1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34
35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
37
38 /* Exported common interfaces */
39 void call_rcu(struct rcu_head *head, rcu_callback_t func);
40 void rcu_barrier_tasks(void);
41 void rcu_barrier_tasks_rude(void);
42 void synchronize_rcu(void);
43
44 struct rcu_gp_oldstate;
45 unsigned long get_completed_synchronize_rcu(void);
46 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
47
48 // Maximum number of unsigned long values corresponding to
49 // not-yet-completed RCU grace periods.
50 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
51
52 /**
53 * same_state_synchronize_rcu - Are two old-state values identical?
54 * @oldstate1: First old-state value.
55 * @oldstate2: Second old-state value.
56 *
57 * The two old-state values must have been obtained from either
58 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
59 * get_completed_synchronize_rcu(). Returns @true if the two values are
60 * identical and @false otherwise. This allows structures whose lifetimes
61 * are tracked by old-state values to push these values to a list header,
62 * allowing those structures to be slightly smaller.
63 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)64 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
65 {
66 return oldstate1 == oldstate2;
67 }
68
69 #ifdef CONFIG_PREEMPT_RCU
70
71 void __rcu_read_lock(void);
72 void __rcu_read_unlock(void);
73
74 /*
75 * Defined as a macro as it is a very low level header included from
76 * areas that don't even know about current. This gives the rcu_read_lock()
77 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
78 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
79 */
80 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
81
82 #else /* #ifdef CONFIG_PREEMPT_RCU */
83
84 #ifdef CONFIG_TINY_RCU
85 #define rcu_read_unlock_strict() do { } while (0)
86 #else
87 void rcu_read_unlock_strict(void);
88 #endif
89
__rcu_read_lock(void)90 static inline void __rcu_read_lock(void)
91 {
92 preempt_disable();
93 }
94
__rcu_read_unlock(void)95 static inline void __rcu_read_unlock(void)
96 {
97 preempt_enable();
98 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
99 rcu_read_unlock_strict();
100 }
101
rcu_preempt_depth(void)102 static inline int rcu_preempt_depth(void)
103 {
104 return 0;
105 }
106
107 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
108
109 #ifdef CONFIG_RCU_LAZY
110 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
111 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)112 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
113 {
114 call_rcu(head, func);
115 }
116 #endif
117
118 /* Internal to kernel */
119 void rcu_init(void);
120 extern int rcu_scheduler_active;
121 void rcu_sched_clock_irq(int user);
122
123 #ifdef CONFIG_TASKS_RCU_GENERIC
124 void rcu_init_tasks_generic(void);
125 #else
rcu_init_tasks_generic(void)126 static inline void rcu_init_tasks_generic(void) { }
127 #endif
128
129 #ifdef CONFIG_RCU_STALL_COMMON
130 void rcu_sysrq_start(void);
131 void rcu_sysrq_end(void);
132 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)133 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)134 static inline void rcu_sysrq_end(void) { }
135 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
136
137 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
138 void rcu_irq_work_resched(void);
139 #else
rcu_irq_work_resched(void)140 static inline void rcu_irq_work_resched(void) { }
141 #endif
142
143 #ifdef CONFIG_RCU_NOCB_CPU
144 void rcu_init_nohz(void);
145 int rcu_nocb_cpu_offload(int cpu);
146 int rcu_nocb_cpu_deoffload(int cpu);
147 void rcu_nocb_flush_deferred_wakeup(void);
148 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)149 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)150 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)151 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)152 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
153 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
154
155 /*
156 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
157 * This is a macro rather than an inline function to avoid #include hell.
158 */
159 #ifdef CONFIG_TASKS_RCU_GENERIC
160
161 # ifdef CONFIG_TASKS_RCU
162 # define rcu_tasks_classic_qs(t, preempt) \
163 do { \
164 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
165 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
166 } while (0)
167 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
168 void synchronize_rcu_tasks(void);
169 # else
170 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
171 # define call_rcu_tasks call_rcu
172 # define synchronize_rcu_tasks synchronize_rcu
173 # endif
174
175 # ifdef CONFIG_TASKS_TRACE_RCU
176 // Bits for ->trc_reader_special.b.need_qs field.
177 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
178 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
179
180 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
181 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
182
183 # define rcu_tasks_trace_qs(t) \
184 do { \
185 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
186 \
187 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
188 likely(!___rttq_nesting)) { \
189 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \
190 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
191 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
192 rcu_tasks_trace_qs_blkd(t); \
193 } \
194 } while (0)
195 # else
196 # define rcu_tasks_trace_qs(t) do { } while (0)
197 # endif
198
199 #define rcu_tasks_qs(t, preempt) \
200 do { \
201 rcu_tasks_classic_qs((t), (preempt)); \
202 rcu_tasks_trace_qs(t); \
203 } while (0)
204
205 # ifdef CONFIG_TASKS_RUDE_RCU
206 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
207 void synchronize_rcu_tasks_rude(void);
208 # endif
209
210 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
211 void exit_tasks_rcu_start(void);
212 void exit_tasks_rcu_stop(void);
213 void exit_tasks_rcu_finish(void);
214 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
215 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
216 #define rcu_tasks_qs(t, preempt) do { } while (0)
217 #define rcu_note_voluntary_context_switch(t) do { } while (0)
218 #define call_rcu_tasks call_rcu
219 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)220 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)221 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)222 static inline void exit_tasks_rcu_finish(void) { }
223 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
224
225 /**
226 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
227 *
228 * As an accident of implementation, an RCU Tasks Trace grace period also
229 * acts as an RCU grace period. However, this could change at any time.
230 * Code relying on this accident must call this function to verify that
231 * this accident is still happening.
232 *
233 * You have been warned!
234 */
rcu_trace_implies_rcu_gp(void)235 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
236
237 /**
238 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
239 *
240 * This macro resembles cond_resched(), except that it is defined to
241 * report potential quiescent states to RCU-tasks even if the cond_resched()
242 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
243 */
244 #define cond_resched_tasks_rcu_qs() \
245 do { \
246 rcu_tasks_qs(current, false); \
247 cond_resched(); \
248 } while (0)
249
250 /*
251 * Infrastructure to implement the synchronize_() primitives in
252 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
253 */
254
255 #if defined(CONFIG_TREE_RCU)
256 #include <linux/rcutree.h>
257 #elif defined(CONFIG_TINY_RCU)
258 #include <linux/rcutiny.h>
259 #else
260 #error "Unknown RCU implementation specified to kernel configuration"
261 #endif
262
263 /*
264 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
265 * are needed for dynamic initialization and destruction of rcu_head
266 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
267 * dynamic initialization and destruction of statically allocated rcu_head
268 * structures. However, rcu_head structures allocated dynamically in the
269 * heap don't need any initialization.
270 */
271 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
272 void init_rcu_head(struct rcu_head *head);
273 void destroy_rcu_head(struct rcu_head *head);
274 void init_rcu_head_on_stack(struct rcu_head *head);
275 void destroy_rcu_head_on_stack(struct rcu_head *head);
276 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)277 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)278 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)279 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)280 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
281 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
282
283 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
284 bool rcu_lockdep_current_cpu_online(void);
285 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)286 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
287 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
288
289 extern struct lockdep_map rcu_lock_map;
290 extern struct lockdep_map rcu_bh_lock_map;
291 extern struct lockdep_map rcu_sched_lock_map;
292 extern struct lockdep_map rcu_callback_map;
293
294 #ifdef CONFIG_DEBUG_LOCK_ALLOC
295
rcu_lock_acquire(struct lockdep_map * map)296 static inline void rcu_lock_acquire(struct lockdep_map *map)
297 {
298 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
299 }
300
rcu_try_lock_acquire(struct lockdep_map * map)301 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
302 {
303 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
304 }
305
rcu_lock_release(struct lockdep_map * map)306 static inline void rcu_lock_release(struct lockdep_map *map)
307 {
308 lock_release(map, _THIS_IP_);
309 }
310
311 int debug_lockdep_rcu_enabled(void);
312 int rcu_read_lock_held(void);
313 int rcu_read_lock_bh_held(void);
314 int rcu_read_lock_sched_held(void);
315 int rcu_read_lock_any_held(void);
316
317 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
318
319 # define rcu_lock_acquire(a) do { } while (0)
320 # define rcu_try_lock_acquire(a) do { } while (0)
321 # define rcu_lock_release(a) do { } while (0)
322
rcu_read_lock_held(void)323 static inline int rcu_read_lock_held(void)
324 {
325 return 1;
326 }
327
rcu_read_lock_bh_held(void)328 static inline int rcu_read_lock_bh_held(void)
329 {
330 return 1;
331 }
332
rcu_read_lock_sched_held(void)333 static inline int rcu_read_lock_sched_held(void)
334 {
335 return !preemptible();
336 }
337
rcu_read_lock_any_held(void)338 static inline int rcu_read_lock_any_held(void)
339 {
340 return !preemptible();
341 }
342
debug_lockdep_rcu_enabled(void)343 static inline int debug_lockdep_rcu_enabled(void)
344 {
345 return 0;
346 }
347
348 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
349
350 #ifdef CONFIG_PROVE_RCU
351
352 /**
353 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
354 * @c: condition to check
355 * @s: informative message
356 *
357 * This checks debug_lockdep_rcu_enabled() before checking (c) to
358 * prevent early boot splats due to lockdep not yet being initialized,
359 * and rechecks it after checking (c) to prevent false-positive splats
360 * due to races with lockdep being disabled. See commit 3066820034b5dd
361 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
362 */
363 #define RCU_LOCKDEP_WARN(c, s) \
364 do { \
365 static bool __section(".data.unlikely") __warned; \
366 if (debug_lockdep_rcu_enabled() && (c) && \
367 debug_lockdep_rcu_enabled() && !__warned) { \
368 __warned = true; \
369 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
370 } \
371 } while (0)
372
373 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)374 static inline void rcu_preempt_sleep_check(void)
375 {
376 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
377 "Illegal context switch in RCU read-side critical section");
378 }
379 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)380 static inline void rcu_preempt_sleep_check(void) { }
381 #endif /* #else #ifdef CONFIG_PROVE_RCU */
382
383 #define rcu_sleep_check() \
384 do { \
385 rcu_preempt_sleep_check(); \
386 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
387 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
388 "Illegal context switch in RCU-bh read-side critical section"); \
389 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
390 "Illegal context switch in RCU-sched read-side critical section"); \
391 } while (0)
392
393 #else /* #ifdef CONFIG_PROVE_RCU */
394
395 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
396 #define rcu_sleep_check() do { } while (0)
397
398 #endif /* #else #ifdef CONFIG_PROVE_RCU */
399
400 /*
401 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
402 * and rcu_assign_pointer(). Some of these could be folded into their
403 * callers, but they are left separate in order to ease introduction of
404 * multiple pointers markings to match different RCU implementations
405 * (e.g., __srcu), should this make sense in the future.
406 */
407
408 #ifdef __CHECKER__
409 #define rcu_check_sparse(p, space) \
410 ((void)(((typeof(*p) space *)p) == p))
411 #else /* #ifdef __CHECKER__ */
412 #define rcu_check_sparse(p, space)
413 #endif /* #else #ifdef __CHECKER__ */
414
415 #define __unrcu_pointer(p, local) \
416 ({ \
417 typeof(*p) *local = (typeof(*p) *__force)(p); \
418 rcu_check_sparse(p, __rcu); \
419 ((typeof(*p) __force __kernel *)(local)); \
420 })
421 /**
422 * unrcu_pointer - mark a pointer as not being RCU protected
423 * @p: pointer needing to lose its __rcu property
424 *
425 * Converts @p from an __rcu pointer to a __kernel pointer.
426 * This allows an __rcu pointer to be used with xchg() and friends.
427 */
428 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
429
430 #define __rcu_access_pointer(p, local, space) \
431 ({ \
432 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
433 rcu_check_sparse(p, space); \
434 ((typeof(*p) __force __kernel *)(local)); \
435 })
436 #define __rcu_dereference_check(p, local, c, space) \
437 ({ \
438 /* Dependency order vs. p above. */ \
439 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
440 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
441 rcu_check_sparse(p, space); \
442 ((typeof(*p) __force __kernel *)(local)); \
443 })
444 #define __rcu_dereference_protected(p, local, c, space) \
445 ({ \
446 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
447 rcu_check_sparse(p, space); \
448 ((typeof(*p) __force __kernel *)(p)); \
449 })
450 #define __rcu_dereference_raw(p, local) \
451 ({ \
452 /* Dependency order vs. p above. */ \
453 typeof(p) local = READ_ONCE(p); \
454 ((typeof(*p) __force __kernel *)(local)); \
455 })
456 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
457
458 /**
459 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
460 * @v: The value to statically initialize with.
461 */
462 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
463
464 /**
465 * rcu_assign_pointer() - assign to RCU-protected pointer
466 * @p: pointer to assign to
467 * @v: value to assign (publish)
468 *
469 * Assigns the specified value to the specified RCU-protected
470 * pointer, ensuring that any concurrent RCU readers will see
471 * any prior initialization.
472 *
473 * Inserts memory barriers on architectures that require them
474 * (which is most of them), and also prevents the compiler from
475 * reordering the code that initializes the structure after the pointer
476 * assignment. More importantly, this call documents which pointers
477 * will be dereferenced by RCU read-side code.
478 *
479 * In some special cases, you may use RCU_INIT_POINTER() instead
480 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
481 * to the fact that it does not constrain either the CPU or the compiler.
482 * That said, using RCU_INIT_POINTER() when you should have used
483 * rcu_assign_pointer() is a very bad thing that results in
484 * impossible-to-diagnose memory corruption. So please be careful.
485 * See the RCU_INIT_POINTER() comment header for details.
486 *
487 * Note that rcu_assign_pointer() evaluates each of its arguments only
488 * once, appearances notwithstanding. One of the "extra" evaluations
489 * is in typeof() and the other visible only to sparse (__CHECKER__),
490 * neither of which actually execute the argument. As with most cpp
491 * macros, this execute-arguments-only-once property is important, so
492 * please be careful when making changes to rcu_assign_pointer() and the
493 * other macros that it invokes.
494 */
495 #define rcu_assign_pointer(p, v) \
496 do { \
497 uintptr_t _r_a_p__v = (uintptr_t)(v); \
498 rcu_check_sparse(p, __rcu); \
499 \
500 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
501 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
502 else \
503 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
504 } while (0)
505
506 /**
507 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
508 * @rcu_ptr: RCU pointer, whose old value is returned
509 * @ptr: regular pointer
510 * @c: the lockdep conditions under which the dereference will take place
511 *
512 * Perform a replacement, where @rcu_ptr is an RCU-annotated
513 * pointer and @c is the lockdep argument that is passed to the
514 * rcu_dereference_protected() call used to read that pointer. The old
515 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
516 */
517 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
518 ({ \
519 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
520 rcu_assign_pointer((rcu_ptr), (ptr)); \
521 __tmp; \
522 })
523
524 /**
525 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
526 * @p: The pointer to read
527 *
528 * Return the value of the specified RCU-protected pointer, but omit the
529 * lockdep checks for being in an RCU read-side critical section. This is
530 * useful when the value of this pointer is accessed, but the pointer is
531 * not dereferenced, for example, when testing an RCU-protected pointer
532 * against NULL. Although rcu_access_pointer() may also be used in cases
533 * where update-side locks prevent the value of the pointer from changing,
534 * you should instead use rcu_dereference_protected() for this use case.
535 * Within an RCU read-side critical section, there is little reason to
536 * use rcu_access_pointer().
537 *
538 * It is usually best to test the rcu_access_pointer() return value
539 * directly in order to avoid accidental dereferences being introduced
540 * by later inattentive changes. In other words, assigning the
541 * rcu_access_pointer() return value to a local variable results in an
542 * accident waiting to happen.
543 *
544 * It is also permissible to use rcu_access_pointer() when read-side
545 * access to the pointer was removed at least one grace period ago, as is
546 * the case in the context of the RCU callback that is freeing up the data,
547 * or after a synchronize_rcu() returns. This can be useful when tearing
548 * down multi-linked structures after a grace period has elapsed. However,
549 * rcu_dereference_protected() is normally preferred for this use case.
550 */
551 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
552
553 /**
554 * rcu_dereference_check() - rcu_dereference with debug checking
555 * @p: The pointer to read, prior to dereferencing
556 * @c: The conditions under which the dereference will take place
557 *
558 * Do an rcu_dereference(), but check that the conditions under which the
559 * dereference will take place are correct. Typically the conditions
560 * indicate the various locking conditions that should be held at that
561 * point. The check should return true if the conditions are satisfied.
562 * An implicit check for being in an RCU read-side critical section
563 * (rcu_read_lock()) is included.
564 *
565 * For example:
566 *
567 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
568 *
569 * could be used to indicate to lockdep that foo->bar may only be dereferenced
570 * if either rcu_read_lock() is held, or that the lock required to replace
571 * the bar struct at foo->bar is held.
572 *
573 * Note that the list of conditions may also include indications of when a lock
574 * need not be held, for example during initialisation or destruction of the
575 * target struct:
576 *
577 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
578 * atomic_read(&foo->usage) == 0);
579 *
580 * Inserts memory barriers on architectures that require them
581 * (currently only the Alpha), prevents the compiler from refetching
582 * (and from merging fetches), and, more importantly, documents exactly
583 * which pointers are protected by RCU and checks that the pointer is
584 * annotated as __rcu.
585 */
586 #define rcu_dereference_check(p, c) \
587 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
588 (c) || rcu_read_lock_held(), __rcu)
589
590 /**
591 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
592 * @p: The pointer to read, prior to dereferencing
593 * @c: The conditions under which the dereference will take place
594 *
595 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
596 * please note that starting in v5.0 kernels, vanilla RCU grace periods
597 * wait for local_bh_disable() regions of code in addition to regions of
598 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
599 * that synchronize_rcu(), call_rcu, and friends all take not only
600 * rcu_read_lock() but also rcu_read_lock_bh() into account.
601 */
602 #define rcu_dereference_bh_check(p, c) \
603 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
604 (c) || rcu_read_lock_bh_held(), __rcu)
605
606 /**
607 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
608 * @p: The pointer to read, prior to dereferencing
609 * @c: The conditions under which the dereference will take place
610 *
611 * This is the RCU-sched counterpart to rcu_dereference_check().
612 * However, please note that starting in v5.0 kernels, vanilla RCU grace
613 * periods wait for preempt_disable() regions of code in addition to
614 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
615 * This means that synchronize_rcu(), call_rcu, and friends all take not
616 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
617 */
618 #define rcu_dereference_sched_check(p, c) \
619 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
620 (c) || rcu_read_lock_sched_held(), \
621 __rcu)
622
623 /*
624 * The tracing infrastructure traces RCU (we want that), but unfortunately
625 * some of the RCU checks causes tracing to lock up the system.
626 *
627 * The no-tracing version of rcu_dereference_raw() must not call
628 * rcu_read_lock_held().
629 */
630 #define rcu_dereference_raw_check(p) \
631 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
632
633 /**
634 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
635 * @p: The pointer to read, prior to dereferencing
636 * @c: The conditions under which the dereference will take place
637 *
638 * Return the value of the specified RCU-protected pointer, but omit
639 * the READ_ONCE(). This is useful in cases where update-side locks
640 * prevent the value of the pointer from changing. Please note that this
641 * primitive does *not* prevent the compiler from repeating this reference
642 * or combining it with other references, so it should not be used without
643 * protection of appropriate locks.
644 *
645 * This function is only for update-side use. Using this function
646 * when protected only by rcu_read_lock() will result in infrequent
647 * but very ugly failures.
648 */
649 #define rcu_dereference_protected(p, c) \
650 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
651
652
653 /**
654 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
655 * @p: The pointer to read, prior to dereferencing
656 *
657 * This is a simple wrapper around rcu_dereference_check().
658 */
659 #define rcu_dereference(p) rcu_dereference_check(p, 0)
660
661 /**
662 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
663 * @p: The pointer to read, prior to dereferencing
664 *
665 * Makes rcu_dereference_check() do the dirty work.
666 */
667 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
668
669 /**
670 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
671 * @p: The pointer to read, prior to dereferencing
672 *
673 * Makes rcu_dereference_check() do the dirty work.
674 */
675 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
676
677 /**
678 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
679 * @p: The pointer to hand off
680 *
681 * This is simply an identity function, but it documents where a pointer
682 * is handed off from RCU to some other synchronization mechanism, for
683 * example, reference counting or locking. In C11, it would map to
684 * kill_dependency(). It could be used as follows::
685 *
686 * rcu_read_lock();
687 * p = rcu_dereference(gp);
688 * long_lived = is_long_lived(p);
689 * if (long_lived) {
690 * if (!atomic_inc_not_zero(p->refcnt))
691 * long_lived = false;
692 * else
693 * p = rcu_pointer_handoff(p);
694 * }
695 * rcu_read_unlock();
696 */
697 #define rcu_pointer_handoff(p) (p)
698
699 /**
700 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
701 *
702 * When synchronize_rcu() is invoked on one CPU while other CPUs
703 * are within RCU read-side critical sections, then the
704 * synchronize_rcu() is guaranteed to block until after all the other
705 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
706 * on one CPU while other CPUs are within RCU read-side critical
707 * sections, invocation of the corresponding RCU callback is deferred
708 * until after the all the other CPUs exit their critical sections.
709 *
710 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
711 * wait for regions of code with preemption disabled, including regions of
712 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
713 * define synchronize_sched(), only code enclosed within rcu_read_lock()
714 * and rcu_read_unlock() are guaranteed to be waited for.
715 *
716 * Note, however, that RCU callbacks are permitted to run concurrently
717 * with new RCU read-side critical sections. One way that this can happen
718 * is via the following sequence of events: (1) CPU 0 enters an RCU
719 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
720 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
721 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
722 * callback is invoked. This is legal, because the RCU read-side critical
723 * section that was running concurrently with the call_rcu() (and which
724 * therefore might be referencing something that the corresponding RCU
725 * callback would free up) has completed before the corresponding
726 * RCU callback is invoked.
727 *
728 * RCU read-side critical sections may be nested. Any deferred actions
729 * will be deferred until the outermost RCU read-side critical section
730 * completes.
731 *
732 * You can avoid reading and understanding the next paragraph by
733 * following this rule: don't put anything in an rcu_read_lock() RCU
734 * read-side critical section that would block in a !PREEMPTION kernel.
735 * But if you want the full story, read on!
736 *
737 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
738 * it is illegal to block while in an RCU read-side critical section.
739 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
740 * kernel builds, RCU read-side critical sections may be preempted,
741 * but explicit blocking is illegal. Finally, in preemptible RCU
742 * implementations in real-time (with -rt patchset) kernel builds, RCU
743 * read-side critical sections may be preempted and they may also block, but
744 * only when acquiring spinlocks that are subject to priority inheritance.
745 */
rcu_read_lock(void)746 static __always_inline void rcu_read_lock(void)
747 {
748 __rcu_read_lock();
749 __acquire(RCU);
750 rcu_lock_acquire(&rcu_lock_map);
751 RCU_LOCKDEP_WARN(!rcu_is_watching(),
752 "rcu_read_lock() used illegally while idle");
753 }
754
755 /*
756 * So where is rcu_write_lock()? It does not exist, as there is no
757 * way for writers to lock out RCU readers. This is a feature, not
758 * a bug -- this property is what provides RCU's performance benefits.
759 * Of course, writers must coordinate with each other. The normal
760 * spinlock primitives work well for this, but any other technique may be
761 * used as well. RCU does not care how the writers keep out of each
762 * others' way, as long as they do so.
763 */
764
765 /**
766 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
767 *
768 * In almost all situations, rcu_read_unlock() is immune from deadlock.
769 * In recent kernels that have consolidated synchronize_sched() and
770 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
771 * also extends to the scheduler's runqueue and priority-inheritance
772 * spinlocks, courtesy of the quiescent-state deferral that is carried
773 * out when rcu_read_unlock() is invoked with interrupts disabled.
774 *
775 * See rcu_read_lock() for more information.
776 */
rcu_read_unlock(void)777 static inline void rcu_read_unlock(void)
778 {
779 RCU_LOCKDEP_WARN(!rcu_is_watching(),
780 "rcu_read_unlock() used illegally while idle");
781 __release(RCU);
782 __rcu_read_unlock();
783 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
784 }
785
786 /**
787 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
788 *
789 * This is equivalent to rcu_read_lock(), but also disables softirqs.
790 * Note that anything else that disables softirqs can also serve as an RCU
791 * read-side critical section. However, please note that this equivalence
792 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
793 * rcu_read_lock_bh() were unrelated.
794 *
795 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
796 * must occur in the same context, for example, it is illegal to invoke
797 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
798 * was invoked from some other task.
799 */
rcu_read_lock_bh(void)800 static inline void rcu_read_lock_bh(void)
801 {
802 local_bh_disable();
803 __acquire(RCU_BH);
804 rcu_lock_acquire(&rcu_bh_lock_map);
805 RCU_LOCKDEP_WARN(!rcu_is_watching(),
806 "rcu_read_lock_bh() used illegally while idle");
807 }
808
809 /**
810 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
811 *
812 * See rcu_read_lock_bh() for more information.
813 */
rcu_read_unlock_bh(void)814 static inline void rcu_read_unlock_bh(void)
815 {
816 RCU_LOCKDEP_WARN(!rcu_is_watching(),
817 "rcu_read_unlock_bh() used illegally while idle");
818 rcu_lock_release(&rcu_bh_lock_map);
819 __release(RCU_BH);
820 local_bh_enable();
821 }
822
823 /**
824 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
825 *
826 * This is equivalent to rcu_read_lock(), but also disables preemption.
827 * Read-side critical sections can also be introduced by anything else that
828 * disables preemption, including local_irq_disable() and friends. However,
829 * please note that the equivalence to rcu_read_lock() applies only to
830 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
831 * were unrelated.
832 *
833 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
834 * must occur in the same context, for example, it is illegal to invoke
835 * rcu_read_unlock_sched() from process context if the matching
836 * rcu_read_lock_sched() was invoked from an NMI handler.
837 */
rcu_read_lock_sched(void)838 static inline void rcu_read_lock_sched(void)
839 {
840 preempt_disable();
841 __acquire(RCU_SCHED);
842 rcu_lock_acquire(&rcu_sched_lock_map);
843 RCU_LOCKDEP_WARN(!rcu_is_watching(),
844 "rcu_read_lock_sched() used illegally while idle");
845 }
846
847 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)848 static inline notrace void rcu_read_lock_sched_notrace(void)
849 {
850 preempt_disable_notrace();
851 __acquire(RCU_SCHED);
852 }
853
854 /**
855 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
856 *
857 * See rcu_read_lock_sched() for more information.
858 */
rcu_read_unlock_sched(void)859 static inline void rcu_read_unlock_sched(void)
860 {
861 RCU_LOCKDEP_WARN(!rcu_is_watching(),
862 "rcu_read_unlock_sched() used illegally while idle");
863 rcu_lock_release(&rcu_sched_lock_map);
864 __release(RCU_SCHED);
865 preempt_enable();
866 }
867
868 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)869 static inline notrace void rcu_read_unlock_sched_notrace(void)
870 {
871 __release(RCU_SCHED);
872 preempt_enable_notrace();
873 }
874
875 /**
876 * RCU_INIT_POINTER() - initialize an RCU protected pointer
877 * @p: The pointer to be initialized.
878 * @v: The value to initialized the pointer to.
879 *
880 * Initialize an RCU-protected pointer in special cases where readers
881 * do not need ordering constraints on the CPU or the compiler. These
882 * special cases are:
883 *
884 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
885 * 2. The caller has taken whatever steps are required to prevent
886 * RCU readers from concurrently accessing this pointer *or*
887 * 3. The referenced data structure has already been exposed to
888 * readers either at compile time or via rcu_assign_pointer() *and*
889 *
890 * a. You have not made *any* reader-visible changes to
891 * this structure since then *or*
892 * b. It is OK for readers accessing this structure from its
893 * new location to see the old state of the structure. (For
894 * example, the changes were to statistical counters or to
895 * other state where exact synchronization is not required.)
896 *
897 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
898 * result in impossible-to-diagnose memory corruption. As in the structures
899 * will look OK in crash dumps, but any concurrent RCU readers might
900 * see pre-initialized values of the referenced data structure. So
901 * please be very careful how you use RCU_INIT_POINTER()!!!
902 *
903 * If you are creating an RCU-protected linked structure that is accessed
904 * by a single external-to-structure RCU-protected pointer, then you may
905 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
906 * pointers, but you must use rcu_assign_pointer() to initialize the
907 * external-to-structure pointer *after* you have completely initialized
908 * the reader-accessible portions of the linked structure.
909 *
910 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
911 * ordering guarantees for either the CPU or the compiler.
912 */
913 #define RCU_INIT_POINTER(p, v) \
914 do { \
915 rcu_check_sparse(p, __rcu); \
916 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
917 } while (0)
918
919 /**
920 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
921 * @p: The pointer to be initialized.
922 * @v: The value to initialized the pointer to.
923 *
924 * GCC-style initialization for an RCU-protected pointer in a structure field.
925 */
926 #define RCU_POINTER_INITIALIZER(p, v) \
927 .p = RCU_INITIALIZER(v)
928
929 /*
930 * Does the specified offset indicate that the corresponding rcu_head
931 * structure can be handled by kvfree_rcu()?
932 */
933 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
934
935 /**
936 * kfree_rcu() - kfree an object after a grace period.
937 * @ptr: pointer to kfree for double-argument invocations.
938 * @rhf: the name of the struct rcu_head within the type of @ptr.
939 *
940 * Many rcu callbacks functions just call kfree() on the base structure.
941 * These functions are trivial, but their size adds up, and furthermore
942 * when they are used in a kernel module, that module must invoke the
943 * high-latency rcu_barrier() function at module-unload time.
944 *
945 * The kfree_rcu() function handles this issue. Rather than encoding a
946 * function address in the embedded rcu_head structure, kfree_rcu() instead
947 * encodes the offset of the rcu_head structure within the base structure.
948 * Because the functions are not allowed in the low-order 4096 bytes of
949 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
950 * If the offset is larger than 4095 bytes, a compile-time error will
951 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
952 * either fall back to use of call_rcu() or rearrange the structure to
953 * position the rcu_head structure into the first 4096 bytes.
954 *
955 * The object to be freed can be allocated either by kmalloc() or
956 * kmem_cache_alloc().
957 *
958 * Note that the allowable offset might decrease in the future.
959 *
960 * The BUILD_BUG_ON check must not involve any function calls, hence the
961 * checks are done in macros here.
962 */
963 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
964 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
965
966 /**
967 * kfree_rcu_mightsleep() - kfree an object after a grace period.
968 * @ptr: pointer to kfree for single-argument invocations.
969 *
970 * When it comes to head-less variant, only one argument
971 * is passed and that is just a pointer which has to be
972 * freed after a grace period. Therefore the semantic is
973 *
974 * kfree_rcu_mightsleep(ptr);
975 *
976 * where @ptr is the pointer to be freed by kvfree().
977 *
978 * Please note, head-less way of freeing is permitted to
979 * use from a context that has to follow might_sleep()
980 * annotation. Otherwise, please switch and embed the
981 * rcu_head structure within the type of @ptr.
982 */
983 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
984 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
985
986 #define kvfree_rcu_arg_2(ptr, rhf) \
987 do { \
988 typeof (ptr) ___p = (ptr); \
989 \
990 if (___p) { \
991 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
992 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
993 } \
994 } while (0)
995
996 #define kvfree_rcu_arg_1(ptr) \
997 do { \
998 typeof(ptr) ___p = (ptr); \
999 \
1000 if (___p) \
1001 kvfree_call_rcu(NULL, (void *) (___p)); \
1002 } while (0)
1003
1004 /*
1005 * Place this after a lock-acquisition primitive to guarantee that
1006 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1007 * if the UNLOCK and LOCK are executed by the same CPU or if the
1008 * UNLOCK and LOCK operate on the same lock variable.
1009 */
1010 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1011 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1012 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1013 #define smp_mb__after_unlock_lock() do { } while (0)
1014 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1015
1016
1017 /* Has the specified rcu_head structure been handed to call_rcu()? */
1018
1019 /**
1020 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1021 * @rhp: The rcu_head structure to initialize.
1022 *
1023 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1024 * given rcu_head structure has already been passed to call_rcu(), then
1025 * you must also invoke this rcu_head_init() function on it just after
1026 * allocating that structure. Calls to this function must not race with
1027 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1028 */
rcu_head_init(struct rcu_head * rhp)1029 static inline void rcu_head_init(struct rcu_head *rhp)
1030 {
1031 rhp->func = (rcu_callback_t)~0L;
1032 }
1033
1034 /**
1035 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1036 * @rhp: The rcu_head structure to test.
1037 * @f: The function passed to call_rcu() along with @rhp.
1038 *
1039 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1040 * and @false otherwise. Emits a warning in any other case, including
1041 * the case where @rhp has already been invoked after a grace period.
1042 * Calls to this function must not race with callback invocation. One way
1043 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1044 * in an RCU read-side critical section that includes a read-side fetch
1045 * of the pointer to the structure containing @rhp.
1046 */
1047 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1048 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1049 {
1050 rcu_callback_t func = READ_ONCE(rhp->func);
1051
1052 if (func == f)
1053 return true;
1054 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1055 return false;
1056 }
1057
1058 /* kernel/ksysfs.c definitions */
1059 extern int rcu_expedited;
1060 extern int rcu_normal;
1061
1062 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1063
1064 #endif /* __LINUX_RCUPDATE_H */
1065