1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object trees
18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 * object_list is the main list holding the metadata (struct
20 * kmemleak_object) for the allocated memory blocks. The object trees are
21 * red black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The kmemleak_object structures are added to
23 * the object_list and the object tree root in the create_object() function
24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 * Accesses to the metadata (e.g. count) are protected by this lock. Note
28 * that some members of this structure may be protected by other means
29 * (atomic or kmemleak_lock). This lock is also held when scanning the
30 * corresponding memory block to avoid the kernel freeing it via the
31 * kmemleak_free() callback. This is less heavyweight than holding a global
32 * lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 * unreferenced objects at a time. The gray_list contains the objects which
35 * are already referenced or marked as false positives and need to be
36 * scanned. This list is only modified during a scanning episode when the
37 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 * Note that the kmemleak_object.use_count is incremented when an object is
39 * added to the gray_list and therefore cannot be freed. This mutex also
40 * prevents multiple users of the "kmemleak" debugfs file together with
41 * modifications to the memory scanning parameters including the scan_thread
42 * pointer
43 *
44 * Locks and mutexes are acquired/nested in the following order:
45 *
46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 *
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49 * regions.
50 *
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
56 * structure.
57 */
58
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107 * Kmemleak configuration and common defines.
108 */
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER sizeof(void *)
116
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 __GFP_NOLOCKDEP)) | \
120 __GFP_NORETRY | __GFP_NOMEMALLOC | \
121 __GFP_NOWARN)
122
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125 struct hlist_node node;
126 unsigned long start;
127 size_t size;
128 };
129
130 #define KMEMLEAK_GREY 0
131 #define KMEMLEAK_BLACK -1
132
133 /*
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
137 * rb_node are already protected by the corresponding locks or mutex (see
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
140 */
141 struct kmemleak_object {
142 raw_spinlock_t lock;
143 unsigned int flags; /* object status flags */
144 struct list_head object_list;
145 struct list_head gray_list;
146 struct rb_node rb_node;
147 struct rcu_head rcu; /* object_list lockless traversal */
148 /* object usage count; object freed when use_count == 0 */
149 atomic_t use_count;
150 unsigned int del_state; /* deletion state */
151 unsigned long pointer;
152 size_t size;
153 /* pass surplus references to this pointer */
154 unsigned long excess_ref;
155 /* minimum number of a pointers found before it is considered leak */
156 int min_count;
157 /* the total number of pointers found pointing to this object */
158 int count;
159 /* checksum for detecting modified objects */
160 u32 checksum;
161 /* memory ranges to be scanned inside an object (empty for all) */
162 struct hlist_head area_list;
163 depot_stack_handle_t trace_handle;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167 };
168
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED (1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED (1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN (1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN (1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS (1 << 4)
179 /* flag set for per-CPU pointers */
180 #define OBJECT_PERCPU (1 << 5)
181
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED (1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE (1 << 1)
186
187 #define HEX_PREFIX " "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE 16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE 1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII 1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES 2
196
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
210 static struct rb_root object_percpu_tree_root = RB_ROOT;
211 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
212 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
213
214 /* allocation caches for kmemleak internal data */
215 static struct kmem_cache *object_cache;
216 static struct kmem_cache *scan_area_cache;
217
218 /* set if tracing memory operations is enabled */
219 static int kmemleak_enabled = 1;
220 /* same as above but only for the kmemleak_free() callback */
221 static int kmemleak_free_enabled = 1;
222 /* set in the late_initcall if there were no errors */
223 static int kmemleak_late_initialized;
224 /* set if a kmemleak warning was issued */
225 static int kmemleak_warning;
226 /* set if a fatal kmemleak error has occurred */
227 static int kmemleak_error;
228
229 /* minimum and maximum address that may be valid pointers */
230 static unsigned long min_addr = ULONG_MAX;
231 static unsigned long max_addr;
232
233 static struct task_struct *scan_thread;
234 /* used to avoid reporting of recently allocated objects */
235 static unsigned long jiffies_min_age;
236 static unsigned long jiffies_last_scan;
237 /* delay between automatic memory scannings */
238 static unsigned long jiffies_scan_wait;
239 /* enables or disables the task stacks scanning */
240 static int kmemleak_stack_scan = 1;
241 /* protects the memory scanning, parameters and debug/kmemleak file access */
242 static DEFINE_MUTEX(scan_mutex);
243 /* setting kmemleak=on, will set this var, skipping the disable */
244 static int kmemleak_skip_disable;
245 /* If there are leaks that can be reported */
246 static bool kmemleak_found_leaks;
247
248 static bool kmemleak_verbose;
249 module_param_named(verbose, kmemleak_verbose, bool, 0600);
250
251 static void kmemleak_disable(void);
252
253 /*
254 * Print a warning and dump the stack trace.
255 */
256 #define kmemleak_warn(x...) do { \
257 pr_warn(x); \
258 dump_stack(); \
259 kmemleak_warning = 1; \
260 } while (0)
261
262 /*
263 * Macro invoked when a serious kmemleak condition occurred and cannot be
264 * recovered from. Kmemleak will be disabled and further allocation/freeing
265 * tracing no longer available.
266 */
267 #define kmemleak_stop(x...) do { \
268 kmemleak_warn(x); \
269 kmemleak_disable(); \
270 } while (0)
271
272 #define warn_or_seq_printf(seq, fmt, ...) do { \
273 if (seq) \
274 seq_printf(seq, fmt, ##__VA_ARGS__); \
275 else \
276 pr_warn(fmt, ##__VA_ARGS__); \
277 } while (0)
278
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)279 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
280 int rowsize, int groupsize, const void *buf,
281 size_t len, bool ascii)
282 {
283 if (seq)
284 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
285 buf, len, ascii);
286 else
287 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
288 rowsize, groupsize, buf, len, ascii);
289 }
290
291 /*
292 * Printing of the objects hex dump to the seq file. The number of lines to be
293 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
294 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
295 * with the object->lock held.
296 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)297 static void hex_dump_object(struct seq_file *seq,
298 struct kmemleak_object *object)
299 {
300 const u8 *ptr = (const u8 *)object->pointer;
301 size_t len;
302
303 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
304 return;
305
306 /* limit the number of lines to HEX_MAX_LINES */
307 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308
309 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
310 kasan_disable_current();
311 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
312 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
313 kasan_enable_current();
314 }
315
316 /*
317 * Object colors, encoded with count and min_count:
318 * - white - orphan object, not enough references to it (count < min_count)
319 * - gray - not orphan, not marked as false positive (min_count == 0) or
320 * sufficient references to it (count >= min_count)
321 * - black - ignore, it doesn't contain references (e.g. text section)
322 * (min_count == -1). No function defined for this color.
323 * Newly created objects don't have any color assigned (object->count == -1)
324 * before the next memory scan when they become white.
325 */
color_white(const struct kmemleak_object * object)326 static bool color_white(const struct kmemleak_object *object)
327 {
328 return object->count != KMEMLEAK_BLACK &&
329 object->count < object->min_count;
330 }
331
color_gray(const struct kmemleak_object * object)332 static bool color_gray(const struct kmemleak_object *object)
333 {
334 return object->min_count != KMEMLEAK_BLACK &&
335 object->count >= object->min_count;
336 }
337
338 /*
339 * Objects are considered unreferenced only if their color is white, they have
340 * not be deleted and have a minimum age to avoid false positives caused by
341 * pointers temporarily stored in CPU registers.
342 */
unreferenced_object(struct kmemleak_object * object)343 static bool unreferenced_object(struct kmemleak_object *object)
344 {
345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 time_before_eq(object->jiffies + jiffies_min_age,
347 jiffies_last_scan);
348 }
349
350 /*
351 * Printing of the unreferenced objects information to the seq file. The
352 * print_unreferenced function must be called with the object->lock held.
353 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)354 static void print_unreferenced(struct seq_file *seq,
355 struct kmemleak_object *object)
356 {
357 int i;
358 unsigned long *entries;
359 unsigned int nr_entries;
360
361 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
362 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
365 object->comm, object->pid, object->jiffies);
366 hex_dump_object(seq, object);
367 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum);
368
369 for (i = 0; i < nr_entries; i++) {
370 void *ptr = (void *)entries[i];
371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
372 }
373 }
374
375 /*
376 * Print the kmemleak_object information. This function is used mainly for
377 * debugging special cases when kmemleak operations. It must be called with
378 * the object->lock held.
379 */
dump_object_info(struct kmemleak_object * object)380 static void dump_object_info(struct kmemleak_object *object)
381 {
382 pr_notice("Object 0x%08lx (size %zu):\n",
383 object->pointer, object->size);
384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
385 object->comm, object->pid, object->jiffies);
386 pr_notice(" min_count = %d\n", object->min_count);
387 pr_notice(" count = %d\n", object->count);
388 pr_notice(" flags = 0x%x\n", object->flags);
389 pr_notice(" checksum = %u\n", object->checksum);
390 pr_notice(" backtrace:\n");
391 if (object->trace_handle)
392 stack_depot_print(object->trace_handle);
393 }
394
object_tree(unsigned long objflags)395 static struct rb_root *object_tree(unsigned long objflags)
396 {
397 if (objflags & OBJECT_PHYS)
398 return &object_phys_tree_root;
399 if (objflags & OBJECT_PERCPU)
400 return &object_percpu_tree_root;
401 return &object_tree_root;
402 }
403
404 /*
405 * Look-up a memory block metadata (kmemleak_object) in the object search
406 * tree based on a pointer value. If alias is 0, only values pointing to the
407 * beginning of the memory block are allowed. The kmemleak_lock must be held
408 * when calling this function.
409 */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)410 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
411 unsigned int objflags)
412 {
413 struct rb_node *rb = object_tree(objflags)->rb_node;
414 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
415
416 while (rb) {
417 struct kmemleak_object *object;
418 unsigned long untagged_objp;
419
420 object = rb_entry(rb, struct kmemleak_object, rb_node);
421 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
422
423 if (untagged_ptr < untagged_objp)
424 rb = object->rb_node.rb_left;
425 else if (untagged_objp + object->size <= untagged_ptr)
426 rb = object->rb_node.rb_right;
427 else if (untagged_objp == untagged_ptr || alias)
428 return object;
429 else {
430 kmemleak_warn("Found object by alias at 0x%08lx\n",
431 ptr);
432 dump_object_info(object);
433 break;
434 }
435 }
436 return NULL;
437 }
438
439 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)440 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
441 {
442 return __lookup_object(ptr, alias, 0);
443 }
444
445 /*
446 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
447 * that once an object's use_count reached 0, the RCU freeing was already
448 * registered and the object should no longer be used. This function must be
449 * called under the protection of rcu_read_lock().
450 */
get_object(struct kmemleak_object * object)451 static int get_object(struct kmemleak_object *object)
452 {
453 return atomic_inc_not_zero(&object->use_count);
454 }
455
456 /*
457 * Memory pool allocation and freeing. kmemleak_lock must not be held.
458 */
mem_pool_alloc(gfp_t gfp)459 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
460 {
461 unsigned long flags;
462 struct kmemleak_object *object;
463
464 /* try the slab allocator first */
465 if (object_cache) {
466 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
467 if (object)
468 return object;
469 }
470
471 /* slab allocation failed, try the memory pool */
472 raw_spin_lock_irqsave(&kmemleak_lock, flags);
473 object = list_first_entry_or_null(&mem_pool_free_list,
474 typeof(*object), object_list);
475 if (object)
476 list_del(&object->object_list);
477 else if (mem_pool_free_count)
478 object = &mem_pool[--mem_pool_free_count];
479 else
480 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
481 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
482
483 return object;
484 }
485
486 /*
487 * Return the object to either the slab allocator or the memory pool.
488 */
mem_pool_free(struct kmemleak_object * object)489 static void mem_pool_free(struct kmemleak_object *object)
490 {
491 unsigned long flags;
492
493 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
494 kmem_cache_free(object_cache, object);
495 return;
496 }
497
498 /* add the object to the memory pool free list */
499 raw_spin_lock_irqsave(&kmemleak_lock, flags);
500 list_add(&object->object_list, &mem_pool_free_list);
501 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
502 }
503
504 /*
505 * RCU callback to free a kmemleak_object.
506 */
free_object_rcu(struct rcu_head * rcu)507 static void free_object_rcu(struct rcu_head *rcu)
508 {
509 struct hlist_node *tmp;
510 struct kmemleak_scan_area *area;
511 struct kmemleak_object *object =
512 container_of(rcu, struct kmemleak_object, rcu);
513
514 /*
515 * Once use_count is 0 (guaranteed by put_object), there is no other
516 * code accessing this object, hence no need for locking.
517 */
518 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
519 hlist_del(&area->node);
520 kmem_cache_free(scan_area_cache, area);
521 }
522 mem_pool_free(object);
523 }
524
525 /*
526 * Decrement the object use_count. Once the count is 0, free the object using
527 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
528 * delete_object() path, the delayed RCU freeing ensures that there is no
529 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
530 * is also possible.
531 */
put_object(struct kmemleak_object * object)532 static void put_object(struct kmemleak_object *object)
533 {
534 if (!atomic_dec_and_test(&object->use_count))
535 return;
536
537 /* should only get here after delete_object was called */
538 WARN_ON(object->flags & OBJECT_ALLOCATED);
539
540 /*
541 * It may be too early for the RCU callbacks, however, there is no
542 * concurrent object_list traversal when !object_cache and all objects
543 * came from the memory pool. Free the object directly.
544 */
545 if (object_cache)
546 call_rcu(&object->rcu, free_object_rcu);
547 else
548 free_object_rcu(&object->rcu);
549 }
550
551 /*
552 * Look up an object in the object search tree and increase its use_count.
553 */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)554 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
555 unsigned int objflags)
556 {
557 unsigned long flags;
558 struct kmemleak_object *object;
559
560 rcu_read_lock();
561 raw_spin_lock_irqsave(&kmemleak_lock, flags);
562 object = __lookup_object(ptr, alias, objflags);
563 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
564
565 /* check whether the object is still available */
566 if (object && !get_object(object))
567 object = NULL;
568 rcu_read_unlock();
569
570 return object;
571 }
572
573 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)574 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
575 {
576 return __find_and_get_object(ptr, alias, 0);
577 }
578
579 /*
580 * Remove an object from its object tree and object_list. Must be called with
581 * the kmemleak_lock held _if_ kmemleak is still enabled.
582 */
__remove_object(struct kmemleak_object * object)583 static void __remove_object(struct kmemleak_object *object)
584 {
585 rb_erase(&object->rb_node, object_tree(object->flags));
586 if (!(object->del_state & DELSTATE_NO_DELETE))
587 list_del_rcu(&object->object_list);
588 object->del_state |= DELSTATE_REMOVED;
589 }
590
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)591 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
592 int alias,
593 unsigned int objflags)
594 {
595 struct kmemleak_object *object;
596
597 object = __lookup_object(ptr, alias, objflags);
598 if (object)
599 __remove_object(object);
600
601 return object;
602 }
603
604 /*
605 * Look up an object in the object search tree and remove it from both object
606 * tree root and object_list. The returned object's use_count should be at
607 * least 1, as initially set by create_object().
608 */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)609 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
610 unsigned int objflags)
611 {
612 unsigned long flags;
613 struct kmemleak_object *object;
614
615 raw_spin_lock_irqsave(&kmemleak_lock, flags);
616 object = __find_and_remove_object(ptr, alias, objflags);
617 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
618
619 return object;
620 }
621
set_track_prepare(void)622 static noinline depot_stack_handle_t set_track_prepare(void)
623 {
624 depot_stack_handle_t trace_handle;
625 unsigned long entries[MAX_TRACE];
626 unsigned int nr_entries;
627
628 /*
629 * Use object_cache to determine whether kmemleak_init() has
630 * been invoked. stack_depot_early_init() is called before
631 * kmemleak_init() in mm_core_init().
632 */
633 if (!object_cache)
634 return 0;
635 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
636 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
637
638 return trace_handle;
639 }
640
__alloc_object(gfp_t gfp)641 static struct kmemleak_object *__alloc_object(gfp_t gfp)
642 {
643 struct kmemleak_object *object;
644
645 object = mem_pool_alloc(gfp);
646 if (!object) {
647 pr_warn("Cannot allocate a kmemleak_object structure\n");
648 kmemleak_disable();
649 return NULL;
650 }
651
652 INIT_LIST_HEAD(&object->object_list);
653 INIT_LIST_HEAD(&object->gray_list);
654 INIT_HLIST_HEAD(&object->area_list);
655 raw_spin_lock_init(&object->lock);
656 atomic_set(&object->use_count, 1);
657 object->excess_ref = 0;
658 object->count = 0; /* white color initially */
659 object->checksum = 0;
660 object->del_state = 0;
661
662 /* task information */
663 if (in_hardirq()) {
664 object->pid = 0;
665 strncpy(object->comm, "hardirq", sizeof(object->comm));
666 } else if (in_serving_softirq()) {
667 object->pid = 0;
668 strncpy(object->comm, "softirq", sizeof(object->comm));
669 } else {
670 object->pid = current->pid;
671 /*
672 * There is a small chance of a race with set_task_comm(),
673 * however using get_task_comm() here may cause locking
674 * dependency issues with current->alloc_lock. In the worst
675 * case, the command line is not correct.
676 */
677 strncpy(object->comm, current->comm, sizeof(object->comm));
678 }
679
680 /* kernel backtrace */
681 object->trace_handle = set_track_prepare();
682
683 return object;
684 }
685
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)686 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
687 size_t size, int min_count, unsigned int objflags)
688 {
689
690 struct kmemleak_object *parent;
691 struct rb_node **link, *rb_parent;
692 unsigned long untagged_ptr;
693 unsigned long untagged_objp;
694
695 object->flags = OBJECT_ALLOCATED | objflags;
696 object->pointer = ptr;
697 object->size = kfence_ksize((void *)ptr) ?: size;
698 object->min_count = min_count;
699 object->jiffies = jiffies;
700
701 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
702 /*
703 * Only update min_addr and max_addr with object
704 * storing virtual address.
705 */
706 if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) {
707 min_addr = min(min_addr, untagged_ptr);
708 max_addr = max(max_addr, untagged_ptr + size);
709 }
710 link = &object_tree(objflags)->rb_node;
711 rb_parent = NULL;
712 while (*link) {
713 rb_parent = *link;
714 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
715 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
716 if (untagged_ptr + size <= untagged_objp)
717 link = &parent->rb_node.rb_left;
718 else if (untagged_objp + parent->size <= untagged_ptr)
719 link = &parent->rb_node.rb_right;
720 else {
721 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
722 ptr);
723 /*
724 * No need for parent->lock here since "parent" cannot
725 * be freed while the kmemleak_lock is held.
726 */
727 dump_object_info(parent);
728 return -EEXIST;
729 }
730 }
731 rb_link_node(&object->rb_node, rb_parent, link);
732 rb_insert_color(&object->rb_node, object_tree(objflags));
733 list_add_tail_rcu(&object->object_list, &object_list);
734
735 return 0;
736 }
737
738 /*
739 * Create the metadata (struct kmemleak_object) corresponding to an allocated
740 * memory block and add it to the object_list and object tree.
741 */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)742 static void __create_object(unsigned long ptr, size_t size,
743 int min_count, gfp_t gfp, unsigned int objflags)
744 {
745 struct kmemleak_object *object;
746 unsigned long flags;
747 int ret;
748
749 object = __alloc_object(gfp);
750 if (!object)
751 return;
752
753 raw_spin_lock_irqsave(&kmemleak_lock, flags);
754 ret = __link_object(object, ptr, size, min_count, objflags);
755 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
756 if (ret)
757 mem_pool_free(object);
758 }
759
760 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)761 static void create_object(unsigned long ptr, size_t size,
762 int min_count, gfp_t gfp)
763 {
764 __create_object(ptr, size, min_count, gfp, 0);
765 }
766
767 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)768 static void create_object_phys(unsigned long ptr, size_t size,
769 int min_count, gfp_t gfp)
770 {
771 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
772 }
773
774 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)775 static void create_object_percpu(unsigned long ptr, size_t size,
776 int min_count, gfp_t gfp)
777 {
778 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
779 }
780
781 /*
782 * Mark the object as not allocated and schedule RCU freeing via put_object().
783 */
__delete_object(struct kmemleak_object * object)784 static void __delete_object(struct kmemleak_object *object)
785 {
786 unsigned long flags;
787
788 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
789 WARN_ON(atomic_read(&object->use_count) < 1);
790
791 /*
792 * Locking here also ensures that the corresponding memory block
793 * cannot be freed when it is being scanned.
794 */
795 raw_spin_lock_irqsave(&object->lock, flags);
796 object->flags &= ~OBJECT_ALLOCATED;
797 raw_spin_unlock_irqrestore(&object->lock, flags);
798 put_object(object);
799 }
800
801 /*
802 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
803 * delete it.
804 */
delete_object_full(unsigned long ptr,unsigned int objflags)805 static void delete_object_full(unsigned long ptr, unsigned int objflags)
806 {
807 struct kmemleak_object *object;
808
809 object = find_and_remove_object(ptr, 0, objflags);
810 if (!object) {
811 #ifdef DEBUG
812 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
813 ptr);
814 #endif
815 return;
816 }
817 __delete_object(object);
818 }
819
820 /*
821 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
822 * delete it. If the memory block is partially freed, the function may create
823 * additional metadata for the remaining parts of the block.
824 */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)825 static void delete_object_part(unsigned long ptr, size_t size,
826 unsigned int objflags)
827 {
828 struct kmemleak_object *object, *object_l, *object_r;
829 unsigned long start, end, flags;
830
831 object_l = __alloc_object(GFP_KERNEL);
832 if (!object_l)
833 return;
834
835 object_r = __alloc_object(GFP_KERNEL);
836 if (!object_r)
837 goto out;
838
839 raw_spin_lock_irqsave(&kmemleak_lock, flags);
840 object = __find_and_remove_object(ptr, 1, objflags);
841 if (!object) {
842 #ifdef DEBUG
843 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
844 ptr, size);
845 #endif
846 goto unlock;
847 }
848
849 /*
850 * Create one or two objects that may result from the memory block
851 * split. Note that partial freeing is only done by free_bootmem() and
852 * this happens before kmemleak_init() is called.
853 */
854 start = object->pointer;
855 end = object->pointer + object->size;
856 if ((ptr > start) &&
857 !__link_object(object_l, start, ptr - start,
858 object->min_count, objflags))
859 object_l = NULL;
860 if ((ptr + size < end) &&
861 !__link_object(object_r, ptr + size, end - ptr - size,
862 object->min_count, objflags))
863 object_r = NULL;
864
865 unlock:
866 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
867 if (object)
868 __delete_object(object);
869
870 out:
871 if (object_l)
872 mem_pool_free(object_l);
873 if (object_r)
874 mem_pool_free(object_r);
875 }
876
__paint_it(struct kmemleak_object * object,int color)877 static void __paint_it(struct kmemleak_object *object, int color)
878 {
879 object->min_count = color;
880 if (color == KMEMLEAK_BLACK)
881 object->flags |= OBJECT_NO_SCAN;
882 }
883
paint_it(struct kmemleak_object * object,int color)884 static void paint_it(struct kmemleak_object *object, int color)
885 {
886 unsigned long flags;
887
888 raw_spin_lock_irqsave(&object->lock, flags);
889 __paint_it(object, color);
890 raw_spin_unlock_irqrestore(&object->lock, flags);
891 }
892
paint_ptr(unsigned long ptr,int color,unsigned int objflags)893 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
894 {
895 struct kmemleak_object *object;
896
897 object = __find_and_get_object(ptr, 0, objflags);
898 if (!object) {
899 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
900 ptr,
901 (color == KMEMLEAK_GREY) ? "Grey" :
902 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
903 return;
904 }
905 paint_it(object, color);
906 put_object(object);
907 }
908
909 /*
910 * Mark an object permanently as gray-colored so that it can no longer be
911 * reported as a leak. This is used in general to mark a false positive.
912 */
make_gray_object(unsigned long ptr)913 static void make_gray_object(unsigned long ptr)
914 {
915 paint_ptr(ptr, KMEMLEAK_GREY, 0);
916 }
917
918 /*
919 * Mark the object as black-colored so that it is ignored from scans and
920 * reporting.
921 */
make_black_object(unsigned long ptr,unsigned int objflags)922 static void make_black_object(unsigned long ptr, unsigned int objflags)
923 {
924 paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
925 }
926
927 /*
928 * Add a scanning area to the object. If at least one such area is added,
929 * kmemleak will only scan these ranges rather than the whole memory block.
930 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)931 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
932 {
933 unsigned long flags;
934 struct kmemleak_object *object;
935 struct kmemleak_scan_area *area = NULL;
936 unsigned long untagged_ptr;
937 unsigned long untagged_objp;
938
939 object = find_and_get_object(ptr, 1);
940 if (!object) {
941 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
942 ptr);
943 return;
944 }
945
946 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
947 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
948
949 if (scan_area_cache)
950 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
951
952 raw_spin_lock_irqsave(&object->lock, flags);
953 if (!area) {
954 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
955 /* mark the object for full scan to avoid false positives */
956 object->flags |= OBJECT_FULL_SCAN;
957 goto out_unlock;
958 }
959 if (size == SIZE_MAX) {
960 size = untagged_objp + object->size - untagged_ptr;
961 } else if (untagged_ptr + size > untagged_objp + object->size) {
962 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
963 dump_object_info(object);
964 kmem_cache_free(scan_area_cache, area);
965 goto out_unlock;
966 }
967
968 INIT_HLIST_NODE(&area->node);
969 area->start = ptr;
970 area->size = size;
971
972 hlist_add_head(&area->node, &object->area_list);
973 out_unlock:
974 raw_spin_unlock_irqrestore(&object->lock, flags);
975 put_object(object);
976 }
977
978 /*
979 * Any surplus references (object already gray) to 'ptr' are passed to
980 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
981 * vm_struct may be used as an alternative reference to the vmalloc'ed object
982 * (see free_thread_stack()).
983 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)984 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
985 {
986 unsigned long flags;
987 struct kmemleak_object *object;
988
989 object = find_and_get_object(ptr, 0);
990 if (!object) {
991 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
992 ptr);
993 return;
994 }
995
996 raw_spin_lock_irqsave(&object->lock, flags);
997 object->excess_ref = excess_ref;
998 raw_spin_unlock_irqrestore(&object->lock, flags);
999 put_object(object);
1000 }
1001
1002 /*
1003 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
1004 * pointer. Such object will not be scanned by kmemleak but references to it
1005 * are searched.
1006 */
object_no_scan(unsigned long ptr)1007 static void object_no_scan(unsigned long ptr)
1008 {
1009 unsigned long flags;
1010 struct kmemleak_object *object;
1011
1012 object = find_and_get_object(ptr, 0);
1013 if (!object) {
1014 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1015 return;
1016 }
1017
1018 raw_spin_lock_irqsave(&object->lock, flags);
1019 object->flags |= OBJECT_NO_SCAN;
1020 raw_spin_unlock_irqrestore(&object->lock, flags);
1021 put_object(object);
1022 }
1023
1024 /**
1025 * kmemleak_alloc - register a newly allocated object
1026 * @ptr: pointer to beginning of the object
1027 * @size: size of the object
1028 * @min_count: minimum number of references to this object. If during memory
1029 * scanning a number of references less than @min_count is found,
1030 * the object is reported as a memory leak. If @min_count is 0,
1031 * the object is never reported as a leak. If @min_count is -1,
1032 * the object is ignored (not scanned and not reported as a leak)
1033 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1034 *
1035 * This function is called from the kernel allocators when a new object
1036 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1037 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1038 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1039 gfp_t gfp)
1040 {
1041 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1042
1043 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1044 create_object((unsigned long)ptr, size, min_count, gfp);
1045 }
1046 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1047
1048 /**
1049 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1050 * @ptr: __percpu pointer to beginning of the object
1051 * @size: size of the object
1052 * @gfp: flags used for kmemleak internal memory allocations
1053 *
1054 * This function is called from the kernel percpu allocator when a new object
1055 * (memory block) is allocated (alloc_percpu).
1056 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1057 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1058 gfp_t gfp)
1059 {
1060 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1061
1062 /*
1063 * Percpu allocations are only scanned and not reported as leaks
1064 * (min_count is set to 0).
1065 */
1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 create_object_percpu((unsigned long)ptr, size, 0, gfp);
1068 }
1069 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1070
1071 /**
1072 * kmemleak_vmalloc - register a newly vmalloc'ed object
1073 * @area: pointer to vm_struct
1074 * @size: size of the object
1075 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1076 *
1077 * This function is called from the vmalloc() kernel allocator when a new
1078 * object (memory block) is allocated.
1079 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1080 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1081 {
1082 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1083
1084 /*
1085 * A min_count = 2 is needed because vm_struct contains a reference to
1086 * the virtual address of the vmalloc'ed block.
1087 */
1088 if (kmemleak_enabled) {
1089 create_object((unsigned long)area->addr, size, 2, gfp);
1090 object_set_excess_ref((unsigned long)area,
1091 (unsigned long)area->addr);
1092 }
1093 }
1094 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1095
1096 /**
1097 * kmemleak_free - unregister a previously registered object
1098 * @ptr: pointer to beginning of the object
1099 *
1100 * This function is called from the kernel allocators when an object (memory
1101 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1102 */
kmemleak_free(const void * ptr)1103 void __ref kmemleak_free(const void *ptr)
1104 {
1105 pr_debug("%s(0x%px)\n", __func__, ptr);
1106
1107 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1108 delete_object_full((unsigned long)ptr, 0);
1109 }
1110 EXPORT_SYMBOL_GPL(kmemleak_free);
1111
1112 /**
1113 * kmemleak_free_part - partially unregister a previously registered object
1114 * @ptr: pointer to the beginning or inside the object. This also
1115 * represents the start of the range to be freed
1116 * @size: size to be unregistered
1117 *
1118 * This function is called when only a part of a memory block is freed
1119 * (usually from the bootmem allocator).
1120 */
kmemleak_free_part(const void * ptr,size_t size)1121 void __ref kmemleak_free_part(const void *ptr, size_t size)
1122 {
1123 pr_debug("%s(0x%px)\n", __func__, ptr);
1124
1125 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1126 delete_object_part((unsigned long)ptr, size, 0);
1127 }
1128 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1129
1130 /**
1131 * kmemleak_free_percpu - unregister a previously registered __percpu object
1132 * @ptr: __percpu pointer to beginning of the object
1133 *
1134 * This function is called from the kernel percpu allocator when an object
1135 * (memory block) is freed (free_percpu).
1136 */
kmemleak_free_percpu(const void __percpu * ptr)1137 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1138 {
1139 pr_debug("%s(0x%px)\n", __func__, ptr);
1140
1141 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1142 delete_object_full((unsigned long)ptr, OBJECT_PERCPU);
1143 }
1144 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1145
1146 /**
1147 * kmemleak_update_trace - update object allocation stack trace
1148 * @ptr: pointer to beginning of the object
1149 *
1150 * Override the object allocation stack trace for cases where the actual
1151 * allocation place is not always useful.
1152 */
kmemleak_update_trace(const void * ptr)1153 void __ref kmemleak_update_trace(const void *ptr)
1154 {
1155 struct kmemleak_object *object;
1156 depot_stack_handle_t trace_handle;
1157 unsigned long flags;
1158
1159 pr_debug("%s(0x%px)\n", __func__, ptr);
1160
1161 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1162 return;
1163
1164 object = find_and_get_object((unsigned long)ptr, 1);
1165 if (!object) {
1166 #ifdef DEBUG
1167 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1168 ptr);
1169 #endif
1170 return;
1171 }
1172
1173 trace_handle = set_track_prepare();
1174 raw_spin_lock_irqsave(&object->lock, flags);
1175 object->trace_handle = trace_handle;
1176 raw_spin_unlock_irqrestore(&object->lock, flags);
1177
1178 put_object(object);
1179 }
1180 EXPORT_SYMBOL(kmemleak_update_trace);
1181
1182 /**
1183 * kmemleak_not_leak - mark an allocated object as false positive
1184 * @ptr: pointer to beginning of the object
1185 *
1186 * Calling this function on an object will cause the memory block to no longer
1187 * be reported as leak and always be scanned.
1188 */
kmemleak_not_leak(const void * ptr)1189 void __ref kmemleak_not_leak(const void *ptr)
1190 {
1191 pr_debug("%s(0x%px)\n", __func__, ptr);
1192
1193 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1194 make_gray_object((unsigned long)ptr);
1195 }
1196 EXPORT_SYMBOL(kmemleak_not_leak);
1197
1198 /**
1199 * kmemleak_ignore - ignore an allocated object
1200 * @ptr: pointer to beginning of the object
1201 *
1202 * Calling this function on an object will cause the memory block to be
1203 * ignored (not scanned and not reported as a leak). This is usually done when
1204 * it is known that the corresponding block is not a leak and does not contain
1205 * any references to other allocated memory blocks.
1206 */
kmemleak_ignore(const void * ptr)1207 void __ref kmemleak_ignore(const void *ptr)
1208 {
1209 pr_debug("%s(0x%px)\n", __func__, ptr);
1210
1211 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1212 make_black_object((unsigned long)ptr, 0);
1213 }
1214 EXPORT_SYMBOL(kmemleak_ignore);
1215
1216 /**
1217 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1218 * @ptr: pointer to beginning or inside the object. This also
1219 * represents the start of the scan area
1220 * @size: size of the scan area
1221 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1222 *
1223 * This function is used when it is known that only certain parts of an object
1224 * contain references to other objects. Kmemleak will only scan these areas
1225 * reducing the number false negatives.
1226 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1227 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1228 {
1229 pr_debug("%s(0x%px)\n", __func__, ptr);
1230
1231 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1232 add_scan_area((unsigned long)ptr, size, gfp);
1233 }
1234 EXPORT_SYMBOL(kmemleak_scan_area);
1235
1236 /**
1237 * kmemleak_no_scan - do not scan an allocated object
1238 * @ptr: pointer to beginning of the object
1239 *
1240 * This function notifies kmemleak not to scan the given memory block. Useful
1241 * in situations where it is known that the given object does not contain any
1242 * references to other objects. Kmemleak will not scan such objects reducing
1243 * the number of false negatives.
1244 */
kmemleak_no_scan(const void * ptr)1245 void __ref kmemleak_no_scan(const void *ptr)
1246 {
1247 pr_debug("%s(0x%px)\n", __func__, ptr);
1248
1249 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1250 object_no_scan((unsigned long)ptr);
1251 }
1252 EXPORT_SYMBOL(kmemleak_no_scan);
1253
1254 /**
1255 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1256 * address argument
1257 * @phys: physical address of the object
1258 * @size: size of the object
1259 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1260 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1261 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1262 {
1263 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1264
1265 if (kmemleak_enabled)
1266 /*
1267 * Create object with OBJECT_PHYS flag and
1268 * assume min_count 0.
1269 */
1270 create_object_phys((unsigned long)phys, size, 0, gfp);
1271 }
1272 EXPORT_SYMBOL(kmemleak_alloc_phys);
1273
1274 /**
1275 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1276 * physical address argument
1277 * @phys: physical address if the beginning or inside an object. This
1278 * also represents the start of the range to be freed
1279 * @size: size to be unregistered
1280 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1281 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1282 {
1283 pr_debug("%s(0x%px)\n", __func__, &phys);
1284
1285 if (kmemleak_enabled)
1286 delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1287 }
1288 EXPORT_SYMBOL(kmemleak_free_part_phys);
1289
1290 /**
1291 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1292 * address argument
1293 * @phys: physical address of the object
1294 */
kmemleak_ignore_phys(phys_addr_t phys)1295 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1296 {
1297 pr_debug("%s(0x%px)\n", __func__, &phys);
1298
1299 if (kmemleak_enabled)
1300 make_black_object((unsigned long)phys, OBJECT_PHYS);
1301 }
1302 EXPORT_SYMBOL(kmemleak_ignore_phys);
1303
1304 /*
1305 * Update an object's checksum and return true if it was modified.
1306 */
update_checksum(struct kmemleak_object * object)1307 static bool update_checksum(struct kmemleak_object *object)
1308 {
1309 u32 old_csum = object->checksum;
1310
1311 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
1312 return false;
1313
1314 kasan_disable_current();
1315 kcsan_disable_current();
1316 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1317 kasan_enable_current();
1318 kcsan_enable_current();
1319
1320 return object->checksum != old_csum;
1321 }
1322
1323 /*
1324 * Update an object's references. object->lock must be held by the caller.
1325 */
update_refs(struct kmemleak_object * object)1326 static void update_refs(struct kmemleak_object *object)
1327 {
1328 if (!color_white(object)) {
1329 /* non-orphan, ignored or new */
1330 return;
1331 }
1332
1333 /*
1334 * Increase the object's reference count (number of pointers to the
1335 * memory block). If this count reaches the required minimum, the
1336 * object's color will become gray and it will be added to the
1337 * gray_list.
1338 */
1339 object->count++;
1340 if (color_gray(object)) {
1341 /* put_object() called when removing from gray_list */
1342 WARN_ON(!get_object(object));
1343 list_add_tail(&object->gray_list, &gray_list);
1344 }
1345 }
1346
1347 /*
1348 * Memory scanning is a long process and it needs to be interruptible. This
1349 * function checks whether such interrupt condition occurred.
1350 */
scan_should_stop(void)1351 static int scan_should_stop(void)
1352 {
1353 if (!kmemleak_enabled)
1354 return 1;
1355
1356 /*
1357 * This function may be called from either process or kthread context,
1358 * hence the need to check for both stop conditions.
1359 */
1360 if (current->mm)
1361 return signal_pending(current);
1362 else
1363 return kthread_should_stop();
1364
1365 return 0;
1366 }
1367
1368 /*
1369 * Scan a memory block (exclusive range) for valid pointers and add those
1370 * found to the gray list.
1371 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1372 static void scan_block(void *_start, void *_end,
1373 struct kmemleak_object *scanned)
1374 {
1375 unsigned long *ptr;
1376 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1377 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1378 unsigned long flags;
1379 unsigned long untagged_ptr;
1380
1381 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1382 for (ptr = start; ptr < end; ptr++) {
1383 struct kmemleak_object *object;
1384 unsigned long pointer;
1385 unsigned long excess_ref;
1386
1387 if (scan_should_stop())
1388 break;
1389
1390 kasan_disable_current();
1391 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1392 kasan_enable_current();
1393
1394 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1395 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1396 continue;
1397
1398 /*
1399 * No need for get_object() here since we hold kmemleak_lock.
1400 * object->use_count cannot be dropped to 0 while the object
1401 * is still present in object_tree_root and object_list
1402 * (with updates protected by kmemleak_lock).
1403 */
1404 object = lookup_object(pointer, 1);
1405 if (!object)
1406 continue;
1407 if (object == scanned)
1408 /* self referenced, ignore */
1409 continue;
1410
1411 /*
1412 * Avoid the lockdep recursive warning on object->lock being
1413 * previously acquired in scan_object(). These locks are
1414 * enclosed by scan_mutex.
1415 */
1416 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1417 /* only pass surplus references (object already gray) */
1418 if (color_gray(object)) {
1419 excess_ref = object->excess_ref;
1420 /* no need for update_refs() if object already gray */
1421 } else {
1422 excess_ref = 0;
1423 update_refs(object);
1424 }
1425 raw_spin_unlock(&object->lock);
1426
1427 if (excess_ref) {
1428 object = lookup_object(excess_ref, 0);
1429 if (!object)
1430 continue;
1431 if (object == scanned)
1432 /* circular reference, ignore */
1433 continue;
1434 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1435 update_refs(object);
1436 raw_spin_unlock(&object->lock);
1437 }
1438 }
1439 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1440 }
1441
1442 /*
1443 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1444 */
1445 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1446 static void scan_large_block(void *start, void *end)
1447 {
1448 void *next;
1449
1450 while (start < end) {
1451 next = min(start + MAX_SCAN_SIZE, end);
1452 scan_block(start, next, NULL);
1453 start = next;
1454 cond_resched();
1455 }
1456 }
1457 #endif
1458
1459 /*
1460 * Scan a memory block corresponding to a kmemleak_object. A condition is
1461 * that object->use_count >= 1.
1462 */
scan_object(struct kmemleak_object * object)1463 static void scan_object(struct kmemleak_object *object)
1464 {
1465 struct kmemleak_scan_area *area;
1466 unsigned long flags;
1467
1468 /*
1469 * Once the object->lock is acquired, the corresponding memory block
1470 * cannot be freed (the same lock is acquired in delete_object).
1471 */
1472 raw_spin_lock_irqsave(&object->lock, flags);
1473 if (object->flags & OBJECT_NO_SCAN)
1474 goto out;
1475 if (!(object->flags & OBJECT_ALLOCATED))
1476 /* already freed object */
1477 goto out;
1478
1479 if (object->flags & OBJECT_PERCPU) {
1480 unsigned int cpu;
1481
1482 for_each_possible_cpu(cpu) {
1483 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1484 void *end = start + object->size;
1485
1486 scan_block(start, end, object);
1487
1488 raw_spin_unlock_irqrestore(&object->lock, flags);
1489 cond_resched();
1490 raw_spin_lock_irqsave(&object->lock, flags);
1491 if (!(object->flags & OBJECT_ALLOCATED))
1492 break;
1493 }
1494 } else if (hlist_empty(&object->area_list) ||
1495 object->flags & OBJECT_FULL_SCAN) {
1496 void *start = object->flags & OBJECT_PHYS ?
1497 __va((phys_addr_t)object->pointer) :
1498 (void *)object->pointer;
1499 void *end = start + object->size;
1500 void *next;
1501
1502 do {
1503 next = min(start + MAX_SCAN_SIZE, end);
1504 scan_block(start, next, object);
1505
1506 start = next;
1507 if (start >= end)
1508 break;
1509
1510 raw_spin_unlock_irqrestore(&object->lock, flags);
1511 cond_resched();
1512 raw_spin_lock_irqsave(&object->lock, flags);
1513 } while (object->flags & OBJECT_ALLOCATED);
1514 } else {
1515 hlist_for_each_entry(area, &object->area_list, node)
1516 scan_block((void *)area->start,
1517 (void *)(area->start + area->size),
1518 object);
1519 }
1520 out:
1521 raw_spin_unlock_irqrestore(&object->lock, flags);
1522 }
1523
1524 /*
1525 * Scan the objects already referenced (gray objects). More objects will be
1526 * referenced and, if there are no memory leaks, all the objects are scanned.
1527 */
scan_gray_list(void)1528 static void scan_gray_list(void)
1529 {
1530 struct kmemleak_object *object, *tmp;
1531
1532 /*
1533 * The list traversal is safe for both tail additions and removals
1534 * from inside the loop. The kmemleak objects cannot be freed from
1535 * outside the loop because their use_count was incremented.
1536 */
1537 object = list_entry(gray_list.next, typeof(*object), gray_list);
1538 while (&object->gray_list != &gray_list) {
1539 cond_resched();
1540
1541 /* may add new objects to the list */
1542 if (!scan_should_stop())
1543 scan_object(object);
1544
1545 tmp = list_entry(object->gray_list.next, typeof(*object),
1546 gray_list);
1547
1548 /* remove the object from the list and release it */
1549 list_del(&object->gray_list);
1550 put_object(object);
1551
1552 object = tmp;
1553 }
1554 WARN_ON(!list_empty(&gray_list));
1555 }
1556
1557 /*
1558 * Conditionally call resched() in an object iteration loop while making sure
1559 * that the given object won't go away without RCU read lock by performing a
1560 * get_object() if necessaary.
1561 */
kmemleak_cond_resched(struct kmemleak_object * object)1562 static void kmemleak_cond_resched(struct kmemleak_object *object)
1563 {
1564 if (!get_object(object))
1565 return; /* Try next object */
1566
1567 raw_spin_lock_irq(&kmemleak_lock);
1568 if (object->del_state & DELSTATE_REMOVED)
1569 goto unlock_put; /* Object removed */
1570 object->del_state |= DELSTATE_NO_DELETE;
1571 raw_spin_unlock_irq(&kmemleak_lock);
1572
1573 rcu_read_unlock();
1574 cond_resched();
1575 rcu_read_lock();
1576
1577 raw_spin_lock_irq(&kmemleak_lock);
1578 if (object->del_state & DELSTATE_REMOVED)
1579 list_del_rcu(&object->object_list);
1580 object->del_state &= ~DELSTATE_NO_DELETE;
1581 unlock_put:
1582 raw_spin_unlock_irq(&kmemleak_lock);
1583 put_object(object);
1584 }
1585
1586 /*
1587 * Scan data sections and all the referenced memory blocks allocated via the
1588 * kernel's standard allocators. This function must be called with the
1589 * scan_mutex held.
1590 */
kmemleak_scan(void)1591 static void kmemleak_scan(void)
1592 {
1593 struct kmemleak_object *object;
1594 struct zone *zone;
1595 int __maybe_unused i;
1596 int new_leaks = 0;
1597
1598 jiffies_last_scan = jiffies;
1599
1600 /* prepare the kmemleak_object's */
1601 rcu_read_lock();
1602 list_for_each_entry_rcu(object, &object_list, object_list) {
1603 raw_spin_lock_irq(&object->lock);
1604 #ifdef DEBUG
1605 /*
1606 * With a few exceptions there should be a maximum of
1607 * 1 reference to any object at this point.
1608 */
1609 if (atomic_read(&object->use_count) > 1) {
1610 pr_debug("object->use_count = %d\n",
1611 atomic_read(&object->use_count));
1612 dump_object_info(object);
1613 }
1614 #endif
1615
1616 /* ignore objects outside lowmem (paint them black) */
1617 if ((object->flags & OBJECT_PHYS) &&
1618 !(object->flags & OBJECT_NO_SCAN)) {
1619 unsigned long phys = object->pointer;
1620
1621 if (PHYS_PFN(phys) < min_low_pfn ||
1622 PHYS_PFN(phys + object->size) >= max_low_pfn)
1623 __paint_it(object, KMEMLEAK_BLACK);
1624 }
1625
1626 /* reset the reference count (whiten the object) */
1627 object->count = 0;
1628 if (color_gray(object) && get_object(object))
1629 list_add_tail(&object->gray_list, &gray_list);
1630
1631 raw_spin_unlock_irq(&object->lock);
1632
1633 if (need_resched())
1634 kmemleak_cond_resched(object);
1635 }
1636 rcu_read_unlock();
1637
1638 #ifdef CONFIG_SMP
1639 /* per-cpu sections scanning */
1640 for_each_possible_cpu(i)
1641 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1642 __per_cpu_end + per_cpu_offset(i));
1643 #endif
1644
1645 /*
1646 * Struct page scanning for each node.
1647 */
1648 get_online_mems();
1649 for_each_populated_zone(zone) {
1650 unsigned long start_pfn = zone->zone_start_pfn;
1651 unsigned long end_pfn = zone_end_pfn(zone);
1652 unsigned long pfn;
1653
1654 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1655 struct page *page = pfn_to_online_page(pfn);
1656
1657 if (!(pfn & 63))
1658 cond_resched();
1659
1660 if (!page)
1661 continue;
1662
1663 /* only scan pages belonging to this zone */
1664 if (page_zone(page) != zone)
1665 continue;
1666 /* only scan if page is in use */
1667 if (page_count(page) == 0)
1668 continue;
1669 scan_block(page, page + 1, NULL);
1670 }
1671 }
1672 put_online_mems();
1673
1674 /*
1675 * Scanning the task stacks (may introduce false negatives).
1676 */
1677 if (kmemleak_stack_scan) {
1678 struct task_struct *p, *g;
1679
1680 rcu_read_lock();
1681 for_each_process_thread(g, p) {
1682 void *stack = try_get_task_stack(p);
1683 if (stack) {
1684 scan_block(stack, stack + THREAD_SIZE, NULL);
1685 put_task_stack(p);
1686 }
1687 }
1688 rcu_read_unlock();
1689 }
1690
1691 /*
1692 * Scan the objects already referenced from the sections scanned
1693 * above.
1694 */
1695 scan_gray_list();
1696
1697 /*
1698 * Check for new or unreferenced objects modified since the previous
1699 * scan and color them gray until the next scan.
1700 */
1701 rcu_read_lock();
1702 list_for_each_entry_rcu(object, &object_list, object_list) {
1703 if (need_resched())
1704 kmemleak_cond_resched(object);
1705
1706 /*
1707 * This is racy but we can save the overhead of lock/unlock
1708 * calls. The missed objects, if any, should be caught in
1709 * the next scan.
1710 */
1711 if (!color_white(object))
1712 continue;
1713 raw_spin_lock_irq(&object->lock);
1714 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1715 && update_checksum(object) && get_object(object)) {
1716 /* color it gray temporarily */
1717 object->count = object->min_count;
1718 list_add_tail(&object->gray_list, &gray_list);
1719 }
1720 raw_spin_unlock_irq(&object->lock);
1721 }
1722 rcu_read_unlock();
1723
1724 /*
1725 * Re-scan the gray list for modified unreferenced objects.
1726 */
1727 scan_gray_list();
1728
1729 /*
1730 * If scanning was stopped do not report any new unreferenced objects.
1731 */
1732 if (scan_should_stop())
1733 return;
1734
1735 /*
1736 * Scanning result reporting.
1737 */
1738 rcu_read_lock();
1739 list_for_each_entry_rcu(object, &object_list, object_list) {
1740 if (need_resched())
1741 kmemleak_cond_resched(object);
1742
1743 /*
1744 * This is racy but we can save the overhead of lock/unlock
1745 * calls. The missed objects, if any, should be caught in
1746 * the next scan.
1747 */
1748 if (!color_white(object))
1749 continue;
1750 raw_spin_lock_irq(&object->lock);
1751 if (unreferenced_object(object) &&
1752 !(object->flags & OBJECT_REPORTED)) {
1753 object->flags |= OBJECT_REPORTED;
1754
1755 if (kmemleak_verbose)
1756 print_unreferenced(NULL, object);
1757
1758 new_leaks++;
1759 }
1760 raw_spin_unlock_irq(&object->lock);
1761 }
1762 rcu_read_unlock();
1763
1764 if (new_leaks) {
1765 kmemleak_found_leaks = true;
1766
1767 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1768 new_leaks);
1769 }
1770
1771 }
1772
1773 /*
1774 * Thread function performing automatic memory scanning. Unreferenced objects
1775 * at the end of a memory scan are reported but only the first time.
1776 */
kmemleak_scan_thread(void * arg)1777 static int kmemleak_scan_thread(void *arg)
1778 {
1779 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1780
1781 pr_info("Automatic memory scanning thread started\n");
1782 set_user_nice(current, 10);
1783
1784 /*
1785 * Wait before the first scan to allow the system to fully initialize.
1786 */
1787 if (first_run) {
1788 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1789 first_run = 0;
1790 while (timeout && !kthread_should_stop())
1791 timeout = schedule_timeout_interruptible(timeout);
1792 }
1793
1794 while (!kthread_should_stop()) {
1795 signed long timeout = READ_ONCE(jiffies_scan_wait);
1796
1797 mutex_lock(&scan_mutex);
1798 kmemleak_scan();
1799 mutex_unlock(&scan_mutex);
1800
1801 /* wait before the next scan */
1802 while (timeout && !kthread_should_stop())
1803 timeout = schedule_timeout_interruptible(timeout);
1804 }
1805
1806 pr_info("Automatic memory scanning thread ended\n");
1807
1808 return 0;
1809 }
1810
1811 /*
1812 * Start the automatic memory scanning thread. This function must be called
1813 * with the scan_mutex held.
1814 */
start_scan_thread(void)1815 static void start_scan_thread(void)
1816 {
1817 if (scan_thread)
1818 return;
1819 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1820 if (IS_ERR(scan_thread)) {
1821 pr_warn("Failed to create the scan thread\n");
1822 scan_thread = NULL;
1823 }
1824 }
1825
1826 /*
1827 * Stop the automatic memory scanning thread.
1828 */
stop_scan_thread(void)1829 static void stop_scan_thread(void)
1830 {
1831 if (scan_thread) {
1832 kthread_stop(scan_thread);
1833 scan_thread = NULL;
1834 }
1835 }
1836
1837 /*
1838 * Iterate over the object_list and return the first valid object at or after
1839 * the required position with its use_count incremented. The function triggers
1840 * a memory scanning when the pos argument points to the first position.
1841 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1842 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1843 {
1844 struct kmemleak_object *object;
1845 loff_t n = *pos;
1846 int err;
1847
1848 err = mutex_lock_interruptible(&scan_mutex);
1849 if (err < 0)
1850 return ERR_PTR(err);
1851
1852 rcu_read_lock();
1853 list_for_each_entry_rcu(object, &object_list, object_list) {
1854 if (n-- > 0)
1855 continue;
1856 if (get_object(object))
1857 goto out;
1858 }
1859 object = NULL;
1860 out:
1861 return object;
1862 }
1863
1864 /*
1865 * Return the next object in the object_list. The function decrements the
1866 * use_count of the previous object and increases that of the next one.
1867 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1868 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869 {
1870 struct kmemleak_object *prev_obj = v;
1871 struct kmemleak_object *next_obj = NULL;
1872 struct kmemleak_object *obj = prev_obj;
1873
1874 ++(*pos);
1875
1876 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1877 if (get_object(obj)) {
1878 next_obj = obj;
1879 break;
1880 }
1881 }
1882
1883 put_object(prev_obj);
1884 return next_obj;
1885 }
1886
1887 /*
1888 * Decrement the use_count of the last object required, if any.
1889 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1890 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1891 {
1892 if (!IS_ERR(v)) {
1893 /*
1894 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1895 * waiting was interrupted, so only release it if !IS_ERR.
1896 */
1897 rcu_read_unlock();
1898 mutex_unlock(&scan_mutex);
1899 if (v)
1900 put_object(v);
1901 }
1902 }
1903
1904 /*
1905 * Print the information for an unreferenced object to the seq file.
1906 */
kmemleak_seq_show(struct seq_file * seq,void * v)1907 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1908 {
1909 struct kmemleak_object *object = v;
1910 unsigned long flags;
1911
1912 raw_spin_lock_irqsave(&object->lock, flags);
1913 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1914 print_unreferenced(seq, object);
1915 raw_spin_unlock_irqrestore(&object->lock, flags);
1916 return 0;
1917 }
1918
1919 static const struct seq_operations kmemleak_seq_ops = {
1920 .start = kmemleak_seq_start,
1921 .next = kmemleak_seq_next,
1922 .stop = kmemleak_seq_stop,
1923 .show = kmemleak_seq_show,
1924 };
1925
kmemleak_open(struct inode * inode,struct file * file)1926 static int kmemleak_open(struct inode *inode, struct file *file)
1927 {
1928 return seq_open(file, &kmemleak_seq_ops);
1929 }
1930
dump_str_object_info(const char * str)1931 static int dump_str_object_info(const char *str)
1932 {
1933 unsigned long flags;
1934 struct kmemleak_object *object;
1935 unsigned long addr;
1936
1937 if (kstrtoul(str, 0, &addr))
1938 return -EINVAL;
1939 object = find_and_get_object(addr, 0);
1940 if (!object) {
1941 pr_info("Unknown object at 0x%08lx\n", addr);
1942 return -EINVAL;
1943 }
1944
1945 raw_spin_lock_irqsave(&object->lock, flags);
1946 dump_object_info(object);
1947 raw_spin_unlock_irqrestore(&object->lock, flags);
1948
1949 put_object(object);
1950 return 0;
1951 }
1952
1953 /*
1954 * We use grey instead of black to ensure we can do future scans on the same
1955 * objects. If we did not do future scans these black objects could
1956 * potentially contain references to newly allocated objects in the future and
1957 * we'd end up with false positives.
1958 */
kmemleak_clear(void)1959 static void kmemleak_clear(void)
1960 {
1961 struct kmemleak_object *object;
1962
1963 rcu_read_lock();
1964 list_for_each_entry_rcu(object, &object_list, object_list) {
1965 raw_spin_lock_irq(&object->lock);
1966 if ((object->flags & OBJECT_REPORTED) &&
1967 unreferenced_object(object))
1968 __paint_it(object, KMEMLEAK_GREY);
1969 raw_spin_unlock_irq(&object->lock);
1970 }
1971 rcu_read_unlock();
1972
1973 kmemleak_found_leaks = false;
1974 }
1975
1976 static void __kmemleak_do_cleanup(void);
1977
1978 /*
1979 * File write operation to configure kmemleak at run-time. The following
1980 * commands can be written to the /sys/kernel/debug/kmemleak file:
1981 * off - disable kmemleak (irreversible)
1982 * stack=on - enable the task stacks scanning
1983 * stack=off - disable the tasks stacks scanning
1984 * scan=on - start the automatic memory scanning thread
1985 * scan=off - stop the automatic memory scanning thread
1986 * scan=... - set the automatic memory scanning period in seconds (0 to
1987 * disable it)
1988 * scan - trigger a memory scan
1989 * clear - mark all current reported unreferenced kmemleak objects as
1990 * grey to ignore printing them, or free all kmemleak objects
1991 * if kmemleak has been disabled.
1992 * dump=... - dump information about the object found at the given address
1993 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1994 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1995 size_t size, loff_t *ppos)
1996 {
1997 char buf[64];
1998 int buf_size;
1999 int ret;
2000
2001 buf_size = min(size, (sizeof(buf) - 1));
2002 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2003 return -EFAULT;
2004 buf[buf_size] = 0;
2005
2006 ret = mutex_lock_interruptible(&scan_mutex);
2007 if (ret < 0)
2008 return ret;
2009
2010 if (strncmp(buf, "clear", 5) == 0) {
2011 if (kmemleak_enabled)
2012 kmemleak_clear();
2013 else
2014 __kmemleak_do_cleanup();
2015 goto out;
2016 }
2017
2018 if (!kmemleak_enabled) {
2019 ret = -EPERM;
2020 goto out;
2021 }
2022
2023 if (strncmp(buf, "off", 3) == 0)
2024 kmemleak_disable();
2025 else if (strncmp(buf, "stack=on", 8) == 0)
2026 kmemleak_stack_scan = 1;
2027 else if (strncmp(buf, "stack=off", 9) == 0)
2028 kmemleak_stack_scan = 0;
2029 else if (strncmp(buf, "scan=on", 7) == 0)
2030 start_scan_thread();
2031 else if (strncmp(buf, "scan=off", 8) == 0)
2032 stop_scan_thread();
2033 else if (strncmp(buf, "scan=", 5) == 0) {
2034 unsigned secs;
2035 unsigned long msecs;
2036
2037 ret = kstrtouint(buf + 5, 0, &secs);
2038 if (ret < 0)
2039 goto out;
2040
2041 msecs = secs * MSEC_PER_SEC;
2042 if (msecs > UINT_MAX)
2043 msecs = UINT_MAX;
2044
2045 stop_scan_thread();
2046 if (msecs) {
2047 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2048 start_scan_thread();
2049 }
2050 } else if (strncmp(buf, "scan", 4) == 0)
2051 kmemleak_scan();
2052 else if (strncmp(buf, "dump=", 5) == 0)
2053 ret = dump_str_object_info(buf + 5);
2054 else
2055 ret = -EINVAL;
2056
2057 out:
2058 mutex_unlock(&scan_mutex);
2059 if (ret < 0)
2060 return ret;
2061
2062 /* ignore the rest of the buffer, only one command at a time */
2063 *ppos += size;
2064 return size;
2065 }
2066
2067 static const struct file_operations kmemleak_fops = {
2068 .owner = THIS_MODULE,
2069 .open = kmemleak_open,
2070 .read = seq_read,
2071 .write = kmemleak_write,
2072 .llseek = seq_lseek,
2073 .release = seq_release,
2074 };
2075
__kmemleak_do_cleanup(void)2076 static void __kmemleak_do_cleanup(void)
2077 {
2078 struct kmemleak_object *object, *tmp;
2079
2080 /*
2081 * Kmemleak has already been disabled, no need for RCU list traversal
2082 * or kmemleak_lock held.
2083 */
2084 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2085 __remove_object(object);
2086 __delete_object(object);
2087 }
2088 }
2089
2090 /*
2091 * Stop the memory scanning thread and free the kmemleak internal objects if
2092 * no previous scan thread (otherwise, kmemleak may still have some useful
2093 * information on memory leaks).
2094 */
kmemleak_do_cleanup(struct work_struct * work)2095 static void kmemleak_do_cleanup(struct work_struct *work)
2096 {
2097 stop_scan_thread();
2098
2099 mutex_lock(&scan_mutex);
2100 /*
2101 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2102 * longer track object freeing. Ordering of the scan thread stopping and
2103 * the memory accesses below is guaranteed by the kthread_stop()
2104 * function.
2105 */
2106 kmemleak_free_enabled = 0;
2107 mutex_unlock(&scan_mutex);
2108
2109 if (!kmemleak_found_leaks)
2110 __kmemleak_do_cleanup();
2111 else
2112 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2113 }
2114
2115 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2116
2117 /*
2118 * Disable kmemleak. No memory allocation/freeing will be traced once this
2119 * function is called. Disabling kmemleak is an irreversible operation.
2120 */
kmemleak_disable(void)2121 static void kmemleak_disable(void)
2122 {
2123 /* atomically check whether it was already invoked */
2124 if (cmpxchg(&kmemleak_error, 0, 1))
2125 return;
2126
2127 /* stop any memory operation tracing */
2128 kmemleak_enabled = 0;
2129
2130 /* check whether it is too early for a kernel thread */
2131 if (kmemleak_late_initialized)
2132 schedule_work(&cleanup_work);
2133 else
2134 kmemleak_free_enabled = 0;
2135
2136 pr_info("Kernel memory leak detector disabled\n");
2137 }
2138
2139 /*
2140 * Allow boot-time kmemleak disabling (enabled by default).
2141 */
kmemleak_boot_config(char * str)2142 static int __init kmemleak_boot_config(char *str)
2143 {
2144 if (!str)
2145 return -EINVAL;
2146 if (strcmp(str, "off") == 0)
2147 kmemleak_disable();
2148 else if (strcmp(str, "on") == 0) {
2149 kmemleak_skip_disable = 1;
2150 stack_depot_request_early_init();
2151 }
2152 else
2153 return -EINVAL;
2154 return 0;
2155 }
2156 early_param("kmemleak", kmemleak_boot_config);
2157
2158 /*
2159 * Kmemleak initialization.
2160 */
kmemleak_init(void)2161 void __init kmemleak_init(void)
2162 {
2163 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2164 if (!kmemleak_skip_disable) {
2165 kmemleak_disable();
2166 return;
2167 }
2168 #endif
2169
2170 if (kmemleak_error)
2171 return;
2172
2173 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2174 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2175
2176 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2177 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2178
2179 /* register the data/bss sections */
2180 create_object((unsigned long)_sdata, _edata - _sdata,
2181 KMEMLEAK_GREY, GFP_ATOMIC);
2182 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2183 KMEMLEAK_GREY, GFP_ATOMIC);
2184 /* only register .data..ro_after_init if not within .data */
2185 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2186 create_object((unsigned long)__start_ro_after_init,
2187 __end_ro_after_init - __start_ro_after_init,
2188 KMEMLEAK_GREY, GFP_ATOMIC);
2189 }
2190
2191 /*
2192 * Late initialization function.
2193 */
kmemleak_late_init(void)2194 static int __init kmemleak_late_init(void)
2195 {
2196 kmemleak_late_initialized = 1;
2197
2198 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2199
2200 if (kmemleak_error) {
2201 /*
2202 * Some error occurred and kmemleak was disabled. There is a
2203 * small chance that kmemleak_disable() was called immediately
2204 * after setting kmemleak_late_initialized and we may end up with
2205 * two clean-up threads but serialized by scan_mutex.
2206 */
2207 schedule_work(&cleanup_work);
2208 return -ENOMEM;
2209 }
2210
2211 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2212 mutex_lock(&scan_mutex);
2213 start_scan_thread();
2214 mutex_unlock(&scan_mutex);
2215 }
2216
2217 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2218 mem_pool_free_count);
2219
2220 return 0;
2221 }
2222 late_initcall(kmemleak_late_init);
2223