1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 
23 #include <asm/mmu.h>
24 
25 #ifndef AT_VECTOR_SIZE_ARCH
26 #define AT_VECTOR_SIZE_ARCH 0
27 #endif
28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29 
30 #define INIT_PASID	0
31 
32 struct address_space;
33 struct mem_cgroup;
34 
35 /*
36  * Each physical page in the system has a struct page associated with
37  * it to keep track of whatever it is we are using the page for at the
38  * moment. Note that we have no way to track which tasks are using
39  * a page, though if it is a pagecache page, rmap structures can tell us
40  * who is mapping it.
41  *
42  * If you allocate the page using alloc_pages(), you can use some of the
43  * space in struct page for your own purposes.  The five words in the main
44  * union are available, except for bit 0 of the first word which must be
45  * kept clear.  Many users use this word to store a pointer to an object
46  * which is guaranteed to be aligned.  If you use the same storage as
47  * page->mapping, you must restore it to NULL before freeing the page.
48  *
49  * If your page will not be mapped to userspace, you can also use the four
50  * bytes in the mapcount union, but you must call page_mapcount_reset()
51  * before freeing it.
52  *
53  * If you want to use the refcount field, it must be used in such a way
54  * that other CPUs temporarily incrementing and then decrementing the
55  * refcount does not cause problems.  On receiving the page from
56  * alloc_pages(), the refcount will be positive.
57  *
58  * If you allocate pages of order > 0, you can use some of the fields
59  * in each subpage, but you may need to restore some of their values
60  * afterwards.
61  *
62  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63  * That requires that freelist & counters in struct slab be adjacent and
64  * double-word aligned. Because struct slab currently just reinterprets the
65  * bits of struct page, we align all struct pages to double-word boundaries,
66  * and ensure that 'freelist' is aligned within struct slab.
67  */
68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
70 #else
71 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
72 #endif
73 
74 struct page {
75 	unsigned long flags;		/* Atomic flags, some possibly
76 					 * updated asynchronously */
77 	/*
78 	 * Five words (20/40 bytes) are available in this union.
79 	 * WARNING: bit 0 of the first word is used for PageTail(). That
80 	 * means the other users of this union MUST NOT use the bit to
81 	 * avoid collision and false-positive PageTail().
82 	 */
83 	union {
84 		struct {	/* Page cache and anonymous pages */
85 			/**
86 			 * @lru: Pageout list, eg. active_list protected by
87 			 * lruvec->lru_lock.  Sometimes used as a generic list
88 			 * by the page owner.
89 			 */
90 			union {
91 				struct list_head lru;
92 
93 				/* Or, for the Unevictable "LRU list" slot */
94 				struct {
95 					/* Always even, to negate PageTail */
96 					void *__filler;
97 					/* Count page's or folio's mlocks */
98 					unsigned int mlock_count;
99 				};
100 
101 				/* Or, free page */
102 				struct list_head buddy_list;
103 				struct list_head pcp_list;
104 			};
105 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
106 			struct address_space *mapping;
107 			union {
108 				pgoff_t index;		/* Our offset within mapping. */
109 				unsigned long share;	/* share count for fsdax */
110 			};
111 			/**
112 			 * @private: Mapping-private opaque data.
113 			 * Usually used for buffer_heads if PagePrivate.
114 			 * Used for swp_entry_t if PageSwapCache.
115 			 * Indicates order in the buddy system if PageBuddy.
116 			 */
117 			unsigned long private;
118 		};
119 		struct {	/* page_pool used by netstack */
120 			/**
121 			 * @pp_magic: magic value to avoid recycling non
122 			 * page_pool allocated pages.
123 			 */
124 			unsigned long pp_magic;
125 			struct page_pool *pp;
126 			unsigned long _pp_mapping_pad;
127 			unsigned long dma_addr;
128 			atomic_long_t pp_ref_count;
129 		};
130 		struct {	/* Tail pages of compound page */
131 			unsigned long compound_head;	/* Bit zero is set */
132 		};
133 		struct {	/* ZONE_DEVICE pages */
134 			/** @pgmap: Points to the hosting device page map. */
135 			struct dev_pagemap *pgmap;
136 			void *zone_device_data;
137 			/*
138 			 * ZONE_DEVICE private pages are counted as being
139 			 * mapped so the next 3 words hold the mapping, index,
140 			 * and private fields from the source anonymous or
141 			 * page cache page while the page is migrated to device
142 			 * private memory.
143 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
144 			 * use the mapping, index, and private fields when
145 			 * pmem backed DAX files are mapped.
146 			 */
147 		};
148 
149 		/** @rcu_head: You can use this to free a page by RCU. */
150 		struct rcu_head rcu_head;
151 	};
152 
153 	union {		/* This union is 4 bytes in size. */
154 		/*
155 		 * If the page can be mapped to userspace, encodes the number
156 		 * of times this page is referenced by a page table.
157 		 */
158 		atomic_t _mapcount;
159 
160 		/*
161 		 * If the page is neither PageSlab nor mappable to userspace,
162 		 * the value stored here may help determine what this page
163 		 * is used for.  See page-flags.h for a list of page types
164 		 * which are currently stored here.
165 		 */
166 		unsigned int page_type;
167 	};
168 
169 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
170 	atomic_t _refcount;
171 
172 #ifdef CONFIG_MEMCG
173 	unsigned long memcg_data;
174 #endif
175 
176 	/*
177 	 * On machines where all RAM is mapped into kernel address space,
178 	 * we can simply calculate the virtual address. On machines with
179 	 * highmem some memory is mapped into kernel virtual memory
180 	 * dynamically, so we need a place to store that address.
181 	 * Note that this field could be 16 bits on x86 ... ;)
182 	 *
183 	 * Architectures with slow multiplication can define
184 	 * WANT_PAGE_VIRTUAL in asm/page.h
185 	 */
186 #if defined(WANT_PAGE_VIRTUAL)
187 	void *virtual;			/* Kernel virtual address (NULL if
188 					   not kmapped, ie. highmem) */
189 #endif /* WANT_PAGE_VIRTUAL */
190 
191 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
192 	int _last_cpupid;
193 #endif
194 
195 #ifdef CONFIG_KMSAN
196 	/*
197 	 * KMSAN metadata for this page:
198 	 *  - shadow page: every bit indicates whether the corresponding
199 	 *    bit of the original page is initialized (0) or not (1);
200 	 *  - origin page: every 4 bytes contain an id of the stack trace
201 	 *    where the uninitialized value was created.
202 	 */
203 	struct page *kmsan_shadow;
204 	struct page *kmsan_origin;
205 #endif
206 } _struct_page_alignment;
207 
208 /*
209  * struct encoded_page - a nonexistent type marking this pointer
210  *
211  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
212  * with the low bits of the pointer indicating extra context-dependent
213  * information. Not super-common, but happens in mmu_gather and mlock
214  * handling, and this acts as a type system check on that use.
215  *
216  * We only really have two guaranteed bits in general, although you could
217  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
218  * for more.
219  *
220  * Use the supplied helper functions to endcode/decode the pointer and bits.
221  */
222 struct encoded_page;
223 #define ENCODE_PAGE_BITS 3ul
encode_page(struct page * page,unsigned long flags)224 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
225 {
226 	BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
227 	return (struct encoded_page *)(flags | (unsigned long)page);
228 }
229 
encoded_page_flags(struct encoded_page * page)230 static inline unsigned long encoded_page_flags(struct encoded_page *page)
231 {
232 	return ENCODE_PAGE_BITS & (unsigned long)page;
233 }
234 
encoded_page_ptr(struct encoded_page * page)235 static inline struct page *encoded_page_ptr(struct encoded_page *page)
236 {
237 	return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
238 }
239 
240 /*
241  * A swap entry has to fit into a "unsigned long", as the entry is hidden
242  * in the "index" field of the swapper address space.
243  */
244 typedef struct {
245 	unsigned long val;
246 } swp_entry_t;
247 
248 /**
249  * struct folio - Represents a contiguous set of bytes.
250  * @flags: Identical to the page flags.
251  * @lru: Least Recently Used list; tracks how recently this folio was used.
252  * @mlock_count: Number of times this folio has been pinned by mlock().
253  * @mapping: The file this page belongs to, or refers to the anon_vma for
254  *    anonymous memory.
255  * @index: Offset within the file, in units of pages.  For anonymous memory,
256  *    this is the index from the beginning of the mmap.
257  * @private: Filesystem per-folio data (see folio_attach_private()).
258  * @swap: Used for swp_entry_t if folio_test_swapcache().
259  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
260  *    find out how many times this folio is mapped by userspace.
261  * @_refcount: Do not access this member directly.  Use folio_ref_count()
262  *    to find how many references there are to this folio.
263  * @memcg_data: Memory Control Group data.
264  * @virtual: Virtual address in the kernel direct map.
265  * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
266  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
267  * @_nr_pages_mapped: Do not use directly, call folio_mapcount().
268  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
269  * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
270  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
271  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
272  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
273  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
274  * @_deferred_list: Folios to be split under memory pressure.
275  *
276  * A folio is a physically, virtually and logically contiguous set
277  * of bytes.  It is a power-of-two in size, and it is aligned to that
278  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
279  * in the page cache, it is at a file offset which is a multiple of that
280  * power-of-two.  It may be mapped into userspace at an address which is
281  * at an arbitrary page offset, but its kernel virtual address is aligned
282  * to its size.
283  */
284 struct folio {
285 	/* private: don't document the anon union */
286 	union {
287 		struct {
288 	/* public: */
289 			unsigned long flags;
290 			union {
291 				struct list_head lru;
292 	/* private: avoid cluttering the output */
293 				struct {
294 					void *__filler;
295 	/* public: */
296 					unsigned int mlock_count;
297 	/* private: */
298 				};
299 	/* public: */
300 			};
301 			struct address_space *mapping;
302 			pgoff_t index;
303 			union {
304 				void *private;
305 				swp_entry_t swap;
306 			};
307 			atomic_t _mapcount;
308 			atomic_t _refcount;
309 #ifdef CONFIG_MEMCG
310 			unsigned long memcg_data;
311 #endif
312 #if defined(WANT_PAGE_VIRTUAL)
313 			void *virtual;
314 #endif
315 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
316 			int _last_cpupid;
317 #endif
318 	/* private: the union with struct page is transitional */
319 		};
320 		struct page page;
321 	};
322 	union {
323 		struct {
324 			unsigned long _flags_1;
325 			unsigned long _head_1;
326 			unsigned long _folio_avail;
327 	/* public: */
328 			atomic_t _entire_mapcount;
329 			atomic_t _nr_pages_mapped;
330 			atomic_t _pincount;
331 #ifdef CONFIG_64BIT
332 			unsigned int _folio_nr_pages;
333 #endif
334 	/* private: the union with struct page is transitional */
335 		};
336 		struct page __page_1;
337 	};
338 	union {
339 		struct {
340 			unsigned long _flags_2;
341 			unsigned long _head_2;
342 	/* public: */
343 			void *_hugetlb_subpool;
344 			void *_hugetlb_cgroup;
345 			void *_hugetlb_cgroup_rsvd;
346 			void *_hugetlb_hwpoison;
347 	/* private: the union with struct page is transitional */
348 		};
349 		struct {
350 			unsigned long _flags_2a;
351 			unsigned long _head_2a;
352 	/* public: */
353 			struct list_head _deferred_list;
354 	/* private: the union with struct page is transitional */
355 		};
356 		struct page __page_2;
357 	};
358 };
359 
360 #define FOLIO_MATCH(pg, fl)						\
361 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
362 FOLIO_MATCH(flags, flags);
363 FOLIO_MATCH(lru, lru);
364 FOLIO_MATCH(mapping, mapping);
365 FOLIO_MATCH(compound_head, lru);
366 FOLIO_MATCH(index, index);
367 FOLIO_MATCH(private, private);
368 FOLIO_MATCH(_mapcount, _mapcount);
369 FOLIO_MATCH(_refcount, _refcount);
370 #ifdef CONFIG_MEMCG
371 FOLIO_MATCH(memcg_data, memcg_data);
372 #endif
373 #if defined(WANT_PAGE_VIRTUAL)
374 FOLIO_MATCH(virtual, virtual);
375 #endif
376 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
377 FOLIO_MATCH(_last_cpupid, _last_cpupid);
378 #endif
379 #undef FOLIO_MATCH
380 #define FOLIO_MATCH(pg, fl)						\
381 	static_assert(offsetof(struct folio, fl) ==			\
382 			offsetof(struct page, pg) + sizeof(struct page))
383 FOLIO_MATCH(flags, _flags_1);
384 FOLIO_MATCH(compound_head, _head_1);
385 #undef FOLIO_MATCH
386 #define FOLIO_MATCH(pg, fl)						\
387 	static_assert(offsetof(struct folio, fl) ==			\
388 			offsetof(struct page, pg) + 2 * sizeof(struct page))
389 FOLIO_MATCH(flags, _flags_2);
390 FOLIO_MATCH(compound_head, _head_2);
391 FOLIO_MATCH(flags, _flags_2a);
392 FOLIO_MATCH(compound_head, _head_2a);
393 #undef FOLIO_MATCH
394 
395 /**
396  * struct ptdesc -    Memory descriptor for page tables.
397  * @__page_flags:     Same as page flags. Unused for page tables.
398  * @pt_rcu_head:      For freeing page table pages.
399  * @pt_list:          List of used page tables. Used for s390 and x86.
400  * @_pt_pad_1:        Padding that aliases with page's compound head.
401  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
402  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
403  * @pt_mm:            Used for x86 pgds.
404  * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
405  * @_pt_pad_2:        Padding to ensure proper alignment.
406  * @ptl:              Lock for the page table.
407  * @__page_type:      Same as page->page_type. Unused for page tables.
408  * @__page_refcount:  Same as page refcount.
409  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
410  *
411  * This struct overlays struct page for now. Do not modify without a good
412  * understanding of the issues.
413  */
414 struct ptdesc {
415 	unsigned long __page_flags;
416 
417 	union {
418 		struct rcu_head pt_rcu_head;
419 		struct list_head pt_list;
420 		struct {
421 			unsigned long _pt_pad_1;
422 			pgtable_t pmd_huge_pte;
423 		};
424 	};
425 	unsigned long __page_mapping;
426 
427 	union {
428 		struct mm_struct *pt_mm;
429 		atomic_t pt_frag_refcount;
430 	};
431 
432 	union {
433 		unsigned long _pt_pad_2;
434 #if ALLOC_SPLIT_PTLOCKS
435 		spinlock_t *ptl;
436 #else
437 		spinlock_t ptl;
438 #endif
439 	};
440 	unsigned int __page_type;
441 	atomic_t __page_refcount;
442 #ifdef CONFIG_MEMCG
443 	unsigned long pt_memcg_data;
444 #endif
445 };
446 
447 #define TABLE_MATCH(pg, pt)						\
448 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
449 TABLE_MATCH(flags, __page_flags);
450 TABLE_MATCH(compound_head, pt_list);
451 TABLE_MATCH(compound_head, _pt_pad_1);
452 TABLE_MATCH(mapping, __page_mapping);
453 TABLE_MATCH(rcu_head, pt_rcu_head);
454 TABLE_MATCH(page_type, __page_type);
455 TABLE_MATCH(_refcount, __page_refcount);
456 #ifdef CONFIG_MEMCG
457 TABLE_MATCH(memcg_data, pt_memcg_data);
458 #endif
459 #undef TABLE_MATCH
460 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
461 
462 #define ptdesc_page(pt)			(_Generic((pt),			\
463 	const struct ptdesc *:		(const struct page *)(pt),	\
464 	struct ptdesc *:		(struct page *)(pt)))
465 
466 #define ptdesc_folio(pt)		(_Generic((pt),			\
467 	const struct ptdesc *:		(const struct folio *)(pt),	\
468 	struct ptdesc *:		(struct folio *)(pt)))
469 
470 #define page_ptdesc(p)			(_Generic((p),			\
471 	const struct page *:		(const struct ptdesc *)(p),	\
472 	struct page *:			(struct ptdesc *)(p)))
473 
474 /*
475  * Used for sizing the vmemmap region on some architectures
476  */
477 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
478 
479 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
480 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
481 
482 /*
483  * page_private can be used on tail pages.  However, PagePrivate is only
484  * checked by the VM on the head page.  So page_private on the tail pages
485  * should be used for data that's ancillary to the head page (eg attaching
486  * buffer heads to tail pages after attaching buffer heads to the head page)
487  */
488 #define page_private(page)		((page)->private)
489 
set_page_private(struct page * page,unsigned long private)490 static inline void set_page_private(struct page *page, unsigned long private)
491 {
492 	page->private = private;
493 }
494 
folio_get_private(struct folio * folio)495 static inline void *folio_get_private(struct folio *folio)
496 {
497 	return folio->private;
498 }
499 
500 struct page_frag_cache {
501 	void * va;
502 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
503 	__u16 offset;
504 	__u16 size;
505 #else
506 	__u32 offset;
507 #endif
508 	/* we maintain a pagecount bias, so that we dont dirty cache line
509 	 * containing page->_refcount every time we allocate a fragment.
510 	 */
511 	unsigned int		pagecnt_bias;
512 	bool pfmemalloc;
513 };
514 
515 typedef unsigned long vm_flags_t;
516 
517 /*
518  * A region containing a mapping of a non-memory backed file under NOMMU
519  * conditions.  These are held in a global tree and are pinned by the VMAs that
520  * map parts of them.
521  */
522 struct vm_region {
523 	struct rb_node	vm_rb;		/* link in global region tree */
524 	vm_flags_t	vm_flags;	/* VMA vm_flags */
525 	unsigned long	vm_start;	/* start address of region */
526 	unsigned long	vm_end;		/* region initialised to here */
527 	unsigned long	vm_top;		/* region allocated to here */
528 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
529 	struct file	*vm_file;	/* the backing file or NULL */
530 
531 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
532 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
533 						* this region */
534 };
535 
536 #ifdef CONFIG_USERFAULTFD
537 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
538 struct vm_userfaultfd_ctx {
539 	struct userfaultfd_ctx *ctx;
540 };
541 #else /* CONFIG_USERFAULTFD */
542 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
543 struct vm_userfaultfd_ctx {};
544 #endif /* CONFIG_USERFAULTFD */
545 
546 struct anon_vma_name {
547 	struct kref kref;
548 	/* The name needs to be at the end because it is dynamically sized. */
549 	char name[];
550 };
551 
552 #ifdef CONFIG_ANON_VMA_NAME
553 /*
554  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
555  * either keep holding the lock while using the returned pointer or it should
556  * raise anon_vma_name refcount before releasing the lock.
557  */
558 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
559 struct anon_vma_name *anon_vma_name_alloc(const char *name);
560 void anon_vma_name_free(struct kref *kref);
561 #else /* CONFIG_ANON_VMA_NAME */
anon_vma_name(struct vm_area_struct * vma)562 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
563 {
564 	return NULL;
565 }
566 
anon_vma_name_alloc(const char * name)567 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
568 {
569 	return NULL;
570 }
571 #endif
572 
573 struct vma_lock {
574 	struct rw_semaphore lock;
575 };
576 
577 struct vma_numab_state {
578 	/*
579 	 * Initialised as time in 'jiffies' after which VMA
580 	 * should be scanned.  Delays first scan of new VMA by at
581 	 * least sysctl_numa_balancing_scan_delay:
582 	 */
583 	unsigned long next_scan;
584 
585 	/*
586 	 * Time in jiffies when pids_active[] is reset to
587 	 * detect phase change behaviour:
588 	 */
589 	unsigned long pids_active_reset;
590 
591 	/*
592 	 * Approximate tracking of PIDs that trapped a NUMA hinting
593 	 * fault. May produce false positives due to hash collisions.
594 	 *
595 	 *   [0] Previous PID tracking
596 	 *   [1] Current PID tracking
597 	 *
598 	 * Window moves after next_pid_reset has expired approximately
599 	 * every VMA_PID_RESET_PERIOD jiffies:
600 	 */
601 	unsigned long pids_active[2];
602 
603 	/* MM scan sequence ID when scan first started after VMA creation */
604 	int start_scan_seq;
605 
606 	/*
607 	 * MM scan sequence ID when the VMA was last completely scanned.
608 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
609 	 */
610 	int prev_scan_seq;
611 };
612 
613 /*
614  * This struct describes a virtual memory area. There is one of these
615  * per VM-area/task. A VM area is any part of the process virtual memory
616  * space that has a special rule for the page-fault handlers (ie a shared
617  * library, the executable area etc).
618  */
619 struct vm_area_struct {
620 	/* The first cache line has the info for VMA tree walking. */
621 
622 	union {
623 		struct {
624 			/* VMA covers [vm_start; vm_end) addresses within mm */
625 			unsigned long vm_start;
626 			unsigned long vm_end;
627 		};
628 #ifdef CONFIG_PER_VMA_LOCK
629 		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
630 #endif
631 	};
632 
633 	struct mm_struct *vm_mm;	/* The address space we belong to. */
634 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
635 
636 	/*
637 	 * Flags, see mm.h.
638 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
639 	 */
640 	union {
641 		const vm_flags_t vm_flags;
642 		vm_flags_t __private __vm_flags;
643 	};
644 
645 #ifdef CONFIG_PER_VMA_LOCK
646 	/*
647 	 * Can only be written (using WRITE_ONCE()) while holding both:
648 	 *  - mmap_lock (in write mode)
649 	 *  - vm_lock->lock (in write mode)
650 	 * Can be read reliably while holding one of:
651 	 *  - mmap_lock (in read or write mode)
652 	 *  - vm_lock->lock (in read or write mode)
653 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
654 	 * while holding nothing (except RCU to keep the VMA struct allocated).
655 	 *
656 	 * This sequence counter is explicitly allowed to overflow; sequence
657 	 * counter reuse can only lead to occasional unnecessary use of the
658 	 * slowpath.
659 	 */
660 	int vm_lock_seq;
661 	struct vma_lock *vm_lock;
662 
663 	/* Flag to indicate areas detached from the mm->mm_mt tree */
664 	bool detached;
665 #endif
666 
667 	/*
668 	 * For areas with an address space and backing store,
669 	 * linkage into the address_space->i_mmap interval tree.
670 	 *
671 	 */
672 	struct {
673 		struct rb_node rb;
674 		unsigned long rb_subtree_last;
675 	} shared;
676 
677 	/*
678 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
679 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
680 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
681 	 * or brk vma (with NULL file) can only be in an anon_vma list.
682 	 */
683 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
684 					  * page_table_lock */
685 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
686 
687 	/* Function pointers to deal with this struct. */
688 	const struct vm_operations_struct *vm_ops;
689 
690 	/* Information about our backing store: */
691 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
692 					   units */
693 	struct file * vm_file;		/* File we map to (can be NULL). */
694 	void * vm_private_data;		/* was vm_pte (shared mem) */
695 
696 #ifdef CONFIG_ANON_VMA_NAME
697 	/*
698 	 * For private and shared anonymous mappings, a pointer to a null
699 	 * terminated string containing the name given to the vma, or NULL if
700 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
701 	 */
702 	struct anon_vma_name *anon_name;
703 #endif
704 #ifdef CONFIG_SWAP
705 	atomic_long_t swap_readahead_info;
706 #endif
707 #ifndef CONFIG_MMU
708 	struct vm_region *vm_region;	/* NOMMU mapping region */
709 #endif
710 #ifdef CONFIG_NUMA
711 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
712 #endif
713 #ifdef CONFIG_NUMA_BALANCING
714 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
715 #endif
716 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
717 } __randomize_layout;
718 
719 #ifdef CONFIG_NUMA
720 #define vma_policy(vma) ((vma)->vm_policy)
721 #else
722 #define vma_policy(vma) NULL
723 #endif
724 
725 #ifdef CONFIG_SCHED_MM_CID
726 struct mm_cid {
727 	u64 time;
728 	int cid;
729 };
730 #endif
731 
732 struct kioctx_table;
733 struct iommu_mm_data;
734 struct mm_struct {
735 	struct {
736 		/*
737 		 * Fields which are often written to are placed in a separate
738 		 * cache line.
739 		 */
740 		struct {
741 			/**
742 			 * @mm_count: The number of references to &struct
743 			 * mm_struct (@mm_users count as 1).
744 			 *
745 			 * Use mmgrab()/mmdrop() to modify. When this drops to
746 			 * 0, the &struct mm_struct is freed.
747 			 */
748 			atomic_t mm_count;
749 		} ____cacheline_aligned_in_smp;
750 
751 		struct maple_tree mm_mt;
752 #ifdef CONFIG_MMU
753 		unsigned long (*get_unmapped_area) (struct file *filp,
754 				unsigned long addr, unsigned long len,
755 				unsigned long pgoff, unsigned long flags);
756 #endif
757 		unsigned long mmap_base;	/* base of mmap area */
758 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
759 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
760 		/* Base addresses for compatible mmap() */
761 		unsigned long mmap_compat_base;
762 		unsigned long mmap_compat_legacy_base;
763 #endif
764 		unsigned long task_size;	/* size of task vm space */
765 		pgd_t * pgd;
766 
767 #ifdef CONFIG_MEMBARRIER
768 		/**
769 		 * @membarrier_state: Flags controlling membarrier behavior.
770 		 *
771 		 * This field is close to @pgd to hopefully fit in the same
772 		 * cache-line, which needs to be touched by switch_mm().
773 		 */
774 		atomic_t membarrier_state;
775 #endif
776 
777 		/**
778 		 * @mm_users: The number of users including userspace.
779 		 *
780 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
781 		 * drops to 0 (i.e. when the task exits and there are no other
782 		 * temporary reference holders), we also release a reference on
783 		 * @mm_count (which may then free the &struct mm_struct if
784 		 * @mm_count also drops to 0).
785 		 */
786 		atomic_t mm_users;
787 
788 #ifdef CONFIG_SCHED_MM_CID
789 		/**
790 		 * @pcpu_cid: Per-cpu current cid.
791 		 *
792 		 * Keep track of the currently allocated mm_cid for each cpu.
793 		 * The per-cpu mm_cid values are serialized by their respective
794 		 * runqueue locks.
795 		 */
796 		struct mm_cid __percpu *pcpu_cid;
797 		/*
798 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
799 		 *
800 		 * When the next mm_cid scan is due (in jiffies).
801 		 */
802 		unsigned long mm_cid_next_scan;
803 #endif
804 #ifdef CONFIG_MMU
805 		atomic_long_t pgtables_bytes;	/* size of all page tables */
806 #endif
807 		int map_count;			/* number of VMAs */
808 
809 		spinlock_t page_table_lock; /* Protects page tables and some
810 					     * counters
811 					     */
812 		/*
813 		 * With some kernel config, the current mmap_lock's offset
814 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
815 		 * its two hot fields 'count' and 'owner' sit in 2 different
816 		 * cachelines,  and when mmap_lock is highly contended, both
817 		 * of the 2 fields will be accessed frequently, current layout
818 		 * will help to reduce cache bouncing.
819 		 *
820 		 * So please be careful with adding new fields before
821 		 * mmap_lock, which can easily push the 2 fields into one
822 		 * cacheline.
823 		 */
824 		struct rw_semaphore mmap_lock;
825 
826 		struct list_head mmlist; /* List of maybe swapped mm's.	These
827 					  * are globally strung together off
828 					  * init_mm.mmlist, and are protected
829 					  * by mmlist_lock
830 					  */
831 #ifdef CONFIG_PER_VMA_LOCK
832 		/*
833 		 * This field has lock-like semantics, meaning it is sometimes
834 		 * accessed with ACQUIRE/RELEASE semantics.
835 		 * Roughly speaking, incrementing the sequence number is
836 		 * equivalent to releasing locks on VMAs; reading the sequence
837 		 * number can be part of taking a read lock on a VMA.
838 		 *
839 		 * Can be modified under write mmap_lock using RELEASE
840 		 * semantics.
841 		 * Can be read with no other protection when holding write
842 		 * mmap_lock.
843 		 * Can be read with ACQUIRE semantics if not holding write
844 		 * mmap_lock.
845 		 */
846 		int mm_lock_seq;
847 #endif
848 
849 
850 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
851 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
852 
853 		unsigned long total_vm;	   /* Total pages mapped */
854 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
855 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
856 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
857 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
858 		unsigned long stack_vm;	   /* VM_STACK */
859 		unsigned long def_flags;
860 
861 		/**
862 		 * @write_protect_seq: Locked when any thread is write
863 		 * protecting pages mapped by this mm to enforce a later COW,
864 		 * for instance during page table copying for fork().
865 		 */
866 		seqcount_t write_protect_seq;
867 
868 		spinlock_t arg_lock; /* protect the below fields */
869 
870 		unsigned long start_code, end_code, start_data, end_data;
871 		unsigned long start_brk, brk, start_stack;
872 		unsigned long arg_start, arg_end, env_start, env_end;
873 
874 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
875 
876 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
877 
878 		struct linux_binfmt *binfmt;
879 
880 		/* Architecture-specific MM context */
881 		mm_context_t context;
882 
883 		unsigned long flags; /* Must use atomic bitops to access */
884 
885 #ifdef CONFIG_AIO
886 		spinlock_t			ioctx_lock;
887 		struct kioctx_table __rcu	*ioctx_table;
888 #endif
889 #ifdef CONFIG_MEMCG
890 		/*
891 		 * "owner" points to a task that is regarded as the canonical
892 		 * user/owner of this mm. All of the following must be true in
893 		 * order for it to be changed:
894 		 *
895 		 * current == mm->owner
896 		 * current->mm != mm
897 		 * new_owner->mm == mm
898 		 * new_owner->alloc_lock is held
899 		 */
900 		struct task_struct __rcu *owner;
901 #endif
902 		struct user_namespace *user_ns;
903 
904 		/* store ref to file /proc/<pid>/exe symlink points to */
905 		struct file __rcu *exe_file;
906 #ifdef CONFIG_MMU_NOTIFIER
907 		struct mmu_notifier_subscriptions *notifier_subscriptions;
908 #endif
909 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
910 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
911 #endif
912 #ifdef CONFIG_NUMA_BALANCING
913 		/*
914 		 * numa_next_scan is the next time that PTEs will be remapped
915 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
916 		 * statistics and migrate pages to new nodes if necessary.
917 		 */
918 		unsigned long numa_next_scan;
919 
920 		/* Restart point for scanning and remapping PTEs. */
921 		unsigned long numa_scan_offset;
922 
923 		/* numa_scan_seq prevents two threads remapping PTEs. */
924 		int numa_scan_seq;
925 #endif
926 		/*
927 		 * An operation with batched TLB flushing is going on. Anything
928 		 * that can move process memory needs to flush the TLB when
929 		 * moving a PROT_NONE mapped page.
930 		 */
931 		atomic_t tlb_flush_pending;
932 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
933 		/* See flush_tlb_batched_pending() */
934 		atomic_t tlb_flush_batched;
935 #endif
936 		struct uprobes_state uprobes_state;
937 #ifdef CONFIG_PREEMPT_RT
938 		struct rcu_head delayed_drop;
939 #endif
940 #ifdef CONFIG_HUGETLB_PAGE
941 		atomic_long_t hugetlb_usage;
942 #endif
943 		struct work_struct async_put_work;
944 
945 #ifdef CONFIG_IOMMU_MM_DATA
946 		struct iommu_mm_data *iommu_mm;
947 #endif
948 #ifdef CONFIG_KSM
949 		/*
950 		 * Represent how many pages of this process are involved in KSM
951 		 * merging (not including ksm_zero_pages).
952 		 */
953 		unsigned long ksm_merging_pages;
954 		/*
955 		 * Represent how many pages are checked for ksm merging
956 		 * including merged and not merged.
957 		 */
958 		unsigned long ksm_rmap_items;
959 		/*
960 		 * Represent how many empty pages are merged with kernel zero
961 		 * pages when enabling KSM use_zero_pages.
962 		 */
963 		unsigned long ksm_zero_pages;
964 #endif /* CONFIG_KSM */
965 #ifdef CONFIG_LRU_GEN_WALKS_MMU
966 		struct {
967 			/* this mm_struct is on lru_gen_mm_list */
968 			struct list_head list;
969 			/*
970 			 * Set when switching to this mm_struct, as a hint of
971 			 * whether it has been used since the last time per-node
972 			 * page table walkers cleared the corresponding bits.
973 			 */
974 			unsigned long bitmap;
975 #ifdef CONFIG_MEMCG
976 			/* points to the memcg of "owner" above */
977 			struct mem_cgroup *memcg;
978 #endif
979 		} lru_gen;
980 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
981 	} __randomize_layout;
982 
983 	/*
984 	 * The mm_cpumask needs to be at the end of mm_struct, because it
985 	 * is dynamically sized based on nr_cpu_ids.
986 	 */
987 	unsigned long cpu_bitmap[];
988 };
989 
990 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
991 			 MT_FLAGS_USE_RCU)
992 extern struct mm_struct init_mm;
993 
994 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)995 static inline void mm_init_cpumask(struct mm_struct *mm)
996 {
997 	unsigned long cpu_bitmap = (unsigned long)mm;
998 
999 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1000 	cpumask_clear((struct cpumask *)cpu_bitmap);
1001 }
1002 
1003 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1004 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1005 {
1006 	return (struct cpumask *)&mm->cpu_bitmap;
1007 }
1008 
1009 #ifdef CONFIG_LRU_GEN
1010 
1011 struct lru_gen_mm_list {
1012 	/* mm_struct list for page table walkers */
1013 	struct list_head fifo;
1014 	/* protects the list above */
1015 	spinlock_t lock;
1016 };
1017 
1018 #endif /* CONFIG_LRU_GEN */
1019 
1020 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1021 
1022 void lru_gen_add_mm(struct mm_struct *mm);
1023 void lru_gen_del_mm(struct mm_struct *mm);
1024 void lru_gen_migrate_mm(struct mm_struct *mm);
1025 
lru_gen_init_mm(struct mm_struct * mm)1026 static inline void lru_gen_init_mm(struct mm_struct *mm)
1027 {
1028 	INIT_LIST_HEAD(&mm->lru_gen.list);
1029 	mm->lru_gen.bitmap = 0;
1030 #ifdef CONFIG_MEMCG
1031 	mm->lru_gen.memcg = NULL;
1032 #endif
1033 }
1034 
lru_gen_use_mm(struct mm_struct * mm)1035 static inline void lru_gen_use_mm(struct mm_struct *mm)
1036 {
1037 	/*
1038 	 * When the bitmap is set, page reclaim knows this mm_struct has been
1039 	 * used since the last time it cleared the bitmap. So it might be worth
1040 	 * walking the page tables of this mm_struct to clear the accessed bit.
1041 	 */
1042 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1043 }
1044 
1045 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1046 
lru_gen_add_mm(struct mm_struct * mm)1047 static inline void lru_gen_add_mm(struct mm_struct *mm)
1048 {
1049 }
1050 
lru_gen_del_mm(struct mm_struct * mm)1051 static inline void lru_gen_del_mm(struct mm_struct *mm)
1052 {
1053 }
1054 
lru_gen_migrate_mm(struct mm_struct * mm)1055 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1056 {
1057 }
1058 
lru_gen_init_mm(struct mm_struct * mm)1059 static inline void lru_gen_init_mm(struct mm_struct *mm)
1060 {
1061 }
1062 
lru_gen_use_mm(struct mm_struct * mm)1063 static inline void lru_gen_use_mm(struct mm_struct *mm)
1064 {
1065 }
1066 
1067 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1068 
1069 struct vma_iterator {
1070 	struct ma_state mas;
1071 };
1072 
1073 #define VMA_ITERATOR(name, __mm, __addr)				\
1074 	struct vma_iterator name = {					\
1075 		.mas = {						\
1076 			.tree = &(__mm)->mm_mt,				\
1077 			.index = __addr,				\
1078 			.node = NULL,					\
1079 			.status = ma_start,				\
1080 		},							\
1081 	}
1082 
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1083 static inline void vma_iter_init(struct vma_iterator *vmi,
1084 		struct mm_struct *mm, unsigned long addr)
1085 {
1086 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1087 }
1088 
1089 #ifdef CONFIG_SCHED_MM_CID
1090 
1091 enum mm_cid_state {
1092 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1093 	MM_CID_LAZY_PUT = (1U << 31),
1094 };
1095 
mm_cid_is_unset(int cid)1096 static inline bool mm_cid_is_unset(int cid)
1097 {
1098 	return cid == MM_CID_UNSET;
1099 }
1100 
mm_cid_is_lazy_put(int cid)1101 static inline bool mm_cid_is_lazy_put(int cid)
1102 {
1103 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1104 }
1105 
mm_cid_is_valid(int cid)1106 static inline bool mm_cid_is_valid(int cid)
1107 {
1108 	return !(cid & MM_CID_LAZY_PUT);
1109 }
1110 
mm_cid_set_lazy_put(int cid)1111 static inline int mm_cid_set_lazy_put(int cid)
1112 {
1113 	return cid | MM_CID_LAZY_PUT;
1114 }
1115 
mm_cid_clear_lazy_put(int cid)1116 static inline int mm_cid_clear_lazy_put(int cid)
1117 {
1118 	return cid & ~MM_CID_LAZY_PUT;
1119 }
1120 
1121 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1122 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1123 {
1124 	unsigned long cid_bitmap = (unsigned long)mm;
1125 
1126 	cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1127 	/* Skip cpu_bitmap */
1128 	cid_bitmap += cpumask_size();
1129 	return (struct cpumask *)cid_bitmap;
1130 }
1131 
mm_init_cid(struct mm_struct * mm)1132 static inline void mm_init_cid(struct mm_struct *mm)
1133 {
1134 	int i;
1135 
1136 	for_each_possible_cpu(i) {
1137 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1138 
1139 		pcpu_cid->cid = MM_CID_UNSET;
1140 		pcpu_cid->time = 0;
1141 	}
1142 	cpumask_clear(mm_cidmask(mm));
1143 }
1144 
mm_alloc_cid(struct mm_struct * mm)1145 static inline int mm_alloc_cid(struct mm_struct *mm)
1146 {
1147 	mm->pcpu_cid = alloc_percpu(struct mm_cid);
1148 	if (!mm->pcpu_cid)
1149 		return -ENOMEM;
1150 	mm_init_cid(mm);
1151 	return 0;
1152 }
1153 
mm_destroy_cid(struct mm_struct * mm)1154 static inline void mm_destroy_cid(struct mm_struct *mm)
1155 {
1156 	free_percpu(mm->pcpu_cid);
1157 	mm->pcpu_cid = NULL;
1158 }
1159 
mm_cid_size(void)1160 static inline unsigned int mm_cid_size(void)
1161 {
1162 	return cpumask_size();
1163 }
1164 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm)1165 static inline void mm_init_cid(struct mm_struct *mm) { }
mm_alloc_cid(struct mm_struct * mm)1166 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1167 static inline void mm_destroy_cid(struct mm_struct *mm) { }
mm_cid_size(void)1168 static inline unsigned int mm_cid_size(void)
1169 {
1170 	return 0;
1171 }
1172 #endif /* CONFIG_SCHED_MM_CID */
1173 
1174 struct mmu_gather;
1175 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1176 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1177 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1178 
1179 struct vm_fault;
1180 
1181 /**
1182  * typedef vm_fault_t - Return type for page fault handlers.
1183  *
1184  * Page fault handlers return a bitmask of %VM_FAULT values.
1185  */
1186 typedef __bitwise unsigned int vm_fault_t;
1187 
1188 /**
1189  * enum vm_fault_reason - Page fault handlers return a bitmask of
1190  * these values to tell the core VM what happened when handling the
1191  * fault. Used to decide whether a process gets delivered SIGBUS or
1192  * just gets major/minor fault counters bumped up.
1193  *
1194  * @VM_FAULT_OOM:		Out Of Memory
1195  * @VM_FAULT_SIGBUS:		Bad access
1196  * @VM_FAULT_MAJOR:		Page read from storage
1197  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1198  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1199  *				in upper bits
1200  * @VM_FAULT_SIGSEGV:		segmentation fault
1201  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1202  * @VM_FAULT_LOCKED:		->fault locked the returned page
1203  * @VM_FAULT_RETRY:		->fault blocked, must retry
1204  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1205  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1206  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1207  *				fsync() to complete (for synchronous page faults
1208  *				in DAX)
1209  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1210  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1211  *
1212  */
1213 enum vm_fault_reason {
1214 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1215 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1216 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1217 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1218 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1219 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1220 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1221 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1222 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1223 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1224 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1225 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1226 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1227 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1228 };
1229 
1230 /* Encode hstate index for a hwpoisoned large page */
1231 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1232 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1233 
1234 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1235 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1236 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1237 
1238 #define VM_FAULT_RESULT_TRACE \
1239 	{ VM_FAULT_OOM,                 "OOM" },	\
1240 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1241 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1242 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1243 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1244 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1245 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1246 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1247 	{ VM_FAULT_RETRY,               "RETRY" },	\
1248 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1249 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1250 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1251 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1252 
1253 struct vm_special_mapping {
1254 	const char *name;	/* The name, e.g. "[vdso]". */
1255 
1256 	/*
1257 	 * If .fault is not provided, this points to a
1258 	 * NULL-terminated array of pages that back the special mapping.
1259 	 *
1260 	 * This must not be NULL unless .fault is provided.
1261 	 */
1262 	struct page **pages;
1263 
1264 	/*
1265 	 * If non-NULL, then this is called to resolve page faults
1266 	 * on the special mapping.  If used, .pages is not checked.
1267 	 */
1268 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1269 				struct vm_area_struct *vma,
1270 				struct vm_fault *vmf);
1271 
1272 	int (*mremap)(const struct vm_special_mapping *sm,
1273 		     struct vm_area_struct *new_vma);
1274 };
1275 
1276 enum tlb_flush_reason {
1277 	TLB_FLUSH_ON_TASK_SWITCH,
1278 	TLB_REMOTE_SHOOTDOWN,
1279 	TLB_LOCAL_SHOOTDOWN,
1280 	TLB_LOCAL_MM_SHOOTDOWN,
1281 	TLB_REMOTE_SEND_IPI,
1282 	NR_TLB_FLUSH_REASONS,
1283 };
1284 
1285 /**
1286  * enum fault_flag - Fault flag definitions.
1287  * @FAULT_FLAG_WRITE: Fault was a write fault.
1288  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1289  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1290  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1291  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1292  * @FAULT_FLAG_TRIED: The fault has been tried once.
1293  * @FAULT_FLAG_USER: The fault originated in userspace.
1294  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1295  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1296  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1297  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1298  *                      COW mapping, making sure that an exclusive anon page is
1299  *                      mapped after the fault.
1300  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1301  *                        We should only access orig_pte if this flag set.
1302  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1303  *
1304  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1305  * whether we would allow page faults to retry by specifying these two
1306  * fault flags correctly.  Currently there can be three legal combinations:
1307  *
1308  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1309  *                              this is the first try
1310  *
1311  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1312  *                              we've already tried at least once
1313  *
1314  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1315  *
1316  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1317  * be used.  Note that page faults can be allowed to retry for multiple times,
1318  * in which case we'll have an initial fault with flags (a) then later on
1319  * continuous faults with flags (b).  We should always try to detect pending
1320  * signals before a retry to make sure the continuous page faults can still be
1321  * interrupted if necessary.
1322  *
1323  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1324  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1325  * applied to mappings that are not COW mappings.
1326  */
1327 enum fault_flag {
1328 	FAULT_FLAG_WRITE =		1 << 0,
1329 	FAULT_FLAG_MKWRITE =		1 << 1,
1330 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1331 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1332 	FAULT_FLAG_KILLABLE =		1 << 4,
1333 	FAULT_FLAG_TRIED = 		1 << 5,
1334 	FAULT_FLAG_USER =		1 << 6,
1335 	FAULT_FLAG_REMOTE =		1 << 7,
1336 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1337 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1338 	FAULT_FLAG_UNSHARE =		1 << 10,
1339 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1340 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1341 };
1342 
1343 typedef unsigned int __bitwise zap_flags_t;
1344 
1345 /*
1346  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1347  * other. Here is what they mean, and how to use them:
1348  *
1349  *
1350  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1351  * lifetime enforced by the filesystem and we need guarantees that longterm
1352  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1353  * the filesystem.  Ideas for this coordination include revoking the longterm
1354  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1355  * added after the problem with filesystems was found FS DAX VMAs are
1356  * specifically failed.  Filesystem pages are still subject to bugs and use of
1357  * FOLL_LONGTERM should be avoided on those pages.
1358  *
1359  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1360  * that region.  And so, CMA attempts to migrate the page before pinning, when
1361  * FOLL_LONGTERM is specified.
1362  *
1363  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1364  * but an additional pin counting system) will be invoked. This is intended for
1365  * anything that gets a page reference and then touches page data (for example,
1366  * Direct IO). This lets the filesystem know that some non-file-system entity is
1367  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1368  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1369  * a call to unpin_user_page().
1370  *
1371  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1372  * and separate refcounting mechanisms, however, and that means that each has
1373  * its own acquire and release mechanisms:
1374  *
1375  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1376  *
1377  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1378  *
1379  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1380  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1381  * calls applied to them, and that's perfectly OK. This is a constraint on the
1382  * callers, not on the pages.)
1383  *
1384  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1385  * directly by the caller. That's in order to help avoid mismatches when
1386  * releasing pages: get_user_pages*() pages must be released via put_page(),
1387  * while pin_user_pages*() pages must be released via unpin_user_page().
1388  *
1389  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1390  */
1391 
1392 enum {
1393 	/* check pte is writable */
1394 	FOLL_WRITE = 1 << 0,
1395 	/* do get_page on page */
1396 	FOLL_GET = 1 << 1,
1397 	/* give error on hole if it would be zero */
1398 	FOLL_DUMP = 1 << 2,
1399 	/* get_user_pages read/write w/o permission */
1400 	FOLL_FORCE = 1 << 3,
1401 	/*
1402 	 * if a disk transfer is needed, start the IO and return without waiting
1403 	 * upon it
1404 	 */
1405 	FOLL_NOWAIT = 1 << 4,
1406 	/* do not fault in pages */
1407 	FOLL_NOFAULT = 1 << 5,
1408 	/* check page is hwpoisoned */
1409 	FOLL_HWPOISON = 1 << 6,
1410 	/* don't do file mappings */
1411 	FOLL_ANON = 1 << 7,
1412 	/*
1413 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1414 	 * time period _often_ under userspace control.  This is in contrast to
1415 	 * iov_iter_get_pages(), whose usages are transient.
1416 	 */
1417 	FOLL_LONGTERM = 1 << 8,
1418 	/* split huge pmd before returning */
1419 	FOLL_SPLIT_PMD = 1 << 9,
1420 	/* allow returning PCI P2PDMA pages */
1421 	FOLL_PCI_P2PDMA = 1 << 10,
1422 	/* allow interrupts from generic signals */
1423 	FOLL_INTERRUPTIBLE = 1 << 11,
1424 	/*
1425 	 * Always honor (trigger) NUMA hinting faults.
1426 	 *
1427 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1428 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1429 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1430 	 * hinting faults.
1431 	 */
1432 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1433 
1434 	/* See also internal only FOLL flags in mm/internal.h */
1435 };
1436 
1437 #endif /* _LINUX_MM_TYPES_H */
1438