1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 
83 typedef u32 xdp_features_t;
84 
85 void synchronize_net(void);
86 void netdev_set_default_ethtool_ops(struct net_device *dev,
87 				    const struct ethtool_ops *ops);
88 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
89 
90 /* Backlog congestion levels */
91 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
92 #define NET_RX_DROP		1	/* packet dropped */
93 
94 #define MAX_NEST_DEV 8
95 
96 /*
97  * Transmit return codes: transmit return codes originate from three different
98  * namespaces:
99  *
100  * - qdisc return codes
101  * - driver transmit return codes
102  * - errno values
103  *
104  * Drivers are allowed to return any one of those in their hard_start_xmit()
105  * function. Real network devices commonly used with qdiscs should only return
106  * the driver transmit return codes though - when qdiscs are used, the actual
107  * transmission happens asynchronously, so the value is not propagated to
108  * higher layers. Virtual network devices transmit synchronously; in this case
109  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
110  * others are propagated to higher layers.
111  */
112 
113 /* qdisc ->enqueue() return codes. */
114 #define NET_XMIT_SUCCESS	0x00
115 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
116 #define NET_XMIT_CN		0x02	/* congestion notification	*/
117 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
118 
119 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
120  * indicates that the device will soon be dropping packets, or already drops
121  * some packets of the same priority; prompting us to send less aggressively. */
122 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
123 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
124 
125 /* Driver transmit return codes */
126 #define NETDEV_TX_MASK		0xf0
127 
128 enum netdev_tx {
129 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
130 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
131 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
132 };
133 typedef enum netdev_tx netdev_tx_t;
134 
135 /*
136  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
137  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
138  */
dev_xmit_complete(int rc)139 static inline bool dev_xmit_complete(int rc)
140 {
141 	/*
142 	 * Positive cases with an skb consumed by a driver:
143 	 * - successful transmission (rc == NETDEV_TX_OK)
144 	 * - error while transmitting (rc < 0)
145 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
146 	 */
147 	if (likely(rc < NET_XMIT_MASK))
148 		return true;
149 
150 	return false;
151 }
152 
153 /*
154  *	Compute the worst-case header length according to the protocols
155  *	used.
156  */
157 
158 #if defined(CONFIG_HYPERV_NET)
159 # define LL_MAX_HEADER 128
160 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
161 # if defined(CONFIG_MAC80211_MESH)
162 #  define LL_MAX_HEADER 128
163 # else
164 #  define LL_MAX_HEADER 96
165 # endif
166 #else
167 # define LL_MAX_HEADER 32
168 #endif
169 
170 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
171     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
172 #define MAX_HEADER LL_MAX_HEADER
173 #else
174 #define MAX_HEADER (LL_MAX_HEADER + 48)
175 #endif
176 
177 /*
178  *	Old network device statistics. Fields are native words
179  *	(unsigned long) so they can be read and written atomically.
180  */
181 
182 #define NET_DEV_STAT(FIELD)			\
183 	union {					\
184 		unsigned long FIELD;		\
185 		atomic_long_t __##FIELD;	\
186 	}
187 
188 struct net_device_stats {
189 	NET_DEV_STAT(rx_packets);
190 	NET_DEV_STAT(tx_packets);
191 	NET_DEV_STAT(rx_bytes);
192 	NET_DEV_STAT(tx_bytes);
193 	NET_DEV_STAT(rx_errors);
194 	NET_DEV_STAT(tx_errors);
195 	NET_DEV_STAT(rx_dropped);
196 	NET_DEV_STAT(tx_dropped);
197 	NET_DEV_STAT(multicast);
198 	NET_DEV_STAT(collisions);
199 	NET_DEV_STAT(rx_length_errors);
200 	NET_DEV_STAT(rx_over_errors);
201 	NET_DEV_STAT(rx_crc_errors);
202 	NET_DEV_STAT(rx_frame_errors);
203 	NET_DEV_STAT(rx_fifo_errors);
204 	NET_DEV_STAT(rx_missed_errors);
205 	NET_DEV_STAT(tx_aborted_errors);
206 	NET_DEV_STAT(tx_carrier_errors);
207 	NET_DEV_STAT(tx_fifo_errors);
208 	NET_DEV_STAT(tx_heartbeat_errors);
209 	NET_DEV_STAT(tx_window_errors);
210 	NET_DEV_STAT(rx_compressed);
211 	NET_DEV_STAT(tx_compressed);
212 };
213 #undef NET_DEV_STAT
214 
215 /* per-cpu stats, allocated on demand.
216  * Try to fit them in a single cache line, for dev_get_stats() sake.
217  */
218 struct net_device_core_stats {
219 	unsigned long	rx_dropped;
220 	unsigned long	tx_dropped;
221 	unsigned long	rx_nohandler;
222 	unsigned long	rx_otherhost_dropped;
223 } __aligned(4 * sizeof(unsigned long));
224 
225 #include <linux/cache.h>
226 #include <linux/skbuff.h>
227 
228 #ifdef CONFIG_RPS
229 #include <linux/static_key.h>
230 extern struct static_key_false rps_needed;
231 extern struct static_key_false rfs_needed;
232 #endif
233 
234 struct neighbour;
235 struct neigh_parms;
236 struct sk_buff;
237 
238 struct netdev_hw_addr {
239 	struct list_head	list;
240 	struct rb_node		node;
241 	unsigned char		addr[MAX_ADDR_LEN];
242 	unsigned char		type;
243 #define NETDEV_HW_ADDR_T_LAN		1
244 #define NETDEV_HW_ADDR_T_SAN		2
245 #define NETDEV_HW_ADDR_T_UNICAST	3
246 #define NETDEV_HW_ADDR_T_MULTICAST	4
247 	bool			global_use;
248 	int			sync_cnt;
249 	int			refcount;
250 	int			synced;
251 	struct rcu_head		rcu_head;
252 };
253 
254 struct netdev_hw_addr_list {
255 	struct list_head	list;
256 	int			count;
257 
258 	/* Auxiliary tree for faster lookup on addition and deletion */
259 	struct rb_root		tree;
260 };
261 
262 #define netdev_hw_addr_list_count(l) ((l)->count)
263 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
264 #define netdev_hw_addr_list_for_each(ha, l) \
265 	list_for_each_entry(ha, &(l)->list, list)
266 
267 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
268 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
269 #define netdev_for_each_uc_addr(ha, dev) \
270 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
271 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
272 	netdev_for_each_uc_addr((_ha), (_dev)) \
273 		if ((_ha)->sync_cnt)
274 
275 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
276 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
277 #define netdev_for_each_mc_addr(ha, dev) \
278 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
279 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
280 	netdev_for_each_mc_addr((_ha), (_dev)) \
281 		if ((_ha)->sync_cnt)
282 
283 struct hh_cache {
284 	unsigned int	hh_len;
285 	seqlock_t	hh_lock;
286 
287 	/* cached hardware header; allow for machine alignment needs.        */
288 #define HH_DATA_MOD	16
289 #define HH_DATA_OFF(__len) \
290 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
291 #define HH_DATA_ALIGN(__len) \
292 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
293 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
294 };
295 
296 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
297  * Alternative is:
298  *   dev->hard_header_len ? (dev->hard_header_len +
299  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
300  *
301  * We could use other alignment values, but we must maintain the
302  * relationship HH alignment <= LL alignment.
303  */
304 #define LL_RESERVED_SPACE(dev) \
305 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
306 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
307 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
308 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
309 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
310 
311 struct header_ops {
312 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
313 			   unsigned short type, const void *daddr,
314 			   const void *saddr, unsigned int len);
315 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
316 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
317 	void	(*cache_update)(struct hh_cache *hh,
318 				const struct net_device *dev,
319 				const unsigned char *haddr);
320 	bool	(*validate)(const char *ll_header, unsigned int len);
321 	__be16	(*parse_protocol)(const struct sk_buff *skb);
322 };
323 
324 /* These flag bits are private to the generic network queueing
325  * layer; they may not be explicitly referenced by any other
326  * code.
327  */
328 
329 enum netdev_state_t {
330 	__LINK_STATE_START,
331 	__LINK_STATE_PRESENT,
332 	__LINK_STATE_NOCARRIER,
333 	__LINK_STATE_LINKWATCH_PENDING,
334 	__LINK_STATE_DORMANT,
335 	__LINK_STATE_TESTING,
336 };
337 
338 struct gro_list {
339 	struct list_head	list;
340 	int			count;
341 };
342 
343 /*
344  * size of gro hash buckets, must less than bit number of
345  * napi_struct::gro_bitmask
346  */
347 #define GRO_HASH_BUCKETS	8
348 
349 /*
350  * Structure for NAPI scheduling similar to tasklet but with weighting
351  */
352 struct napi_struct {
353 	/* The poll_list must only be managed by the entity which
354 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
355 	 * whoever atomically sets that bit can add this napi_struct
356 	 * to the per-CPU poll_list, and whoever clears that bit
357 	 * can remove from the list right before clearing the bit.
358 	 */
359 	struct list_head	poll_list;
360 
361 	unsigned long		state;
362 	int			weight;
363 	int			defer_hard_irqs_count;
364 	unsigned long		gro_bitmask;
365 	int			(*poll)(struct napi_struct *, int);
366 #ifdef CONFIG_NETPOLL
367 	/* CPU actively polling if netpoll is configured */
368 	int			poll_owner;
369 #endif
370 	/* CPU on which NAPI has been scheduled for processing */
371 	int			list_owner;
372 	struct net_device	*dev;
373 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
374 	struct sk_buff		*skb;
375 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
376 	int			rx_count; /* length of rx_list */
377 	unsigned int		napi_id;
378 	struct hrtimer		timer;
379 	struct task_struct	*thread;
380 	/* control-path-only fields follow */
381 	struct list_head	dev_list;
382 	struct hlist_node	napi_hash_node;
383 	int			irq;
384 };
385 
386 enum {
387 	NAPI_STATE_SCHED,		/* Poll is scheduled */
388 	NAPI_STATE_MISSED,		/* reschedule a napi */
389 	NAPI_STATE_DISABLE,		/* Disable pending */
390 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
391 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
392 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
393 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
394 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
395 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
396 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
397 };
398 
399 enum {
400 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
401 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
402 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
403 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
404 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
405 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
406 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
407 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
408 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
409 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
410 };
411 
412 enum gro_result {
413 	GRO_MERGED,
414 	GRO_MERGED_FREE,
415 	GRO_HELD,
416 	GRO_NORMAL,
417 	GRO_CONSUMED,
418 };
419 typedef enum gro_result gro_result_t;
420 
421 /*
422  * enum rx_handler_result - Possible return values for rx_handlers.
423  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
424  * further.
425  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
426  * case skb->dev was changed by rx_handler.
427  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
428  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
429  *
430  * rx_handlers are functions called from inside __netif_receive_skb(), to do
431  * special processing of the skb, prior to delivery to protocol handlers.
432  *
433  * Currently, a net_device can only have a single rx_handler registered. Trying
434  * to register a second rx_handler will return -EBUSY.
435  *
436  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
437  * To unregister a rx_handler on a net_device, use
438  * netdev_rx_handler_unregister().
439  *
440  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
441  * do with the skb.
442  *
443  * If the rx_handler consumed the skb in some way, it should return
444  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
445  * the skb to be delivered in some other way.
446  *
447  * If the rx_handler changed skb->dev, to divert the skb to another
448  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
449  * new device will be called if it exists.
450  *
451  * If the rx_handler decides the skb should be ignored, it should return
452  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
453  * are registered on exact device (ptype->dev == skb->dev).
454  *
455  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
456  * delivered, it should return RX_HANDLER_PASS.
457  *
458  * A device without a registered rx_handler will behave as if rx_handler
459  * returned RX_HANDLER_PASS.
460  */
461 
462 enum rx_handler_result {
463 	RX_HANDLER_CONSUMED,
464 	RX_HANDLER_ANOTHER,
465 	RX_HANDLER_EXACT,
466 	RX_HANDLER_PASS,
467 };
468 typedef enum rx_handler_result rx_handler_result_t;
469 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
470 
471 void __napi_schedule(struct napi_struct *n);
472 void __napi_schedule_irqoff(struct napi_struct *n);
473 
napi_disable_pending(struct napi_struct * n)474 static inline bool napi_disable_pending(struct napi_struct *n)
475 {
476 	return test_bit(NAPI_STATE_DISABLE, &n->state);
477 }
478 
napi_prefer_busy_poll(struct napi_struct * n)479 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
480 {
481 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
482 }
483 
484 /**
485  * napi_is_scheduled - test if NAPI is scheduled
486  * @n: NAPI context
487  *
488  * This check is "best-effort". With no locking implemented,
489  * a NAPI can be scheduled or terminate right after this check
490  * and produce not precise results.
491  *
492  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
493  * should not be used normally and napi_schedule should be
494  * used instead.
495  *
496  * Use only if the driver really needs to check if a NAPI
497  * is scheduled for example in the context of delayed timer
498  * that can be skipped if a NAPI is already scheduled.
499  *
500  * Return True if NAPI is scheduled, False otherwise.
501  */
napi_is_scheduled(struct napi_struct * n)502 static inline bool napi_is_scheduled(struct napi_struct *n)
503 {
504 	return test_bit(NAPI_STATE_SCHED, &n->state);
505 }
506 
507 bool napi_schedule_prep(struct napi_struct *n);
508 
509 /**
510  *	napi_schedule - schedule NAPI poll
511  *	@n: NAPI context
512  *
513  * Schedule NAPI poll routine to be called if it is not already
514  * running.
515  * Return true if we schedule a NAPI or false if not.
516  * Refer to napi_schedule_prep() for additional reason on why
517  * a NAPI might not be scheduled.
518  */
napi_schedule(struct napi_struct * n)519 static inline bool napi_schedule(struct napi_struct *n)
520 {
521 	if (napi_schedule_prep(n)) {
522 		__napi_schedule(n);
523 		return true;
524 	}
525 
526 	return false;
527 }
528 
529 /**
530  *	napi_schedule_irqoff - schedule NAPI poll
531  *	@n: NAPI context
532  *
533  * Variant of napi_schedule(), assuming hard irqs are masked.
534  */
napi_schedule_irqoff(struct napi_struct * n)535 static inline void napi_schedule_irqoff(struct napi_struct *n)
536 {
537 	if (napi_schedule_prep(n))
538 		__napi_schedule_irqoff(n);
539 }
540 
541 /**
542  * napi_complete_done - NAPI processing complete
543  * @n: NAPI context
544  * @work_done: number of packets processed
545  *
546  * Mark NAPI processing as complete. Should only be called if poll budget
547  * has not been completely consumed.
548  * Prefer over napi_complete().
549  * Return false if device should avoid rearming interrupts.
550  */
551 bool napi_complete_done(struct napi_struct *n, int work_done);
552 
napi_complete(struct napi_struct * n)553 static inline bool napi_complete(struct napi_struct *n)
554 {
555 	return napi_complete_done(n, 0);
556 }
557 
558 int dev_set_threaded(struct net_device *dev, bool threaded);
559 
560 /**
561  *	napi_disable - prevent NAPI from scheduling
562  *	@n: NAPI context
563  *
564  * Stop NAPI from being scheduled on this context.
565  * Waits till any outstanding processing completes.
566  */
567 void napi_disable(struct napi_struct *n);
568 
569 void napi_enable(struct napi_struct *n);
570 
571 /**
572  *	napi_synchronize - wait until NAPI is not running
573  *	@n: NAPI context
574  *
575  * Wait until NAPI is done being scheduled on this context.
576  * Waits till any outstanding processing completes but
577  * does not disable future activations.
578  */
napi_synchronize(const struct napi_struct * n)579 static inline void napi_synchronize(const struct napi_struct *n)
580 {
581 	if (IS_ENABLED(CONFIG_SMP))
582 		while (test_bit(NAPI_STATE_SCHED, &n->state))
583 			msleep(1);
584 	else
585 		barrier();
586 }
587 
588 /**
589  *	napi_if_scheduled_mark_missed - if napi is running, set the
590  *	NAPIF_STATE_MISSED
591  *	@n: NAPI context
592  *
593  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
594  * NAPI is scheduled.
595  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)596 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
597 {
598 	unsigned long val, new;
599 
600 	val = READ_ONCE(n->state);
601 	do {
602 		if (val & NAPIF_STATE_DISABLE)
603 			return true;
604 
605 		if (!(val & NAPIF_STATE_SCHED))
606 			return false;
607 
608 		new = val | NAPIF_STATE_MISSED;
609 	} while (!try_cmpxchg(&n->state, &val, new));
610 
611 	return true;
612 }
613 
614 enum netdev_queue_state_t {
615 	__QUEUE_STATE_DRV_XOFF,
616 	__QUEUE_STATE_STACK_XOFF,
617 	__QUEUE_STATE_FROZEN,
618 };
619 
620 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
621 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
622 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
623 
624 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
625 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
626 					QUEUE_STATE_FROZEN)
627 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
628 					QUEUE_STATE_FROZEN)
629 
630 /*
631  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
632  * netif_tx_* functions below are used to manipulate this flag.  The
633  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
634  * queue independently.  The netif_xmit_*stopped functions below are called
635  * to check if the queue has been stopped by the driver or stack (either
636  * of the XOFF bits are set in the state).  Drivers should not need to call
637  * netif_xmit*stopped functions, they should only be using netif_tx_*.
638  */
639 
640 struct netdev_queue {
641 /*
642  * read-mostly part
643  */
644 	struct net_device	*dev;
645 	netdevice_tracker	dev_tracker;
646 
647 	struct Qdisc __rcu	*qdisc;
648 	struct Qdisc __rcu	*qdisc_sleeping;
649 #ifdef CONFIG_SYSFS
650 	struct kobject		kobj;
651 #endif
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	int			numa_node;
654 #endif
655 	unsigned long		tx_maxrate;
656 	/*
657 	 * Number of TX timeouts for this queue
658 	 * (/sys/class/net/DEV/Q/trans_timeout)
659 	 */
660 	atomic_long_t		trans_timeout;
661 
662 	/* Subordinate device that the queue has been assigned to */
663 	struct net_device	*sb_dev;
664 #ifdef CONFIG_XDP_SOCKETS
665 	struct xsk_buff_pool    *pool;
666 #endif
667 	/* NAPI instance for the queue
668 	 * Readers and writers must hold RTNL
669 	 */
670 	struct napi_struct      *napi;
671 /*
672  * write-mostly part
673  */
674 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
675 	int			xmit_lock_owner;
676 	/*
677 	 * Time (in jiffies) of last Tx
678 	 */
679 	unsigned long		trans_start;
680 
681 	unsigned long		state;
682 
683 #ifdef CONFIG_BQL
684 	struct dql		dql;
685 #endif
686 } ____cacheline_aligned_in_smp;
687 
688 extern int sysctl_fb_tunnels_only_for_init_net;
689 extern int sysctl_devconf_inherit_init_net;
690 
691 /*
692  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
693  *                                     == 1 : For initns only
694  *                                     == 2 : For none.
695  */
net_has_fallback_tunnels(const struct net * net)696 static inline bool net_has_fallback_tunnels(const struct net *net)
697 {
698 #if IS_ENABLED(CONFIG_SYSCTL)
699 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
700 
701 	return !fb_tunnels_only_for_init_net ||
702 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
703 #else
704 	return true;
705 #endif
706 }
707 
net_inherit_devconf(void)708 static inline int net_inherit_devconf(void)
709 {
710 #if IS_ENABLED(CONFIG_SYSCTL)
711 	return READ_ONCE(sysctl_devconf_inherit_init_net);
712 #else
713 	return 0;
714 #endif
715 }
716 
netdev_queue_numa_node_read(const struct netdev_queue * q)717 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
718 {
719 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
720 	return q->numa_node;
721 #else
722 	return NUMA_NO_NODE;
723 #endif
724 }
725 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)726 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
727 {
728 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
729 	q->numa_node = node;
730 #endif
731 }
732 
733 #ifdef CONFIG_RPS
734 /*
735  * This structure holds an RPS map which can be of variable length.  The
736  * map is an array of CPUs.
737  */
738 struct rps_map {
739 	unsigned int len;
740 	struct rcu_head rcu;
741 	u16 cpus[];
742 };
743 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
744 
745 /*
746  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
747  * tail pointer for that CPU's input queue at the time of last enqueue, and
748  * a hardware filter index.
749  */
750 struct rps_dev_flow {
751 	u16 cpu;
752 	u16 filter;
753 	unsigned int last_qtail;
754 };
755 #define RPS_NO_FILTER 0xffff
756 
757 /*
758  * The rps_dev_flow_table structure contains a table of flow mappings.
759  */
760 struct rps_dev_flow_table {
761 	unsigned int mask;
762 	struct rcu_head rcu;
763 	struct rps_dev_flow flows[];
764 };
765 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
766     ((_num) * sizeof(struct rps_dev_flow)))
767 
768 /*
769  * The rps_sock_flow_table contains mappings of flows to the last CPU
770  * on which they were processed by the application (set in recvmsg).
771  * Each entry is a 32bit value. Upper part is the high-order bits
772  * of flow hash, lower part is CPU number.
773  * rps_cpu_mask is used to partition the space, depending on number of
774  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
775  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
776  * meaning we use 32-6=26 bits for the hash.
777  */
778 struct rps_sock_flow_table {
779 	u32	mask;
780 
781 	u32	ents[] ____cacheline_aligned_in_smp;
782 };
783 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
784 
785 #define RPS_NO_CPU 0xffff
786 
787 extern u32 rps_cpu_mask;
788 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
789 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)790 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
791 					u32 hash)
792 {
793 	if (table && hash) {
794 		unsigned int index = hash & table->mask;
795 		u32 val = hash & ~rps_cpu_mask;
796 
797 		/* We only give a hint, preemption can change CPU under us */
798 		val |= raw_smp_processor_id();
799 
800 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
801 		 * here, and another one in get_rps_cpu().
802 		 */
803 		if (READ_ONCE(table->ents[index]) != val)
804 			WRITE_ONCE(table->ents[index], val);
805 	}
806 }
807 
808 #ifdef CONFIG_RFS_ACCEL
809 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
810 			 u16 filter_id);
811 #endif
812 #endif /* CONFIG_RPS */
813 
814 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
815 enum xps_map_type {
816 	XPS_CPUS = 0,
817 	XPS_RXQS,
818 	XPS_MAPS_MAX,
819 };
820 
821 #ifdef CONFIG_XPS
822 /*
823  * This structure holds an XPS map which can be of variable length.  The
824  * map is an array of queues.
825  */
826 struct xps_map {
827 	unsigned int len;
828 	unsigned int alloc_len;
829 	struct rcu_head rcu;
830 	u16 queues[];
831 };
832 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
833 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
834        - sizeof(struct xps_map)) / sizeof(u16))
835 
836 /*
837  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
838  *
839  * We keep track of the number of cpus/rxqs used when the struct is allocated,
840  * in nr_ids. This will help not accessing out-of-bound memory.
841  *
842  * We keep track of the number of traffic classes used when the struct is
843  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
844  * not crossing its upper bound, as the original dev->num_tc can be updated in
845  * the meantime.
846  */
847 struct xps_dev_maps {
848 	struct rcu_head rcu;
849 	unsigned int nr_ids;
850 	s16 num_tc;
851 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
852 };
853 
854 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
855 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
856 
857 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
858 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
859 
860 #endif /* CONFIG_XPS */
861 
862 #define TC_MAX_QUEUE	16
863 #define TC_BITMASK	15
864 /* HW offloaded queuing disciplines txq count and offset maps */
865 struct netdev_tc_txq {
866 	u16 count;
867 	u16 offset;
868 };
869 
870 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
871 /*
872  * This structure is to hold information about the device
873  * configured to run FCoE protocol stack.
874  */
875 struct netdev_fcoe_hbainfo {
876 	char	manufacturer[64];
877 	char	serial_number[64];
878 	char	hardware_version[64];
879 	char	driver_version[64];
880 	char	optionrom_version[64];
881 	char	firmware_version[64];
882 	char	model[256];
883 	char	model_description[256];
884 };
885 #endif
886 
887 #define MAX_PHYS_ITEM_ID_LEN 32
888 
889 /* This structure holds a unique identifier to identify some
890  * physical item (port for example) used by a netdevice.
891  */
892 struct netdev_phys_item_id {
893 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
894 	unsigned char id_len;
895 };
896 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)897 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
898 					    struct netdev_phys_item_id *b)
899 {
900 	return a->id_len == b->id_len &&
901 	       memcmp(a->id, b->id, a->id_len) == 0;
902 }
903 
904 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
905 				       struct sk_buff *skb,
906 				       struct net_device *sb_dev);
907 
908 enum net_device_path_type {
909 	DEV_PATH_ETHERNET = 0,
910 	DEV_PATH_VLAN,
911 	DEV_PATH_BRIDGE,
912 	DEV_PATH_PPPOE,
913 	DEV_PATH_DSA,
914 	DEV_PATH_MTK_WDMA,
915 };
916 
917 struct net_device_path {
918 	enum net_device_path_type	type;
919 	const struct net_device		*dev;
920 	union {
921 		struct {
922 			u16		id;
923 			__be16		proto;
924 			u8		h_dest[ETH_ALEN];
925 		} encap;
926 		struct {
927 			enum {
928 				DEV_PATH_BR_VLAN_KEEP,
929 				DEV_PATH_BR_VLAN_TAG,
930 				DEV_PATH_BR_VLAN_UNTAG,
931 				DEV_PATH_BR_VLAN_UNTAG_HW,
932 			}		vlan_mode;
933 			u16		vlan_id;
934 			__be16		vlan_proto;
935 		} bridge;
936 		struct {
937 			int port;
938 			u16 proto;
939 		} dsa;
940 		struct {
941 			u8 wdma_idx;
942 			u8 queue;
943 			u16 wcid;
944 			u8 bss;
945 			u8 amsdu;
946 		} mtk_wdma;
947 	};
948 };
949 
950 #define NET_DEVICE_PATH_STACK_MAX	5
951 #define NET_DEVICE_PATH_VLAN_MAX	2
952 
953 struct net_device_path_stack {
954 	int			num_paths;
955 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
956 };
957 
958 struct net_device_path_ctx {
959 	const struct net_device *dev;
960 	u8			daddr[ETH_ALEN];
961 
962 	int			num_vlans;
963 	struct {
964 		u16		id;
965 		__be16		proto;
966 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
967 };
968 
969 enum tc_setup_type {
970 	TC_QUERY_CAPS,
971 	TC_SETUP_QDISC_MQPRIO,
972 	TC_SETUP_CLSU32,
973 	TC_SETUP_CLSFLOWER,
974 	TC_SETUP_CLSMATCHALL,
975 	TC_SETUP_CLSBPF,
976 	TC_SETUP_BLOCK,
977 	TC_SETUP_QDISC_CBS,
978 	TC_SETUP_QDISC_RED,
979 	TC_SETUP_QDISC_PRIO,
980 	TC_SETUP_QDISC_MQ,
981 	TC_SETUP_QDISC_ETF,
982 	TC_SETUP_ROOT_QDISC,
983 	TC_SETUP_QDISC_GRED,
984 	TC_SETUP_QDISC_TAPRIO,
985 	TC_SETUP_FT,
986 	TC_SETUP_QDISC_ETS,
987 	TC_SETUP_QDISC_TBF,
988 	TC_SETUP_QDISC_FIFO,
989 	TC_SETUP_QDISC_HTB,
990 	TC_SETUP_ACT,
991 };
992 
993 /* These structures hold the attributes of bpf state that are being passed
994  * to the netdevice through the bpf op.
995  */
996 enum bpf_netdev_command {
997 	/* Set or clear a bpf program used in the earliest stages of packet
998 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
999 	 * is responsible for calling bpf_prog_put on any old progs that are
1000 	 * stored. In case of error, the callee need not release the new prog
1001 	 * reference, but on success it takes ownership and must bpf_prog_put
1002 	 * when it is no longer used.
1003 	 */
1004 	XDP_SETUP_PROG,
1005 	XDP_SETUP_PROG_HW,
1006 	/* BPF program for offload callbacks, invoked at program load time. */
1007 	BPF_OFFLOAD_MAP_ALLOC,
1008 	BPF_OFFLOAD_MAP_FREE,
1009 	XDP_SETUP_XSK_POOL,
1010 };
1011 
1012 struct bpf_prog_offload_ops;
1013 struct netlink_ext_ack;
1014 struct xdp_umem;
1015 struct xdp_dev_bulk_queue;
1016 struct bpf_xdp_link;
1017 
1018 enum bpf_xdp_mode {
1019 	XDP_MODE_SKB = 0,
1020 	XDP_MODE_DRV = 1,
1021 	XDP_MODE_HW = 2,
1022 	__MAX_XDP_MODE
1023 };
1024 
1025 struct bpf_xdp_entity {
1026 	struct bpf_prog *prog;
1027 	struct bpf_xdp_link *link;
1028 };
1029 
1030 struct netdev_bpf {
1031 	enum bpf_netdev_command command;
1032 	union {
1033 		/* XDP_SETUP_PROG */
1034 		struct {
1035 			u32 flags;
1036 			struct bpf_prog *prog;
1037 			struct netlink_ext_ack *extack;
1038 		};
1039 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1040 		struct {
1041 			struct bpf_offloaded_map *offmap;
1042 		};
1043 		/* XDP_SETUP_XSK_POOL */
1044 		struct {
1045 			struct xsk_buff_pool *pool;
1046 			u16 queue_id;
1047 		} xsk;
1048 	};
1049 };
1050 
1051 /* Flags for ndo_xsk_wakeup. */
1052 #define XDP_WAKEUP_RX (1 << 0)
1053 #define XDP_WAKEUP_TX (1 << 1)
1054 
1055 #ifdef CONFIG_XFRM_OFFLOAD
1056 struct xfrmdev_ops {
1057 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1058 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1059 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1060 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1061 				       struct xfrm_state *x);
1062 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1063 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1064 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1065 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1066 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1067 };
1068 #endif
1069 
1070 struct dev_ifalias {
1071 	struct rcu_head rcuhead;
1072 	char ifalias[];
1073 };
1074 
1075 struct devlink;
1076 struct tlsdev_ops;
1077 
1078 struct netdev_net_notifier {
1079 	struct list_head list;
1080 	struct notifier_block *nb;
1081 };
1082 
1083 /*
1084  * This structure defines the management hooks for network devices.
1085  * The following hooks can be defined; unless noted otherwise, they are
1086  * optional and can be filled with a null pointer.
1087  *
1088  * int (*ndo_init)(struct net_device *dev);
1089  *     This function is called once when a network device is registered.
1090  *     The network device can use this for any late stage initialization
1091  *     or semantic validation. It can fail with an error code which will
1092  *     be propagated back to register_netdev.
1093  *
1094  * void (*ndo_uninit)(struct net_device *dev);
1095  *     This function is called when device is unregistered or when registration
1096  *     fails. It is not called if init fails.
1097  *
1098  * int (*ndo_open)(struct net_device *dev);
1099  *     This function is called when a network device transitions to the up
1100  *     state.
1101  *
1102  * int (*ndo_stop)(struct net_device *dev);
1103  *     This function is called when a network device transitions to the down
1104  *     state.
1105  *
1106  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1107  *                               struct net_device *dev);
1108  *	Called when a packet needs to be transmitted.
1109  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1110  *	the queue before that can happen; it's for obsolete devices and weird
1111  *	corner cases, but the stack really does a non-trivial amount
1112  *	of useless work if you return NETDEV_TX_BUSY.
1113  *	Required; cannot be NULL.
1114  *
1115  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1116  *					   struct net_device *dev
1117  *					   netdev_features_t features);
1118  *	Called by core transmit path to determine if device is capable of
1119  *	performing offload operations on a given packet. This is to give
1120  *	the device an opportunity to implement any restrictions that cannot
1121  *	be otherwise expressed by feature flags. The check is called with
1122  *	the set of features that the stack has calculated and it returns
1123  *	those the driver believes to be appropriate.
1124  *
1125  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1126  *                         struct net_device *sb_dev);
1127  *	Called to decide which queue to use when device supports multiple
1128  *	transmit queues.
1129  *
1130  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1131  *	This function is called to allow device receiver to make
1132  *	changes to configuration when multicast or promiscuous is enabled.
1133  *
1134  * void (*ndo_set_rx_mode)(struct net_device *dev);
1135  *	This function is called device changes address list filtering.
1136  *	If driver handles unicast address filtering, it should set
1137  *	IFF_UNICAST_FLT in its priv_flags.
1138  *
1139  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1140  *	This function  is called when the Media Access Control address
1141  *	needs to be changed. If this interface is not defined, the
1142  *	MAC address can not be changed.
1143  *
1144  * int (*ndo_validate_addr)(struct net_device *dev);
1145  *	Test if Media Access Control address is valid for the device.
1146  *
1147  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1148  *	Old-style ioctl entry point. This is used internally by the
1149  *	appletalk and ieee802154 subsystems but is no longer called by
1150  *	the device ioctl handler.
1151  *
1152  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1153  *	Used by the bonding driver for its device specific ioctls:
1154  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1155  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1156  *
1157  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1158  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1159  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1160  *
1161  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1162  *	Used to set network devices bus interface parameters. This interface
1163  *	is retained for legacy reasons; new devices should use the bus
1164  *	interface (PCI) for low level management.
1165  *
1166  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1167  *	Called when a user wants to change the Maximum Transfer Unit
1168  *	of a device.
1169  *
1170  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1171  *	Callback used when the transmitter has not made any progress
1172  *	for dev->watchdog ticks.
1173  *
1174  * void (*ndo_get_stats64)(struct net_device *dev,
1175  *                         struct rtnl_link_stats64 *storage);
1176  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1177  *	Called when a user wants to get the network device usage
1178  *	statistics. Drivers must do one of the following:
1179  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1180  *	   rtnl_link_stats64 structure passed by the caller.
1181  *	2. Define @ndo_get_stats to update a net_device_stats structure
1182  *	   (which should normally be dev->stats) and return a pointer to
1183  *	   it. The structure may be changed asynchronously only if each
1184  *	   field is written atomically.
1185  *	3. Update dev->stats asynchronously and atomically, and define
1186  *	   neither operation.
1187  *
1188  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1189  *	Return true if this device supports offload stats of this attr_id.
1190  *
1191  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1192  *	void *attr_data)
1193  *	Get statistics for offload operations by attr_id. Write it into the
1194  *	attr_data pointer.
1195  *
1196  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1197  *	If device supports VLAN filtering this function is called when a
1198  *	VLAN id is registered.
1199  *
1200  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1201  *	If device supports VLAN filtering this function is called when a
1202  *	VLAN id is unregistered.
1203  *
1204  * void (*ndo_poll_controller)(struct net_device *dev);
1205  *
1206  *	SR-IOV management functions.
1207  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1208  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1209  *			  u8 qos, __be16 proto);
1210  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1211  *			  int max_tx_rate);
1212  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1213  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1214  * int (*ndo_get_vf_config)(struct net_device *dev,
1215  *			    int vf, struct ifla_vf_info *ivf);
1216  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1217  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1218  *			  struct nlattr *port[]);
1219  *
1220  *      Enable or disable the VF ability to query its RSS Redirection Table and
1221  *      Hash Key. This is needed since on some devices VF share this information
1222  *      with PF and querying it may introduce a theoretical security risk.
1223  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1224  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1225  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1226  *		       void *type_data);
1227  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1228  *	This is always called from the stack with the rtnl lock held and netif
1229  *	tx queues stopped. This allows the netdevice to perform queue
1230  *	management safely.
1231  *
1232  *	Fiber Channel over Ethernet (FCoE) offload functions.
1233  * int (*ndo_fcoe_enable)(struct net_device *dev);
1234  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1235  *	so the underlying device can perform whatever needed configuration or
1236  *	initialization to support acceleration of FCoE traffic.
1237  *
1238  * int (*ndo_fcoe_disable)(struct net_device *dev);
1239  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1240  *	so the underlying device can perform whatever needed clean-ups to
1241  *	stop supporting acceleration of FCoE traffic.
1242  *
1243  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1244  *			     struct scatterlist *sgl, unsigned int sgc);
1245  *	Called when the FCoE Initiator wants to initialize an I/O that
1246  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1247  *	perform necessary setup and returns 1 to indicate the device is set up
1248  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1249  *
1250  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1251  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1252  *	indicated by the FC exchange id 'xid', so the underlying device can
1253  *	clean up and reuse resources for later DDP requests.
1254  *
1255  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1256  *			      struct scatterlist *sgl, unsigned int sgc);
1257  *	Called when the FCoE Target wants to initialize an I/O that
1258  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1259  *	perform necessary setup and returns 1 to indicate the device is set up
1260  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1261  *
1262  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1263  *			       struct netdev_fcoe_hbainfo *hbainfo);
1264  *	Called when the FCoE Protocol stack wants information on the underlying
1265  *	device. This information is utilized by the FCoE protocol stack to
1266  *	register attributes with Fiber Channel management service as per the
1267  *	FC-GS Fabric Device Management Information(FDMI) specification.
1268  *
1269  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1270  *	Called when the underlying device wants to override default World Wide
1271  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1272  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1273  *	protocol stack to use.
1274  *
1275  *	RFS acceleration.
1276  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1277  *			    u16 rxq_index, u32 flow_id);
1278  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1279  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1280  *	Return the filter ID on success, or a negative error code.
1281  *
1282  *	Slave management functions (for bridge, bonding, etc).
1283  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1284  *	Called to make another netdev an underling.
1285  *
1286  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1287  *	Called to release previously enslaved netdev.
1288  *
1289  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1290  *					    struct sk_buff *skb,
1291  *					    bool all_slaves);
1292  *	Get the xmit slave of master device. If all_slaves is true, function
1293  *	assume all the slaves can transmit.
1294  *
1295  *      Feature/offload setting functions.
1296  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1297  *		netdev_features_t features);
1298  *	Adjusts the requested feature flags according to device-specific
1299  *	constraints, and returns the resulting flags. Must not modify
1300  *	the device state.
1301  *
1302  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1303  *	Called to update device configuration to new features. Passed
1304  *	feature set might be less than what was returned by ndo_fix_features()).
1305  *	Must return >0 or -errno if it changed dev->features itself.
1306  *
1307  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1308  *		      struct net_device *dev,
1309  *		      const unsigned char *addr, u16 vid, u16 flags,
1310  *		      struct netlink_ext_ack *extack);
1311  *	Adds an FDB entry to dev for addr.
1312  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1313  *		      struct net_device *dev,
1314  *		      const unsigned char *addr, u16 vid)
1315  *	Deletes the FDB entry from dev coresponding to addr.
1316  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1317  *			   struct netlink_ext_ack *extack);
1318  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1319  *		       struct net_device *dev, struct net_device *filter_dev,
1320  *		       int *idx)
1321  *	Used to add FDB entries to dump requests. Implementers should add
1322  *	entries to skb and update idx with the number of entries.
1323  *
1324  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1325  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1326  *	Adds an MDB entry to dev.
1327  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1328  *		      struct netlink_ext_ack *extack);
1329  *	Deletes the MDB entry from dev.
1330  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1331  *			   struct netlink_ext_ack *extack);
1332  *	Bulk deletes MDB entries from dev.
1333  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1334  *		       struct netlink_callback *cb);
1335  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1336  *	callback is used by core rtnetlink code.
1337  *
1338  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1339  *			     u16 flags, struct netlink_ext_ack *extack)
1340  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1341  *			     struct net_device *dev, u32 filter_mask,
1342  *			     int nlflags)
1343  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1344  *			     u16 flags);
1345  *
1346  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1347  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1348  *	which do not represent real hardware may define this to allow their
1349  *	userspace components to manage their virtual carrier state. Devices
1350  *	that determine carrier state from physical hardware properties (eg
1351  *	network cables) or protocol-dependent mechanisms (eg
1352  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1353  *
1354  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1355  *			       struct netdev_phys_item_id *ppid);
1356  *	Called to get ID of physical port of this device. If driver does
1357  *	not implement this, it is assumed that the hw is not able to have
1358  *	multiple net devices on single physical port.
1359  *
1360  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1361  *				 struct netdev_phys_item_id *ppid)
1362  *	Called to get the parent ID of the physical port of this device.
1363  *
1364  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1365  *				 struct net_device *dev)
1366  *	Called by upper layer devices to accelerate switching or other
1367  *	station functionality into hardware. 'pdev is the lowerdev
1368  *	to use for the offload and 'dev' is the net device that will
1369  *	back the offload. Returns a pointer to the private structure
1370  *	the upper layer will maintain.
1371  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1372  *	Called by upper layer device to delete the station created
1373  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1374  *	the station and priv is the structure returned by the add
1375  *	operation.
1376  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1377  *			     int queue_index, u32 maxrate);
1378  *	Called when a user wants to set a max-rate limitation of specific
1379  *	TX queue.
1380  * int (*ndo_get_iflink)(const struct net_device *dev);
1381  *	Called to get the iflink value of this device.
1382  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1383  *	This function is used to get egress tunnel information for given skb.
1384  *	This is useful for retrieving outer tunnel header parameters while
1385  *	sampling packet.
1386  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1387  *	This function is used to specify the headroom that the skb must
1388  *	consider when allocation skb during packet reception. Setting
1389  *	appropriate rx headroom value allows avoiding skb head copy on
1390  *	forward. Setting a negative value resets the rx headroom to the
1391  *	default value.
1392  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1393  *	This function is used to set or query state related to XDP on the
1394  *	netdevice and manage BPF offload. See definition of
1395  *	enum bpf_netdev_command for details.
1396  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1397  *			u32 flags);
1398  *	This function is used to submit @n XDP packets for transmit on a
1399  *	netdevice. Returns number of frames successfully transmitted, frames
1400  *	that got dropped are freed/returned via xdp_return_frame().
1401  *	Returns negative number, means general error invoking ndo, meaning
1402  *	no frames were xmit'ed and core-caller will free all frames.
1403  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1404  *					        struct xdp_buff *xdp);
1405  *      Get the xmit slave of master device based on the xdp_buff.
1406  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1407  *      This function is used to wake up the softirq, ksoftirqd or kthread
1408  *	responsible for sending and/or receiving packets on a specific
1409  *	queue id bound to an AF_XDP socket. The flags field specifies if
1410  *	only RX, only Tx, or both should be woken up using the flags
1411  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1412  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1413  *			 int cmd);
1414  *	Add, change, delete or get information on an IPv4 tunnel.
1415  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1416  *	If a device is paired with a peer device, return the peer instance.
1417  *	The caller must be under RCU read context.
1418  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1419  *     Get the forwarding path to reach the real device from the HW destination address
1420  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1421  *			     const struct skb_shared_hwtstamps *hwtstamps,
1422  *			     bool cycles);
1423  *	Get hardware timestamp based on normal/adjustable time or free running
1424  *	cycle counter. This function is required if physical clock supports a
1425  *	free running cycle counter.
1426  *
1427  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1428  *			   struct kernel_hwtstamp_config *kernel_config);
1429  *	Get the currently configured hardware timestamping parameters for the
1430  *	NIC device.
1431  *
1432  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1433  *			   struct kernel_hwtstamp_config *kernel_config,
1434  *			   struct netlink_ext_ack *extack);
1435  *	Change the hardware timestamping parameters for NIC device.
1436  */
1437 struct net_device_ops {
1438 	int			(*ndo_init)(struct net_device *dev);
1439 	void			(*ndo_uninit)(struct net_device *dev);
1440 	int			(*ndo_open)(struct net_device *dev);
1441 	int			(*ndo_stop)(struct net_device *dev);
1442 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1443 						  struct net_device *dev);
1444 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1445 						      struct net_device *dev,
1446 						      netdev_features_t features);
1447 	u16			(*ndo_select_queue)(struct net_device *dev,
1448 						    struct sk_buff *skb,
1449 						    struct net_device *sb_dev);
1450 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1451 						       int flags);
1452 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1453 	int			(*ndo_set_mac_address)(struct net_device *dev,
1454 						       void *addr);
1455 	int			(*ndo_validate_addr)(struct net_device *dev);
1456 	int			(*ndo_do_ioctl)(struct net_device *dev,
1457 					        struct ifreq *ifr, int cmd);
1458 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1459 						 struct ifreq *ifr, int cmd);
1460 	int			(*ndo_siocbond)(struct net_device *dev,
1461 						struct ifreq *ifr, int cmd);
1462 	int			(*ndo_siocwandev)(struct net_device *dev,
1463 						  struct if_settings *ifs);
1464 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1465 						      struct ifreq *ifr,
1466 						      void __user *data, int cmd);
1467 	int			(*ndo_set_config)(struct net_device *dev,
1468 					          struct ifmap *map);
1469 	int			(*ndo_change_mtu)(struct net_device *dev,
1470 						  int new_mtu);
1471 	int			(*ndo_neigh_setup)(struct net_device *dev,
1472 						   struct neigh_parms *);
1473 	void			(*ndo_tx_timeout) (struct net_device *dev,
1474 						   unsigned int txqueue);
1475 
1476 	void			(*ndo_get_stats64)(struct net_device *dev,
1477 						   struct rtnl_link_stats64 *storage);
1478 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1479 	int			(*ndo_get_offload_stats)(int attr_id,
1480 							 const struct net_device *dev,
1481 							 void *attr_data);
1482 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1483 
1484 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1485 						       __be16 proto, u16 vid);
1486 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1487 						        __be16 proto, u16 vid);
1488 #ifdef CONFIG_NET_POLL_CONTROLLER
1489 	void                    (*ndo_poll_controller)(struct net_device *dev);
1490 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1491 						     struct netpoll_info *info);
1492 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1493 #endif
1494 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1495 						  int queue, u8 *mac);
1496 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1497 						   int queue, u16 vlan,
1498 						   u8 qos, __be16 proto);
1499 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1500 						   int vf, int min_tx_rate,
1501 						   int max_tx_rate);
1502 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1503 						       int vf, bool setting);
1504 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1505 						    int vf, bool setting);
1506 	int			(*ndo_get_vf_config)(struct net_device *dev,
1507 						     int vf,
1508 						     struct ifla_vf_info *ivf);
1509 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1510 							 int vf, int link_state);
1511 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1512 						    int vf,
1513 						    struct ifla_vf_stats
1514 						    *vf_stats);
1515 	int			(*ndo_set_vf_port)(struct net_device *dev,
1516 						   int vf,
1517 						   struct nlattr *port[]);
1518 	int			(*ndo_get_vf_port)(struct net_device *dev,
1519 						   int vf, struct sk_buff *skb);
1520 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1521 						   int vf,
1522 						   struct ifla_vf_guid *node_guid,
1523 						   struct ifla_vf_guid *port_guid);
1524 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1525 						   int vf, u64 guid,
1526 						   int guid_type);
1527 	int			(*ndo_set_vf_rss_query_en)(
1528 						   struct net_device *dev,
1529 						   int vf, bool setting);
1530 	int			(*ndo_setup_tc)(struct net_device *dev,
1531 						enum tc_setup_type type,
1532 						void *type_data);
1533 #if IS_ENABLED(CONFIG_FCOE)
1534 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1535 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1536 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1537 						      u16 xid,
1538 						      struct scatterlist *sgl,
1539 						      unsigned int sgc);
1540 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1541 						     u16 xid);
1542 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1543 						       u16 xid,
1544 						       struct scatterlist *sgl,
1545 						       unsigned int sgc);
1546 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1547 							struct netdev_fcoe_hbainfo *hbainfo);
1548 #endif
1549 
1550 #if IS_ENABLED(CONFIG_LIBFCOE)
1551 #define NETDEV_FCOE_WWNN 0
1552 #define NETDEV_FCOE_WWPN 1
1553 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1554 						    u64 *wwn, int type);
1555 #endif
1556 
1557 #ifdef CONFIG_RFS_ACCEL
1558 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1559 						     const struct sk_buff *skb,
1560 						     u16 rxq_index,
1561 						     u32 flow_id);
1562 #endif
1563 	int			(*ndo_add_slave)(struct net_device *dev,
1564 						 struct net_device *slave_dev,
1565 						 struct netlink_ext_ack *extack);
1566 	int			(*ndo_del_slave)(struct net_device *dev,
1567 						 struct net_device *slave_dev);
1568 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1569 						      struct sk_buff *skb,
1570 						      bool all_slaves);
1571 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1572 							struct sock *sk);
1573 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1574 						    netdev_features_t features);
1575 	int			(*ndo_set_features)(struct net_device *dev,
1576 						    netdev_features_t features);
1577 	int			(*ndo_neigh_construct)(struct net_device *dev,
1578 						       struct neighbour *n);
1579 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1580 						     struct neighbour *n);
1581 
1582 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1583 					       struct nlattr *tb[],
1584 					       struct net_device *dev,
1585 					       const unsigned char *addr,
1586 					       u16 vid,
1587 					       u16 flags,
1588 					       struct netlink_ext_ack *extack);
1589 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1590 					       struct nlattr *tb[],
1591 					       struct net_device *dev,
1592 					       const unsigned char *addr,
1593 					       u16 vid, struct netlink_ext_ack *extack);
1594 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1595 						    struct net_device *dev,
1596 						    struct netlink_ext_ack *extack);
1597 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1598 						struct netlink_callback *cb,
1599 						struct net_device *dev,
1600 						struct net_device *filter_dev,
1601 						int *idx);
1602 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1603 					       struct nlattr *tb[],
1604 					       struct net_device *dev,
1605 					       const unsigned char *addr,
1606 					       u16 vid, u32 portid, u32 seq,
1607 					       struct netlink_ext_ack *extack);
1608 	int			(*ndo_mdb_add)(struct net_device *dev,
1609 					       struct nlattr *tb[],
1610 					       u16 nlmsg_flags,
1611 					       struct netlink_ext_ack *extack);
1612 	int			(*ndo_mdb_del)(struct net_device *dev,
1613 					       struct nlattr *tb[],
1614 					       struct netlink_ext_ack *extack);
1615 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1616 						    struct nlattr *tb[],
1617 						    struct netlink_ext_ack *extack);
1618 	int			(*ndo_mdb_dump)(struct net_device *dev,
1619 						struct sk_buff *skb,
1620 						struct netlink_callback *cb);
1621 	int			(*ndo_mdb_get)(struct net_device *dev,
1622 					       struct nlattr *tb[], u32 portid,
1623 					       u32 seq,
1624 					       struct netlink_ext_ack *extack);
1625 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1626 						      struct nlmsghdr *nlh,
1627 						      u16 flags,
1628 						      struct netlink_ext_ack *extack);
1629 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1630 						      u32 pid, u32 seq,
1631 						      struct net_device *dev,
1632 						      u32 filter_mask,
1633 						      int nlflags);
1634 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1635 						      struct nlmsghdr *nlh,
1636 						      u16 flags);
1637 	int			(*ndo_change_carrier)(struct net_device *dev,
1638 						      bool new_carrier);
1639 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1640 							struct netdev_phys_item_id *ppid);
1641 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1642 							  struct netdev_phys_item_id *ppid);
1643 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1644 							  char *name, size_t len);
1645 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1646 							struct net_device *dev);
1647 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1648 							void *priv);
1649 
1650 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1651 						      int queue_index,
1652 						      u32 maxrate);
1653 	int			(*ndo_get_iflink)(const struct net_device *dev);
1654 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1655 						       struct sk_buff *skb);
1656 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1657 						       int needed_headroom);
1658 	int			(*ndo_bpf)(struct net_device *dev,
1659 					   struct netdev_bpf *bpf);
1660 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1661 						struct xdp_frame **xdp,
1662 						u32 flags);
1663 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1664 							  struct xdp_buff *xdp);
1665 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1666 						  u32 queue_id, u32 flags);
1667 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1668 						  struct ip_tunnel_parm *p, int cmd);
1669 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1670 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1671                                                          struct net_device_path *path);
1672 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1673 						  const struct skb_shared_hwtstamps *hwtstamps,
1674 						  bool cycles);
1675 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1676 						    struct kernel_hwtstamp_config *kernel_config);
1677 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1678 						    struct kernel_hwtstamp_config *kernel_config,
1679 						    struct netlink_ext_ack *extack);
1680 };
1681 
1682 /**
1683  * enum netdev_priv_flags - &struct net_device priv_flags
1684  *
1685  * These are the &struct net_device, they are only set internally
1686  * by drivers and used in the kernel. These flags are invisible to
1687  * userspace; this means that the order of these flags can change
1688  * during any kernel release.
1689  *
1690  * You should have a pretty good reason to be extending these flags.
1691  *
1692  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1693  * @IFF_EBRIDGE: Ethernet bridging device
1694  * @IFF_BONDING: bonding master or slave
1695  * @IFF_ISATAP: ISATAP interface (RFC4214)
1696  * @IFF_WAN_HDLC: WAN HDLC device
1697  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1698  *	release skb->dst
1699  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1700  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1701  * @IFF_MACVLAN_PORT: device used as macvlan port
1702  * @IFF_BRIDGE_PORT: device used as bridge port
1703  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1704  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1705  * @IFF_UNICAST_FLT: Supports unicast filtering
1706  * @IFF_TEAM_PORT: device used as team port
1707  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1708  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1709  *	change when it's running
1710  * @IFF_MACVLAN: Macvlan device
1711  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1712  *	underlying stacked devices
1713  * @IFF_L3MDEV_MASTER: device is an L3 master device
1714  * @IFF_NO_QUEUE: device can run without qdisc attached
1715  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1716  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1717  * @IFF_TEAM: device is a team device
1718  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1719  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1720  *	entity (i.e. the master device for bridged veth)
1721  * @IFF_MACSEC: device is a MACsec device
1722  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1723  * @IFF_FAILOVER: device is a failover master device
1724  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1725  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1726  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1727  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1728  *	skb_headlen(skb) == 0 (data starts from frag0)
1729  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1730  * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1731  *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1732  *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1733  */
1734 enum netdev_priv_flags {
1735 	IFF_802_1Q_VLAN			= 1<<0,
1736 	IFF_EBRIDGE			= 1<<1,
1737 	IFF_BONDING			= 1<<2,
1738 	IFF_ISATAP			= 1<<3,
1739 	IFF_WAN_HDLC			= 1<<4,
1740 	IFF_XMIT_DST_RELEASE		= 1<<5,
1741 	IFF_DONT_BRIDGE			= 1<<6,
1742 	IFF_DISABLE_NETPOLL		= 1<<7,
1743 	IFF_MACVLAN_PORT		= 1<<8,
1744 	IFF_BRIDGE_PORT			= 1<<9,
1745 	IFF_OVS_DATAPATH		= 1<<10,
1746 	IFF_TX_SKB_SHARING		= 1<<11,
1747 	IFF_UNICAST_FLT			= 1<<12,
1748 	IFF_TEAM_PORT			= 1<<13,
1749 	IFF_SUPP_NOFCS			= 1<<14,
1750 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1751 	IFF_MACVLAN			= 1<<16,
1752 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1753 	IFF_L3MDEV_MASTER		= 1<<18,
1754 	IFF_NO_QUEUE			= 1<<19,
1755 	IFF_OPENVSWITCH			= 1<<20,
1756 	IFF_L3MDEV_SLAVE		= 1<<21,
1757 	IFF_TEAM			= 1<<22,
1758 	IFF_RXFH_CONFIGURED		= 1<<23,
1759 	IFF_PHONY_HEADROOM		= 1<<24,
1760 	IFF_MACSEC			= 1<<25,
1761 	IFF_NO_RX_HANDLER		= 1<<26,
1762 	IFF_FAILOVER			= 1<<27,
1763 	IFF_FAILOVER_SLAVE		= 1<<28,
1764 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1765 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1766 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1767 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1768 	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1769 };
1770 
1771 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1772 #define IFF_EBRIDGE			IFF_EBRIDGE
1773 #define IFF_BONDING			IFF_BONDING
1774 #define IFF_ISATAP			IFF_ISATAP
1775 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1776 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1777 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1778 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1779 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1780 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1781 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1782 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1783 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1784 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1785 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1786 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1787 #define IFF_MACVLAN			IFF_MACVLAN
1788 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1789 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1790 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1791 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1792 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1793 #define IFF_TEAM			IFF_TEAM
1794 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1795 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1796 #define IFF_MACSEC			IFF_MACSEC
1797 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1798 #define IFF_FAILOVER			IFF_FAILOVER
1799 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1800 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1801 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1802 
1803 /* Specifies the type of the struct net_device::ml_priv pointer */
1804 enum netdev_ml_priv_type {
1805 	ML_PRIV_NONE,
1806 	ML_PRIV_CAN,
1807 };
1808 
1809 enum netdev_stat_type {
1810 	NETDEV_PCPU_STAT_NONE,
1811 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1812 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1813 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1814 };
1815 
1816 /**
1817  *	struct net_device - The DEVICE structure.
1818  *
1819  *	Actually, this whole structure is a big mistake.  It mixes I/O
1820  *	data with strictly "high-level" data, and it has to know about
1821  *	almost every data structure used in the INET module.
1822  *
1823  *	@name:	This is the first field of the "visible" part of this structure
1824  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1825  *		of the interface.
1826  *
1827  *	@name_node:	Name hashlist node
1828  *	@ifalias:	SNMP alias
1829  *	@mem_end:	Shared memory end
1830  *	@mem_start:	Shared memory start
1831  *	@base_addr:	Device I/O address
1832  *	@irq:		Device IRQ number
1833  *
1834  *	@state:		Generic network queuing layer state, see netdev_state_t
1835  *	@dev_list:	The global list of network devices
1836  *	@napi_list:	List entry used for polling NAPI devices
1837  *	@unreg_list:	List entry  when we are unregistering the
1838  *			device; see the function unregister_netdev
1839  *	@close_list:	List entry used when we are closing the device
1840  *	@ptype_all:     Device-specific packet handlers for all protocols
1841  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1842  *
1843  *	@adj_list:	Directly linked devices, like slaves for bonding
1844  *	@features:	Currently active device features
1845  *	@hw_features:	User-changeable features
1846  *
1847  *	@wanted_features:	User-requested features
1848  *	@vlan_features:		Mask of features inheritable by VLAN devices
1849  *
1850  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1851  *				This field indicates what encapsulation
1852  *				offloads the hardware is capable of doing,
1853  *				and drivers will need to set them appropriately.
1854  *
1855  *	@mpls_features:	Mask of features inheritable by MPLS
1856  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1857  *
1858  *	@ifindex:	interface index
1859  *	@group:		The group the device belongs to
1860  *
1861  *	@stats:		Statistics struct, which was left as a legacy, use
1862  *			rtnl_link_stats64 instead
1863  *
1864  *	@core_stats:	core networking counters,
1865  *			do not use this in drivers
1866  *	@carrier_up_count:	Number of times the carrier has been up
1867  *	@carrier_down_count:	Number of times the carrier has been down
1868  *
1869  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1870  *				instead of ioctl,
1871  *				see <net/iw_handler.h> for details.
1872  *	@wireless_data:	Instance data managed by the core of wireless extensions
1873  *
1874  *	@netdev_ops:	Includes several pointers to callbacks,
1875  *			if one wants to override the ndo_*() functions
1876  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1877  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1878  *	@ethtool_ops:	Management operations
1879  *	@l3mdev_ops:	Layer 3 master device operations
1880  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1881  *			discovery handling. Necessary for e.g. 6LoWPAN.
1882  *	@xfrmdev_ops:	Transformation offload operations
1883  *	@tlsdev_ops:	Transport Layer Security offload operations
1884  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1885  *			of Layer 2 headers.
1886  *
1887  *	@flags:		Interface flags (a la BSD)
1888  *	@xdp_features:	XDP capability supported by the device
1889  *	@priv_flags:	Like 'flags' but invisible to userspace,
1890  *			see if.h for the definitions
1891  *	@gflags:	Global flags ( kept as legacy )
1892  *	@padded:	How much padding added by alloc_netdev()
1893  *	@operstate:	RFC2863 operstate
1894  *	@link_mode:	Mapping policy to operstate
1895  *	@if_port:	Selectable AUI, TP, ...
1896  *	@dma:		DMA channel
1897  *	@mtu:		Interface MTU value
1898  *	@min_mtu:	Interface Minimum MTU value
1899  *	@max_mtu:	Interface Maximum MTU value
1900  *	@type:		Interface hardware type
1901  *	@hard_header_len: Maximum hardware header length.
1902  *	@min_header_len:  Minimum hardware header length
1903  *
1904  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1905  *			  cases can this be guaranteed
1906  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1907  *			  cases can this be guaranteed. Some cases also use
1908  *			  LL_MAX_HEADER instead to allocate the skb
1909  *
1910  *	interface address info:
1911  *
1912  * 	@perm_addr:		Permanent hw address
1913  * 	@addr_assign_type:	Hw address assignment type
1914  * 	@addr_len:		Hardware address length
1915  *	@upper_level:		Maximum depth level of upper devices.
1916  *	@lower_level:		Maximum depth level of lower devices.
1917  *	@neigh_priv_len:	Used in neigh_alloc()
1918  * 	@dev_id:		Used to differentiate devices that share
1919  * 				the same link layer address
1920  * 	@dev_port:		Used to differentiate devices that share
1921  * 				the same function
1922  *	@addr_list_lock:	XXX: need comments on this one
1923  *	@name_assign_type:	network interface name assignment type
1924  *	@uc_promisc:		Counter that indicates promiscuous mode
1925  *				has been enabled due to the need to listen to
1926  *				additional unicast addresses in a device that
1927  *				does not implement ndo_set_rx_mode()
1928  *	@uc:			unicast mac addresses
1929  *	@mc:			multicast mac addresses
1930  *	@dev_addrs:		list of device hw addresses
1931  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1932  *	@promiscuity:		Number of times the NIC is told to work in
1933  *				promiscuous mode; if it becomes 0 the NIC will
1934  *				exit promiscuous mode
1935  *	@allmulti:		Counter, enables or disables allmulticast mode
1936  *
1937  *	@vlan_info:	VLAN info
1938  *	@dsa_ptr:	dsa specific data
1939  *	@tipc_ptr:	TIPC specific data
1940  *	@atalk_ptr:	AppleTalk link
1941  *	@ip_ptr:	IPv4 specific data
1942  *	@ip6_ptr:	IPv6 specific data
1943  *	@ax25_ptr:	AX.25 specific data
1944  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1945  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1946  *			 device struct
1947  *	@mpls_ptr:	mpls_dev struct pointer
1948  *	@mctp_ptr:	MCTP specific data
1949  *
1950  *	@dev_addr:	Hw address (before bcast,
1951  *			because most packets are unicast)
1952  *
1953  *	@_rx:			Array of RX queues
1954  *	@num_rx_queues:		Number of RX queues
1955  *				allocated at register_netdev() time
1956  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1957  *	@xdp_prog:		XDP sockets filter program pointer
1958  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1959  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1960  *				allow to avoid NIC hard IRQ, on busy queues.
1961  *
1962  *	@rx_handler:		handler for received packets
1963  *	@rx_handler_data: 	XXX: need comments on this one
1964  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1965  *	@ingress_queue:		XXX: need comments on this one
1966  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1967  *	@broadcast:		hw bcast address
1968  *
1969  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1970  *			indexed by RX queue number. Assigned by driver.
1971  *			This must only be set if the ndo_rx_flow_steer
1972  *			operation is defined
1973  *	@index_hlist:		Device index hash chain
1974  *
1975  *	@_tx:			Array of TX queues
1976  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1977  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1978  *	@qdisc:			Root qdisc from userspace point of view
1979  *	@tx_queue_len:		Max frames per queue allowed
1980  *	@tx_global_lock: 	XXX: need comments on this one
1981  *	@xdp_bulkq:		XDP device bulk queue
1982  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1983  *
1984  *	@xps_maps:	XXX: need comments on this one
1985  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1986  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1987  *	@qdisc_hash:		qdisc hash table
1988  *	@watchdog_timeo:	Represents the timeout that is used by
1989  *				the watchdog (see dev_watchdog())
1990  *	@watchdog_timer:	List of timers
1991  *
1992  *	@proto_down_reason:	reason a netdev interface is held down
1993  *	@pcpu_refcnt:		Number of references to this device
1994  *	@dev_refcnt:		Number of references to this device
1995  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1996  *	@todo_list:		Delayed register/unregister
1997  *	@link_watch_list:	XXX: need comments on this one
1998  *
1999  *	@reg_state:		Register/unregister state machine
2000  *	@dismantle:		Device is going to be freed
2001  *	@rtnl_link_state:	This enum represents the phases of creating
2002  *				a new link
2003  *
2004  *	@needs_free_netdev:	Should unregister perform free_netdev?
2005  *	@priv_destructor:	Called from unregister
2006  *	@npinfo:		XXX: need comments on this one
2007  * 	@nd_net:		Network namespace this network device is inside
2008  *
2009  * 	@ml_priv:	Mid-layer private
2010  *	@ml_priv_type:  Mid-layer private type
2011  *
2012  *	@pcpu_stat_type:	Type of device statistics which the core should
2013  *				allocate/free: none, lstats, tstats, dstats. none
2014  *				means the driver is handling statistics allocation/
2015  *				freeing internally.
2016  *	@lstats:		Loopback statistics: packets, bytes
2017  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
2018  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
2019  *
2020  *	@garp_port:	GARP
2021  *	@mrp_port:	MRP
2022  *
2023  *	@dm_private:	Drop monitor private
2024  *
2025  *	@dev:		Class/net/name entry
2026  *	@sysfs_groups:	Space for optional device, statistics and wireless
2027  *			sysfs groups
2028  *
2029  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
2030  *	@rtnl_link_ops:	Rtnl_link_ops
2031  *
2032  *	@gso_max_size:	Maximum size of generic segmentation offload
2033  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2034  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2035  *			NIC for GSO
2036  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2037  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2038  * 				for IPv4.
2039  *
2040  *	@dcbnl_ops:	Data Center Bridging netlink ops
2041  *	@num_tc:	Number of traffic classes in the net device
2042  *	@tc_to_txq:	XXX: need comments on this one
2043  *	@prio_tc_map:	XXX: need comments on this one
2044  *
2045  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2046  *
2047  *	@priomap:	XXX: need comments on this one
2048  *	@phydev:	Physical device may attach itself
2049  *			for hardware timestamping
2050  *	@sfp_bus:	attached &struct sfp_bus structure.
2051  *
2052  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2053  *
2054  *	@proto_down:	protocol port state information can be sent to the
2055  *			switch driver and used to set the phys state of the
2056  *			switch port.
2057  *
2058  *	@wol_enabled:	Wake-on-LAN is enabled
2059  *
2060  *	@threaded:	napi threaded mode is enabled
2061  *
2062  *	@net_notifier_list:	List of per-net netdev notifier block
2063  *				that follow this device when it is moved
2064  *				to another network namespace.
2065  *
2066  *	@macsec_ops:    MACsec offloading ops
2067  *
2068  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2069  *				offload capabilities of the device
2070  *	@udp_tunnel_nic:	UDP tunnel offload state
2071  *	@xdp_state:		stores info on attached XDP BPF programs
2072  *
2073  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2074  *			dev->addr_list_lock.
2075  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2076  *			keep a list of interfaces to be deleted.
2077  *	@gro_max_size:	Maximum size of aggregated packet in generic
2078  *			receive offload (GRO)
2079  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2080  * 				receive offload (GRO), for IPv4.
2081  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2082  *				zero copy driver
2083  *
2084  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2085  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2086  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2087  *	@dev_registered_tracker:	tracker for reference held while
2088  *					registered
2089  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2090  *
2091  *	@devlink_port:	Pointer to related devlink port structure.
2092  *			Assigned by a driver before netdev registration using
2093  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2094  *			during the time netdevice is registered.
2095  *
2096  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2097  *		   where the clock is recovered.
2098  *
2099  *	FIXME: cleanup struct net_device such that network protocol info
2100  *	moves out.
2101  */
2102 
2103 struct net_device {
2104 	/* Cacheline organization can be found documented in
2105 	 * Documentation/networking/net_cachelines/net_device.rst.
2106 	 * Please update the document when adding new fields.
2107 	 */
2108 
2109 	/* TX read-mostly hotpath */
2110 	__cacheline_group_begin(net_device_read_tx);
2111 	unsigned long long	priv_flags;
2112 	const struct net_device_ops *netdev_ops;
2113 	const struct header_ops *header_ops;
2114 	struct netdev_queue	*_tx;
2115 	netdev_features_t	gso_partial_features;
2116 	unsigned int		real_num_tx_queues;
2117 	unsigned int		gso_max_size;
2118 	unsigned int		gso_ipv4_max_size;
2119 	u16			gso_max_segs;
2120 	s16			num_tc;
2121 	/* Note : dev->mtu is often read without holding a lock.
2122 	 * Writers usually hold RTNL.
2123 	 * It is recommended to use READ_ONCE() to annotate the reads,
2124 	 * and to use WRITE_ONCE() to annotate the writes.
2125 	 */
2126 	unsigned int		mtu;
2127 	unsigned short		needed_headroom;
2128 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2129 #ifdef CONFIG_XPS
2130 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2131 #endif
2132 #ifdef CONFIG_NETFILTER_EGRESS
2133 	struct nf_hook_entries __rcu *nf_hooks_egress;
2134 #endif
2135 #ifdef CONFIG_NET_XGRESS
2136 	struct bpf_mprog_entry __rcu *tcx_egress;
2137 #endif
2138 	__cacheline_group_end(net_device_read_tx);
2139 
2140 	/* TXRX read-mostly hotpath */
2141 	__cacheline_group_begin(net_device_read_txrx);
2142 	union {
2143 		struct pcpu_lstats __percpu		*lstats;
2144 		struct pcpu_sw_netstats __percpu	*tstats;
2145 		struct pcpu_dstats __percpu		*dstats;
2146 	};
2147 	unsigned int		flags;
2148 	unsigned short		hard_header_len;
2149 	netdev_features_t	features;
2150 	struct inet6_dev __rcu	*ip6_ptr;
2151 	__cacheline_group_end(net_device_read_txrx);
2152 
2153 	/* RX read-mostly hotpath */
2154 	__cacheline_group_begin(net_device_read_rx);
2155 	struct bpf_prog __rcu	*xdp_prog;
2156 	struct list_head	ptype_specific;
2157 	int			ifindex;
2158 	unsigned int		real_num_rx_queues;
2159 	struct netdev_rx_queue	*_rx;
2160 	unsigned long		gro_flush_timeout;
2161 	int			napi_defer_hard_irqs;
2162 	unsigned int		gro_max_size;
2163 	unsigned int		gro_ipv4_max_size;
2164 	rx_handler_func_t __rcu	*rx_handler;
2165 	void __rcu		*rx_handler_data;
2166 	possible_net_t			nd_net;
2167 #ifdef CONFIG_NETPOLL
2168 	struct netpoll_info __rcu	*npinfo;
2169 #endif
2170 #ifdef CONFIG_NET_XGRESS
2171 	struct bpf_mprog_entry __rcu *tcx_ingress;
2172 #endif
2173 	__cacheline_group_end(net_device_read_rx);
2174 
2175 	char			name[IFNAMSIZ];
2176 	struct netdev_name_node	*name_node;
2177 	struct dev_ifalias	__rcu *ifalias;
2178 	/*
2179 	 *	I/O specific fields
2180 	 *	FIXME: Merge these and struct ifmap into one
2181 	 */
2182 	unsigned long		mem_end;
2183 	unsigned long		mem_start;
2184 	unsigned long		base_addr;
2185 
2186 	/*
2187 	 *	Some hardware also needs these fields (state,dev_list,
2188 	 *	napi_list,unreg_list,close_list) but they are not
2189 	 *	part of the usual set specified in Space.c.
2190 	 */
2191 
2192 	unsigned long		state;
2193 
2194 	struct list_head	dev_list;
2195 	struct list_head	napi_list;
2196 	struct list_head	unreg_list;
2197 	struct list_head	close_list;
2198 	struct list_head	ptype_all;
2199 
2200 	struct {
2201 		struct list_head upper;
2202 		struct list_head lower;
2203 	} adj_list;
2204 
2205 	/* Read-mostly cache-line for fast-path access */
2206 	xdp_features_t		xdp_features;
2207 	const struct xdp_metadata_ops *xdp_metadata_ops;
2208 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2209 	unsigned short		gflags;
2210 
2211 	unsigned short		needed_tailroom;
2212 
2213 	netdev_features_t	hw_features;
2214 	netdev_features_t	wanted_features;
2215 	netdev_features_t	vlan_features;
2216 	netdev_features_t	hw_enc_features;
2217 	netdev_features_t	mpls_features;
2218 
2219 	unsigned int		min_mtu;
2220 	unsigned int		max_mtu;
2221 	unsigned short		type;
2222 	unsigned char		min_header_len;
2223 	unsigned char		name_assign_type;
2224 
2225 	int			group;
2226 
2227 	struct net_device_stats	stats; /* not used by modern drivers */
2228 
2229 	struct net_device_core_stats __percpu *core_stats;
2230 
2231 	/* Stats to monitor link on/off, flapping */
2232 	atomic_t		carrier_up_count;
2233 	atomic_t		carrier_down_count;
2234 
2235 #ifdef CONFIG_WIRELESS_EXT
2236 	const struct iw_handler_def *wireless_handlers;
2237 	struct iw_public_data	*wireless_data;
2238 #endif
2239 	const struct ethtool_ops *ethtool_ops;
2240 #ifdef CONFIG_NET_L3_MASTER_DEV
2241 	const struct l3mdev_ops	*l3mdev_ops;
2242 #endif
2243 #if IS_ENABLED(CONFIG_IPV6)
2244 	const struct ndisc_ops *ndisc_ops;
2245 #endif
2246 
2247 #ifdef CONFIG_XFRM_OFFLOAD
2248 	const struct xfrmdev_ops *xfrmdev_ops;
2249 #endif
2250 
2251 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2252 	const struct tlsdev_ops *tlsdev_ops;
2253 #endif
2254 
2255 	unsigned char		operstate;
2256 	unsigned char		link_mode;
2257 
2258 	unsigned char		if_port;
2259 	unsigned char		dma;
2260 
2261 	/* Interface address info. */
2262 	unsigned char		perm_addr[MAX_ADDR_LEN];
2263 	unsigned char		addr_assign_type;
2264 	unsigned char		addr_len;
2265 	unsigned char		upper_level;
2266 	unsigned char		lower_level;
2267 
2268 	unsigned short		neigh_priv_len;
2269 	unsigned short          dev_id;
2270 	unsigned short          dev_port;
2271 	unsigned short		padded;
2272 
2273 	spinlock_t		addr_list_lock;
2274 	int			irq;
2275 
2276 	struct netdev_hw_addr_list	uc;
2277 	struct netdev_hw_addr_list	mc;
2278 	struct netdev_hw_addr_list	dev_addrs;
2279 
2280 #ifdef CONFIG_SYSFS
2281 	struct kset		*queues_kset;
2282 #endif
2283 #ifdef CONFIG_LOCKDEP
2284 	struct list_head	unlink_list;
2285 #endif
2286 	unsigned int		promiscuity;
2287 	unsigned int		allmulti;
2288 	bool			uc_promisc;
2289 #ifdef CONFIG_LOCKDEP
2290 	unsigned char		nested_level;
2291 #endif
2292 
2293 
2294 	/* Protocol-specific pointers */
2295 	struct in_device __rcu	*ip_ptr;
2296 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2297 	struct vlan_info __rcu	*vlan_info;
2298 #endif
2299 #if IS_ENABLED(CONFIG_NET_DSA)
2300 	struct dsa_port		*dsa_ptr;
2301 #endif
2302 #if IS_ENABLED(CONFIG_TIPC)
2303 	struct tipc_bearer __rcu *tipc_ptr;
2304 #endif
2305 #if IS_ENABLED(CONFIG_ATALK)
2306 	void 			*atalk_ptr;
2307 #endif
2308 #if IS_ENABLED(CONFIG_AX25)
2309 	void			*ax25_ptr;
2310 #endif
2311 #if IS_ENABLED(CONFIG_CFG80211)
2312 	struct wireless_dev	*ieee80211_ptr;
2313 #endif
2314 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2315 	struct wpan_dev		*ieee802154_ptr;
2316 #endif
2317 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2318 	struct mpls_dev __rcu	*mpls_ptr;
2319 #endif
2320 #if IS_ENABLED(CONFIG_MCTP)
2321 	struct mctp_dev __rcu	*mctp_ptr;
2322 #endif
2323 
2324 /*
2325  * Cache lines mostly used on receive path (including eth_type_trans())
2326  */
2327 	/* Interface address info used in eth_type_trans() */
2328 	const unsigned char	*dev_addr;
2329 
2330 	unsigned int		num_rx_queues;
2331 #define GRO_LEGACY_MAX_SIZE	65536u
2332 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2333  * and shinfo->gso_segs is a 16bit field.
2334  */
2335 #define GRO_MAX_SIZE		(8 * 65535u)
2336 	unsigned int		xdp_zc_max_segs;
2337 	struct netdev_queue __rcu *ingress_queue;
2338 #ifdef CONFIG_NETFILTER_INGRESS
2339 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2340 #endif
2341 
2342 	unsigned char		broadcast[MAX_ADDR_LEN];
2343 #ifdef CONFIG_RFS_ACCEL
2344 	struct cpu_rmap		*rx_cpu_rmap;
2345 #endif
2346 	struct hlist_node	index_hlist;
2347 
2348 /*
2349  * Cache lines mostly used on transmit path
2350  */
2351 	unsigned int		num_tx_queues;
2352 	struct Qdisc __rcu	*qdisc;
2353 	unsigned int		tx_queue_len;
2354 	spinlock_t		tx_global_lock;
2355 
2356 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2357 
2358 #ifdef CONFIG_NET_SCHED
2359 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2360 #endif
2361 	/* These may be needed for future network-power-down code. */
2362 	struct timer_list	watchdog_timer;
2363 	int			watchdog_timeo;
2364 
2365 	u32                     proto_down_reason;
2366 
2367 	struct list_head	todo_list;
2368 
2369 #ifdef CONFIG_PCPU_DEV_REFCNT
2370 	int __percpu		*pcpu_refcnt;
2371 #else
2372 	refcount_t		dev_refcnt;
2373 #endif
2374 	struct ref_tracker_dir	refcnt_tracker;
2375 
2376 	struct list_head	link_watch_list;
2377 
2378 	enum { NETREG_UNINITIALIZED=0,
2379 	       NETREG_REGISTERED,	/* completed register_netdevice */
2380 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2381 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2382 	       NETREG_RELEASED,		/* called free_netdev */
2383 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2384 	} reg_state:8;
2385 
2386 	bool dismantle;
2387 
2388 	enum {
2389 		RTNL_LINK_INITIALIZED,
2390 		RTNL_LINK_INITIALIZING,
2391 	} rtnl_link_state:16;
2392 
2393 	bool needs_free_netdev;
2394 	void (*priv_destructor)(struct net_device *dev);
2395 
2396 	/* mid-layer private */
2397 	void				*ml_priv;
2398 	enum netdev_ml_priv_type	ml_priv_type;
2399 
2400 	enum netdev_stat_type		pcpu_stat_type:8;
2401 
2402 #if IS_ENABLED(CONFIG_GARP)
2403 	struct garp_port __rcu	*garp_port;
2404 #endif
2405 #if IS_ENABLED(CONFIG_MRP)
2406 	struct mrp_port __rcu	*mrp_port;
2407 #endif
2408 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2409 	struct dm_hw_stat_delta __rcu *dm_private;
2410 #endif
2411 	struct device		dev;
2412 	const struct attribute_group *sysfs_groups[4];
2413 	const struct attribute_group *sysfs_rx_queue_group;
2414 
2415 	const struct rtnl_link_ops *rtnl_link_ops;
2416 
2417 	/* for setting kernel sock attribute on TCP connection setup */
2418 #define GSO_MAX_SEGS		65535u
2419 #define GSO_LEGACY_MAX_SIZE	65536u
2420 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2421  * and shinfo->gso_segs is a 16bit field.
2422  */
2423 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2424 
2425 #define TSO_LEGACY_MAX_SIZE	65536
2426 #define TSO_MAX_SIZE		UINT_MAX
2427 	unsigned int		tso_max_size;
2428 #define TSO_MAX_SEGS		U16_MAX
2429 	u16			tso_max_segs;
2430 
2431 #ifdef CONFIG_DCB
2432 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2433 #endif
2434 	u8			prio_tc_map[TC_BITMASK + 1];
2435 
2436 #if IS_ENABLED(CONFIG_FCOE)
2437 	unsigned int		fcoe_ddp_xid;
2438 #endif
2439 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2440 	struct netprio_map __rcu *priomap;
2441 #endif
2442 	struct phy_device	*phydev;
2443 	struct sfp_bus		*sfp_bus;
2444 	struct lock_class_key	*qdisc_tx_busylock;
2445 	bool			proto_down;
2446 	unsigned		wol_enabled:1;
2447 	unsigned		threaded:1;
2448 
2449 	struct list_head	net_notifier_list;
2450 
2451 #if IS_ENABLED(CONFIG_MACSEC)
2452 	/* MACsec management functions */
2453 	const struct macsec_ops *macsec_ops;
2454 #endif
2455 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2456 	struct udp_tunnel_nic	*udp_tunnel_nic;
2457 
2458 	/* protected by rtnl_lock */
2459 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2460 
2461 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2462 	netdevice_tracker	linkwatch_dev_tracker;
2463 	netdevice_tracker	watchdog_dev_tracker;
2464 	netdevice_tracker	dev_registered_tracker;
2465 	struct rtnl_hw_stats64	*offload_xstats_l3;
2466 
2467 	struct devlink_port	*devlink_port;
2468 
2469 #if IS_ENABLED(CONFIG_DPLL)
2470 	struct dpll_pin	__rcu	*dpll_pin;
2471 #endif
2472 #if IS_ENABLED(CONFIG_PAGE_POOL)
2473 	/** @page_pools: page pools created for this netdevice */
2474 	struct hlist_head	page_pools;
2475 #endif
2476 };
2477 #define to_net_dev(d) container_of(d, struct net_device, dev)
2478 
2479 /*
2480  * Driver should use this to assign devlink port instance to a netdevice
2481  * before it registers the netdevice. Therefore devlink_port is static
2482  * during the netdev lifetime after it is registered.
2483  */
2484 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2485 ({								\
2486 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2487 	((dev)->devlink_port = (port));				\
2488 })
2489 
netif_elide_gro(const struct net_device * dev)2490 static inline bool netif_elide_gro(const struct net_device *dev)
2491 {
2492 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2493 		return true;
2494 	return false;
2495 }
2496 
2497 #define	NETDEV_ALIGN		32
2498 
2499 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2500 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2501 {
2502 	return dev->prio_tc_map[prio & TC_BITMASK];
2503 }
2504 
2505 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2506 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2507 {
2508 	if (tc >= dev->num_tc)
2509 		return -EINVAL;
2510 
2511 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2512 	return 0;
2513 }
2514 
2515 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2516 void netdev_reset_tc(struct net_device *dev);
2517 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2518 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2519 
2520 static inline
netdev_get_num_tc(struct net_device * dev)2521 int netdev_get_num_tc(struct net_device *dev)
2522 {
2523 	return dev->num_tc;
2524 }
2525 
net_prefetch(void * p)2526 static inline void net_prefetch(void *p)
2527 {
2528 	prefetch(p);
2529 #if L1_CACHE_BYTES < 128
2530 	prefetch((u8 *)p + L1_CACHE_BYTES);
2531 #endif
2532 }
2533 
net_prefetchw(void * p)2534 static inline void net_prefetchw(void *p)
2535 {
2536 	prefetchw(p);
2537 #if L1_CACHE_BYTES < 128
2538 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2539 #endif
2540 }
2541 
2542 void netdev_unbind_sb_channel(struct net_device *dev,
2543 			      struct net_device *sb_dev);
2544 int netdev_bind_sb_channel_queue(struct net_device *dev,
2545 				 struct net_device *sb_dev,
2546 				 u8 tc, u16 count, u16 offset);
2547 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2548 static inline int netdev_get_sb_channel(struct net_device *dev)
2549 {
2550 	return max_t(int, -dev->num_tc, 0);
2551 }
2552 
2553 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2554 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2555 					 unsigned int index)
2556 {
2557 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2558 	return &dev->_tx[index];
2559 }
2560 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2561 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2562 						    const struct sk_buff *skb)
2563 {
2564 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2565 }
2566 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2567 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2568 					    void (*f)(struct net_device *,
2569 						      struct netdev_queue *,
2570 						      void *),
2571 					    void *arg)
2572 {
2573 	unsigned int i;
2574 
2575 	for (i = 0; i < dev->num_tx_queues; i++)
2576 		f(dev, &dev->_tx[i], arg);
2577 }
2578 
2579 #define netdev_lockdep_set_classes(dev)				\
2580 {								\
2581 	static struct lock_class_key qdisc_tx_busylock_key;	\
2582 	static struct lock_class_key qdisc_xmit_lock_key;	\
2583 	static struct lock_class_key dev_addr_list_lock_key;	\
2584 	unsigned int i;						\
2585 								\
2586 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2587 	lockdep_set_class(&(dev)->addr_list_lock,		\
2588 			  &dev_addr_list_lock_key);		\
2589 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2590 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2591 				  &qdisc_xmit_lock_key);	\
2592 }
2593 
2594 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2595 		     struct net_device *sb_dev);
2596 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2597 					 struct sk_buff *skb,
2598 					 struct net_device *sb_dev);
2599 
2600 /* returns the headroom that the master device needs to take in account
2601  * when forwarding to this dev
2602  */
netdev_get_fwd_headroom(struct net_device * dev)2603 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2604 {
2605 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2606 }
2607 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2608 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2609 {
2610 	if (dev->netdev_ops->ndo_set_rx_headroom)
2611 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2612 }
2613 
2614 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2615 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2616 {
2617 	netdev_set_rx_headroom(dev, -1);
2618 }
2619 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2620 static inline void *netdev_get_ml_priv(struct net_device *dev,
2621 				       enum netdev_ml_priv_type type)
2622 {
2623 	if (dev->ml_priv_type != type)
2624 		return NULL;
2625 
2626 	return dev->ml_priv;
2627 }
2628 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2629 static inline void netdev_set_ml_priv(struct net_device *dev,
2630 				      void *ml_priv,
2631 				      enum netdev_ml_priv_type type)
2632 {
2633 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2634 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2635 	     dev->ml_priv_type, type);
2636 	WARN(!dev->ml_priv_type && dev->ml_priv,
2637 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2638 
2639 	dev->ml_priv = ml_priv;
2640 	dev->ml_priv_type = type;
2641 }
2642 
2643 /*
2644  * Net namespace inlines
2645  */
2646 static inline
dev_net(const struct net_device * dev)2647 struct net *dev_net(const struct net_device *dev)
2648 {
2649 	return read_pnet(&dev->nd_net);
2650 }
2651 
2652 static inline
dev_net_set(struct net_device * dev,struct net * net)2653 void dev_net_set(struct net_device *dev, struct net *net)
2654 {
2655 	write_pnet(&dev->nd_net, net);
2656 }
2657 
2658 /**
2659  *	netdev_priv - access network device private data
2660  *	@dev: network device
2661  *
2662  * Get network device private data
2663  */
netdev_priv(const struct net_device * dev)2664 static inline void *netdev_priv(const struct net_device *dev)
2665 {
2666 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2667 }
2668 
2669 /* Set the sysfs physical device reference for the network logical device
2670  * if set prior to registration will cause a symlink during initialization.
2671  */
2672 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2673 
2674 /* Set the sysfs device type for the network logical device to allow
2675  * fine-grained identification of different network device types. For
2676  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2677  */
2678 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2679 
2680 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2681 			  enum netdev_queue_type type,
2682 			  struct napi_struct *napi);
2683 
netif_napi_set_irq(struct napi_struct * napi,int irq)2684 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2685 {
2686 	napi->irq = irq;
2687 }
2688 
2689 /* Default NAPI poll() weight
2690  * Device drivers are strongly advised to not use bigger value
2691  */
2692 #define NAPI_POLL_WEIGHT 64
2693 
2694 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2695 			   int (*poll)(struct napi_struct *, int), int weight);
2696 
2697 /**
2698  * netif_napi_add() - initialize a NAPI context
2699  * @dev:  network device
2700  * @napi: NAPI context
2701  * @poll: polling function
2702  *
2703  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2704  * *any* of the other NAPI-related functions.
2705  */
2706 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2707 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2708 	       int (*poll)(struct napi_struct *, int))
2709 {
2710 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2711 }
2712 
2713 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2714 netif_napi_add_tx_weight(struct net_device *dev,
2715 			 struct napi_struct *napi,
2716 			 int (*poll)(struct napi_struct *, int),
2717 			 int weight)
2718 {
2719 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2720 	netif_napi_add_weight(dev, napi, poll, weight);
2721 }
2722 
2723 /**
2724  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2725  * @dev:  network device
2726  * @napi: NAPI context
2727  * @poll: polling function
2728  *
2729  * This variant of netif_napi_add() should be used from drivers using NAPI
2730  * to exclusively poll a TX queue.
2731  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2732  */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2733 static inline void netif_napi_add_tx(struct net_device *dev,
2734 				     struct napi_struct *napi,
2735 				     int (*poll)(struct napi_struct *, int))
2736 {
2737 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2738 }
2739 
2740 /**
2741  *  __netif_napi_del - remove a NAPI context
2742  *  @napi: NAPI context
2743  *
2744  * Warning: caller must observe RCU grace period before freeing memory
2745  * containing @napi. Drivers might want to call this helper to combine
2746  * all the needed RCU grace periods into a single one.
2747  */
2748 void __netif_napi_del(struct napi_struct *napi);
2749 
2750 /**
2751  *  netif_napi_del - remove a NAPI context
2752  *  @napi: NAPI context
2753  *
2754  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2755  */
netif_napi_del(struct napi_struct * napi)2756 static inline void netif_napi_del(struct napi_struct *napi)
2757 {
2758 	__netif_napi_del(napi);
2759 	synchronize_net();
2760 }
2761 
2762 struct packet_type {
2763 	__be16			type;	/* This is really htons(ether_type). */
2764 	bool			ignore_outgoing;
2765 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2766 	netdevice_tracker	dev_tracker;
2767 	int			(*func) (struct sk_buff *,
2768 					 struct net_device *,
2769 					 struct packet_type *,
2770 					 struct net_device *);
2771 	void			(*list_func) (struct list_head *,
2772 					      struct packet_type *,
2773 					      struct net_device *);
2774 	bool			(*id_match)(struct packet_type *ptype,
2775 					    struct sock *sk);
2776 	struct net		*af_packet_net;
2777 	void			*af_packet_priv;
2778 	struct list_head	list;
2779 };
2780 
2781 struct offload_callbacks {
2782 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2783 						netdev_features_t features);
2784 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2785 						struct sk_buff *skb);
2786 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2787 };
2788 
2789 struct packet_offload {
2790 	__be16			 type;	/* This is really htons(ether_type). */
2791 	u16			 priority;
2792 	struct offload_callbacks callbacks;
2793 	struct list_head	 list;
2794 };
2795 
2796 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2797 struct pcpu_sw_netstats {
2798 	u64_stats_t		rx_packets;
2799 	u64_stats_t		rx_bytes;
2800 	u64_stats_t		tx_packets;
2801 	u64_stats_t		tx_bytes;
2802 	struct u64_stats_sync   syncp;
2803 } __aligned(4 * sizeof(u64));
2804 
2805 struct pcpu_dstats {
2806 	u64			rx_packets;
2807 	u64			rx_bytes;
2808 	u64			rx_drops;
2809 	u64			tx_packets;
2810 	u64			tx_bytes;
2811 	u64			tx_drops;
2812 	struct u64_stats_sync	syncp;
2813 } __aligned(8 * sizeof(u64));
2814 
2815 struct pcpu_lstats {
2816 	u64_stats_t packets;
2817 	u64_stats_t bytes;
2818 	struct u64_stats_sync syncp;
2819 } __aligned(2 * sizeof(u64));
2820 
2821 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2822 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2823 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2824 {
2825 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2826 
2827 	u64_stats_update_begin(&tstats->syncp);
2828 	u64_stats_add(&tstats->rx_bytes, len);
2829 	u64_stats_inc(&tstats->rx_packets);
2830 	u64_stats_update_end(&tstats->syncp);
2831 }
2832 
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2833 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2834 					  unsigned int packets,
2835 					  unsigned int len)
2836 {
2837 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2838 
2839 	u64_stats_update_begin(&tstats->syncp);
2840 	u64_stats_add(&tstats->tx_bytes, len);
2841 	u64_stats_add(&tstats->tx_packets, packets);
2842 	u64_stats_update_end(&tstats->syncp);
2843 }
2844 
dev_lstats_add(struct net_device * dev,unsigned int len)2845 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2846 {
2847 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2848 
2849 	u64_stats_update_begin(&lstats->syncp);
2850 	u64_stats_add(&lstats->bytes, len);
2851 	u64_stats_inc(&lstats->packets);
2852 	u64_stats_update_end(&lstats->syncp);
2853 }
2854 
2855 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2856 ({									\
2857 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2858 	if (pcpu_stats)	{						\
2859 		int __cpu;						\
2860 		for_each_possible_cpu(__cpu) {				\
2861 			typeof(type) *stat;				\
2862 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2863 			u64_stats_init(&stat->syncp);			\
2864 		}							\
2865 	}								\
2866 	pcpu_stats;							\
2867 })
2868 
2869 #define netdev_alloc_pcpu_stats(type)					\
2870 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2871 
2872 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2873 ({									\
2874 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2875 	if (pcpu_stats) {						\
2876 		int __cpu;						\
2877 		for_each_possible_cpu(__cpu) {				\
2878 			typeof(type) *stat;				\
2879 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2880 			u64_stats_init(&stat->syncp);			\
2881 		}							\
2882 	}								\
2883 	pcpu_stats;							\
2884 })
2885 
2886 enum netdev_lag_tx_type {
2887 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2888 	NETDEV_LAG_TX_TYPE_RANDOM,
2889 	NETDEV_LAG_TX_TYPE_BROADCAST,
2890 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2891 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2892 	NETDEV_LAG_TX_TYPE_HASH,
2893 };
2894 
2895 enum netdev_lag_hash {
2896 	NETDEV_LAG_HASH_NONE,
2897 	NETDEV_LAG_HASH_L2,
2898 	NETDEV_LAG_HASH_L34,
2899 	NETDEV_LAG_HASH_L23,
2900 	NETDEV_LAG_HASH_E23,
2901 	NETDEV_LAG_HASH_E34,
2902 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2903 	NETDEV_LAG_HASH_UNKNOWN,
2904 };
2905 
2906 struct netdev_lag_upper_info {
2907 	enum netdev_lag_tx_type tx_type;
2908 	enum netdev_lag_hash hash_type;
2909 };
2910 
2911 struct netdev_lag_lower_state_info {
2912 	u8 link_up : 1,
2913 	   tx_enabled : 1;
2914 };
2915 
2916 #include <linux/notifier.h>
2917 
2918 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2919  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2920  * adding new types.
2921  */
2922 enum netdev_cmd {
2923 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2924 	NETDEV_DOWN,
2925 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2926 				   detected a hardware crash and restarted
2927 				   - we can use this eg to kick tcp sessions
2928 				   once done */
2929 	NETDEV_CHANGE,		/* Notify device state change */
2930 	NETDEV_REGISTER,
2931 	NETDEV_UNREGISTER,
2932 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2933 	NETDEV_CHANGEADDR,	/* notify after the address change */
2934 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2935 	NETDEV_GOING_DOWN,
2936 	NETDEV_CHANGENAME,
2937 	NETDEV_FEAT_CHANGE,
2938 	NETDEV_BONDING_FAILOVER,
2939 	NETDEV_PRE_UP,
2940 	NETDEV_PRE_TYPE_CHANGE,
2941 	NETDEV_POST_TYPE_CHANGE,
2942 	NETDEV_POST_INIT,
2943 	NETDEV_PRE_UNINIT,
2944 	NETDEV_RELEASE,
2945 	NETDEV_NOTIFY_PEERS,
2946 	NETDEV_JOIN,
2947 	NETDEV_CHANGEUPPER,
2948 	NETDEV_RESEND_IGMP,
2949 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2950 	NETDEV_CHANGEINFODATA,
2951 	NETDEV_BONDING_INFO,
2952 	NETDEV_PRECHANGEUPPER,
2953 	NETDEV_CHANGELOWERSTATE,
2954 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2955 	NETDEV_UDP_TUNNEL_DROP_INFO,
2956 	NETDEV_CHANGE_TX_QUEUE_LEN,
2957 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2958 	NETDEV_CVLAN_FILTER_DROP_INFO,
2959 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2960 	NETDEV_SVLAN_FILTER_DROP_INFO,
2961 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2962 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2963 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2964 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2965 	NETDEV_XDP_FEAT_CHANGE,
2966 };
2967 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2968 
2969 int register_netdevice_notifier(struct notifier_block *nb);
2970 int unregister_netdevice_notifier(struct notifier_block *nb);
2971 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2972 int unregister_netdevice_notifier_net(struct net *net,
2973 				      struct notifier_block *nb);
2974 int register_netdevice_notifier_dev_net(struct net_device *dev,
2975 					struct notifier_block *nb,
2976 					struct netdev_net_notifier *nn);
2977 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2978 					  struct notifier_block *nb,
2979 					  struct netdev_net_notifier *nn);
2980 
2981 struct netdev_notifier_info {
2982 	struct net_device	*dev;
2983 	struct netlink_ext_ack	*extack;
2984 };
2985 
2986 struct netdev_notifier_info_ext {
2987 	struct netdev_notifier_info info; /* must be first */
2988 	union {
2989 		u32 mtu;
2990 	} ext;
2991 };
2992 
2993 struct netdev_notifier_change_info {
2994 	struct netdev_notifier_info info; /* must be first */
2995 	unsigned int flags_changed;
2996 };
2997 
2998 struct netdev_notifier_changeupper_info {
2999 	struct netdev_notifier_info info; /* must be first */
3000 	struct net_device *upper_dev; /* new upper dev */
3001 	bool master; /* is upper dev master */
3002 	bool linking; /* is the notification for link or unlink */
3003 	void *upper_info; /* upper dev info */
3004 };
3005 
3006 struct netdev_notifier_changelowerstate_info {
3007 	struct netdev_notifier_info info; /* must be first */
3008 	void *lower_state_info; /* is lower dev state */
3009 };
3010 
3011 struct netdev_notifier_pre_changeaddr_info {
3012 	struct netdev_notifier_info info; /* must be first */
3013 	const unsigned char *dev_addr;
3014 };
3015 
3016 enum netdev_offload_xstats_type {
3017 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3018 };
3019 
3020 struct netdev_notifier_offload_xstats_info {
3021 	struct netdev_notifier_info info; /* must be first */
3022 	enum netdev_offload_xstats_type type;
3023 
3024 	union {
3025 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3026 		struct netdev_notifier_offload_xstats_rd *report_delta;
3027 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3028 		struct netdev_notifier_offload_xstats_ru *report_used;
3029 	};
3030 };
3031 
3032 int netdev_offload_xstats_enable(struct net_device *dev,
3033 				 enum netdev_offload_xstats_type type,
3034 				 struct netlink_ext_ack *extack);
3035 int netdev_offload_xstats_disable(struct net_device *dev,
3036 				  enum netdev_offload_xstats_type type);
3037 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3038 				   enum netdev_offload_xstats_type type);
3039 int netdev_offload_xstats_get(struct net_device *dev,
3040 			      enum netdev_offload_xstats_type type,
3041 			      struct rtnl_hw_stats64 *stats, bool *used,
3042 			      struct netlink_ext_ack *extack);
3043 void
3044 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3045 				   const struct rtnl_hw_stats64 *stats);
3046 void
3047 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3048 void netdev_offload_xstats_push_delta(struct net_device *dev,
3049 				      enum netdev_offload_xstats_type type,
3050 				      const struct rtnl_hw_stats64 *stats);
3051 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)3052 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3053 					     struct net_device *dev)
3054 {
3055 	info->dev = dev;
3056 	info->extack = NULL;
3057 }
3058 
3059 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)3060 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3061 {
3062 	return info->dev;
3063 }
3064 
3065 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)3066 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3067 {
3068 	return info->extack;
3069 }
3070 
3071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3072 int call_netdevice_notifiers_info(unsigned long val,
3073 				  struct netdev_notifier_info *info);
3074 
3075 extern rwlock_t				dev_base_lock;		/* Device list lock */
3076 
3077 #define for_each_netdev(net, d)		\
3078 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3079 #define for_each_netdev_reverse(net, d)	\
3080 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3081 #define for_each_netdev_rcu(net, d)		\
3082 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3083 #define for_each_netdev_safe(net, d, n)	\
3084 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3085 #define for_each_netdev_continue(net, d)		\
3086 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3087 #define for_each_netdev_continue_reverse(net, d)		\
3088 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3089 						     dev_list)
3090 #define for_each_netdev_continue_rcu(net, d)		\
3091 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3092 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3093 		for_each_netdev_rcu(&init_net, slave)	\
3094 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3095 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3096 
3097 #define for_each_netdev_dump(net, d, ifindex)				\
3098 	xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3099 
next_net_device(struct net_device * dev)3100 static inline struct net_device *next_net_device(struct net_device *dev)
3101 {
3102 	struct list_head *lh;
3103 	struct net *net;
3104 
3105 	net = dev_net(dev);
3106 	lh = dev->dev_list.next;
3107 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3108 }
3109 
next_net_device_rcu(struct net_device * dev)3110 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3111 {
3112 	struct list_head *lh;
3113 	struct net *net;
3114 
3115 	net = dev_net(dev);
3116 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3117 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3118 }
3119 
first_net_device(struct net * net)3120 static inline struct net_device *first_net_device(struct net *net)
3121 {
3122 	return list_empty(&net->dev_base_head) ? NULL :
3123 		net_device_entry(net->dev_base_head.next);
3124 }
3125 
first_net_device_rcu(struct net * net)3126 static inline struct net_device *first_net_device_rcu(struct net *net)
3127 {
3128 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3129 
3130 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3131 }
3132 
3133 int netdev_boot_setup_check(struct net_device *dev);
3134 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3135 				       const char *hwaddr);
3136 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3137 void dev_add_pack(struct packet_type *pt);
3138 void dev_remove_pack(struct packet_type *pt);
3139 void __dev_remove_pack(struct packet_type *pt);
3140 void dev_add_offload(struct packet_offload *po);
3141 void dev_remove_offload(struct packet_offload *po);
3142 
3143 int dev_get_iflink(const struct net_device *dev);
3144 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3145 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3146 			  struct net_device_path_stack *stack);
3147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3148 				      unsigned short mask);
3149 struct net_device *dev_get_by_name(struct net *net, const char *name);
3150 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3151 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3152 bool netdev_name_in_use(struct net *net, const char *name);
3153 int dev_alloc_name(struct net_device *dev, const char *name);
3154 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3155 void dev_close(struct net_device *dev);
3156 void dev_close_many(struct list_head *head, bool unlink);
3157 void dev_disable_lro(struct net_device *dev);
3158 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3159 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3160 		     struct net_device *sb_dev);
3161 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3162 		       struct net_device *sb_dev);
3163 
3164 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3165 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3166 
dev_queue_xmit(struct sk_buff * skb)3167 static inline int dev_queue_xmit(struct sk_buff *skb)
3168 {
3169 	return __dev_queue_xmit(skb, NULL);
3170 }
3171 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3172 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3173 				       struct net_device *sb_dev)
3174 {
3175 	return __dev_queue_xmit(skb, sb_dev);
3176 }
3177 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3178 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3179 {
3180 	int ret;
3181 
3182 	ret = __dev_direct_xmit(skb, queue_id);
3183 	if (!dev_xmit_complete(ret))
3184 		kfree_skb(skb);
3185 	return ret;
3186 }
3187 
3188 int register_netdevice(struct net_device *dev);
3189 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3190 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3191 static inline void unregister_netdevice(struct net_device *dev)
3192 {
3193 	unregister_netdevice_queue(dev, NULL);
3194 }
3195 
3196 int netdev_refcnt_read(const struct net_device *dev);
3197 void free_netdev(struct net_device *dev);
3198 void netdev_freemem(struct net_device *dev);
3199 int init_dummy_netdev(struct net_device *dev);
3200 
3201 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3202 					 struct sk_buff *skb,
3203 					 bool all_slaves);
3204 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3205 					    struct sock *sk);
3206 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3207 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3208 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3209 				       netdevice_tracker *tracker, gfp_t gfp);
3210 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3211 				      netdevice_tracker *tracker, gfp_t gfp);
3212 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3213 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3214 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3215 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3216 				  unsigned short type,
3217 				  const void *daddr, const void *saddr,
3218 				  unsigned int len)
3219 {
3220 	if (!dev->header_ops || !dev->header_ops->create)
3221 		return 0;
3222 
3223 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3224 }
3225 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3226 static inline int dev_parse_header(const struct sk_buff *skb,
3227 				   unsigned char *haddr)
3228 {
3229 	const struct net_device *dev = skb->dev;
3230 
3231 	if (!dev->header_ops || !dev->header_ops->parse)
3232 		return 0;
3233 	return dev->header_ops->parse(skb, haddr);
3234 }
3235 
dev_parse_header_protocol(const struct sk_buff * skb)3236 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3237 {
3238 	const struct net_device *dev = skb->dev;
3239 
3240 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3241 		return 0;
3242 	return dev->header_ops->parse_protocol(skb);
3243 }
3244 
3245 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3246 static inline bool dev_validate_header(const struct net_device *dev,
3247 				       char *ll_header, int len)
3248 {
3249 	if (likely(len >= dev->hard_header_len))
3250 		return true;
3251 	if (len < dev->min_header_len)
3252 		return false;
3253 
3254 	if (capable(CAP_SYS_RAWIO)) {
3255 		memset(ll_header + len, 0, dev->hard_header_len - len);
3256 		return true;
3257 	}
3258 
3259 	if (dev->header_ops && dev->header_ops->validate)
3260 		return dev->header_ops->validate(ll_header, len);
3261 
3262 	return false;
3263 }
3264 
dev_has_header(const struct net_device * dev)3265 static inline bool dev_has_header(const struct net_device *dev)
3266 {
3267 	return dev->header_ops && dev->header_ops->create;
3268 }
3269 
3270 /*
3271  * Incoming packets are placed on per-CPU queues
3272  */
3273 struct softnet_data {
3274 	struct list_head	poll_list;
3275 	struct sk_buff_head	process_queue;
3276 
3277 	/* stats */
3278 	unsigned int		processed;
3279 	unsigned int		time_squeeze;
3280 #ifdef CONFIG_RPS
3281 	struct softnet_data	*rps_ipi_list;
3282 #endif
3283 
3284 	bool			in_net_rx_action;
3285 	bool			in_napi_threaded_poll;
3286 
3287 #ifdef CONFIG_NET_FLOW_LIMIT
3288 	struct sd_flow_limit __rcu *flow_limit;
3289 #endif
3290 	struct Qdisc		*output_queue;
3291 	struct Qdisc		**output_queue_tailp;
3292 	struct sk_buff		*completion_queue;
3293 #ifdef CONFIG_XFRM_OFFLOAD
3294 	struct sk_buff_head	xfrm_backlog;
3295 #endif
3296 	/* written and read only by owning cpu: */
3297 	struct {
3298 		u16 recursion;
3299 		u8  more;
3300 #ifdef CONFIG_NET_EGRESS
3301 		u8  skip_txqueue;
3302 #endif
3303 	} xmit;
3304 #ifdef CONFIG_RPS
3305 	/* input_queue_head should be written by cpu owning this struct,
3306 	 * and only read by other cpus. Worth using a cache line.
3307 	 */
3308 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3309 
3310 	/* Elements below can be accessed between CPUs for RPS/RFS */
3311 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3312 	struct softnet_data	*rps_ipi_next;
3313 	unsigned int		cpu;
3314 	unsigned int		input_queue_tail;
3315 #endif
3316 	unsigned int		received_rps;
3317 	unsigned int		dropped;
3318 	struct sk_buff_head	input_pkt_queue;
3319 	struct napi_struct	backlog;
3320 
3321 	/* Another possibly contended cache line */
3322 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3323 	int			defer_count;
3324 	int			defer_ipi_scheduled;
3325 	struct sk_buff		*defer_list;
3326 	call_single_data_t	defer_csd;
3327 };
3328 
input_queue_head_incr(struct softnet_data * sd)3329 static inline void input_queue_head_incr(struct softnet_data *sd)
3330 {
3331 #ifdef CONFIG_RPS
3332 	sd->input_queue_head++;
3333 #endif
3334 }
3335 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3336 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3337 					      unsigned int *qtail)
3338 {
3339 #ifdef CONFIG_RPS
3340 	*qtail = ++sd->input_queue_tail;
3341 #endif
3342 }
3343 
3344 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3345 
dev_recursion_level(void)3346 static inline int dev_recursion_level(void)
3347 {
3348 	return this_cpu_read(softnet_data.xmit.recursion);
3349 }
3350 
3351 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3352 static inline bool dev_xmit_recursion(void)
3353 {
3354 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3355 			XMIT_RECURSION_LIMIT);
3356 }
3357 
dev_xmit_recursion_inc(void)3358 static inline void dev_xmit_recursion_inc(void)
3359 {
3360 	__this_cpu_inc(softnet_data.xmit.recursion);
3361 }
3362 
dev_xmit_recursion_dec(void)3363 static inline void dev_xmit_recursion_dec(void)
3364 {
3365 	__this_cpu_dec(softnet_data.xmit.recursion);
3366 }
3367 
3368 void __netif_schedule(struct Qdisc *q);
3369 void netif_schedule_queue(struct netdev_queue *txq);
3370 
netif_tx_schedule_all(struct net_device * dev)3371 static inline void netif_tx_schedule_all(struct net_device *dev)
3372 {
3373 	unsigned int i;
3374 
3375 	for (i = 0; i < dev->num_tx_queues; i++)
3376 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3377 }
3378 
netif_tx_start_queue(struct netdev_queue * dev_queue)3379 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3380 {
3381 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3382 }
3383 
3384 /**
3385  *	netif_start_queue - allow transmit
3386  *	@dev: network device
3387  *
3388  *	Allow upper layers to call the device hard_start_xmit routine.
3389  */
netif_start_queue(struct net_device * dev)3390 static inline void netif_start_queue(struct net_device *dev)
3391 {
3392 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3393 }
3394 
netif_tx_start_all_queues(struct net_device * dev)3395 static inline void netif_tx_start_all_queues(struct net_device *dev)
3396 {
3397 	unsigned int i;
3398 
3399 	for (i = 0; i < dev->num_tx_queues; i++) {
3400 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3401 		netif_tx_start_queue(txq);
3402 	}
3403 }
3404 
3405 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3406 
3407 /**
3408  *	netif_wake_queue - restart transmit
3409  *	@dev: network device
3410  *
3411  *	Allow upper layers to call the device hard_start_xmit routine.
3412  *	Used for flow control when transmit resources are available.
3413  */
netif_wake_queue(struct net_device * dev)3414 static inline void netif_wake_queue(struct net_device *dev)
3415 {
3416 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3417 }
3418 
netif_tx_wake_all_queues(struct net_device * dev)3419 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3420 {
3421 	unsigned int i;
3422 
3423 	for (i = 0; i < dev->num_tx_queues; i++) {
3424 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3425 		netif_tx_wake_queue(txq);
3426 	}
3427 }
3428 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3429 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3430 {
3431 	/* Must be an atomic op see netif_txq_try_stop() */
3432 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3433 }
3434 
3435 /**
3436  *	netif_stop_queue - stop transmitted packets
3437  *	@dev: network device
3438  *
3439  *	Stop upper layers calling the device hard_start_xmit routine.
3440  *	Used for flow control when transmit resources are unavailable.
3441  */
netif_stop_queue(struct net_device * dev)3442 static inline void netif_stop_queue(struct net_device *dev)
3443 {
3444 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3445 }
3446 
3447 void netif_tx_stop_all_queues(struct net_device *dev);
3448 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3449 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3450 {
3451 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3452 }
3453 
3454 /**
3455  *	netif_queue_stopped - test if transmit queue is flowblocked
3456  *	@dev: network device
3457  *
3458  *	Test if transmit queue on device is currently unable to send.
3459  */
netif_queue_stopped(const struct net_device * dev)3460 static inline bool netif_queue_stopped(const struct net_device *dev)
3461 {
3462 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3463 }
3464 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3465 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3466 {
3467 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3468 }
3469 
3470 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3471 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3472 {
3473 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3474 }
3475 
3476 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3477 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3478 {
3479 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3480 }
3481 
3482 /**
3483  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3484  *	@dev_queue: pointer to transmit queue
3485  *	@min_limit: dql minimum limit
3486  *
3487  * Forces xmit_more() to return true until the minimum threshold
3488  * defined by @min_limit is reached (or until the tx queue is
3489  * empty). Warning: to be use with care, misuse will impact the
3490  * latency.
3491  */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3492 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3493 						  unsigned int min_limit)
3494 {
3495 #ifdef CONFIG_BQL
3496 	dev_queue->dql.min_limit = min_limit;
3497 #endif
3498 }
3499 
netdev_queue_dql_avail(const struct netdev_queue * txq)3500 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3501 {
3502 #ifdef CONFIG_BQL
3503 	/* Non-BQL migrated drivers will return 0, too. */
3504 	return dql_avail(&txq->dql);
3505 #else
3506 	return 0;
3507 #endif
3508 }
3509 
3510 /**
3511  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3512  *	@dev_queue: pointer to transmit queue
3513  *
3514  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3515  * to give appropriate hint to the CPU.
3516  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3517 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3518 {
3519 #ifdef CONFIG_BQL
3520 	prefetchw(&dev_queue->dql.num_queued);
3521 #endif
3522 }
3523 
3524 /**
3525  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3526  *	@dev_queue: pointer to transmit queue
3527  *
3528  * BQL enabled drivers might use this helper in their TX completion path,
3529  * to give appropriate hint to the CPU.
3530  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3531 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3532 {
3533 #ifdef CONFIG_BQL
3534 	prefetchw(&dev_queue->dql.limit);
3535 #endif
3536 }
3537 
3538 /**
3539  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3540  *	@dev_queue: network device queue
3541  *	@bytes: number of bytes queued to the device queue
3542  *
3543  *	Report the number of bytes queued for sending/completion to the network
3544  *	device hardware queue. @bytes should be a good approximation and should
3545  *	exactly match netdev_completed_queue() @bytes.
3546  *	This is typically called once per packet, from ndo_start_xmit().
3547  */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3548 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3549 					unsigned int bytes)
3550 {
3551 #ifdef CONFIG_BQL
3552 	dql_queued(&dev_queue->dql, bytes);
3553 
3554 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3555 		return;
3556 
3557 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3558 
3559 	/*
3560 	 * The XOFF flag must be set before checking the dql_avail below,
3561 	 * because in netdev_tx_completed_queue we update the dql_completed
3562 	 * before checking the XOFF flag.
3563 	 */
3564 	smp_mb();
3565 
3566 	/* check again in case another CPU has just made room avail */
3567 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3568 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3569 #endif
3570 }
3571 
3572 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3573  * that they should not test BQL status themselves.
3574  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3575  * skb of a batch.
3576  * Returns true if the doorbell must be used to kick the NIC.
3577  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3578 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3579 					  unsigned int bytes,
3580 					  bool xmit_more)
3581 {
3582 	if (xmit_more) {
3583 #ifdef CONFIG_BQL
3584 		dql_queued(&dev_queue->dql, bytes);
3585 #endif
3586 		return netif_tx_queue_stopped(dev_queue);
3587 	}
3588 	netdev_tx_sent_queue(dev_queue, bytes);
3589 	return true;
3590 }
3591 
3592 /**
3593  *	netdev_sent_queue - report the number of bytes queued to hardware
3594  *	@dev: network device
3595  *	@bytes: number of bytes queued to the hardware device queue
3596  *
3597  *	Report the number of bytes queued for sending/completion to the network
3598  *	device hardware queue#0. @bytes should be a good approximation and should
3599  *	exactly match netdev_completed_queue() @bytes.
3600  *	This is typically called once per packet, from ndo_start_xmit().
3601  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3602 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3603 {
3604 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3605 }
3606 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3607 static inline bool __netdev_sent_queue(struct net_device *dev,
3608 				       unsigned int bytes,
3609 				       bool xmit_more)
3610 {
3611 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3612 				      xmit_more);
3613 }
3614 
3615 /**
3616  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3617  *	@dev_queue: network device queue
3618  *	@pkts: number of packets (currently ignored)
3619  *	@bytes: number of bytes dequeued from the device queue
3620  *
3621  *	Must be called at most once per TX completion round (and not per
3622  *	individual packet), so that BQL can adjust its limits appropriately.
3623  */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3624 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3625 					     unsigned int pkts, unsigned int bytes)
3626 {
3627 #ifdef CONFIG_BQL
3628 	if (unlikely(!bytes))
3629 		return;
3630 
3631 	dql_completed(&dev_queue->dql, bytes);
3632 
3633 	/*
3634 	 * Without the memory barrier there is a small possiblity that
3635 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3636 	 * be stopped forever
3637 	 */
3638 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3639 
3640 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3641 		return;
3642 
3643 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3644 		netif_schedule_queue(dev_queue);
3645 #endif
3646 }
3647 
3648 /**
3649  * 	netdev_completed_queue - report bytes and packets completed by device
3650  * 	@dev: network device
3651  * 	@pkts: actual number of packets sent over the medium
3652  * 	@bytes: actual number of bytes sent over the medium
3653  *
3654  * 	Report the number of bytes and packets transmitted by the network device
3655  * 	hardware queue over the physical medium, @bytes must exactly match the
3656  * 	@bytes amount passed to netdev_sent_queue()
3657  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3658 static inline void netdev_completed_queue(struct net_device *dev,
3659 					  unsigned int pkts, unsigned int bytes)
3660 {
3661 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3662 }
3663 
netdev_tx_reset_queue(struct netdev_queue * q)3664 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3665 {
3666 #ifdef CONFIG_BQL
3667 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3668 	dql_reset(&q->dql);
3669 #endif
3670 }
3671 
3672 /**
3673  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3674  * 	@dev_queue: network device
3675  *
3676  * 	Reset the bytes and packet count of a network device and clear the
3677  * 	software flow control OFF bit for this network device
3678  */
netdev_reset_queue(struct net_device * dev_queue)3679 static inline void netdev_reset_queue(struct net_device *dev_queue)
3680 {
3681 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3682 }
3683 
3684 /**
3685  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3686  * 	@dev: network device
3687  * 	@queue_index: given tx queue index
3688  *
3689  * 	Returns 0 if given tx queue index >= number of device tx queues,
3690  * 	otherwise returns the originally passed tx queue index.
3691  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3692 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3693 {
3694 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3695 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3696 				     dev->name, queue_index,
3697 				     dev->real_num_tx_queues);
3698 		return 0;
3699 	}
3700 
3701 	return queue_index;
3702 }
3703 
3704 /**
3705  *	netif_running - test if up
3706  *	@dev: network device
3707  *
3708  *	Test if the device has been brought up.
3709  */
netif_running(const struct net_device * dev)3710 static inline bool netif_running(const struct net_device *dev)
3711 {
3712 	return test_bit(__LINK_STATE_START, &dev->state);
3713 }
3714 
3715 /*
3716  * Routines to manage the subqueues on a device.  We only need start,
3717  * stop, and a check if it's stopped.  All other device management is
3718  * done at the overall netdevice level.
3719  * Also test the device if we're multiqueue.
3720  */
3721 
3722 /**
3723  *	netif_start_subqueue - allow sending packets on subqueue
3724  *	@dev: network device
3725  *	@queue_index: sub queue index
3726  *
3727  * Start individual transmit queue of a device with multiple transmit queues.
3728  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3729 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3730 {
3731 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3732 
3733 	netif_tx_start_queue(txq);
3734 }
3735 
3736 /**
3737  *	netif_stop_subqueue - stop sending packets on subqueue
3738  *	@dev: network device
3739  *	@queue_index: sub queue index
3740  *
3741  * Stop individual transmit queue of a device with multiple transmit queues.
3742  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3743 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3744 {
3745 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3746 	netif_tx_stop_queue(txq);
3747 }
3748 
3749 /**
3750  *	__netif_subqueue_stopped - test status of subqueue
3751  *	@dev: network device
3752  *	@queue_index: sub queue index
3753  *
3754  * Check individual transmit queue of a device with multiple transmit queues.
3755  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3756 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3757 					    u16 queue_index)
3758 {
3759 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3760 
3761 	return netif_tx_queue_stopped(txq);
3762 }
3763 
3764 /**
3765  *	netif_subqueue_stopped - test status of subqueue
3766  *	@dev: network device
3767  *	@skb: sub queue buffer pointer
3768  *
3769  * Check individual transmit queue of a device with multiple transmit queues.
3770  */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3771 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3772 					  struct sk_buff *skb)
3773 {
3774 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3775 }
3776 
3777 /**
3778  *	netif_wake_subqueue - allow sending packets on subqueue
3779  *	@dev: network device
3780  *	@queue_index: sub queue index
3781  *
3782  * Resume individual transmit queue of a device with multiple transmit queues.
3783  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3784 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3785 {
3786 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3787 
3788 	netif_tx_wake_queue(txq);
3789 }
3790 
3791 #ifdef CONFIG_XPS
3792 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3793 			u16 index);
3794 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3795 			  u16 index, enum xps_map_type type);
3796 
3797 /**
3798  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3799  *	@j: CPU/Rx queue index
3800  *	@mask: bitmask of all cpus/rx queues
3801  *	@nr_bits: number of bits in the bitmask
3802  *
3803  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3804  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3805 static inline bool netif_attr_test_mask(unsigned long j,
3806 					const unsigned long *mask,
3807 					unsigned int nr_bits)
3808 {
3809 	cpu_max_bits_warn(j, nr_bits);
3810 	return test_bit(j, mask);
3811 }
3812 
3813 /**
3814  *	netif_attr_test_online - Test for online CPU/Rx queue
3815  *	@j: CPU/Rx queue index
3816  *	@online_mask: bitmask for CPUs/Rx queues that are online
3817  *	@nr_bits: number of bits in the bitmask
3818  *
3819  * Returns true if a CPU/Rx queue is online.
3820  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3821 static inline bool netif_attr_test_online(unsigned long j,
3822 					  const unsigned long *online_mask,
3823 					  unsigned int nr_bits)
3824 {
3825 	cpu_max_bits_warn(j, nr_bits);
3826 
3827 	if (online_mask)
3828 		return test_bit(j, online_mask);
3829 
3830 	return (j < nr_bits);
3831 }
3832 
3833 /**
3834  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3835  *	@n: CPU/Rx queue index
3836  *	@srcp: the cpumask/Rx queue mask pointer
3837  *	@nr_bits: number of bits in the bitmask
3838  *
3839  * Returns >= nr_bits if no further CPUs/Rx queues set.
3840  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3841 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3842 					       unsigned int nr_bits)
3843 {
3844 	/* -1 is a legal arg here. */
3845 	if (n != -1)
3846 		cpu_max_bits_warn(n, nr_bits);
3847 
3848 	if (srcp)
3849 		return find_next_bit(srcp, nr_bits, n + 1);
3850 
3851 	return n + 1;
3852 }
3853 
3854 /**
3855  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3856  *	@n: CPU/Rx queue index
3857  *	@src1p: the first CPUs/Rx queues mask pointer
3858  *	@src2p: the second CPUs/Rx queues mask pointer
3859  *	@nr_bits: number of bits in the bitmask
3860  *
3861  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3862  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3863 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3864 					  const unsigned long *src2p,
3865 					  unsigned int nr_bits)
3866 {
3867 	/* -1 is a legal arg here. */
3868 	if (n != -1)
3869 		cpu_max_bits_warn(n, nr_bits);
3870 
3871 	if (src1p && src2p)
3872 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3873 	else if (src1p)
3874 		return find_next_bit(src1p, nr_bits, n + 1);
3875 	else if (src2p)
3876 		return find_next_bit(src2p, nr_bits, n + 1);
3877 
3878 	return n + 1;
3879 }
3880 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3881 static inline int netif_set_xps_queue(struct net_device *dev,
3882 				      const struct cpumask *mask,
3883 				      u16 index)
3884 {
3885 	return 0;
3886 }
3887 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3888 static inline int __netif_set_xps_queue(struct net_device *dev,
3889 					const unsigned long *mask,
3890 					u16 index, enum xps_map_type type)
3891 {
3892 	return 0;
3893 }
3894 #endif
3895 
3896 /**
3897  *	netif_is_multiqueue - test if device has multiple transmit queues
3898  *	@dev: network device
3899  *
3900  * Check if device has multiple transmit queues
3901  */
netif_is_multiqueue(const struct net_device * dev)3902 static inline bool netif_is_multiqueue(const struct net_device *dev)
3903 {
3904 	return dev->num_tx_queues > 1;
3905 }
3906 
3907 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3908 
3909 #ifdef CONFIG_SYSFS
3910 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3911 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3912 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3913 						unsigned int rxqs)
3914 {
3915 	dev->real_num_rx_queues = rxqs;
3916 	return 0;
3917 }
3918 #endif
3919 int netif_set_real_num_queues(struct net_device *dev,
3920 			      unsigned int txq, unsigned int rxq);
3921 
3922 int netif_get_num_default_rss_queues(void);
3923 
3924 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3925 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3926 
3927 /*
3928  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3929  * interrupt context or with hardware interrupts being disabled.
3930  * (in_hardirq() || irqs_disabled())
3931  *
3932  * We provide four helpers that can be used in following contexts :
3933  *
3934  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3935  *  replacing kfree_skb(skb)
3936  *
3937  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3938  *  Typically used in place of consume_skb(skb) in TX completion path
3939  *
3940  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3941  *  replacing kfree_skb(skb)
3942  *
3943  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3944  *  and consumed a packet. Used in place of consume_skb(skb)
3945  */
dev_kfree_skb_irq(struct sk_buff * skb)3946 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3947 {
3948 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3949 }
3950 
dev_consume_skb_irq(struct sk_buff * skb)3951 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3952 {
3953 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3954 }
3955 
dev_kfree_skb_any(struct sk_buff * skb)3956 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3957 {
3958 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3959 }
3960 
dev_consume_skb_any(struct sk_buff * skb)3961 static inline void dev_consume_skb_any(struct sk_buff *skb)
3962 {
3963 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3964 }
3965 
3966 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3967 			     struct bpf_prog *xdp_prog);
3968 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3969 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3970 int netif_rx(struct sk_buff *skb);
3971 int __netif_rx(struct sk_buff *skb);
3972 
3973 int netif_receive_skb(struct sk_buff *skb);
3974 int netif_receive_skb_core(struct sk_buff *skb);
3975 void netif_receive_skb_list_internal(struct list_head *head);
3976 void netif_receive_skb_list(struct list_head *head);
3977 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3978 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3979 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3980 void napi_get_frags_check(struct napi_struct *napi);
3981 gro_result_t napi_gro_frags(struct napi_struct *napi);
3982 struct packet_offload *gro_find_receive_by_type(__be16 type);
3983 struct packet_offload *gro_find_complete_by_type(__be16 type);
3984 
napi_free_frags(struct napi_struct * napi)3985 static inline void napi_free_frags(struct napi_struct *napi)
3986 {
3987 	kfree_skb(napi->skb);
3988 	napi->skb = NULL;
3989 }
3990 
3991 bool netdev_is_rx_handler_busy(struct net_device *dev);
3992 int netdev_rx_handler_register(struct net_device *dev,
3993 			       rx_handler_func_t *rx_handler,
3994 			       void *rx_handler_data);
3995 void netdev_rx_handler_unregister(struct net_device *dev);
3996 
3997 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3998 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3999 {
4000 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4001 }
4002 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4003 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4004 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4005 		void __user *data, bool *need_copyout);
4006 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4007 int generic_hwtstamp_get_lower(struct net_device *dev,
4008 			       struct kernel_hwtstamp_config *kernel_cfg);
4009 int generic_hwtstamp_set_lower(struct net_device *dev,
4010 			       struct kernel_hwtstamp_config *kernel_cfg,
4011 			       struct netlink_ext_ack *extack);
4012 int dev_set_hwtstamp_phylib(struct net_device *dev,
4013 			    struct kernel_hwtstamp_config *cfg,
4014 			    struct netlink_ext_ack *extack);
4015 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4016 unsigned int dev_get_flags(const struct net_device *);
4017 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4018 		       struct netlink_ext_ack *extack);
4019 int dev_change_flags(struct net_device *dev, unsigned int flags,
4020 		     struct netlink_ext_ack *extack);
4021 int dev_set_alias(struct net_device *, const char *, size_t);
4022 int dev_get_alias(const struct net_device *, char *, size_t);
4023 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4024 			       const char *pat, int new_ifindex);
4025 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)4026 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4027 			     const char *pat)
4028 {
4029 	return __dev_change_net_namespace(dev, net, pat, 0);
4030 }
4031 int __dev_set_mtu(struct net_device *, int);
4032 int dev_set_mtu(struct net_device *, int);
4033 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4034 			      struct netlink_ext_ack *extack);
4035 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4036 			struct netlink_ext_ack *extack);
4037 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4038 			     struct netlink_ext_ack *extack);
4039 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4040 int dev_get_port_parent_id(struct net_device *dev,
4041 			   struct netdev_phys_item_id *ppid, bool recurse);
4042 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4043 
4044 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4045 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4046 				    struct netdev_queue *txq, int *ret);
4047 
4048 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4049 u8 dev_xdp_prog_count(struct net_device *dev);
4050 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4051 
4052 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4053 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4054 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4055 bool is_skb_forwardable(const struct net_device *dev,
4056 			const struct sk_buff *skb);
4057 
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)4058 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4059 						 const struct sk_buff *skb,
4060 						 const bool check_mtu)
4061 {
4062 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4063 	unsigned int len;
4064 
4065 	if (!(dev->flags & IFF_UP))
4066 		return false;
4067 
4068 	if (!check_mtu)
4069 		return true;
4070 
4071 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4072 	if (skb->len <= len)
4073 		return true;
4074 
4075 	/* if TSO is enabled, we don't care about the length as the packet
4076 	 * could be forwarded without being segmented before
4077 	 */
4078 	if (skb_is_gso(skb))
4079 		return true;
4080 
4081 	return false;
4082 }
4083 
4084 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4085 
4086 #define DEV_CORE_STATS_INC(FIELD)						\
4087 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4088 {										\
4089 	netdev_core_stats_inc(dev,						\
4090 			offsetof(struct net_device_core_stats, FIELD));		\
4091 }
4092 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)4093 DEV_CORE_STATS_INC(tx_dropped)
4094 DEV_CORE_STATS_INC(rx_nohandler)
4095 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4096 #undef DEV_CORE_STATS_INC
4097 
4098 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4099 					       struct sk_buff *skb,
4100 					       const bool check_mtu)
4101 {
4102 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4103 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4104 		dev_core_stats_rx_dropped_inc(dev);
4105 		kfree_skb(skb);
4106 		return NET_RX_DROP;
4107 	}
4108 
4109 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4110 	skb->priority = 0;
4111 	return 0;
4112 }
4113 
4114 bool dev_nit_active(struct net_device *dev);
4115 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4116 
__dev_put(struct net_device * dev)4117 static inline void __dev_put(struct net_device *dev)
4118 {
4119 	if (dev) {
4120 #ifdef CONFIG_PCPU_DEV_REFCNT
4121 		this_cpu_dec(*dev->pcpu_refcnt);
4122 #else
4123 		refcount_dec(&dev->dev_refcnt);
4124 #endif
4125 	}
4126 }
4127 
__dev_hold(struct net_device * dev)4128 static inline void __dev_hold(struct net_device *dev)
4129 {
4130 	if (dev) {
4131 #ifdef CONFIG_PCPU_DEV_REFCNT
4132 		this_cpu_inc(*dev->pcpu_refcnt);
4133 #else
4134 		refcount_inc(&dev->dev_refcnt);
4135 #endif
4136 	}
4137 }
4138 
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4139 static inline void __netdev_tracker_alloc(struct net_device *dev,
4140 					  netdevice_tracker *tracker,
4141 					  gfp_t gfp)
4142 {
4143 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4144 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4145 #endif
4146 }
4147 
4148 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4149  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4150  */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4151 static inline void netdev_tracker_alloc(struct net_device *dev,
4152 					netdevice_tracker *tracker, gfp_t gfp)
4153 {
4154 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4155 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4156 	__netdev_tracker_alloc(dev, tracker, gfp);
4157 #endif
4158 }
4159 
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4160 static inline void netdev_tracker_free(struct net_device *dev,
4161 				       netdevice_tracker *tracker)
4162 {
4163 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4164 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4165 #endif
4166 }
4167 
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4168 static inline void netdev_hold(struct net_device *dev,
4169 			       netdevice_tracker *tracker, gfp_t gfp)
4170 {
4171 	if (dev) {
4172 		__dev_hold(dev);
4173 		__netdev_tracker_alloc(dev, tracker, gfp);
4174 	}
4175 }
4176 
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4177 static inline void netdev_put(struct net_device *dev,
4178 			      netdevice_tracker *tracker)
4179 {
4180 	if (dev) {
4181 		netdev_tracker_free(dev, tracker);
4182 		__dev_put(dev);
4183 	}
4184 }
4185 
4186 /**
4187  *	dev_hold - get reference to device
4188  *	@dev: network device
4189  *
4190  * Hold reference to device to keep it from being freed.
4191  * Try using netdev_hold() instead.
4192  */
dev_hold(struct net_device * dev)4193 static inline void dev_hold(struct net_device *dev)
4194 {
4195 	netdev_hold(dev, NULL, GFP_ATOMIC);
4196 }
4197 
4198 /**
4199  *	dev_put - release reference to device
4200  *	@dev: network device
4201  *
4202  * Release reference to device to allow it to be freed.
4203  * Try using netdev_put() instead.
4204  */
dev_put(struct net_device * dev)4205 static inline void dev_put(struct net_device *dev)
4206 {
4207 	netdev_put(dev, NULL);
4208 }
4209 
netdev_ref_replace(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4210 static inline void netdev_ref_replace(struct net_device *odev,
4211 				      struct net_device *ndev,
4212 				      netdevice_tracker *tracker,
4213 				      gfp_t gfp)
4214 {
4215 	if (odev)
4216 		netdev_tracker_free(odev, tracker);
4217 
4218 	__dev_hold(ndev);
4219 	__dev_put(odev);
4220 
4221 	if (ndev)
4222 		__netdev_tracker_alloc(ndev, tracker, gfp);
4223 }
4224 
4225 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4226  * and _off may be called from IRQ context, but it is caller
4227  * who is responsible for serialization of these calls.
4228  *
4229  * The name carrier is inappropriate, these functions should really be
4230  * called netif_lowerlayer_*() because they represent the state of any
4231  * kind of lower layer not just hardware media.
4232  */
4233 void linkwatch_fire_event(struct net_device *dev);
4234 
4235 /**
4236  * linkwatch_sync_dev - sync linkwatch for the given device
4237  * @dev: network device to sync linkwatch for
4238  *
4239  * Sync linkwatch for the given device, removing it from the
4240  * pending work list (if queued).
4241  */
4242 void linkwatch_sync_dev(struct net_device *dev);
4243 
4244 /**
4245  *	netif_carrier_ok - test if carrier present
4246  *	@dev: network device
4247  *
4248  * Check if carrier is present on device
4249  */
netif_carrier_ok(const struct net_device * dev)4250 static inline bool netif_carrier_ok(const struct net_device *dev)
4251 {
4252 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4253 }
4254 
4255 unsigned long dev_trans_start(struct net_device *dev);
4256 
4257 void __netdev_watchdog_up(struct net_device *dev);
4258 
4259 void netif_carrier_on(struct net_device *dev);
4260 void netif_carrier_off(struct net_device *dev);
4261 void netif_carrier_event(struct net_device *dev);
4262 
4263 /**
4264  *	netif_dormant_on - mark device as dormant.
4265  *	@dev: network device
4266  *
4267  * Mark device as dormant (as per RFC2863).
4268  *
4269  * The dormant state indicates that the relevant interface is not
4270  * actually in a condition to pass packets (i.e., it is not 'up') but is
4271  * in a "pending" state, waiting for some external event.  For "on-
4272  * demand" interfaces, this new state identifies the situation where the
4273  * interface is waiting for events to place it in the up state.
4274  */
netif_dormant_on(struct net_device * dev)4275 static inline void netif_dormant_on(struct net_device *dev)
4276 {
4277 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4278 		linkwatch_fire_event(dev);
4279 }
4280 
4281 /**
4282  *	netif_dormant_off - set device as not dormant.
4283  *	@dev: network device
4284  *
4285  * Device is not in dormant state.
4286  */
netif_dormant_off(struct net_device * dev)4287 static inline void netif_dormant_off(struct net_device *dev)
4288 {
4289 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4290 		linkwatch_fire_event(dev);
4291 }
4292 
4293 /**
4294  *	netif_dormant - test if device is dormant
4295  *	@dev: network device
4296  *
4297  * Check if device is dormant.
4298  */
netif_dormant(const struct net_device * dev)4299 static inline bool netif_dormant(const struct net_device *dev)
4300 {
4301 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4302 }
4303 
4304 
4305 /**
4306  *	netif_testing_on - mark device as under test.
4307  *	@dev: network device
4308  *
4309  * Mark device as under test (as per RFC2863).
4310  *
4311  * The testing state indicates that some test(s) must be performed on
4312  * the interface. After completion, of the test, the interface state
4313  * will change to up, dormant, or down, as appropriate.
4314  */
netif_testing_on(struct net_device * dev)4315 static inline void netif_testing_on(struct net_device *dev)
4316 {
4317 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4318 		linkwatch_fire_event(dev);
4319 }
4320 
4321 /**
4322  *	netif_testing_off - set device as not under test.
4323  *	@dev: network device
4324  *
4325  * Device is not in testing state.
4326  */
netif_testing_off(struct net_device * dev)4327 static inline void netif_testing_off(struct net_device *dev)
4328 {
4329 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4330 		linkwatch_fire_event(dev);
4331 }
4332 
4333 /**
4334  *	netif_testing - test if device is under test
4335  *	@dev: network device
4336  *
4337  * Check if device is under test
4338  */
netif_testing(const struct net_device * dev)4339 static inline bool netif_testing(const struct net_device *dev)
4340 {
4341 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4342 }
4343 
4344 
4345 /**
4346  *	netif_oper_up - test if device is operational
4347  *	@dev: network device
4348  *
4349  * Check if carrier is operational
4350  */
netif_oper_up(const struct net_device * dev)4351 static inline bool netif_oper_up(const struct net_device *dev)
4352 {
4353 	return (dev->operstate == IF_OPER_UP ||
4354 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4355 }
4356 
4357 /**
4358  *	netif_device_present - is device available or removed
4359  *	@dev: network device
4360  *
4361  * Check if device has not been removed from system.
4362  */
netif_device_present(const struct net_device * dev)4363 static inline bool netif_device_present(const struct net_device *dev)
4364 {
4365 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4366 }
4367 
4368 void netif_device_detach(struct net_device *dev);
4369 
4370 void netif_device_attach(struct net_device *dev);
4371 
4372 /*
4373  * Network interface message level settings
4374  */
4375 
4376 enum {
4377 	NETIF_MSG_DRV_BIT,
4378 	NETIF_MSG_PROBE_BIT,
4379 	NETIF_MSG_LINK_BIT,
4380 	NETIF_MSG_TIMER_BIT,
4381 	NETIF_MSG_IFDOWN_BIT,
4382 	NETIF_MSG_IFUP_BIT,
4383 	NETIF_MSG_RX_ERR_BIT,
4384 	NETIF_MSG_TX_ERR_BIT,
4385 	NETIF_MSG_TX_QUEUED_BIT,
4386 	NETIF_MSG_INTR_BIT,
4387 	NETIF_MSG_TX_DONE_BIT,
4388 	NETIF_MSG_RX_STATUS_BIT,
4389 	NETIF_MSG_PKTDATA_BIT,
4390 	NETIF_MSG_HW_BIT,
4391 	NETIF_MSG_WOL_BIT,
4392 
4393 	/* When you add a new bit above, update netif_msg_class_names array
4394 	 * in net/ethtool/common.c
4395 	 */
4396 	NETIF_MSG_CLASS_COUNT,
4397 };
4398 /* Both ethtool_ops interface and internal driver implementation use u32 */
4399 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4400 
4401 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4402 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4403 
4404 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4405 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4406 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4407 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4408 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4409 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4410 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4411 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4412 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4413 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4414 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4415 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4416 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4417 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4418 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4419 
4420 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4421 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4422 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4423 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4424 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4425 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4426 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4427 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4428 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4429 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4430 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4431 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4432 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4433 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4434 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4435 
netif_msg_init(int debug_value,int default_msg_enable_bits)4436 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4437 {
4438 	/* use default */
4439 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4440 		return default_msg_enable_bits;
4441 	if (debug_value == 0)	/* no output */
4442 		return 0;
4443 	/* set low N bits */
4444 	return (1U << debug_value) - 1;
4445 }
4446 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4447 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4448 {
4449 	spin_lock(&txq->_xmit_lock);
4450 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4451 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4452 }
4453 
__netif_tx_acquire(struct netdev_queue * txq)4454 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4455 {
4456 	__acquire(&txq->_xmit_lock);
4457 	return true;
4458 }
4459 
__netif_tx_release(struct netdev_queue * txq)4460 static inline void __netif_tx_release(struct netdev_queue *txq)
4461 {
4462 	__release(&txq->_xmit_lock);
4463 }
4464 
__netif_tx_lock_bh(struct netdev_queue * txq)4465 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4466 {
4467 	spin_lock_bh(&txq->_xmit_lock);
4468 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4469 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4470 }
4471 
__netif_tx_trylock(struct netdev_queue * txq)4472 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4473 {
4474 	bool ok = spin_trylock(&txq->_xmit_lock);
4475 
4476 	if (likely(ok)) {
4477 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4478 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4479 	}
4480 	return ok;
4481 }
4482 
__netif_tx_unlock(struct netdev_queue * txq)4483 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4484 {
4485 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4486 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4487 	spin_unlock(&txq->_xmit_lock);
4488 }
4489 
__netif_tx_unlock_bh(struct netdev_queue * txq)4490 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4491 {
4492 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4493 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4494 	spin_unlock_bh(&txq->_xmit_lock);
4495 }
4496 
4497 /*
4498  * txq->trans_start can be read locklessly from dev_watchdog()
4499  */
txq_trans_update(struct netdev_queue * txq)4500 static inline void txq_trans_update(struct netdev_queue *txq)
4501 {
4502 	if (txq->xmit_lock_owner != -1)
4503 		WRITE_ONCE(txq->trans_start, jiffies);
4504 }
4505 
txq_trans_cond_update(struct netdev_queue * txq)4506 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4507 {
4508 	unsigned long now = jiffies;
4509 
4510 	if (READ_ONCE(txq->trans_start) != now)
4511 		WRITE_ONCE(txq->trans_start, now);
4512 }
4513 
4514 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4515 static inline void netif_trans_update(struct net_device *dev)
4516 {
4517 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4518 
4519 	txq_trans_cond_update(txq);
4520 }
4521 
4522 /**
4523  *	netif_tx_lock - grab network device transmit lock
4524  *	@dev: network device
4525  *
4526  * Get network device transmit lock
4527  */
4528 void netif_tx_lock(struct net_device *dev);
4529 
netif_tx_lock_bh(struct net_device * dev)4530 static inline void netif_tx_lock_bh(struct net_device *dev)
4531 {
4532 	local_bh_disable();
4533 	netif_tx_lock(dev);
4534 }
4535 
4536 void netif_tx_unlock(struct net_device *dev);
4537 
netif_tx_unlock_bh(struct net_device * dev)4538 static inline void netif_tx_unlock_bh(struct net_device *dev)
4539 {
4540 	netif_tx_unlock(dev);
4541 	local_bh_enable();
4542 }
4543 
4544 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4545 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4546 		__netif_tx_lock(txq, cpu);		\
4547 	} else {					\
4548 		__netif_tx_acquire(txq);		\
4549 	}						\
4550 }
4551 
4552 #define HARD_TX_TRYLOCK(dev, txq)			\
4553 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4554 		__netif_tx_trylock(txq) :		\
4555 		__netif_tx_acquire(txq))
4556 
4557 #define HARD_TX_UNLOCK(dev, txq) {			\
4558 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4559 		__netif_tx_unlock(txq);			\
4560 	} else {					\
4561 		__netif_tx_release(txq);		\
4562 	}						\
4563 }
4564 
netif_tx_disable(struct net_device * dev)4565 static inline void netif_tx_disable(struct net_device *dev)
4566 {
4567 	unsigned int i;
4568 	int cpu;
4569 
4570 	local_bh_disable();
4571 	cpu = smp_processor_id();
4572 	spin_lock(&dev->tx_global_lock);
4573 	for (i = 0; i < dev->num_tx_queues; i++) {
4574 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4575 
4576 		__netif_tx_lock(txq, cpu);
4577 		netif_tx_stop_queue(txq);
4578 		__netif_tx_unlock(txq);
4579 	}
4580 	spin_unlock(&dev->tx_global_lock);
4581 	local_bh_enable();
4582 }
4583 
netif_addr_lock(struct net_device * dev)4584 static inline void netif_addr_lock(struct net_device *dev)
4585 {
4586 	unsigned char nest_level = 0;
4587 
4588 #ifdef CONFIG_LOCKDEP
4589 	nest_level = dev->nested_level;
4590 #endif
4591 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4592 }
4593 
netif_addr_lock_bh(struct net_device * dev)4594 static inline void netif_addr_lock_bh(struct net_device *dev)
4595 {
4596 	unsigned char nest_level = 0;
4597 
4598 #ifdef CONFIG_LOCKDEP
4599 	nest_level = dev->nested_level;
4600 #endif
4601 	local_bh_disable();
4602 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4603 }
4604 
netif_addr_unlock(struct net_device * dev)4605 static inline void netif_addr_unlock(struct net_device *dev)
4606 {
4607 	spin_unlock(&dev->addr_list_lock);
4608 }
4609 
netif_addr_unlock_bh(struct net_device * dev)4610 static inline void netif_addr_unlock_bh(struct net_device *dev)
4611 {
4612 	spin_unlock_bh(&dev->addr_list_lock);
4613 }
4614 
4615 /*
4616  * dev_addrs walker. Should be used only for read access. Call with
4617  * rcu_read_lock held.
4618  */
4619 #define for_each_dev_addr(dev, ha) \
4620 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4621 
4622 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4623 
4624 void ether_setup(struct net_device *dev);
4625 
4626 /* Support for loadable net-drivers */
4627 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4628 				    unsigned char name_assign_type,
4629 				    void (*setup)(struct net_device *),
4630 				    unsigned int txqs, unsigned int rxqs);
4631 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4632 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4633 
4634 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4635 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4636 			 count)
4637 
4638 int register_netdev(struct net_device *dev);
4639 void unregister_netdev(struct net_device *dev);
4640 
4641 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4642 
4643 /* General hardware address lists handling functions */
4644 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4645 		   struct netdev_hw_addr_list *from_list, int addr_len);
4646 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4647 		      struct netdev_hw_addr_list *from_list, int addr_len);
4648 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4649 		       struct net_device *dev,
4650 		       int (*sync)(struct net_device *, const unsigned char *),
4651 		       int (*unsync)(struct net_device *,
4652 				     const unsigned char *));
4653 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4654 			   struct net_device *dev,
4655 			   int (*sync)(struct net_device *,
4656 				       const unsigned char *, int),
4657 			   int (*unsync)(struct net_device *,
4658 					 const unsigned char *, int));
4659 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4660 			      struct net_device *dev,
4661 			      int (*unsync)(struct net_device *,
4662 					    const unsigned char *, int));
4663 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4664 			  struct net_device *dev,
4665 			  int (*unsync)(struct net_device *,
4666 					const unsigned char *));
4667 void __hw_addr_init(struct netdev_hw_addr_list *list);
4668 
4669 /* Functions used for device addresses handling */
4670 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4671 		  const void *addr, size_t len);
4672 
4673 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4674 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4675 {
4676 	dev_addr_mod(dev, 0, addr, len);
4677 }
4678 
dev_addr_set(struct net_device * dev,const u8 * addr)4679 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4680 {
4681 	__dev_addr_set(dev, addr, dev->addr_len);
4682 }
4683 
4684 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4685 		 unsigned char addr_type);
4686 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4687 		 unsigned char addr_type);
4688 
4689 /* Functions used for unicast addresses handling */
4690 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4691 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4692 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4693 int dev_uc_sync(struct net_device *to, struct net_device *from);
4694 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4695 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4696 void dev_uc_flush(struct net_device *dev);
4697 void dev_uc_init(struct net_device *dev);
4698 
4699 /**
4700  *  __dev_uc_sync - Synchonize device's unicast list
4701  *  @dev:  device to sync
4702  *  @sync: function to call if address should be added
4703  *  @unsync: function to call if address should be removed
4704  *
4705  *  Add newly added addresses to the interface, and release
4706  *  addresses that have been deleted.
4707  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4708 static inline int __dev_uc_sync(struct net_device *dev,
4709 				int (*sync)(struct net_device *,
4710 					    const unsigned char *),
4711 				int (*unsync)(struct net_device *,
4712 					      const unsigned char *))
4713 {
4714 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4715 }
4716 
4717 /**
4718  *  __dev_uc_unsync - Remove synchronized addresses from device
4719  *  @dev:  device to sync
4720  *  @unsync: function to call if address should be removed
4721  *
4722  *  Remove all addresses that were added to the device by dev_uc_sync().
4723  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4724 static inline void __dev_uc_unsync(struct net_device *dev,
4725 				   int (*unsync)(struct net_device *,
4726 						 const unsigned char *))
4727 {
4728 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4729 }
4730 
4731 /* Functions used for multicast addresses handling */
4732 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4733 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4734 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4735 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4736 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4737 int dev_mc_sync(struct net_device *to, struct net_device *from);
4738 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4739 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4740 void dev_mc_flush(struct net_device *dev);
4741 void dev_mc_init(struct net_device *dev);
4742 
4743 /**
4744  *  __dev_mc_sync - Synchonize device's multicast list
4745  *  @dev:  device to sync
4746  *  @sync: function to call if address should be added
4747  *  @unsync: function to call if address should be removed
4748  *
4749  *  Add newly added addresses to the interface, and release
4750  *  addresses that have been deleted.
4751  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4752 static inline int __dev_mc_sync(struct net_device *dev,
4753 				int (*sync)(struct net_device *,
4754 					    const unsigned char *),
4755 				int (*unsync)(struct net_device *,
4756 					      const unsigned char *))
4757 {
4758 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4759 }
4760 
4761 /**
4762  *  __dev_mc_unsync - Remove synchronized addresses from device
4763  *  @dev:  device to sync
4764  *  @unsync: function to call if address should be removed
4765  *
4766  *  Remove all addresses that were added to the device by dev_mc_sync().
4767  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4768 static inline void __dev_mc_unsync(struct net_device *dev,
4769 				   int (*unsync)(struct net_device *,
4770 						 const unsigned char *))
4771 {
4772 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4773 }
4774 
4775 /* Functions used for secondary unicast and multicast support */
4776 void dev_set_rx_mode(struct net_device *dev);
4777 int dev_set_promiscuity(struct net_device *dev, int inc);
4778 int dev_set_allmulti(struct net_device *dev, int inc);
4779 void netdev_state_change(struct net_device *dev);
4780 void __netdev_notify_peers(struct net_device *dev);
4781 void netdev_notify_peers(struct net_device *dev);
4782 void netdev_features_change(struct net_device *dev);
4783 /* Load a device via the kmod */
4784 void dev_load(struct net *net, const char *name);
4785 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4786 					struct rtnl_link_stats64 *storage);
4787 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4788 			     const struct net_device_stats *netdev_stats);
4789 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4790 			   const struct pcpu_sw_netstats __percpu *netstats);
4791 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4792 
4793 extern int		netdev_max_backlog;
4794 extern int		dev_rx_weight;
4795 extern int		dev_tx_weight;
4796 extern int		gro_normal_batch;
4797 
4798 enum {
4799 	NESTED_SYNC_IMM_BIT,
4800 	NESTED_SYNC_TODO_BIT,
4801 };
4802 
4803 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4804 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4805 
4806 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4807 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4808 
4809 struct netdev_nested_priv {
4810 	unsigned char flags;
4811 	void *data;
4812 };
4813 
4814 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4815 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4816 						     struct list_head **iter);
4817 
4818 /* iterate through upper list, must be called under RCU read lock */
4819 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4820 	for (iter = &(dev)->adj_list.upper, \
4821 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4822 	     updev; \
4823 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4824 
4825 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4826 				  int (*fn)(struct net_device *upper_dev,
4827 					    struct netdev_nested_priv *priv),
4828 				  struct netdev_nested_priv *priv);
4829 
4830 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4831 				  struct net_device *upper_dev);
4832 
4833 bool netdev_has_any_upper_dev(struct net_device *dev);
4834 
4835 void *netdev_lower_get_next_private(struct net_device *dev,
4836 				    struct list_head **iter);
4837 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4838 					struct list_head **iter);
4839 
4840 #define netdev_for_each_lower_private(dev, priv, iter) \
4841 	for (iter = (dev)->adj_list.lower.next, \
4842 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4843 	     priv; \
4844 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4845 
4846 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4847 	for (iter = &(dev)->adj_list.lower, \
4848 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4849 	     priv; \
4850 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4851 
4852 void *netdev_lower_get_next(struct net_device *dev,
4853 				struct list_head **iter);
4854 
4855 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4856 	for (iter = (dev)->adj_list.lower.next, \
4857 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4858 	     ldev; \
4859 	     ldev = netdev_lower_get_next(dev, &(iter)))
4860 
4861 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4862 					     struct list_head **iter);
4863 int netdev_walk_all_lower_dev(struct net_device *dev,
4864 			      int (*fn)(struct net_device *lower_dev,
4865 					struct netdev_nested_priv *priv),
4866 			      struct netdev_nested_priv *priv);
4867 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4868 				  int (*fn)(struct net_device *lower_dev,
4869 					    struct netdev_nested_priv *priv),
4870 				  struct netdev_nested_priv *priv);
4871 
4872 void *netdev_adjacent_get_private(struct list_head *adj_list);
4873 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4874 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4875 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4876 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4877 			  struct netlink_ext_ack *extack);
4878 int netdev_master_upper_dev_link(struct net_device *dev,
4879 				 struct net_device *upper_dev,
4880 				 void *upper_priv, void *upper_info,
4881 				 struct netlink_ext_ack *extack);
4882 void netdev_upper_dev_unlink(struct net_device *dev,
4883 			     struct net_device *upper_dev);
4884 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4885 				   struct net_device *new_dev,
4886 				   struct net_device *dev,
4887 				   struct netlink_ext_ack *extack);
4888 void netdev_adjacent_change_commit(struct net_device *old_dev,
4889 				   struct net_device *new_dev,
4890 				   struct net_device *dev);
4891 void netdev_adjacent_change_abort(struct net_device *old_dev,
4892 				  struct net_device *new_dev,
4893 				  struct net_device *dev);
4894 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4895 void *netdev_lower_dev_get_private(struct net_device *dev,
4896 				   struct net_device *lower_dev);
4897 void netdev_lower_state_changed(struct net_device *lower_dev,
4898 				void *lower_state_info);
4899 
4900 /* RSS keys are 40 or 52 bytes long */
4901 #define NETDEV_RSS_KEY_LEN 52
4902 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4903 void netdev_rss_key_fill(void *buffer, size_t len);
4904 
4905 int skb_checksum_help(struct sk_buff *skb);
4906 int skb_crc32c_csum_help(struct sk_buff *skb);
4907 int skb_csum_hwoffload_help(struct sk_buff *skb,
4908 			    const netdev_features_t features);
4909 
4910 struct netdev_bonding_info {
4911 	ifslave	slave;
4912 	ifbond	master;
4913 };
4914 
4915 struct netdev_notifier_bonding_info {
4916 	struct netdev_notifier_info info; /* must be first */
4917 	struct netdev_bonding_info  bonding_info;
4918 };
4919 
4920 void netdev_bonding_info_change(struct net_device *dev,
4921 				struct netdev_bonding_info *bonding_info);
4922 
4923 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4924 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4925 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4926 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4927 				  const void *data)
4928 {
4929 }
4930 #endif
4931 
4932 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4933 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4934 static inline bool can_checksum_protocol(netdev_features_t features,
4935 					 __be16 protocol)
4936 {
4937 	if (protocol == htons(ETH_P_FCOE))
4938 		return !!(features & NETIF_F_FCOE_CRC);
4939 
4940 	/* Assume this is an IP checksum (not SCTP CRC) */
4941 
4942 	if (features & NETIF_F_HW_CSUM) {
4943 		/* Can checksum everything */
4944 		return true;
4945 	}
4946 
4947 	switch (protocol) {
4948 	case htons(ETH_P_IP):
4949 		return !!(features & NETIF_F_IP_CSUM);
4950 	case htons(ETH_P_IPV6):
4951 		return !!(features & NETIF_F_IPV6_CSUM);
4952 	default:
4953 		return false;
4954 	}
4955 }
4956 
4957 #ifdef CONFIG_BUG
4958 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4959 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4960 static inline void netdev_rx_csum_fault(struct net_device *dev,
4961 					struct sk_buff *skb)
4962 {
4963 }
4964 #endif
4965 /* rx skb timestamps */
4966 void net_enable_timestamp(void);
4967 void net_disable_timestamp(void);
4968 
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4969 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4970 					const struct skb_shared_hwtstamps *hwtstamps,
4971 					bool cycles)
4972 {
4973 	const struct net_device_ops *ops = dev->netdev_ops;
4974 
4975 	if (ops->ndo_get_tstamp)
4976 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4977 
4978 	return hwtstamps->hwtstamp;
4979 }
4980 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4981 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4982 					      struct sk_buff *skb, struct net_device *dev,
4983 					      bool more)
4984 {
4985 	__this_cpu_write(softnet_data.xmit.more, more);
4986 	return ops->ndo_start_xmit(skb, dev);
4987 }
4988 
netdev_xmit_more(void)4989 static inline bool netdev_xmit_more(void)
4990 {
4991 	return __this_cpu_read(softnet_data.xmit.more);
4992 }
4993 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4994 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4995 					    struct netdev_queue *txq, bool more)
4996 {
4997 	const struct net_device_ops *ops = dev->netdev_ops;
4998 	netdev_tx_t rc;
4999 
5000 	rc = __netdev_start_xmit(ops, skb, dev, more);
5001 	if (rc == NETDEV_TX_OK)
5002 		txq_trans_update(txq);
5003 
5004 	return rc;
5005 }
5006 
5007 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5008 				const void *ns);
5009 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5010 				 const void *ns);
5011 
5012 extern const struct kobj_ns_type_operations net_ns_type_operations;
5013 
5014 const char *netdev_drivername(const struct net_device *dev);
5015 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)5016 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5017 							  netdev_features_t f2)
5018 {
5019 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5020 		if (f1 & NETIF_F_HW_CSUM)
5021 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5022 		else
5023 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5024 	}
5025 
5026 	return f1 & f2;
5027 }
5028 
netdev_get_wanted_features(struct net_device * dev)5029 static inline netdev_features_t netdev_get_wanted_features(
5030 	struct net_device *dev)
5031 {
5032 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5033 }
5034 netdev_features_t netdev_increment_features(netdev_features_t all,
5035 	netdev_features_t one, netdev_features_t mask);
5036 
5037 /* Allow TSO being used on stacked device :
5038  * Performing the GSO segmentation before last device
5039  * is a performance improvement.
5040  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)5041 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5042 							netdev_features_t mask)
5043 {
5044 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5045 }
5046 
5047 int __netdev_update_features(struct net_device *dev);
5048 void netdev_update_features(struct net_device *dev);
5049 void netdev_change_features(struct net_device *dev);
5050 
5051 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5052 					struct net_device *dev);
5053 
5054 netdev_features_t passthru_features_check(struct sk_buff *skb,
5055 					  struct net_device *dev,
5056 					  netdev_features_t features);
5057 netdev_features_t netif_skb_features(struct sk_buff *skb);
5058 void skb_warn_bad_offload(const struct sk_buff *skb);
5059 
net_gso_ok(netdev_features_t features,int gso_type)5060 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5061 {
5062 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5063 
5064 	/* check flags correspondence */
5065 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5066 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5067 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5068 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5069 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5070 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5071 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5072 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5073 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5074 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5075 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5076 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5077 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5078 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5079 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5080 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5081 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5082 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5083 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5084 
5085 	return (features & feature) == feature;
5086 }
5087 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)5088 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5089 {
5090 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5091 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5092 }
5093 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)5094 static inline bool netif_needs_gso(struct sk_buff *skb,
5095 				   netdev_features_t features)
5096 {
5097 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5098 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5099 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5100 }
5101 
5102 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5103 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5104 void netif_inherit_tso_max(struct net_device *to,
5105 			   const struct net_device *from);
5106 
netif_is_macsec(const struct net_device * dev)5107 static inline bool netif_is_macsec(const struct net_device *dev)
5108 {
5109 	return dev->priv_flags & IFF_MACSEC;
5110 }
5111 
netif_is_macvlan(const struct net_device * dev)5112 static inline bool netif_is_macvlan(const struct net_device *dev)
5113 {
5114 	return dev->priv_flags & IFF_MACVLAN;
5115 }
5116 
netif_is_macvlan_port(const struct net_device * dev)5117 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5118 {
5119 	return dev->priv_flags & IFF_MACVLAN_PORT;
5120 }
5121 
netif_is_bond_master(const struct net_device * dev)5122 static inline bool netif_is_bond_master(const struct net_device *dev)
5123 {
5124 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5125 }
5126 
netif_is_bond_slave(const struct net_device * dev)5127 static inline bool netif_is_bond_slave(const struct net_device *dev)
5128 {
5129 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5130 }
5131 
netif_supports_nofcs(struct net_device * dev)5132 static inline bool netif_supports_nofcs(struct net_device *dev)
5133 {
5134 	return dev->priv_flags & IFF_SUPP_NOFCS;
5135 }
5136 
netif_has_l3_rx_handler(const struct net_device * dev)5137 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5138 {
5139 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5140 }
5141 
netif_is_l3_master(const struct net_device * dev)5142 static inline bool netif_is_l3_master(const struct net_device *dev)
5143 {
5144 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5145 }
5146 
netif_is_l3_slave(const struct net_device * dev)5147 static inline bool netif_is_l3_slave(const struct net_device *dev)
5148 {
5149 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5150 }
5151 
dev_sdif(const struct net_device * dev)5152 static inline int dev_sdif(const struct net_device *dev)
5153 {
5154 #ifdef CONFIG_NET_L3_MASTER_DEV
5155 	if (netif_is_l3_slave(dev))
5156 		return dev->ifindex;
5157 #endif
5158 	return 0;
5159 }
5160 
netif_is_bridge_master(const struct net_device * dev)5161 static inline bool netif_is_bridge_master(const struct net_device *dev)
5162 {
5163 	return dev->priv_flags & IFF_EBRIDGE;
5164 }
5165 
netif_is_bridge_port(const struct net_device * dev)5166 static inline bool netif_is_bridge_port(const struct net_device *dev)
5167 {
5168 	return dev->priv_flags & IFF_BRIDGE_PORT;
5169 }
5170 
netif_is_ovs_master(const struct net_device * dev)5171 static inline bool netif_is_ovs_master(const struct net_device *dev)
5172 {
5173 	return dev->priv_flags & IFF_OPENVSWITCH;
5174 }
5175 
netif_is_ovs_port(const struct net_device * dev)5176 static inline bool netif_is_ovs_port(const struct net_device *dev)
5177 {
5178 	return dev->priv_flags & IFF_OVS_DATAPATH;
5179 }
5180 
netif_is_any_bridge_master(const struct net_device * dev)5181 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5182 {
5183 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5184 }
5185 
netif_is_any_bridge_port(const struct net_device * dev)5186 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5187 {
5188 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5189 }
5190 
netif_is_team_master(const struct net_device * dev)5191 static inline bool netif_is_team_master(const struct net_device *dev)
5192 {
5193 	return dev->priv_flags & IFF_TEAM;
5194 }
5195 
netif_is_team_port(const struct net_device * dev)5196 static inline bool netif_is_team_port(const struct net_device *dev)
5197 {
5198 	return dev->priv_flags & IFF_TEAM_PORT;
5199 }
5200 
netif_is_lag_master(const struct net_device * dev)5201 static inline bool netif_is_lag_master(const struct net_device *dev)
5202 {
5203 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5204 }
5205 
netif_is_lag_port(const struct net_device * dev)5206 static inline bool netif_is_lag_port(const struct net_device *dev)
5207 {
5208 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5209 }
5210 
netif_is_rxfh_configured(const struct net_device * dev)5211 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5212 {
5213 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5214 }
5215 
netif_is_failover(const struct net_device * dev)5216 static inline bool netif_is_failover(const struct net_device *dev)
5217 {
5218 	return dev->priv_flags & IFF_FAILOVER;
5219 }
5220 
netif_is_failover_slave(const struct net_device * dev)5221 static inline bool netif_is_failover_slave(const struct net_device *dev)
5222 {
5223 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5224 }
5225 
5226 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5227 static inline void netif_keep_dst(struct net_device *dev)
5228 {
5229 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5230 }
5231 
5232 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5233 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5234 {
5235 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5236 	return netif_is_macsec(dev);
5237 }
5238 
5239 extern struct pernet_operations __net_initdata loopback_net_ops;
5240 
5241 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5242 
5243 /* netdev_printk helpers, similar to dev_printk */
5244 
netdev_name(const struct net_device * dev)5245 static inline const char *netdev_name(const struct net_device *dev)
5246 {
5247 	if (!dev->name[0] || strchr(dev->name, '%'))
5248 		return "(unnamed net_device)";
5249 	return dev->name;
5250 }
5251 
netdev_reg_state(const struct net_device * dev)5252 static inline const char *netdev_reg_state(const struct net_device *dev)
5253 {
5254 	switch (dev->reg_state) {
5255 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5256 	case NETREG_REGISTERED: return "";
5257 	case NETREG_UNREGISTERING: return " (unregistering)";
5258 	case NETREG_UNREGISTERED: return " (unregistered)";
5259 	case NETREG_RELEASED: return " (released)";
5260 	case NETREG_DUMMY: return " (dummy)";
5261 	}
5262 
5263 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5264 	return " (unknown)";
5265 }
5266 
5267 #define MODULE_ALIAS_NETDEV(device) \
5268 	MODULE_ALIAS("netdev-" device)
5269 
5270 /*
5271  * netdev_WARN() acts like dev_printk(), but with the key difference
5272  * of using a WARN/WARN_ON to get the message out, including the
5273  * file/line information and a backtrace.
5274  */
5275 #define netdev_WARN(dev, format, args...)			\
5276 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5277 	     netdev_reg_state(dev), ##args)
5278 
5279 #define netdev_WARN_ONCE(dev, format, args...)				\
5280 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5281 		  netdev_reg_state(dev), ##args)
5282 
5283 /*
5284  *	The list of packet types we will receive (as opposed to discard)
5285  *	and the routines to invoke.
5286  *
5287  *	Why 16. Because with 16 the only overlap we get on a hash of the
5288  *	low nibble of the protocol value is RARP/SNAP/X.25.
5289  *
5290  *		0800	IP
5291  *		0001	802.3
5292  *		0002	AX.25
5293  *		0004	802.2
5294  *		8035	RARP
5295  *		0005	SNAP
5296  *		0805	X.25
5297  *		0806	ARP
5298  *		8137	IPX
5299  *		0009	Localtalk
5300  *		86DD	IPv6
5301  */
5302 #define PTYPE_HASH_SIZE	(16)
5303 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5304 
5305 extern struct list_head ptype_all __read_mostly;
5306 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5307 
5308 extern struct net_device *blackhole_netdev;
5309 
5310 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5311 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5312 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5313 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5314 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5315 
5316 #endif	/* _LINUX_NETDEVICE_H */
5317