5230 pg_data_t *self = data;
5231 unsigned long flags;
5232
5233 /*
5234 * The zonelist_update_seq must be acquired with irqsave because the
5235 * reader can be invoked from IRQ with GFP_ATOMIC.
5236 */
5237 write_seqlock_irqsave(&zonelist_update_seq, flags);
5238 /*
5239 * Also disable synchronous printk() to prevent any printk() from
5240 * trying to hold port->lock, for
5241 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5242 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5243 */
5244 printk_deferred_enter();
5245
5246 #ifdef CONFIG_NUMA
5247 memset(node_load, 0, sizeof(node_load));
5248 #endif
5249
5250 /*
5251 * This node is hotadded and no memory is yet present. So just
5252 * building zonelists is fine - no need to touch other nodes.
5253 */
5254 if (self && !node_online(self->node_id)) {
5255 build_zonelists(self);
5256 } else {
5257 /*
5258 * All possible nodes have pgdat preallocated
5259 * in free_area_init
5260 */
5261 for_each_node(nid) {
5262 pg_data_t *pgdat = NODE_DATA(nid);
5263
5264 build_zonelists(pgdat);
5265 }
5266
5267 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268 /*
5269 * We now know the "local memory node" for each node--
5270 * i.e., the node of the first zone in the generic zonelist.
5271 * Set up numa_mem percpu variable for on-line cpus. During
5272 * boot, only the boot cpu should be on-line; we'll init the
5273 * secondary cpus' numa_mem as they come on-line. During
5274 * node/memory hotplug, we'll fixup all on-line cpus.
5275 */
5276 for_each_online_cpu(cpu)
5277 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5278 #endif
5279 }
5280
5281 printk_deferred_exit();
5282 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5283 }
5284
5285 static noinline void __init
build_all_zonelists_init(void)5286 build_all_zonelists_init(void)
5287 {
5288 int cpu;
5289
5290 __build_all_zonelists(NULL);
5291
5292 /*
5293 * Initialize the boot_pagesets that are going to be used
5294 * for bootstrapping processors. The real pagesets for
5295 * each zone will be allocated later when the per cpu
5296 * allocator is available.
5297 *
5298 * boot_pagesets are used also for bootstrapping offline
5299 * cpus if the system is already booted because the pagesets
5300 * are needed to initialize allocators on a specific cpu too.
5301 * F.e. the percpu allocator needs the page allocator which
5302 * needs the percpu allocator in order to allocate its pagesets
5303 * (a chicken-egg dilemma).
5304 */
5305 for_each_possible_cpu(cpu)
5306 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5307
5308 mminit_verify_zonelist();
5309 cpuset_init_current_mems_allowed();
5310 }
5311
5312 /*
5313 * unless system_state == SYSTEM_BOOTING.
5314 *
5315 * __ref due to call of __init annotated helper build_all_zonelists_init
5316 * [protected by SYSTEM_BOOTING].
5317 */
build_all_zonelists(pg_data_t * pgdat)5318 void __ref build_all_zonelists(pg_data_t *pgdat)
5319 {
5320 unsigned long vm_total_pages;
5321
5322 if (system_state == SYSTEM_BOOTING) {
5323 build_all_zonelists_init();
5324 } else {
5325 __build_all_zonelists(pgdat);
5326 /* cpuset refresh routine should be here */
5327 }
5328 /* Get the number of free pages beyond high watermark in all zones. */
5329 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5330 /*
5331 * Disable grouping by mobility if the number of pages in the
5332 * system is too low to allow the mechanism to work. It would be
5333 * more accurate, but expensive to check per-zone. This check is
5334 * made on memory-hotadd so a system can start with mobility
5335 * disabled and enable it later
5336 */
5337 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5338 page_group_by_mobility_disabled = 1;
5339 else
5340 page_group_by_mobility_disabled = 0;
5341
5342 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5343 nr_online_nodes,
5344 page_group_by_mobility_disabled ? "off" : "on",
5345 vm_total_pages);
5346 #ifdef CONFIG_NUMA
5347 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5348 #endif
5349 }
5350
zone_batchsize(struct zone * zone)5351 static int zone_batchsize(struct zone *zone)
5352 {
5353 #ifdef CONFIG_MMU
5354 int batch;
5355
5356 /*
5357 * The number of pages to batch allocate is either ~0.1%
5358 * of the zone or 1MB, whichever is smaller. The batch
5359 * size is striking a balance between allocation latency
5360 * and zone lock contention.
5361 */
5362 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5363 batch /= 4; /* We effectively *= 4 below */
5364 if (batch < 1)
5365 batch = 1;
5366
5367 /*
5368 * Clamp the batch to a 2^n - 1 value. Having a power
5369 * of 2 value was found to be more likely to have
5370 * suboptimal cache aliasing properties in some cases.
5371 *
5372 * For example if 2 tasks are alternately allocating
5373 * batches of pages, one task can end up with a lot
5374 * of pages of one half of the possible page colors
5375 * and the other with pages of the other colors.
5376 */
5377 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5378
5379 return batch;
5380
5381 #else
5382 /* The deferral and batching of frees should be suppressed under NOMMU
5383 * conditions.
5384 *
5385 * The problem is that NOMMU needs to be able to allocate large chunks
5386 * of contiguous memory as there's no hardware page translation to
5387 * assemble apparent contiguous memory from discontiguous pages.
5388 *
5389 * Queueing large contiguous runs of pages for batching, however,
5390 * causes the pages to actually be freed in smaller chunks. As there
5391 * can be a significant delay between the individual batches being
5392 * recycled, this leads to the once large chunks of space being
5393 * fragmented and becoming unavailable for high-order allocations.
5394 */
5395 return 0;
5396 #endif
5397 }
5398
5399 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5400 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5401 int high_fraction)
5402 {
5403 #ifdef CONFIG_MMU
5404 int high;
5405 int nr_split_cpus;
5406 unsigned long total_pages;
5407
5408 if (!high_fraction) {
5409 /*
5410 * By default, the high value of the pcp is based on the zone
5411 * low watermark so that if they are full then background
5412 * reclaim will not be started prematurely.
5413 */
5414 total_pages = low_wmark_pages(zone);
5415 } else {
5416 /*
5417 * If percpu_pagelist_high_fraction is configured, the high
5418 * value is based on a fraction of the managed pages in the
5419 * zone.
5420 */
5421 total_pages = zone_managed_pages(zone) / high_fraction;
5422 }
5423
5424 /*
5425 * Split the high value across all online CPUs local to the zone. Note
5426 * that early in boot that CPUs may not be online yet and that during
5427 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5428 * onlined. For memory nodes that have no CPUs, split the high value
5429 * across all online CPUs to mitigate the risk that reclaim is triggered
5430 * prematurely due to pages stored on pcp lists.
5431 */
5432 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5433 if (!nr_split_cpus)
5434 nr_split_cpus = num_online_cpus();
5435 high = total_pages / nr_split_cpus;
5436
5437 /*
5438 * Ensure high is at least batch*4. The multiple is based on the
5439 * historical relationship between high and batch.
5440 */
5441 high = max(high, batch << 2);
5442
5443 return high;
5444 #else
5445 return 0;
5446 #endif
5447 }
5448
5449 /*
5450 * pcp->high and pcp->batch values are related and generally batch is lower
5451 * than high. They are also related to pcp->count such that count is lower
5452 * than high, and as soon as it reaches high, the pcplist is flushed.
5453 *
5454 * However, guaranteeing these relations at all times would require e.g. write
5455 * barriers here but also careful usage of read barriers at the read side, and
5456 * thus be prone to error and bad for performance. Thus the update only prevents
5457 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5458 * should ensure they can cope with those fields changing asynchronously, and
5459 * fully trust only the pcp->count field on the local CPU with interrupts
5460 * disabled.
5461 *
5462 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5463 * outside of boot time (or some other assurance that no concurrent updaters
5464 * exist).
5465 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5466 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5467 unsigned long high_max, unsigned long batch)
5468 {
5469 WRITE_ONCE(pcp->batch, batch);
5470 WRITE_ONCE(pcp->high_min, high_min);
5471 WRITE_ONCE(pcp->high_max, high_max);
5472 }
5473
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5474 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5475 {
5476 int pindex;
5477
5478 memset(pcp, 0, sizeof(*pcp));
5479 memset(pzstats, 0, sizeof(*pzstats));
5480
5481 spin_lock_init(&pcp->lock);
5482 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5483 INIT_LIST_HEAD(&pcp->lists[pindex]);
5484
5485 /*
5486 * Set batch and high values safe for a boot pageset. A true percpu
5487 * pageset's initialization will update them subsequently. Here we don't
5488 * need to be as careful as pageset_update() as nobody can access the
5489 * pageset yet.
5490 */
5491 pcp->high_min = BOOT_PAGESET_HIGH;
5492 pcp->high_max = BOOT_PAGESET_HIGH;
5493 pcp->batch = BOOT_PAGESET_BATCH;
5494 pcp->free_count = 0;
5495 }
5496
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5497 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5498 unsigned long high_max, unsigned long batch)
5499 {
5500 struct per_cpu_pages *pcp;
5501 int cpu;
5502
5503 for_each_possible_cpu(cpu) {
5504 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5505 pageset_update(pcp, high_min, high_max, batch);
5506 }
5507 }
5508
5509 /*
5510 * Calculate and set new high and batch values for all per-cpu pagesets of a
5511 * zone based on the zone's size.
5512 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5513 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5514 {
5515 int new_high_min, new_high_max, new_batch;
5516
5517 new_batch = max(1, zone_batchsize(zone));
5518 if (percpu_pagelist_high_fraction) {
5519 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5520 percpu_pagelist_high_fraction);
5521 /*
5522 * PCP high is tuned manually, disable auto-tuning via
5523 * setting high_min and high_max to the manual value.
5524 */
5525 new_high_max = new_high_min;
5526 } else {
5527 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5528 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5529 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5530 }
5531
5532 if (zone->pageset_high_min == new_high_min &&
5533 zone->pageset_high_max == new_high_max &&
5534 zone->pageset_batch == new_batch)
5535 return;
5536
5537 zone->pageset_high_min = new_high_min;
5538 zone->pageset_high_max = new_high_max;
5539 zone->pageset_batch = new_batch;
5540
5541 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5542 new_batch);
5543 }
5544
setup_zone_pageset(struct zone * zone)5545 void __meminit setup_zone_pageset(struct zone *zone)
5546 {
5547 int cpu;
5548
5549 /* Size may be 0 on !SMP && !NUMA */
5550 if (sizeof(struct per_cpu_zonestat) > 0)
5551 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5552
5553 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5554 for_each_possible_cpu(cpu) {
5555 struct per_cpu_pages *pcp;
5556 struct per_cpu_zonestat *pzstats;
5557
5558 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5559 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5560 per_cpu_pages_init(pcp, pzstats);
5561 }
5562
5563 zone_set_pageset_high_and_batch(zone, 0);
5564 }
5565
5566 /*
5567 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5568 * page high values need to be recalculated.
5569 */
zone_pcp_update(struct zone * zone,int cpu_online)5570 static void zone_pcp_update(struct zone *zone, int cpu_online)
5571 {
5572 mutex_lock(&pcp_batch_high_lock);
5573 zone_set_pageset_high_and_batch(zone, cpu_online);
5574 mutex_unlock(&pcp_batch_high_lock);
5575 }
5576
zone_pcp_update_cacheinfo(struct zone * zone)5577 static void zone_pcp_update_cacheinfo(struct zone *zone)
5578 {
5579 int cpu;
5580 struct per_cpu_pages *pcp;
5581 struct cpu_cacheinfo *cci;
5582
5583 for_each_online_cpu(cpu) {
5584 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5585 cci = get_cpu_cacheinfo(cpu);
5586 /*
5587 * If data cache slice of CPU is large enough, "pcp->batch"
5588 * pages can be preserved in PCP before draining PCP for
5589 * consecutive high-order pages freeing without allocation.
5590 * This can reduce zone lock contention without hurting
5591 * cache-hot pages sharing.
5592 */
5593 spin_lock(&pcp->lock);
5594 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5595 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5596 else
5597 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5598 spin_unlock(&pcp->lock);
5599 }
5600 }
5601
setup_pcp_cacheinfo(void)5602 void setup_pcp_cacheinfo(void)
5603 {
5604 struct zone *zone;
5605
5606 for_each_populated_zone(zone)
5607 zone_pcp_update_cacheinfo(zone);
5608 }
5609
5610 /*
5611 * Allocate per cpu pagesets and initialize them.
5612 * Before this call only boot pagesets were available.
5613 */
setup_per_cpu_pageset(void)5614 void __init setup_per_cpu_pageset(void)
5615 {
5616 struct pglist_data *pgdat;
5617 struct zone *zone;
5618 int __maybe_unused cpu;
5619
5620 for_each_populated_zone(zone)
5621 setup_zone_pageset(zone);
5622
5623 #ifdef CONFIG_NUMA
5624 /*
5625 * Unpopulated zones continue using the boot pagesets.
5626 * The numa stats for these pagesets need to be reset.
5627 * Otherwise, they will end up skewing the stats of
5628 * the nodes these zones are associated with.
5629 */
5630 for_each_possible_cpu(cpu) {
5631 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5632 memset(pzstats->vm_numa_event, 0,
5633 sizeof(pzstats->vm_numa_event));
5634 }
5635 #endif
5636
5637 for_each_online_pgdat(pgdat)
5638 pgdat->per_cpu_nodestats =
5639 alloc_percpu(struct per_cpu_nodestat);
5640 }
5641
zone_pcp_init(struct zone * zone)5642 __meminit void zone_pcp_init(struct zone *zone)
5643 {
5644 /*
5645 * per cpu subsystem is not up at this point. The following code
5646 * relies on the ability of the linker to provide the
5647 * offset of a (static) per cpu variable into the per cpu area.
5648 */
5649 zone->per_cpu_pageset = &boot_pageset;
5650 zone->per_cpu_zonestats = &boot_zonestats;
5651 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5652 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5653 zone->pageset_batch = BOOT_PAGESET_BATCH;
5654
5655 if (populated_zone(zone))
5656 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5657 zone->present_pages, zone_batchsize(zone));
5658 }
5659
adjust_managed_page_count(struct page * page,long count)5660 void adjust_managed_page_count(struct page *page, long count)
5661 {
5662 atomic_long_add(count, &page_zone(page)->managed_pages);
5663 totalram_pages_add(count);
5664 #ifdef CONFIG_HIGHMEM
5665 if (PageHighMem(page))
5666 totalhigh_pages_add(count);
5667 #endif
5668 }
5669 EXPORT_SYMBOL(adjust_managed_page_count);
5670
free_reserved_area(void * start,void * end,int poison,const char * s)5671 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5672 {
5673 void *pos;
5674 unsigned long pages = 0;
5675
5676 start = (void *)PAGE_ALIGN((unsigned long)start);
5677 end = (void *)((unsigned long)end & PAGE_MASK);
5678 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5679 struct page *page = virt_to_page(pos);
5680 void *direct_map_addr;
5681
5682 /*
5683 * 'direct_map_addr' might be different from 'pos'
5684 * because some architectures' virt_to_page()
5685 * work with aliases. Getting the direct map
5686 * address ensures that we get a _writeable_
5687 * alias for the memset().
5688 */
5689 direct_map_addr = page_address(page);
5690 /*
5691 * Perform a kasan-unchecked memset() since this memory
5692 * has not been initialized.
5693 */
5694 direct_map_addr = kasan_reset_tag(direct_map_addr);
5695 if ((unsigned int)poison <= 0xFF)
5696 memset(direct_map_addr, poison, PAGE_SIZE);
5697
5698 free_reserved_page(page);
5699 }
5700
5701 if (pages && s)
5702 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5703
5704 return pages;
5705 }
5706
page_alloc_cpu_dead(unsigned int cpu)5707 static int page_alloc_cpu_dead(unsigned int cpu)
5708 {
5709 struct zone *zone;
5710
5711 lru_add_drain_cpu(cpu);
5712 mlock_drain_remote(cpu);
5713 drain_pages(cpu);
5714
5715 /*
5716 * Spill the event counters of the dead processor
5717 * into the current processors event counters.
5718 * This artificially elevates the count of the current
5719 * processor.
5720 */
5721 vm_events_fold_cpu(cpu);
5722
5723 /*
5724 * Zero the differential counters of the dead processor
5725 * so that the vm statistics are consistent.
5726 *
5727 * This is only okay since the processor is dead and cannot
5728 * race with what we are doing.
5729 */
5730 cpu_vm_stats_fold(cpu);
5731
5732 for_each_populated_zone(zone)
5733 zone_pcp_update(zone, 0);
5734
5735 return 0;
5736 }
5737
page_alloc_cpu_online(unsigned int cpu)5738 static int page_alloc_cpu_online(unsigned int cpu)
5739 {
5740 struct zone *zone;
5741
5742 for_each_populated_zone(zone)
5743 zone_pcp_update(zone, 1);
5744 return 0;
5745 }
5746
page_alloc_init_cpuhp(void)5747 void __init page_alloc_init_cpuhp(void)
5748 {
5749 int ret;
5750
5751 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5752 "mm/page_alloc:pcp",
5753 page_alloc_cpu_online,
5754 page_alloc_cpu_dead);
5755 WARN_ON(ret < 0);
5756 }
5757
5758 /*
5759 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5760 * or min_free_kbytes changes.
5761 */
calculate_totalreserve_pages(void)5762 static void calculate_totalreserve_pages(void)
5763 {
5764 struct pglist_data *pgdat;
5765 unsigned long reserve_pages = 0;
5766 enum zone_type i, j;
5767
5768 for_each_online_pgdat(pgdat) {
5769
5770 pgdat->totalreserve_pages = 0;
5771
5772 for (i = 0; i < MAX_NR_ZONES; i++) {
5773 struct zone *zone = pgdat->node_zones + i;
5774 long max = 0;
5775 unsigned long managed_pages = zone_managed_pages(zone);
5776
5777 /* Find valid and maximum lowmem_reserve in the zone */
5778 for (j = i; j < MAX_NR_ZONES; j++) {
5779 if (zone->lowmem_reserve[j] > max)
5780 max = zone->lowmem_reserve[j];
5781 }
5782
5783 /* we treat the high watermark as reserved pages. */
5784 max += high_wmark_pages(zone);
5785
5786 if (max > managed_pages)
5787 max = managed_pages;
5788
5789 pgdat->totalreserve_pages += max;
5790
5791 reserve_pages += max;
5792 }
5793 }
5794 totalreserve_pages = reserve_pages;
5795 }
5796
5797 /*
5798 * setup_per_zone_lowmem_reserve - called whenever
5799 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5800 * has a correct pages reserved value, so an adequate number of
5801 * pages are left in the zone after a successful __alloc_pages().
5802 */
setup_per_zone_lowmem_reserve(void)5803 static void setup_per_zone_lowmem_reserve(void)
5804 {
5805 struct pglist_data *pgdat;
5806 enum zone_type i, j;
5807
5808 for_each_online_pgdat(pgdat) {
5809 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5810 struct zone *zone = &pgdat->node_zones[i];
5811 int ratio = sysctl_lowmem_reserve_ratio[i];
5812 bool clear = !ratio || !zone_managed_pages(zone);
5813 unsigned long managed_pages = 0;
5814
5815 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5816 struct zone *upper_zone = &pgdat->node_zones[j];
5817
5818 managed_pages += zone_managed_pages(upper_zone);
5819
5820 if (clear)
5821 zone->lowmem_reserve[j] = 0;
5822 else
5823 zone->lowmem_reserve[j] = managed_pages / ratio;
5824 }
5825 }
5826 }
5827
5828 /* update totalreserve_pages */
5829 calculate_totalreserve_pages();
5830 }
5831
__setup_per_zone_wmarks(void)5832 static void __setup_per_zone_wmarks(void)
5833 {
5834 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5835 unsigned long lowmem_pages = 0;
5836 struct zone *zone;
5837 unsigned long flags;
5838
5839 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5840 for_each_zone(zone) {
5841 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5842 lowmem_pages += zone_managed_pages(zone);
5843 }
5844
5845 for_each_zone(zone) {
5846 u64 tmp;
5847
5848 spin_lock_irqsave(&zone->lock, flags);
5849 tmp = (u64)pages_min * zone_managed_pages(zone);
5850 do_div(tmp, lowmem_pages);
5851 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5852 /*
5853 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5854 * need highmem and movable zones pages, so cap pages_min
5855 * to a small value here.
5856 *
5857 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5858 * deltas control async page reclaim, and so should
5859 * not be capped for highmem and movable zones.
5860 */
5861 unsigned long min_pages;
5862
5863 min_pages = zone_managed_pages(zone) / 1024;
5864 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5865 zone->_watermark[WMARK_MIN] = min_pages;
5866 } else {
5867 /*
5868 * If it's a lowmem zone, reserve a number of pages
5869 * proportionate to the zone's size.
5870 */
5871 zone->_watermark[WMARK_MIN] = tmp;
5872 }
5873
5874 /*
5875 * Set the kswapd watermarks distance according to the
5876 * scale factor in proportion to available memory, but
5877 * ensure a minimum size on small systems.
5878 */
5879 tmp = max_t(u64, tmp >> 2,
5880 mult_frac(zone_managed_pages(zone),
5881 watermark_scale_factor, 10000));
5882
5883 zone->watermark_boost = 0;
5884 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5885 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5886 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5887
5888 spin_unlock_irqrestore(&zone->lock, flags);
5889 }
5890
5891 /* update totalreserve_pages */
5892 calculate_totalreserve_pages();
5893 }
5894
5895 /**
5896 * setup_per_zone_wmarks - called when min_free_kbytes changes
5897 * or when memory is hot-{added|removed}
5898 *
5899 * Ensures that the watermark[min,low,high] values for each zone are set
5900 * correctly with respect to min_free_kbytes.
5901 */
setup_per_zone_wmarks(void)5902 void setup_per_zone_wmarks(void)
5903 {
5904 struct zone *zone;
5905 static DEFINE_SPINLOCK(lock);
5906
5907 spin_lock(&lock);
5908 __setup_per_zone_wmarks();
5909 spin_unlock(&lock);
5910
5911 /*
5912 * The watermark size have changed so update the pcpu batch
5913 * and high limits or the limits may be inappropriate.
5914 */
5915 for_each_zone(zone)
5916 zone_pcp_update(zone, 0);
5917 }
5918
5919 /*
5920 * Initialise min_free_kbytes.
5921 *
5922 * For small machines we want it small (128k min). For large machines
5923 * we want it large (256MB max). But it is not linear, because network
5924 * bandwidth does not increase linearly with machine size. We use
5925 *
5926 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5927 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5928 *
5929 * which yields
5930 *
5931 * 16MB: 512k
5932 * 32MB: 724k
5933 * 64MB: 1024k
5934 * 128MB: 1448k
5935 * 256MB: 2048k
5936 * 512MB: 2896k
5937 * 1024MB: 4096k
5938 * 2048MB: 5792k
5939 * 4096MB: 8192k
5940 * 8192MB: 11584k
5941 * 16384MB: 16384k
5942 */
calculate_min_free_kbytes(void)5943 void calculate_min_free_kbytes(void)
5944 {
5945 unsigned long lowmem_kbytes;
5946 int new_min_free_kbytes;
5947
5948 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5949 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5950
5951 if (new_min_free_kbytes > user_min_free_kbytes)
5952 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5953 else
5954 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5955 new_min_free_kbytes, user_min_free_kbytes);
5956
5957 }
5958
init_per_zone_wmark_min(void)5959 int __meminit init_per_zone_wmark_min(void)
5960 {
5961 calculate_min_free_kbytes();
5962 setup_per_zone_wmarks();
5963 refresh_zone_stat_thresholds();
5964 setup_per_zone_lowmem_reserve();
5965
5966 #ifdef CONFIG_NUMA
5967 setup_min_unmapped_ratio();
5968 setup_min_slab_ratio();
5969 #endif
5970
5971 khugepaged_min_free_kbytes_update();
5972
5973 return 0;
5974 }
postcore_initcall(init_per_zone_wmark_min)5975 postcore_initcall(init_per_zone_wmark_min)
5976
5977 /*
5978 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5979 * that we can call two helper functions whenever min_free_kbytes
5980 * changes.
5981 */
5982 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5983 void *buffer, size_t *length, loff_t *ppos)
5984 {
5985 int rc;
5986
5987 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5988 if (rc)
5989 return rc;
5990
5991 if (write) {
5992 user_min_free_kbytes = min_free_kbytes;
5993 setup_per_zone_wmarks();
5994 }
5995 return 0;
5996 }
5997
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5998 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5999 void *buffer, size_t *length, loff_t *ppos)
6000 {
6001 int rc;
6002
6003 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6004 if (rc)
6005 return rc;
6006
6007 if (write)
6008 setup_per_zone_wmarks();
6009
6010 return 0;
6011 }
6012
6013 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6014 static void setup_min_unmapped_ratio(void)
6015 {
6016 pg_data_t *pgdat;
6017 struct zone *zone;
6018
6019 for_each_online_pgdat(pgdat)
6020 pgdat->min_unmapped_pages = 0;
6021
6022 for_each_zone(zone)
6023 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6024 sysctl_min_unmapped_ratio) / 100;
6025 }
6026
6027
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6028 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6029 void *buffer, size_t *length, loff_t *ppos)
6030 {
6031 int rc;
6032
6033 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6034 if (rc)
6035 return rc;
6036
6037 setup_min_unmapped_ratio();
6038
6039 return 0;
6040 }
6041
setup_min_slab_ratio(void)6042 static void setup_min_slab_ratio(void)
6043 {
6044 pg_data_t *pgdat;
6045 struct zone *zone;
6046
6047 for_each_online_pgdat(pgdat)
6048 pgdat->min_slab_pages = 0;
6049
6050 for_each_zone(zone)
6051 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6052 sysctl_min_slab_ratio) / 100;
6053 }
6054
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6055 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6056 void *buffer, size_t *length, loff_t *ppos)
6057 {
6058 int rc;
6059
6060 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6061 if (rc)
6062 return rc;
6063
6064 setup_min_slab_ratio();
6065
6066 return 0;
6067 }
6068 #endif
6069
6070 /*
6071 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6072 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6073 * whenever sysctl_lowmem_reserve_ratio changes.
6074 *
6075 * The reserve ratio obviously has absolutely no relation with the
6076 * minimum watermarks. The lowmem reserve ratio can only make sense
6077 * if in function of the boot time zone sizes.
6078 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6079 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6080 int write, void *buffer, size_t *length, loff_t *ppos)
6081 {
6082 int i;
6083
6084 proc_dointvec_minmax(table, write, buffer, length, ppos);
6085
6086 for (i = 0; i < MAX_NR_ZONES; i++) {
6087 if (sysctl_lowmem_reserve_ratio[i] < 1)
6088 sysctl_lowmem_reserve_ratio[i] = 0;
6089 }
6090
6091 setup_per_zone_lowmem_reserve();
6092 return 0;
6093 }
6094
6095 /*
6096 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6097 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6098 * pagelist can have before it gets flushed back to buddy allocator.
6099 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6100 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6101 int write, void *buffer, size_t *length, loff_t *ppos)
6102 {
6103 struct zone *zone;
6104 int old_percpu_pagelist_high_fraction;
6105 int ret;
6106
6107 mutex_lock(&pcp_batch_high_lock);
6108 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6109
6110 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6111 if (!write || ret < 0)
6112 goto out;
6113
6114 /* Sanity checking to avoid pcp imbalance */
6115 if (percpu_pagelist_high_fraction &&
6116 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6117 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6118 ret = -EINVAL;
6119 goto out;
6120 }
6121
6122 /* No change? */
6123 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6124 goto out;
6125
6126 for_each_populated_zone(zone)
6127 zone_set_pageset_high_and_batch(zone, 0);
6128 out:
6129 mutex_unlock(&pcp_batch_high_lock);
6130 return ret;
6131 }
6132
6133 static struct ctl_table page_alloc_sysctl_table[] = {
6134 {
6135 .procname = "min_free_kbytes",
6136 .data = &min_free_kbytes,
6137 .maxlen = sizeof(min_free_kbytes),
6138 .mode = 0644,
6139 .proc_handler = min_free_kbytes_sysctl_handler,
6140 .extra1 = SYSCTL_ZERO,
6141 },
6142 {
6143 .procname = "watermark_boost_factor",
6144 .data = &watermark_boost_factor,
6145 .maxlen = sizeof(watermark_boost_factor),
6146 .mode = 0644,
6147 .proc_handler = proc_dointvec_minmax,
6148 .extra1 = SYSCTL_ZERO,
6149 },
6150 {
6151 .procname = "watermark_scale_factor",
6152 .data = &watermark_scale_factor,
6153 .maxlen = sizeof(watermark_scale_factor),
6154 .mode = 0644,
6155 .proc_handler = watermark_scale_factor_sysctl_handler,
6156 .extra1 = SYSCTL_ONE,
6157 .extra2 = SYSCTL_THREE_THOUSAND,
6158 },
6159 {
6160 .procname = "percpu_pagelist_high_fraction",
6161 .data = &percpu_pagelist_high_fraction,
6162 .maxlen = sizeof(percpu_pagelist_high_fraction),
6163 .mode = 0644,
6164 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6165 .extra1 = SYSCTL_ZERO,
6166 },
6167 {
6168 .procname = "lowmem_reserve_ratio",
6169 .data = &sysctl_lowmem_reserve_ratio,
6170 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6171 .mode = 0644,
6172 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6173 },
6174 #ifdef CONFIG_NUMA
6175 {
6176 .procname = "numa_zonelist_order",
6177 .data = &numa_zonelist_order,
6178 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6179 .mode = 0644,
6180 .proc_handler = numa_zonelist_order_handler,
6181 },
6182 {
6183 .procname = "min_unmapped_ratio",
6184 .data = &sysctl_min_unmapped_ratio,
6185 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6186 .mode = 0644,
6187 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6188 .extra1 = SYSCTL_ZERO,
6189 .extra2 = SYSCTL_ONE_HUNDRED,
6190 },
6191 {
6192 .procname = "min_slab_ratio",
6193 .data = &sysctl_min_slab_ratio,
6194 .maxlen = sizeof(sysctl_min_slab_ratio),
6195 .mode = 0644,
6196 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6197 .extra1 = SYSCTL_ZERO,
6198 .extra2 = SYSCTL_ONE_HUNDRED,
6199 },
6200 #endif
6201 {}
6202 };
6203
page_alloc_sysctl_init(void)6204 void __init page_alloc_sysctl_init(void)
6205 {
6206 register_sysctl_init("vm", page_alloc_sysctl_table);
6207 }
6208
6209 #ifdef CONFIG_CONTIG_ALLOC
6210 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6211 static void alloc_contig_dump_pages(struct list_head *page_list)
6212 {
6213 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6214
6215 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6216 struct page *page;
6217
6218 dump_stack();
6219 list_for_each_entry(page, page_list, lru)
6220 dump_page(page, "migration failure");
6221 }
6222 }
6223
6224 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6225 int __alloc_contig_migrate_range(struct compact_control *cc,
6226 unsigned long start, unsigned long end)
6227 {
6228 /* This function is based on compact_zone() from compaction.c. */
6229 unsigned int nr_reclaimed;
6230 unsigned long pfn = start;
6231 unsigned int tries = 0;
6232 int ret = 0;
6233 struct migration_target_control mtc = {
6234 .nid = zone_to_nid(cc->zone),
6235 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6236 };
6237
6238 lru_cache_disable();
6239
6240 while (pfn < end || !list_empty(&cc->migratepages)) {
6241 if (fatal_signal_pending(current)) {
6242 ret = -EINTR;
6243 break;
6244 }
6245
6246 if (list_empty(&cc->migratepages)) {
6247 cc->nr_migratepages = 0;
6248 ret = isolate_migratepages_range(cc, pfn, end);
6249 if (ret && ret != -EAGAIN)
6250 break;
6251 pfn = cc->migrate_pfn;
6252 tries = 0;
6253 } else if (++tries == 5) {
6254 ret = -EBUSY;
6255 break;
6256 }
6257
6258 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6259 &cc->migratepages);
6260 cc->nr_migratepages -= nr_reclaimed;
6261
6262 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6263 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6264
6265 /*
6266 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6267 * to retry again over this error, so do the same here.
6268 */
6269 if (ret == -ENOMEM)
6270 break;
6271 }
6272
6273 lru_cache_enable();
6274 if (ret < 0) {
6275 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6276 alloc_contig_dump_pages(&cc->migratepages);
6277 putback_movable_pages(&cc->migratepages);
6278 return ret;
6279 }
6280 return 0;
6281 }
6282
6283 /**
6284 * alloc_contig_range() -- tries to allocate given range of pages
6285 * @start: start PFN to allocate
6286 * @end: one-past-the-last PFN to allocate
6287 * @migratetype: migratetype of the underlying pageblocks (either
6288 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6289 * in range must have the same migratetype and it must
6290 * be either of the two.
6291 * @gfp_mask: GFP mask to use during compaction
6292 *
6293 * The PFN range does not have to be pageblock aligned. The PFN range must
6294 * belong to a single zone.
6295 *
6296 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6297 * pageblocks in the range. Once isolated, the pageblocks should not
6298 * be modified by others.
6299 *
6300 * Return: zero on success or negative error code. On success all
6301 * pages which PFN is in [start, end) are allocated for the caller and
6302 * need to be freed with free_contig_range().
6303 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6304 int alloc_contig_range(unsigned long start, unsigned long end,
6305 unsigned migratetype, gfp_t gfp_mask)
6306 {
6307 unsigned long outer_start, outer_end;
6308 int order;
6309 int ret = 0;
6310
6311 struct compact_control cc = {
6312 .nr_migratepages = 0,
6313 .order = -1,
6314 .zone = page_zone(pfn_to_page(start)),
6315 .mode = MIGRATE_SYNC,
6316 .ignore_skip_hint = true,
6317 .no_set_skip_hint = true,
6318 .gfp_mask = current_gfp_context(gfp_mask),
6319 .alloc_contig = true,
6320 };
6321 INIT_LIST_HEAD(&cc.migratepages);
6322
6323 /*
6324 * What we do here is we mark all pageblocks in range as
6325 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6326 * have different sizes, and due to the way page allocator
6327 * work, start_isolate_page_range() has special handlings for this.
6328 *
6329 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6330 * migrate the pages from an unaligned range (ie. pages that
6331 * we are interested in). This will put all the pages in
6332 * range back to page allocator as MIGRATE_ISOLATE.
6333 *
6334 * When this is done, we take the pages in range from page
6335 * allocator removing them from the buddy system. This way
6336 * page allocator will never consider using them.
6337 *
6338 * This lets us mark the pageblocks back as
6339 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6340 * aligned range but not in the unaligned, original range are
6341 * put back to page allocator so that buddy can use them.
6342 */
6343
6344 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6345 if (ret)
6346 goto done;
6347
6348 drain_all_pages(cc.zone);
6349
6350 /*
6351 * In case of -EBUSY, we'd like to know which page causes problem.
6352 * So, just fall through. test_pages_isolated() has a tracepoint
6353 * which will report the busy page.
6354 *
6355 * It is possible that busy pages could become available before
6356 * the call to test_pages_isolated, and the range will actually be
6357 * allocated. So, if we fall through be sure to clear ret so that
6358 * -EBUSY is not accidentally used or returned to caller.
6359 */
6360 ret = __alloc_contig_migrate_range(&cc, start, end);
6361 if (ret && ret != -EBUSY)
6362 goto done;
6363 ret = 0;
6364
6365 /*
6366 * Pages from [start, end) are within a pageblock_nr_pages
6367 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6368 * more, all pages in [start, end) are free in page allocator.
6369 * What we are going to do is to allocate all pages from
6370 * [start, end) (that is remove them from page allocator).
6371 *
6372 * The only problem is that pages at the beginning and at the
6373 * end of interesting range may be not aligned with pages that
6374 * page allocator holds, ie. they can be part of higher order
6375 * pages. Because of this, we reserve the bigger range and
6376 * once this is done free the pages we are not interested in.
6377 *
6378 * We don't have to hold zone->lock here because the pages are
6379 * isolated thus they won't get removed from buddy.
6380 */
6381
6382 order = 0;
6383 outer_start = start;
6384 while (!PageBuddy(pfn_to_page(outer_start))) {
6385 if (++order > MAX_PAGE_ORDER) {
6386 outer_start = start;
6387 break;
6388 }
6389 outer_start &= ~0UL << order;
6390 }
6391
6392 if (outer_start != start) {
6393 order = buddy_order(pfn_to_page(outer_start));
6394
6395 /*
6396 * outer_start page could be small order buddy page and
6397 * it doesn't include start page. Adjust outer_start
6398 * in this case to report failed page properly
6399 * on tracepoint in test_pages_isolated()
6400 */
6401 if (outer_start + (1UL << order) <= start)
6402 outer_start = start;
6403 }
6404
6405 /* Make sure the range is really isolated. */
6406 if (test_pages_isolated(outer_start, end, 0)) {
6407 ret = -EBUSY;
6408 goto done;
6409 }
6410
6411 /* Grab isolated pages from freelists. */
6412 outer_end = isolate_freepages_range(&cc, outer_start, end);
6413 if (!outer_end) {
6414 ret = -EBUSY;
6415 goto done;
6416 }
6417
6418 /* Free head and tail (if any) */
6419 if (start != outer_start)
6420 free_contig_range(outer_start, start - outer_start);
6421 if (end != outer_end)
6422 free_contig_range(end, outer_end - end);
6423
6424 done:
6425 undo_isolate_page_range(start, end, migratetype);
6426 return ret;
6427 }
6428 EXPORT_SYMBOL(alloc_contig_range);
6429
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6430 static int __alloc_contig_pages(unsigned long start_pfn,
6431 unsigned long nr_pages, gfp_t gfp_mask)
6432 {
6433 unsigned long end_pfn = start_pfn + nr_pages;
6434
6435 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6436 gfp_mask);
6437 }
6438
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6439 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6440 unsigned long nr_pages)
6441 {
6442 unsigned long i, end_pfn = start_pfn + nr_pages;
6443 struct page *page;
6444
6445 for (i = start_pfn; i < end_pfn; i++) {
6446 page = pfn_to_online_page(i);
6447 if (!page)
6448 return false;
6449
6450 if (page_zone(page) != z)
6451 return false;
6452
6453 if (PageReserved(page))
6454 return false;
6455
6456 if (PageHuge(page))
6457 return false;
6458 }
6459 return true;
6460 }
6461
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6462 static bool zone_spans_last_pfn(const struct zone *zone,
6463 unsigned long start_pfn, unsigned long nr_pages)
6464 {
6465 unsigned long last_pfn = start_pfn + nr_pages - 1;
6466
6467 return zone_spans_pfn(zone, last_pfn);
6468 }
6469
6470 /**
6471 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6472 * @nr_pages: Number of contiguous pages to allocate
6473 * @gfp_mask: GFP mask to limit search and used during compaction
6474 * @nid: Target node
6475 * @nodemask: Mask for other possible nodes
6476 *
6477 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6478 * on an applicable zonelist to find a contiguous pfn range which can then be
6479 * tried for allocation with alloc_contig_range(). This routine is intended
6480 * for allocation requests which can not be fulfilled with the buddy allocator.
6481 *
6482 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6483 * power of two, then allocated range is also guaranteed to be aligned to same
6484 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6485 *
6486 * Allocated pages can be freed with free_contig_range() or by manually calling
6487 * __free_page() on each allocated page.
6488 *
6489 * Return: pointer to contiguous pages on success, or NULL if not successful.
6490 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6491 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6492 int nid, nodemask_t *nodemask)
6493 {
6494 unsigned long ret, pfn, flags;
6495 struct zonelist *zonelist;
6496 struct zone *zone;
6497 struct zoneref *z;
6498
6499 zonelist = node_zonelist(nid, gfp_mask);
6500 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6501 gfp_zone(gfp_mask), nodemask) {
6502 spin_lock_irqsave(&zone->lock, flags);
6503
6504 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6505 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6506 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6507 /*
6508 * We release the zone lock here because
6509 * alloc_contig_range() will also lock the zone
6510 * at some point. If there's an allocation
6511 * spinning on this lock, it may win the race
6512 * and cause alloc_contig_range() to fail...
6513 */
6514 spin_unlock_irqrestore(&zone->lock, flags);
6515 ret = __alloc_contig_pages(pfn, nr_pages,
6516 gfp_mask);
6517 if (!ret)
6518 return pfn_to_page(pfn);
6519 spin_lock_irqsave(&zone->lock, flags);
6520 }
6521 pfn += nr_pages;
6522 }
6523 spin_unlock_irqrestore(&zone->lock, flags);
6524 }
6525 return NULL;
6526 }
6527 #endif /* CONFIG_CONTIG_ALLOC */
6528
free_contig_range(unsigned long pfn,unsigned long nr_pages)6529 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6530 {
6531 unsigned long count = 0;
6532
6533 for (; nr_pages--; pfn++) {
6534 struct page *page = pfn_to_page(pfn);
6535
6536 count += page_count(page) != 1;
6537 __free_page(page);
6538 }
6539 WARN(count != 0, "%lu pages are still in use!\n", count);
6540 }
6541 EXPORT_SYMBOL(free_contig_range);
6542
6543 /*
6544 * Effectively disable pcplists for the zone by setting the high limit to 0
6545 * and draining all cpus. A concurrent page freeing on another CPU that's about
6546 * to put the page on pcplist will either finish before the drain and the page
6547 * will be drained, or observe the new high limit and skip the pcplist.
6548 *
6549 * Must be paired with a call to zone_pcp_enable().
6550 */
zone_pcp_disable(struct zone * zone)6551 void zone_pcp_disable(struct zone *zone)
6552 {
6553 mutex_lock(&pcp_batch_high_lock);
6554 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6555 __drain_all_pages(zone, true);
6556 }
6557
zone_pcp_enable(struct zone * zone)6558 void zone_pcp_enable(struct zone *zone)
6559 {
6560 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6561 zone->pageset_high_max, zone->pageset_batch);
6562 mutex_unlock(&pcp_batch_high_lock);
6563 }
6564
zone_pcp_reset(struct zone * zone)6565 void zone_pcp_reset(struct zone *zone)
6566 {
6567 int cpu;
6568 struct per_cpu_zonestat *pzstats;
6569
6570 if (zone->per_cpu_pageset != &boot_pageset) {
6571 for_each_online_cpu(cpu) {
6572 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6573 drain_zonestat(zone, pzstats);
6574 }
6575 free_percpu(zone->per_cpu_pageset);
6576 zone->per_cpu_pageset = &boot_pageset;
6577 if (zone->per_cpu_zonestats != &boot_zonestats) {
6578 free_percpu(zone->per_cpu_zonestats);
6579 zone->per_cpu_zonestats = &boot_zonestats;
6580 }
6581 }
6582 }
6583
6584 #ifdef CONFIG_MEMORY_HOTREMOVE
6585 /*
6586 * All pages in the range must be in a single zone, must not contain holes,
6587 * must span full sections, and must be isolated before calling this function.
6588 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6589 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6590 {
6591 unsigned long pfn = start_pfn;
6592 struct page *page;
6593 struct zone *zone;
6594 unsigned int order;
6595 unsigned long flags;
6596
6597 offline_mem_sections(pfn, end_pfn);
6598 zone = page_zone(pfn_to_page(pfn));
6599 spin_lock_irqsave(&zone->lock, flags);
6600 while (pfn < end_pfn) {
6601 page = pfn_to_page(pfn);
6602 /*
6603 * The HWPoisoned page may be not in buddy system, and
6604 * page_count() is not 0.
6605 */
6606 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6607 pfn++;
6608 continue;
6609 }
6610 /*
6611 * At this point all remaining PageOffline() pages have a
6612 * reference count of 0 and can simply be skipped.
6613 */
6614 if (PageOffline(page)) {
6615 BUG_ON(page_count(page));
6616 BUG_ON(PageBuddy(page));
6617 pfn++;
6618 continue;
6619 }
6620
6621 BUG_ON(page_count(page));
6622 BUG_ON(!PageBuddy(page));
6623 order = buddy_order(page);
6624 del_page_from_free_list(page, zone, order);
6625 pfn += (1 << order);
6626 }
6627 spin_unlock_irqrestore(&zone->lock, flags);
6628 }
6629 #endif
6630
6631 /*
6632 * This function returns a stable result only if called under zone lock.
6633 */
is_free_buddy_page(struct page * page)6634 bool is_free_buddy_page(struct page *page)
6635 {
6636 unsigned long pfn = page_to_pfn(page);
6637 unsigned int order;
6638
6639 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6640 struct page *page_head = page - (pfn & ((1 << order) - 1));
6641
6642 if (PageBuddy(page_head) &&
6643 buddy_order_unsafe(page_head) >= order)
6644 break;
6645 }
6646
6647 return order <= MAX_PAGE_ORDER;
6648 }
6649 EXPORT_SYMBOL(is_free_buddy_page);
6650
6651 #ifdef CONFIG_MEMORY_FAILURE
6652 /*
6653 * Break down a higher-order page in sub-pages, and keep our target out of
6654 * buddy allocator.
6655 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6656 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6657 struct page *target, int low, int high,
6658 int migratetype)
6659 {
6660 unsigned long size = 1 << high;
6661 struct page *current_buddy;
6662
6663 while (high > low) {
6664 high--;
6665 size >>= 1;
6666
6667 if (target >= &page[size]) {
6668 current_buddy = page;
6669 page = page + size;
6670 } else {
6671 current_buddy = page + size;
6672 }
6673
6674 if (set_page_guard(zone, current_buddy, high, migratetype))
6675 continue;
6676
6677 add_to_free_list(current_buddy, zone, high, migratetype);
6678 set_buddy_order(current_buddy, high);
6679 }
6680 }
6681
6682 /*
6683 * Take a page that will be marked as poisoned off the buddy allocator.
6684 */
take_page_off_buddy(struct page * page)6685 bool take_page_off_buddy(struct page *page)
6686 {
6687 struct zone *zone = page_zone(page);
6688 unsigned long pfn = page_to_pfn(page);
6689 unsigned long flags;
6690 unsigned int order;
6691 bool ret = false;
6692
6693 spin_lock_irqsave(&zone->lock, flags);
6694 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6695 struct page *page_head = page - (pfn & ((1 << order) - 1));
6696 int page_order = buddy_order(page_head);
6697
6698 if (PageBuddy(page_head) && page_order >= order) {
6699 unsigned long pfn_head = page_to_pfn(page_head);
6700 int migratetype = get_pfnblock_migratetype(page_head,
6701 pfn_head);
6702
6703 del_page_from_free_list(page_head, zone, page_order);
6704 break_down_buddy_pages(zone, page_head, page, 0,
6705 page_order, migratetype);
6706 SetPageHWPoisonTakenOff(page);
6707 if (!is_migrate_isolate(migratetype))
6708 __mod_zone_freepage_state(zone, -1, migratetype);
6709 ret = true;
6710 break;
6711 }
6712 if (page_count(page_head) > 0)
6713 break;
6714 }
6715 spin_unlock_irqrestore(&zone->lock, flags);
6716 return ret;
6717 }
6718
6719 /*
6720 * Cancel takeoff done by take_page_off_buddy().
6721 */
put_page_back_buddy(struct page * page)6722 bool put_page_back_buddy(struct page *page)
6723 {
6724 struct zone *zone = page_zone(page);
6725 unsigned long pfn = page_to_pfn(page);
6726 unsigned long flags;
6727 int migratetype = get_pfnblock_migratetype(page, pfn);
6728 bool ret = false;
6729
6730 spin_lock_irqsave(&zone->lock, flags);
6731 if (put_page_testzero(page)) {
6732 ClearPageHWPoisonTakenOff(page);
6733 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6734 if (TestClearPageHWPoison(page)) {
6735 ret = true;
6736 }
6737 }
6738 spin_unlock_irqrestore(&zone->lock, flags);
6739
6740 return ret;
6741 }
6742 #endif
6743
6744 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6745 bool has_managed_dma(void)
6746 {
6747 struct pglist_data *pgdat;
6748
6749 for_each_online_pgdat(pgdat) {
6750 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6751
6752 if (managed_zone(zone))
6753 return true;
6754 }
6755 return false;
6756 }
6757 #endif /* CONFIG_ZONE_DMA */
6758
6759 #ifdef CONFIG_UNACCEPTED_MEMORY
6760
6761 /* Counts number of zones with unaccepted pages. */
6762 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6763
6764 static bool lazy_accept = true;
6765
accept_memory_parse(char * p)6766 static int __init accept_memory_parse(char *p)
6767 {
6768 if (!strcmp(p, "lazy")) {
6769 lazy_accept = true;
6770 return 0;
6771 } else if (!strcmp(p, "eager")) {
6772 lazy_accept = false;
6773 return 0;
6774 } else {
6775 return -EINVAL;
6776 }
6777 }
6778 early_param("accept_memory", accept_memory_parse);
6779
page_contains_unaccepted(struct page * page,unsigned int order)6780 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6781 {
6782 phys_addr_t start = page_to_phys(page);
6783 phys_addr_t end = start + (PAGE_SIZE << order);
6784
6785 return range_contains_unaccepted_memory(start, end);
6786 }
6787
accept_page(struct page * page,unsigned int order)6788 static void accept_page(struct page *page, unsigned int order)
6789 {
6790 phys_addr_t start = page_to_phys(page);
6791
6792 accept_memory(start, start + (PAGE_SIZE << order));
6793 }
6794
try_to_accept_memory_one(struct zone * zone)6795 static bool try_to_accept_memory_one(struct zone *zone)
6796 {
6797 unsigned long flags;
6798 struct page *page;
6799 bool last;
6800
6801 if (list_empty(&zone->unaccepted_pages))
6802 return false;
6803
6804 spin_lock_irqsave(&zone->lock, flags);
6805 page = list_first_entry_or_null(&zone->unaccepted_pages,
6806 struct page, lru);
6807 if (!page) {
6808 spin_unlock_irqrestore(&zone->lock, flags);
6809 return false;
6810 }
6811
6812 list_del(&page->lru);
6813 last = list_empty(&zone->unaccepted_pages);
6814
6815 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6816 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6817 spin_unlock_irqrestore(&zone->lock, flags);
6818
6819 accept_page(page, MAX_PAGE_ORDER);
6820
6821 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6822
6823 if (last)
6824 static_branch_dec(&zones_with_unaccepted_pages);
6825
6826 return true;
6827 }
6828
try_to_accept_memory(struct zone * zone,unsigned int order)6829 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6830 {
6831 long to_accept;
6832 int ret = false;
6833
6834 /* How much to accept to get to high watermark? */
6835 to_accept = high_wmark_pages(zone) -
6836 (zone_page_state(zone, NR_FREE_PAGES) -
6837 __zone_watermark_unusable_free(zone, order, 0));
6838
6839 /* Accept at least one page */
6840 do {
6841 if (!try_to_accept_memory_one(zone))
6842 break;
6843 ret = true;
6844 to_accept -= MAX_ORDER_NR_PAGES;
6845 } while (to_accept > 0);
6846
6847 return ret;
6848 }
6849
has_unaccepted_memory(void)6850 static inline bool has_unaccepted_memory(void)
6851 {
6852 return static_branch_unlikely(&zones_with_unaccepted_pages);
6853 }
6854
__free_unaccepted(struct page * page)6855 static bool __free_unaccepted(struct page *page)
6856 {
6857 struct zone *zone = page_zone(page);
6858 unsigned long flags;
6859 bool first = false;
6860
6861 if (!lazy_accept)
6862 return false;
6863
6864 spin_lock_irqsave(&zone->lock, flags);
6865 first = list_empty(&zone->unaccepted_pages);
6866 list_add_tail(&page->lru, &zone->unaccepted_pages);
6867 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6868 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6869 spin_unlock_irqrestore(&zone->lock, flags);
6870
6871 if (first)
6872 static_branch_inc(&zones_with_unaccepted_pages);
6873
6874 return true;
6875 }
6876
6877 #else
6878
page_contains_unaccepted(struct page * page,unsigned int order)6879 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6880 {
6881 return false;
6882 }
6883
accept_page(struct page * page,unsigned int order)6884 static void accept_page(struct page *page, unsigned int order)
6885 {
6886 }
6887
try_to_accept_memory(struct zone * zone,unsigned int order)6888 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6889 {
6890 return false;
6891 }
6892
has_unaccepted_memory(void)6893 static inline bool has_unaccepted_memory(void)
6894 {
6895 return false;
6896 }
6897
__free_unaccepted(struct page * page)6898 static bool __free_unaccepted(struct page *page)
6899 {
6900 BUILD_BUG();
6901 return false;
6902 }
6903
6904 #endif /* CONFIG_UNACCEPTED_MEMORY */
6905