1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
set_max_mapnr(unsigned long limit)48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
set_max_mapnr(unsigned long limit)53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
totalram_pages(void)57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
totalram_pages_inc(void)62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
totalram_pages_dec(void)67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
totalram_pages_add(long count)72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
lru_to_folio(struct list_head * head)230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
328 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330 
331 #ifdef CONFIG_ARCH_HAS_PKEYS
332 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
333 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
334 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
335 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
336 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
337 #ifdef CONFIG_PPC
338 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
339 #else
340 # define VM_PKEY_BIT4  0
341 #endif
342 #endif /* CONFIG_ARCH_HAS_PKEYS */
343 
344 #ifdef CONFIG_X86_USER_SHADOW_STACK
345 /*
346  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347  * support core mm.
348  *
349  * These VMAs will get a single end guard page. This helps userspace protect
350  * itself from attacks. A single page is enough for current shadow stack archs
351  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352  * for more details on the guard size.
353  */
354 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
355 #else
356 # define VM_SHADOW_STACK	VM_NONE
357 #endif
358 
359 #if defined(CONFIG_X86)
360 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC)
362 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP	VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR	VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR	VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
373 #endif
374 
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
378 #else
379 # define VM_MTE		VM_NONE
380 # define VM_MTE_ALLOWED	VM_NONE
381 #endif
382 
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP	VM_NONE
385 #endif
386 
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT	38
389 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR		VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393 
394 /* Bits set in the VMA until the stack is in its final location */
395 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
396 
397 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
398 
399 /* Common data flag combinations */
400 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
401 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
402 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
403 				 VM_MAYWRITE | VM_MAYEXEC)
404 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
405 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
406 
407 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
408 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
409 #endif
410 
411 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
412 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
413 #endif
414 
415 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
416 
417 #ifdef CONFIG_STACK_GROWSUP
418 #define VM_STACK	VM_GROWSUP
419 #define VM_STACK_EARLY	VM_GROWSDOWN
420 #else
421 #define VM_STACK	VM_GROWSDOWN
422 #define VM_STACK_EARLY	0
423 #endif
424 
425 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
426 
427 /* VMA basic access permission flags */
428 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
429 
430 
431 /*
432  * Special vmas that are non-mergable, non-mlock()able.
433  */
434 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
435 
436 /* This mask prevents VMA from being scanned with khugepaged */
437 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
438 
439 /* This mask defines which mm->def_flags a process can inherit its parent */
440 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
441 
442 /* This mask represents all the VMA flag bits used by mlock */
443 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
444 
445 /* Arch-specific flags to clear when updating VM flags on protection change */
446 #ifndef VM_ARCH_CLEAR
447 # define VM_ARCH_CLEAR	VM_NONE
448 #endif
449 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
450 
451 /*
452  * mapping from the currently active vm_flags protection bits (the
453  * low four bits) to a page protection mask..
454  */
455 
456 /*
457  * The default fault flags that should be used by most of the
458  * arch-specific page fault handlers.
459  */
460 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
461 			     FAULT_FLAG_KILLABLE | \
462 			     FAULT_FLAG_INTERRUPTIBLE)
463 
464 /**
465  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
466  * @flags: Fault flags.
467  *
468  * This is mostly used for places where we want to try to avoid taking
469  * the mmap_lock for too long a time when waiting for another condition
470  * to change, in which case we can try to be polite to release the
471  * mmap_lock in the first round to avoid potential starvation of other
472  * processes that would also want the mmap_lock.
473  *
474  * Return: true if the page fault allows retry and this is the first
475  * attempt of the fault handling; false otherwise.
476  */
fault_flag_allow_retry_first(enum fault_flag flags)477 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
478 {
479 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
480 	    (!(flags & FAULT_FLAG_TRIED));
481 }
482 
483 #define FAULT_FLAG_TRACE \
484 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
485 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
486 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
487 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
488 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
489 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
490 	{ FAULT_FLAG_USER,		"USER" }, \
491 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
492 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
493 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
494 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
495 
496 /*
497  * vm_fault is filled by the pagefault handler and passed to the vma's
498  * ->fault function. The vma's ->fault is responsible for returning a bitmask
499  * of VM_FAULT_xxx flags that give details about how the fault was handled.
500  *
501  * MM layer fills up gfp_mask for page allocations but fault handler might
502  * alter it if its implementation requires a different allocation context.
503  *
504  * pgoff should be used in favour of virtual_address, if possible.
505  */
506 struct vm_fault {
507 	const struct {
508 		struct vm_area_struct *vma;	/* Target VMA */
509 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
510 		pgoff_t pgoff;			/* Logical page offset based on vma */
511 		unsigned long address;		/* Faulting virtual address - masked */
512 		unsigned long real_address;	/* Faulting virtual address - unmasked */
513 	};
514 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
515 					 * XXX: should really be 'const' */
516 	pmd_t *pmd;			/* Pointer to pmd entry matching
517 					 * the 'address' */
518 	pud_t *pud;			/* Pointer to pud entry matching
519 					 * the 'address'
520 					 */
521 	union {
522 		pte_t orig_pte;		/* Value of PTE at the time of fault */
523 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
524 					 * used by PMD fault only.
525 					 */
526 	};
527 
528 	struct page *cow_page;		/* Page handler may use for COW fault */
529 	struct page *page;		/* ->fault handlers should return a
530 					 * page here, unless VM_FAULT_NOPAGE
531 					 * is set (which is also implied by
532 					 * VM_FAULT_ERROR).
533 					 */
534 	/* These three entries are valid only while holding ptl lock */
535 	pte_t *pte;			/* Pointer to pte entry matching
536 					 * the 'address'. NULL if the page
537 					 * table hasn't been allocated.
538 					 */
539 	spinlock_t *ptl;		/* Page table lock.
540 					 * Protects pte page table if 'pte'
541 					 * is not NULL, otherwise pmd.
542 					 */
543 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
544 					 * vm_ops->map_pages() sets up a page
545 					 * table from atomic context.
546 					 * do_fault_around() pre-allocates
547 					 * page table to avoid allocation from
548 					 * atomic context.
549 					 */
550 };
551 
552 /*
553  * These are the virtual MM functions - opening of an area, closing and
554  * unmapping it (needed to keep files on disk up-to-date etc), pointer
555  * to the functions called when a no-page or a wp-page exception occurs.
556  */
557 struct vm_operations_struct {
558 	void (*open)(struct vm_area_struct * area);
559 	/**
560 	 * @close: Called when the VMA is being removed from the MM.
561 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
562 	 */
563 	void (*close)(struct vm_area_struct * area);
564 	/* Called any time before splitting to check if it's allowed */
565 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
566 	int (*mremap)(struct vm_area_struct *area);
567 	/*
568 	 * Called by mprotect() to make driver-specific permission
569 	 * checks before mprotect() is finalised.   The VMA must not
570 	 * be modified.  Returns 0 if mprotect() can proceed.
571 	 */
572 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
573 			unsigned long end, unsigned long newflags);
574 	vm_fault_t (*fault)(struct vm_fault *vmf);
575 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
576 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
577 			pgoff_t start_pgoff, pgoff_t end_pgoff);
578 	unsigned long (*pagesize)(struct vm_area_struct * area);
579 
580 	/* notification that a previously read-only page is about to become
581 	 * writable, if an error is returned it will cause a SIGBUS */
582 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
583 
584 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
585 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
586 
587 	/* called by access_process_vm when get_user_pages() fails, typically
588 	 * for use by special VMAs. See also generic_access_phys() for a generic
589 	 * implementation useful for any iomem mapping.
590 	 */
591 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
592 		      void *buf, int len, int write);
593 
594 	/* Called by the /proc/PID/maps code to ask the vma whether it
595 	 * has a special name.  Returning non-NULL will also cause this
596 	 * vma to be dumped unconditionally. */
597 	const char *(*name)(struct vm_area_struct *vma);
598 
599 #ifdef CONFIG_NUMA
600 	/*
601 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
602 	 * to hold the policy upon return.  Caller should pass NULL @new to
603 	 * remove a policy and fall back to surrounding context--i.e. do not
604 	 * install a MPOL_DEFAULT policy, nor the task or system default
605 	 * mempolicy.
606 	 */
607 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
608 
609 	/*
610 	 * get_policy() op must add reference [mpol_get()] to any policy at
611 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
612 	 * in mm/mempolicy.c will do this automatically.
613 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
614 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
615 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
616 	 * must return NULL--i.e., do not "fallback" to task or system default
617 	 * policy.
618 	 */
619 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
620 					unsigned long addr, pgoff_t *ilx);
621 #endif
622 	/*
623 	 * Called by vm_normal_page() for special PTEs to find the
624 	 * page for @addr.  This is useful if the default behavior
625 	 * (using pte_page()) would not find the correct page.
626 	 */
627 	struct page *(*find_special_page)(struct vm_area_struct *vma,
628 					  unsigned long addr);
629 };
630 
631 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)632 static inline void vma_numab_state_init(struct vm_area_struct *vma)
633 {
634 	vma->numab_state = NULL;
635 }
vma_numab_state_free(struct vm_area_struct * vma)636 static inline void vma_numab_state_free(struct vm_area_struct *vma)
637 {
638 	kfree(vma->numab_state);
639 }
640 #else
vma_numab_state_init(struct vm_area_struct * vma)641 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)642 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
643 #endif /* CONFIG_NUMA_BALANCING */
644 
645 #ifdef CONFIG_PER_VMA_LOCK
646 /*
647  * Try to read-lock a vma. The function is allowed to occasionally yield false
648  * locked result to avoid performance overhead, in which case we fall back to
649  * using mmap_lock. The function should never yield false unlocked result.
650  */
vma_start_read(struct vm_area_struct * vma)651 static inline bool vma_start_read(struct vm_area_struct *vma)
652 {
653 	/*
654 	 * Check before locking. A race might cause false locked result.
655 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
656 	 * ACQUIRE semantics, because this is just a lockless check whose result
657 	 * we don't rely on for anything - the mm_lock_seq read against which we
658 	 * need ordering is below.
659 	 */
660 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
661 		return false;
662 
663 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
664 		return false;
665 
666 	/*
667 	 * Overflow might produce false locked result.
668 	 * False unlocked result is impossible because we modify and check
669 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
670 	 * modification invalidates all existing locks.
671 	 *
672 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
673 	 * racing with vma_end_write_all(), we only start reading from the VMA
674 	 * after it has been unlocked.
675 	 * This pairs with RELEASE semantics in vma_end_write_all().
676 	 */
677 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
678 		up_read(&vma->vm_lock->lock);
679 		return false;
680 	}
681 	return true;
682 }
683 
vma_end_read(struct vm_area_struct * vma)684 static inline void vma_end_read(struct vm_area_struct *vma)
685 {
686 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
687 	up_read(&vma->vm_lock->lock);
688 	rcu_read_unlock();
689 }
690 
691 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,int * mm_lock_seq)692 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
693 {
694 	mmap_assert_write_locked(vma->vm_mm);
695 
696 	/*
697 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
698 	 * mm->mm_lock_seq can't be concurrently modified.
699 	 */
700 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
701 	return (vma->vm_lock_seq == *mm_lock_seq);
702 }
703 
704 /*
705  * Begin writing to a VMA.
706  * Exclude concurrent readers under the per-VMA lock until the currently
707  * write-locked mmap_lock is dropped or downgraded.
708  */
vma_start_write(struct vm_area_struct * vma)709 static inline void vma_start_write(struct vm_area_struct *vma)
710 {
711 	int mm_lock_seq;
712 
713 	if (__is_vma_write_locked(vma, &mm_lock_seq))
714 		return;
715 
716 	down_write(&vma->vm_lock->lock);
717 	/*
718 	 * We should use WRITE_ONCE() here because we can have concurrent reads
719 	 * from the early lockless pessimistic check in vma_start_read().
720 	 * We don't really care about the correctness of that early check, but
721 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
722 	 */
723 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
724 	up_write(&vma->vm_lock->lock);
725 }
726 
vma_assert_write_locked(struct vm_area_struct * vma)727 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728 {
729 	int mm_lock_seq;
730 
731 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
732 }
733 
vma_assert_locked(struct vm_area_struct * vma)734 static inline void vma_assert_locked(struct vm_area_struct *vma)
735 {
736 	if (!rwsem_is_locked(&vma->vm_lock->lock))
737 		vma_assert_write_locked(vma);
738 }
739 
vma_mark_detached(struct vm_area_struct * vma,bool detached)740 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
741 {
742 	/* When detaching vma should be write-locked */
743 	if (detached)
744 		vma_assert_write_locked(vma);
745 	vma->detached = detached;
746 }
747 
release_fault_lock(struct vm_fault * vmf)748 static inline void release_fault_lock(struct vm_fault *vmf)
749 {
750 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
751 		vma_end_read(vmf->vma);
752 	else
753 		mmap_read_unlock(vmf->vma->vm_mm);
754 }
755 
assert_fault_locked(struct vm_fault * vmf)756 static inline void assert_fault_locked(struct vm_fault *vmf)
757 {
758 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
759 		vma_assert_locked(vmf->vma);
760 	else
761 		mmap_assert_locked(vmf->vma->vm_mm);
762 }
763 
764 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
765 					  unsigned long address);
766 
767 #else /* CONFIG_PER_VMA_LOCK */
768 
vma_start_read(struct vm_area_struct * vma)769 static inline bool vma_start_read(struct vm_area_struct *vma)
770 		{ return false; }
vma_end_read(struct vm_area_struct * vma)771 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)772 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)773 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
774 		{ mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)775 static inline void vma_mark_detached(struct vm_area_struct *vma,
776 				     bool detached) {}
777 
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)778 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 		unsigned long address)
780 {
781 	return NULL;
782 }
783 
release_fault_lock(struct vm_fault * vmf)784 static inline void release_fault_lock(struct vm_fault *vmf)
785 {
786 	mmap_read_unlock(vmf->vma->vm_mm);
787 }
788 
assert_fault_locked(struct vm_fault * vmf)789 static inline void assert_fault_locked(struct vm_fault *vmf)
790 {
791 	mmap_assert_locked(vmf->vma->vm_mm);
792 }
793 
794 #endif /* CONFIG_PER_VMA_LOCK */
795 
796 extern const struct vm_operations_struct vma_dummy_vm_ops;
797 
798 /*
799  * WARNING: vma_init does not initialize vma->vm_lock.
800  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
801  */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)802 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
803 {
804 	memset(vma, 0, sizeof(*vma));
805 	vma->vm_mm = mm;
806 	vma->vm_ops = &vma_dummy_vm_ops;
807 	INIT_LIST_HEAD(&vma->anon_vma_chain);
808 	vma_mark_detached(vma, false);
809 	vma_numab_state_init(vma);
810 }
811 
812 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)813 static inline void vm_flags_init(struct vm_area_struct *vma,
814 				 vm_flags_t flags)
815 {
816 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
817 }
818 
819 /*
820  * Use when VMA is part of the VMA tree and modifications need coordination
821  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
822  * it should be locked explicitly beforehand.
823  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)824 static inline void vm_flags_reset(struct vm_area_struct *vma,
825 				  vm_flags_t flags)
826 {
827 	vma_assert_write_locked(vma);
828 	vm_flags_init(vma, flags);
829 }
830 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)831 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
832 				       vm_flags_t flags)
833 {
834 	vma_assert_write_locked(vma);
835 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
836 }
837 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)838 static inline void vm_flags_set(struct vm_area_struct *vma,
839 				vm_flags_t flags)
840 {
841 	vma_start_write(vma);
842 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
843 }
844 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)845 static inline void vm_flags_clear(struct vm_area_struct *vma,
846 				  vm_flags_t flags)
847 {
848 	vma_start_write(vma);
849 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
850 }
851 
852 /*
853  * Use only if VMA is not part of the VMA tree or has no other users and
854  * therefore needs no locking.
855  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)856 static inline void __vm_flags_mod(struct vm_area_struct *vma,
857 				  vm_flags_t set, vm_flags_t clear)
858 {
859 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
860 }
861 
862 /*
863  * Use only when the order of set/clear operations is unimportant, otherwise
864  * use vm_flags_{set|clear} explicitly.
865  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)866 static inline void vm_flags_mod(struct vm_area_struct *vma,
867 				vm_flags_t set, vm_flags_t clear)
868 {
869 	vma_start_write(vma);
870 	__vm_flags_mod(vma, set, clear);
871 }
872 
vma_set_anonymous(struct vm_area_struct * vma)873 static inline void vma_set_anonymous(struct vm_area_struct *vma)
874 {
875 	vma->vm_ops = NULL;
876 }
877 
vma_is_anonymous(struct vm_area_struct * vma)878 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
879 {
880 	return !vma->vm_ops;
881 }
882 
883 /*
884  * Indicate if the VMA is a heap for the given task; for
885  * /proc/PID/maps that is the heap of the main task.
886  */
vma_is_initial_heap(const struct vm_area_struct * vma)887 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
888 {
889 	return vma->vm_start < vma->vm_mm->brk &&
890 		vma->vm_end > vma->vm_mm->start_brk;
891 }
892 
893 /*
894  * Indicate if the VMA is a stack for the given task; for
895  * /proc/PID/maps that is the stack of the main task.
896  */
vma_is_initial_stack(const struct vm_area_struct * vma)897 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
898 {
899 	/*
900 	 * We make no effort to guess what a given thread considers to be
901 	 * its "stack".  It's not even well-defined for programs written
902 	 * languages like Go.
903 	 */
904 	return vma->vm_start <= vma->vm_mm->start_stack &&
905 		vma->vm_end >= vma->vm_mm->start_stack;
906 }
907 
vma_is_temporary_stack(struct vm_area_struct * vma)908 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
909 {
910 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
911 
912 	if (!maybe_stack)
913 		return false;
914 
915 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
916 						VM_STACK_INCOMPLETE_SETUP)
917 		return true;
918 
919 	return false;
920 }
921 
vma_is_foreign(struct vm_area_struct * vma)922 static inline bool vma_is_foreign(struct vm_area_struct *vma)
923 {
924 	if (!current->mm)
925 		return true;
926 
927 	if (current->mm != vma->vm_mm)
928 		return true;
929 
930 	return false;
931 }
932 
vma_is_accessible(struct vm_area_struct * vma)933 static inline bool vma_is_accessible(struct vm_area_struct *vma)
934 {
935 	return vma->vm_flags & VM_ACCESS_FLAGS;
936 }
937 
is_shared_maywrite(vm_flags_t vm_flags)938 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
939 {
940 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
941 		(VM_SHARED | VM_MAYWRITE);
942 }
943 
vma_is_shared_maywrite(struct vm_area_struct * vma)944 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
945 {
946 	return is_shared_maywrite(vma->vm_flags);
947 }
948 
949 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)950 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
951 {
952 	return mas_find(&vmi->mas, max - 1);
953 }
954 
vma_next(struct vma_iterator * vmi)955 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
956 {
957 	/*
958 	 * Uses mas_find() to get the first VMA when the iterator starts.
959 	 * Calling mas_next() could skip the first entry.
960 	 */
961 	return mas_find(&vmi->mas, ULONG_MAX);
962 }
963 
964 static inline
vma_iter_next_range(struct vma_iterator * vmi)965 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
966 {
967 	return mas_next_range(&vmi->mas, ULONG_MAX);
968 }
969 
970 
vma_prev(struct vma_iterator * vmi)971 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
972 {
973 	return mas_prev(&vmi->mas, 0);
974 }
975 
976 static inline
vma_iter_prev_range(struct vma_iterator * vmi)977 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
978 {
979 	return mas_prev_range(&vmi->mas, 0);
980 }
981 
vma_iter_addr(struct vma_iterator * vmi)982 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
983 {
984 	return vmi->mas.index;
985 }
986 
vma_iter_end(struct vma_iterator * vmi)987 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
988 {
989 	return vmi->mas.last + 1;
990 }
vma_iter_bulk_alloc(struct vma_iterator * vmi,unsigned long count)991 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
992 				      unsigned long count)
993 {
994 	return mas_expected_entries(&vmi->mas, count);
995 }
996 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)997 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
998 			unsigned long start, unsigned long end, gfp_t gfp)
999 {
1000 	__mas_set_range(&vmi->mas, start, end - 1);
1001 	mas_store_gfp(&vmi->mas, NULL, gfp);
1002 	if (unlikely(mas_is_err(&vmi->mas)))
1003 		return -ENOMEM;
1004 
1005 	return 0;
1006 }
1007 
1008 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1009 static inline void vma_iter_free(struct vma_iterator *vmi)
1010 {
1011 	mas_destroy(&vmi->mas);
1012 }
1013 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1014 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1015 				      struct vm_area_struct *vma)
1016 {
1017 	vmi->mas.index = vma->vm_start;
1018 	vmi->mas.last = vma->vm_end - 1;
1019 	mas_store(&vmi->mas, vma);
1020 	if (unlikely(mas_is_err(&vmi->mas)))
1021 		return -ENOMEM;
1022 
1023 	return 0;
1024 }
1025 
vma_iter_invalidate(struct vma_iterator * vmi)1026 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1027 {
1028 	mas_pause(&vmi->mas);
1029 }
1030 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1031 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1032 {
1033 	mas_set(&vmi->mas, addr);
1034 }
1035 
1036 #define for_each_vma(__vmi, __vma)					\
1037 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1038 
1039 /* The MM code likes to work with exclusive end addresses */
1040 #define for_each_vma_range(__vmi, __vma, __end)				\
1041 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1042 
1043 #ifdef CONFIG_SHMEM
1044 /*
1045  * The vma_is_shmem is not inline because it is used only by slow
1046  * paths in userfault.
1047  */
1048 bool vma_is_shmem(struct vm_area_struct *vma);
1049 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1050 #else
vma_is_shmem(struct vm_area_struct * vma)1051 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1052 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1053 #endif
1054 
1055 int vma_is_stack_for_current(struct vm_area_struct *vma);
1056 
1057 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1058 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1059 
1060 struct mmu_gather;
1061 struct inode;
1062 
1063 /*
1064  * compound_order() can be called without holding a reference, which means
1065  * that niceties like page_folio() don't work.  These callers should be
1066  * prepared to handle wild return values.  For example, PG_head may be
1067  * set before the order is initialised, or this may be a tail page.
1068  * See compaction.c for some good examples.
1069  */
compound_order(struct page * page)1070 static inline unsigned int compound_order(struct page *page)
1071 {
1072 	struct folio *folio = (struct folio *)page;
1073 
1074 	if (!test_bit(PG_head, &folio->flags))
1075 		return 0;
1076 	return folio->_flags_1 & 0xff;
1077 }
1078 
1079 /**
1080  * folio_order - The allocation order of a folio.
1081  * @folio: The folio.
1082  *
1083  * A folio is composed of 2^order pages.  See get_order() for the definition
1084  * of order.
1085  *
1086  * Return: The order of the folio.
1087  */
folio_order(struct folio * folio)1088 static inline unsigned int folio_order(struct folio *folio)
1089 {
1090 	if (!folio_test_large(folio))
1091 		return 0;
1092 	return folio->_flags_1 & 0xff;
1093 }
1094 
1095 #include <linux/huge_mm.h>
1096 
1097 /*
1098  * Methods to modify the page usage count.
1099  *
1100  * What counts for a page usage:
1101  * - cache mapping   (page->mapping)
1102  * - private data    (page->private)
1103  * - page mapped in a task's page tables, each mapping
1104  *   is counted separately
1105  *
1106  * Also, many kernel routines increase the page count before a critical
1107  * routine so they can be sure the page doesn't go away from under them.
1108  */
1109 
1110 /*
1111  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1112  */
put_page_testzero(struct page * page)1113 static inline int put_page_testzero(struct page *page)
1114 {
1115 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1116 	return page_ref_dec_and_test(page);
1117 }
1118 
folio_put_testzero(struct folio * folio)1119 static inline int folio_put_testzero(struct folio *folio)
1120 {
1121 	return put_page_testzero(&folio->page);
1122 }
1123 
1124 /*
1125  * Try to grab a ref unless the page has a refcount of zero, return false if
1126  * that is the case.
1127  * This can be called when MMU is off so it must not access
1128  * any of the virtual mappings.
1129  */
get_page_unless_zero(struct page * page)1130 static inline bool get_page_unless_zero(struct page *page)
1131 {
1132 	return page_ref_add_unless(page, 1, 0);
1133 }
1134 
folio_get_nontail_page(struct page * page)1135 static inline struct folio *folio_get_nontail_page(struct page *page)
1136 {
1137 	if (unlikely(!get_page_unless_zero(page)))
1138 		return NULL;
1139 	return (struct folio *)page;
1140 }
1141 
1142 extern int page_is_ram(unsigned long pfn);
1143 
1144 enum {
1145 	REGION_INTERSECTS,
1146 	REGION_DISJOINT,
1147 	REGION_MIXED,
1148 };
1149 
1150 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1151 		      unsigned long desc);
1152 
1153 /* Support for virtually mapped pages */
1154 struct page *vmalloc_to_page(const void *addr);
1155 unsigned long vmalloc_to_pfn(const void *addr);
1156 
1157 /*
1158  * Determine if an address is within the vmalloc range
1159  *
1160  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1161  * is no special casing required.
1162  */
1163 #ifdef CONFIG_MMU
1164 extern bool is_vmalloc_addr(const void *x);
1165 extern int is_vmalloc_or_module_addr(const void *x);
1166 #else
is_vmalloc_addr(const void * x)1167 static inline bool is_vmalloc_addr(const void *x)
1168 {
1169 	return false;
1170 }
is_vmalloc_or_module_addr(const void * x)1171 static inline int is_vmalloc_or_module_addr(const void *x)
1172 {
1173 	return 0;
1174 }
1175 #endif
1176 
1177 /*
1178  * How many times the entire folio is mapped as a single unit (eg by a
1179  * PMD or PUD entry).  This is probably not what you want, except for
1180  * debugging purposes - it does not include PTE-mapped sub-pages; look
1181  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1182  */
folio_entire_mapcount(struct folio * folio)1183 static inline int folio_entire_mapcount(struct folio *folio)
1184 {
1185 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1186 	return atomic_read(&folio->_entire_mapcount) + 1;
1187 }
1188 
1189 /*
1190  * The atomic page->_mapcount, starts from -1: so that transitions
1191  * both from it and to it can be tracked, using atomic_inc_and_test
1192  * and atomic_add_negative(-1).
1193  */
page_mapcount_reset(struct page * page)1194 static inline void page_mapcount_reset(struct page *page)
1195 {
1196 	atomic_set(&(page)->_mapcount, -1);
1197 }
1198 
1199 /**
1200  * page_mapcount() - Number of times this precise page is mapped.
1201  * @page: The page.
1202  *
1203  * The number of times this page is mapped.  If this page is part of
1204  * a large folio, it includes the number of times this page is mapped
1205  * as part of that folio.
1206  *
1207  * The result is undefined for pages which cannot be mapped into userspace.
1208  * For example SLAB or special types of pages. See function page_has_type().
1209  * They use this field in struct page differently.
1210  */
page_mapcount(struct page * page)1211 static inline int page_mapcount(struct page *page)
1212 {
1213 	int mapcount = atomic_read(&page->_mapcount) + 1;
1214 
1215 	if (unlikely(PageCompound(page)))
1216 		mapcount += folio_entire_mapcount(page_folio(page));
1217 
1218 	return mapcount;
1219 }
1220 
1221 int folio_total_mapcount(struct folio *folio);
1222 
1223 /**
1224  * folio_mapcount() - Calculate the number of mappings of this folio.
1225  * @folio: The folio.
1226  *
1227  * A large folio tracks both how many times the entire folio is mapped,
1228  * and how many times each individual page in the folio is mapped.
1229  * This function calculates the total number of times the folio is
1230  * mapped.
1231  *
1232  * Return: The number of times this folio is mapped.
1233  */
folio_mapcount(struct folio * folio)1234 static inline int folio_mapcount(struct folio *folio)
1235 {
1236 	if (likely(!folio_test_large(folio)))
1237 		return atomic_read(&folio->_mapcount) + 1;
1238 	return folio_total_mapcount(folio);
1239 }
1240 
total_mapcount(struct page * page)1241 static inline int total_mapcount(struct page *page)
1242 {
1243 	if (likely(!PageCompound(page)))
1244 		return atomic_read(&page->_mapcount) + 1;
1245 	return folio_total_mapcount(page_folio(page));
1246 }
1247 
folio_large_is_mapped(struct folio * folio)1248 static inline bool folio_large_is_mapped(struct folio *folio)
1249 {
1250 	/*
1251 	 * Reading _entire_mapcount below could be omitted if hugetlb
1252 	 * participated in incrementing nr_pages_mapped when compound mapped.
1253 	 */
1254 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1255 		atomic_read(&folio->_entire_mapcount) >= 0;
1256 }
1257 
1258 /**
1259  * folio_mapped - Is this folio mapped into userspace?
1260  * @folio: The folio.
1261  *
1262  * Return: True if any page in this folio is referenced by user page tables.
1263  */
folio_mapped(struct folio * folio)1264 static inline bool folio_mapped(struct folio *folio)
1265 {
1266 	if (likely(!folio_test_large(folio)))
1267 		return atomic_read(&folio->_mapcount) >= 0;
1268 	return folio_large_is_mapped(folio);
1269 }
1270 
1271 /*
1272  * Return true if this page is mapped into pagetables.
1273  * For compound page it returns true if any sub-page of compound page is mapped,
1274  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1275  */
page_mapped(struct page * page)1276 static inline bool page_mapped(struct page *page)
1277 {
1278 	if (likely(!PageCompound(page)))
1279 		return atomic_read(&page->_mapcount) >= 0;
1280 	return folio_large_is_mapped(page_folio(page));
1281 }
1282 
virt_to_head_page(const void * x)1283 static inline struct page *virt_to_head_page(const void *x)
1284 {
1285 	struct page *page = virt_to_page(x);
1286 
1287 	return compound_head(page);
1288 }
1289 
virt_to_folio(const void * x)1290 static inline struct folio *virt_to_folio(const void *x)
1291 {
1292 	struct page *page = virt_to_page(x);
1293 
1294 	return page_folio(page);
1295 }
1296 
1297 void __folio_put(struct folio *folio);
1298 
1299 void put_pages_list(struct list_head *pages);
1300 
1301 void split_page(struct page *page, unsigned int order);
1302 void folio_copy(struct folio *dst, struct folio *src);
1303 
1304 unsigned long nr_free_buffer_pages(void);
1305 
1306 void destroy_large_folio(struct folio *folio);
1307 
1308 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1309 static inline unsigned long page_size(struct page *page)
1310 {
1311 	return PAGE_SIZE << compound_order(page);
1312 }
1313 
1314 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1315 static inline unsigned int page_shift(struct page *page)
1316 {
1317 	return PAGE_SHIFT + compound_order(page);
1318 }
1319 
1320 /**
1321  * thp_order - Order of a transparent huge page.
1322  * @page: Head page of a transparent huge page.
1323  */
thp_order(struct page * page)1324 static inline unsigned int thp_order(struct page *page)
1325 {
1326 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1327 	return compound_order(page);
1328 }
1329 
1330 /**
1331  * thp_size - Size of a transparent huge page.
1332  * @page: Head page of a transparent huge page.
1333  *
1334  * Return: Number of bytes in this page.
1335  */
thp_size(struct page * page)1336 static inline unsigned long thp_size(struct page *page)
1337 {
1338 	return PAGE_SIZE << thp_order(page);
1339 }
1340 
1341 #ifdef CONFIG_MMU
1342 /*
1343  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1344  * servicing faults for write access.  In the normal case, do always want
1345  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1346  * that do not have writing enabled, when used by access_process_vm.
1347  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1348 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1349 {
1350 	if (likely(vma->vm_flags & VM_WRITE))
1351 		pte = pte_mkwrite(pte, vma);
1352 	return pte;
1353 }
1354 
1355 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1356 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1357 		struct page *page, unsigned int nr, unsigned long addr);
1358 
1359 vm_fault_t finish_fault(struct vm_fault *vmf);
1360 #endif
1361 
1362 /*
1363  * Multiple processes may "see" the same page. E.g. for untouched
1364  * mappings of /dev/null, all processes see the same page full of
1365  * zeroes, and text pages of executables and shared libraries have
1366  * only one copy in memory, at most, normally.
1367  *
1368  * For the non-reserved pages, page_count(page) denotes a reference count.
1369  *   page_count() == 0 means the page is free. page->lru is then used for
1370  *   freelist management in the buddy allocator.
1371  *   page_count() > 0  means the page has been allocated.
1372  *
1373  * Pages are allocated by the slab allocator in order to provide memory
1374  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1375  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1376  * unless a particular usage is carefully commented. (the responsibility of
1377  * freeing the kmalloc memory is the caller's, of course).
1378  *
1379  * A page may be used by anyone else who does a __get_free_page().
1380  * In this case, page_count still tracks the references, and should only
1381  * be used through the normal accessor functions. The top bits of page->flags
1382  * and page->virtual store page management information, but all other fields
1383  * are unused and could be used privately, carefully. The management of this
1384  * page is the responsibility of the one who allocated it, and those who have
1385  * subsequently been given references to it.
1386  *
1387  * The other pages (we may call them "pagecache pages") are completely
1388  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1389  * The following discussion applies only to them.
1390  *
1391  * A pagecache page contains an opaque `private' member, which belongs to the
1392  * page's address_space. Usually, this is the address of a circular list of
1393  * the page's disk buffers. PG_private must be set to tell the VM to call
1394  * into the filesystem to release these pages.
1395  *
1396  * A page may belong to an inode's memory mapping. In this case, page->mapping
1397  * is the pointer to the inode, and page->index is the file offset of the page,
1398  * in units of PAGE_SIZE.
1399  *
1400  * If pagecache pages are not associated with an inode, they are said to be
1401  * anonymous pages. These may become associated with the swapcache, and in that
1402  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1403  *
1404  * In either case (swapcache or inode backed), the pagecache itself holds one
1405  * reference to the page. Setting PG_private should also increment the
1406  * refcount. The each user mapping also has a reference to the page.
1407  *
1408  * The pagecache pages are stored in a per-mapping radix tree, which is
1409  * rooted at mapping->i_pages, and indexed by offset.
1410  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1411  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1412  *
1413  * All pagecache pages may be subject to I/O:
1414  * - inode pages may need to be read from disk,
1415  * - inode pages which have been modified and are MAP_SHARED may need
1416  *   to be written back to the inode on disk,
1417  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1418  *   modified may need to be swapped out to swap space and (later) to be read
1419  *   back into memory.
1420  */
1421 
1422 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1423 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1424 
1425 bool __put_devmap_managed_page_refs(struct page *page, int refs);
put_devmap_managed_page_refs(struct page * page,int refs)1426 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1427 {
1428 	if (!static_branch_unlikely(&devmap_managed_key))
1429 		return false;
1430 	if (!is_zone_device_page(page))
1431 		return false;
1432 	return __put_devmap_managed_page_refs(page, refs);
1433 }
1434 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_page_refs(struct page * page,int refs)1435 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1436 {
1437 	return false;
1438 }
1439 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1440 
put_devmap_managed_page(struct page * page)1441 static inline bool put_devmap_managed_page(struct page *page)
1442 {
1443 	return put_devmap_managed_page_refs(page, 1);
1444 }
1445 
1446 /* 127: arbitrary random number, small enough to assemble well */
1447 #define folio_ref_zero_or_close_to_overflow(folio) \
1448 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1449 
1450 /**
1451  * folio_get - Increment the reference count on a folio.
1452  * @folio: The folio.
1453  *
1454  * Context: May be called in any context, as long as you know that
1455  * you have a refcount on the folio.  If you do not already have one,
1456  * folio_try_get() may be the right interface for you to use.
1457  */
folio_get(struct folio * folio)1458 static inline void folio_get(struct folio *folio)
1459 {
1460 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1461 	folio_ref_inc(folio);
1462 }
1463 
get_page(struct page * page)1464 static inline void get_page(struct page *page)
1465 {
1466 	folio_get(page_folio(page));
1467 }
1468 
try_get_page(struct page * page)1469 static inline __must_check bool try_get_page(struct page *page)
1470 {
1471 	page = compound_head(page);
1472 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1473 		return false;
1474 	page_ref_inc(page);
1475 	return true;
1476 }
1477 
1478 /**
1479  * folio_put - Decrement the reference count on a folio.
1480  * @folio: The folio.
1481  *
1482  * If the folio's reference count reaches zero, the memory will be
1483  * released back to the page allocator and may be used by another
1484  * allocation immediately.  Do not access the memory or the struct folio
1485  * after calling folio_put() unless you can be sure that it wasn't the
1486  * last reference.
1487  *
1488  * Context: May be called in process or interrupt context, but not in NMI
1489  * context.  May be called while holding a spinlock.
1490  */
folio_put(struct folio * folio)1491 static inline void folio_put(struct folio *folio)
1492 {
1493 	if (folio_put_testzero(folio))
1494 		__folio_put(folio);
1495 }
1496 
1497 /**
1498  * folio_put_refs - Reduce the reference count on a folio.
1499  * @folio: The folio.
1500  * @refs: The amount to subtract from the folio's reference count.
1501  *
1502  * If the folio's reference count reaches zero, the memory will be
1503  * released back to the page allocator and may be used by another
1504  * allocation immediately.  Do not access the memory or the struct folio
1505  * after calling folio_put_refs() unless you can be sure that these weren't
1506  * the last references.
1507  *
1508  * Context: May be called in process or interrupt context, but not in NMI
1509  * context.  May be called while holding a spinlock.
1510  */
folio_put_refs(struct folio * folio,int refs)1511 static inline void folio_put_refs(struct folio *folio, int refs)
1512 {
1513 	if (folio_ref_sub_and_test(folio, refs))
1514 		__folio_put(folio);
1515 }
1516 
1517 /*
1518  * union release_pages_arg - an array of pages or folios
1519  *
1520  * release_pages() releases a simple array of multiple pages, and
1521  * accepts various different forms of said page array: either
1522  * a regular old boring array of pages, an array of folios, or
1523  * an array of encoded page pointers.
1524  *
1525  * The transparent union syntax for this kind of "any of these
1526  * argument types" is all kinds of ugly, so look away.
1527  */
1528 typedef union {
1529 	struct page **pages;
1530 	struct folio **folios;
1531 	struct encoded_page **encoded_pages;
1532 } release_pages_arg __attribute__ ((__transparent_union__));
1533 
1534 void release_pages(release_pages_arg, int nr);
1535 
1536 /**
1537  * folios_put - Decrement the reference count on an array of folios.
1538  * @folios: The folios.
1539  * @nr: How many folios there are.
1540  *
1541  * Like folio_put(), but for an array of folios.  This is more efficient
1542  * than writing the loop yourself as it will optimise the locks which
1543  * need to be taken if the folios are freed.
1544  *
1545  * Context: May be called in process or interrupt context, but not in NMI
1546  * context.  May be called while holding a spinlock.
1547  */
folios_put(struct folio ** folios,unsigned int nr)1548 static inline void folios_put(struct folio **folios, unsigned int nr)
1549 {
1550 	release_pages(folios, nr);
1551 }
1552 
put_page(struct page * page)1553 static inline void put_page(struct page *page)
1554 {
1555 	struct folio *folio = page_folio(page);
1556 
1557 	/*
1558 	 * For some devmap managed pages we need to catch refcount transition
1559 	 * from 2 to 1:
1560 	 */
1561 	if (put_devmap_managed_page(&folio->page))
1562 		return;
1563 	folio_put(folio);
1564 }
1565 
1566 /*
1567  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1568  * the page's refcount so that two separate items are tracked: the original page
1569  * reference count, and also a new count of how many pin_user_pages() calls were
1570  * made against the page. ("gup-pinned" is another term for the latter).
1571  *
1572  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1573  * distinct from normal pages. As such, the unpin_user_page() call (and its
1574  * variants) must be used in order to release gup-pinned pages.
1575  *
1576  * Choice of value:
1577  *
1578  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1579  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1580  * simpler, due to the fact that adding an even power of two to the page
1581  * refcount has the effect of using only the upper N bits, for the code that
1582  * counts up using the bias value. This means that the lower bits are left for
1583  * the exclusive use of the original code that increments and decrements by one
1584  * (or at least, by much smaller values than the bias value).
1585  *
1586  * Of course, once the lower bits overflow into the upper bits (and this is
1587  * OK, because subtraction recovers the original values), then visual inspection
1588  * no longer suffices to directly view the separate counts. However, for normal
1589  * applications that don't have huge page reference counts, this won't be an
1590  * issue.
1591  *
1592  * Locking: the lockless algorithm described in folio_try_get_rcu()
1593  * provides safe operation for get_user_pages(), page_mkclean() and
1594  * other calls that race to set up page table entries.
1595  */
1596 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1597 
1598 void unpin_user_page(struct page *page);
1599 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1600 				 bool make_dirty);
1601 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1602 				      bool make_dirty);
1603 void unpin_user_pages(struct page **pages, unsigned long npages);
1604 
is_cow_mapping(vm_flags_t flags)1605 static inline bool is_cow_mapping(vm_flags_t flags)
1606 {
1607 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1608 }
1609 
1610 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1611 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1612 {
1613 	/*
1614 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1615 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1616 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1617 	 * underlying memory if ptrace is active, so this is only possible if
1618 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1619 	 * write permissions later.
1620 	 */
1621 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1622 }
1623 #endif
1624 
1625 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1626 #define SECTION_IN_PAGE_FLAGS
1627 #endif
1628 
1629 /*
1630  * The identification function is mainly used by the buddy allocator for
1631  * determining if two pages could be buddies. We are not really identifying
1632  * the zone since we could be using the section number id if we do not have
1633  * node id available in page flags.
1634  * We only guarantee that it will return the same value for two combinable
1635  * pages in a zone.
1636  */
page_zone_id(struct page * page)1637 static inline int page_zone_id(struct page *page)
1638 {
1639 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1640 }
1641 
1642 #ifdef NODE_NOT_IN_PAGE_FLAGS
1643 extern int page_to_nid(const struct page *page);
1644 #else
page_to_nid(const struct page * page)1645 static inline int page_to_nid(const struct page *page)
1646 {
1647 	struct page *p = (struct page *)page;
1648 
1649 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1650 }
1651 #endif
1652 
folio_nid(const struct folio * folio)1653 static inline int folio_nid(const struct folio *folio)
1654 {
1655 	return page_to_nid(&folio->page);
1656 }
1657 
1658 #ifdef CONFIG_NUMA_BALANCING
1659 /* page access time bits needs to hold at least 4 seconds */
1660 #define PAGE_ACCESS_TIME_MIN_BITS	12
1661 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1662 #define PAGE_ACCESS_TIME_BUCKETS				\
1663 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1664 #else
1665 #define PAGE_ACCESS_TIME_BUCKETS	0
1666 #endif
1667 
1668 #define PAGE_ACCESS_TIME_MASK				\
1669 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1670 
cpu_pid_to_cpupid(int cpu,int pid)1671 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1672 {
1673 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1674 }
1675 
cpupid_to_pid(int cpupid)1676 static inline int cpupid_to_pid(int cpupid)
1677 {
1678 	return cpupid & LAST__PID_MASK;
1679 }
1680 
cpupid_to_cpu(int cpupid)1681 static inline int cpupid_to_cpu(int cpupid)
1682 {
1683 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1684 }
1685 
cpupid_to_nid(int cpupid)1686 static inline int cpupid_to_nid(int cpupid)
1687 {
1688 	return cpu_to_node(cpupid_to_cpu(cpupid));
1689 }
1690 
cpupid_pid_unset(int cpupid)1691 static inline bool cpupid_pid_unset(int cpupid)
1692 {
1693 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1694 }
1695 
cpupid_cpu_unset(int cpupid)1696 static inline bool cpupid_cpu_unset(int cpupid)
1697 {
1698 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1699 }
1700 
__cpupid_match_pid(pid_t task_pid,int cpupid)1701 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1702 {
1703 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1704 }
1705 
1706 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1707 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1708 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1709 {
1710 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1711 }
1712 
folio_last_cpupid(struct folio * folio)1713 static inline int folio_last_cpupid(struct folio *folio)
1714 {
1715 	return folio->_last_cpupid;
1716 }
page_cpupid_reset_last(struct page * page)1717 static inline void page_cpupid_reset_last(struct page *page)
1718 {
1719 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1720 }
1721 #else
folio_last_cpupid(struct folio * folio)1722 static inline int folio_last_cpupid(struct folio *folio)
1723 {
1724 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1725 }
1726 
1727 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1728 
page_cpupid_reset_last(struct page * page)1729 static inline void page_cpupid_reset_last(struct page *page)
1730 {
1731 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1732 }
1733 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1734 
folio_xchg_access_time(struct folio * folio,int time)1735 static inline int folio_xchg_access_time(struct folio *folio, int time)
1736 {
1737 	int last_time;
1738 
1739 	last_time = folio_xchg_last_cpupid(folio,
1740 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1741 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1742 }
1743 
vma_set_access_pid_bit(struct vm_area_struct * vma)1744 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1745 {
1746 	unsigned int pid_bit;
1747 
1748 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1749 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1750 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1751 	}
1752 }
1753 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1754 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1755 {
1756 	return folio_nid(folio); /* XXX */
1757 }
1758 
folio_xchg_access_time(struct folio * folio,int time)1759 static inline int folio_xchg_access_time(struct folio *folio, int time)
1760 {
1761 	return 0;
1762 }
1763 
folio_last_cpupid(struct folio * folio)1764 static inline int folio_last_cpupid(struct folio *folio)
1765 {
1766 	return folio_nid(folio); /* XXX */
1767 }
1768 
cpupid_to_nid(int cpupid)1769 static inline int cpupid_to_nid(int cpupid)
1770 {
1771 	return -1;
1772 }
1773 
cpupid_to_pid(int cpupid)1774 static inline int cpupid_to_pid(int cpupid)
1775 {
1776 	return -1;
1777 }
1778 
cpupid_to_cpu(int cpupid)1779 static inline int cpupid_to_cpu(int cpupid)
1780 {
1781 	return -1;
1782 }
1783 
cpu_pid_to_cpupid(int nid,int pid)1784 static inline int cpu_pid_to_cpupid(int nid, int pid)
1785 {
1786 	return -1;
1787 }
1788 
cpupid_pid_unset(int cpupid)1789 static inline bool cpupid_pid_unset(int cpupid)
1790 {
1791 	return true;
1792 }
1793 
page_cpupid_reset_last(struct page * page)1794 static inline void page_cpupid_reset_last(struct page *page)
1795 {
1796 }
1797 
cpupid_match_pid(struct task_struct * task,int cpupid)1798 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1799 {
1800 	return false;
1801 }
1802 
vma_set_access_pid_bit(struct vm_area_struct * vma)1803 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1804 {
1805 }
1806 #endif /* CONFIG_NUMA_BALANCING */
1807 
1808 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1809 
1810 /*
1811  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1812  * setting tags for all pages to native kernel tag value 0xff, as the default
1813  * value 0x00 maps to 0xff.
1814  */
1815 
page_kasan_tag(const struct page * page)1816 static inline u8 page_kasan_tag(const struct page *page)
1817 {
1818 	u8 tag = KASAN_TAG_KERNEL;
1819 
1820 	if (kasan_enabled()) {
1821 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1822 		tag ^= 0xff;
1823 	}
1824 
1825 	return tag;
1826 }
1827 
page_kasan_tag_set(struct page * page,u8 tag)1828 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1829 {
1830 	unsigned long old_flags, flags;
1831 
1832 	if (!kasan_enabled())
1833 		return;
1834 
1835 	tag ^= 0xff;
1836 	old_flags = READ_ONCE(page->flags);
1837 	do {
1838 		flags = old_flags;
1839 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1840 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1841 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1842 }
1843 
page_kasan_tag_reset(struct page * page)1844 static inline void page_kasan_tag_reset(struct page *page)
1845 {
1846 	if (kasan_enabled())
1847 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1848 }
1849 
1850 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1851 
page_kasan_tag(const struct page * page)1852 static inline u8 page_kasan_tag(const struct page *page)
1853 {
1854 	return 0xff;
1855 }
1856 
page_kasan_tag_set(struct page * page,u8 tag)1857 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1858 static inline void page_kasan_tag_reset(struct page *page) { }
1859 
1860 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1861 
page_zone(const struct page * page)1862 static inline struct zone *page_zone(const struct page *page)
1863 {
1864 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1865 }
1866 
page_pgdat(const struct page * page)1867 static inline pg_data_t *page_pgdat(const struct page *page)
1868 {
1869 	return NODE_DATA(page_to_nid(page));
1870 }
1871 
folio_zone(const struct folio * folio)1872 static inline struct zone *folio_zone(const struct folio *folio)
1873 {
1874 	return page_zone(&folio->page);
1875 }
1876 
folio_pgdat(const struct folio * folio)1877 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1878 {
1879 	return page_pgdat(&folio->page);
1880 }
1881 
1882 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1883 static inline void set_page_section(struct page *page, unsigned long section)
1884 {
1885 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1886 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1887 }
1888 
page_to_section(const struct page * page)1889 static inline unsigned long page_to_section(const struct page *page)
1890 {
1891 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1892 }
1893 #endif
1894 
1895 /**
1896  * folio_pfn - Return the Page Frame Number of a folio.
1897  * @folio: The folio.
1898  *
1899  * A folio may contain multiple pages.  The pages have consecutive
1900  * Page Frame Numbers.
1901  *
1902  * Return: The Page Frame Number of the first page in the folio.
1903  */
folio_pfn(struct folio * folio)1904 static inline unsigned long folio_pfn(struct folio *folio)
1905 {
1906 	return page_to_pfn(&folio->page);
1907 }
1908 
pfn_folio(unsigned long pfn)1909 static inline struct folio *pfn_folio(unsigned long pfn)
1910 {
1911 	return page_folio(pfn_to_page(pfn));
1912 }
1913 
1914 /**
1915  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1916  * @folio: The folio.
1917  *
1918  * This function checks if a folio has been pinned via a call to
1919  * a function in the pin_user_pages() family.
1920  *
1921  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1922  * because it means "definitely not pinned for DMA", but true means "probably
1923  * pinned for DMA, but possibly a false positive due to having at least
1924  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1925  *
1926  * False positives are OK, because: a) it's unlikely for a folio to
1927  * get that many refcounts, and b) all the callers of this routine are
1928  * expected to be able to deal gracefully with a false positive.
1929  *
1930  * For large folios, the result will be exactly correct. That's because
1931  * we have more tracking data available: the _pincount field is used
1932  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1933  *
1934  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1935  *
1936  * Return: True, if it is likely that the page has been "dma-pinned".
1937  * False, if the page is definitely not dma-pinned.
1938  */
folio_maybe_dma_pinned(struct folio * folio)1939 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1940 {
1941 	if (folio_test_large(folio))
1942 		return atomic_read(&folio->_pincount) > 0;
1943 
1944 	/*
1945 	 * folio_ref_count() is signed. If that refcount overflows, then
1946 	 * folio_ref_count() returns a negative value, and callers will avoid
1947 	 * further incrementing the refcount.
1948 	 *
1949 	 * Here, for that overflow case, use the sign bit to count a little
1950 	 * bit higher via unsigned math, and thus still get an accurate result.
1951 	 */
1952 	return ((unsigned int)folio_ref_count(folio)) >=
1953 		GUP_PIN_COUNTING_BIAS;
1954 }
1955 
page_maybe_dma_pinned(struct page * page)1956 static inline bool page_maybe_dma_pinned(struct page *page)
1957 {
1958 	return folio_maybe_dma_pinned(page_folio(page));
1959 }
1960 
1961 /*
1962  * This should most likely only be called during fork() to see whether we
1963  * should break the cow immediately for an anon page on the src mm.
1964  *
1965  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1966  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1967 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1968 					  struct folio *folio)
1969 {
1970 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1971 
1972 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1973 		return false;
1974 
1975 	return folio_maybe_dma_pinned(folio);
1976 }
1977 
1978 /**
1979  * is_zero_page - Query if a page is a zero page
1980  * @page: The page to query
1981  *
1982  * This returns true if @page is one of the permanent zero pages.
1983  */
is_zero_page(const struct page * page)1984 static inline bool is_zero_page(const struct page *page)
1985 {
1986 	return is_zero_pfn(page_to_pfn(page));
1987 }
1988 
1989 /**
1990  * is_zero_folio - Query if a folio is a zero page
1991  * @folio: The folio to query
1992  *
1993  * This returns true if @folio is one of the permanent zero pages.
1994  */
is_zero_folio(const struct folio * folio)1995 static inline bool is_zero_folio(const struct folio *folio)
1996 {
1997 	return is_zero_page(&folio->page);
1998 }
1999 
2000 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2001 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2002 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2003 {
2004 #ifdef CONFIG_CMA
2005 	int mt = folio_migratetype(folio);
2006 
2007 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2008 		return false;
2009 #endif
2010 	/* The zero page can be "pinned" but gets special handling. */
2011 	if (is_zero_folio(folio))
2012 		return true;
2013 
2014 	/* Coherent device memory must always allow eviction. */
2015 	if (folio_is_device_coherent(folio))
2016 		return false;
2017 
2018 	/* Otherwise, non-movable zone folios can be pinned. */
2019 	return !folio_is_zone_movable(folio);
2020 
2021 }
2022 #else
folio_is_longterm_pinnable(struct folio * folio)2023 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2024 {
2025 	return true;
2026 }
2027 #endif
2028 
set_page_zone(struct page * page,enum zone_type zone)2029 static inline void set_page_zone(struct page *page, enum zone_type zone)
2030 {
2031 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2032 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2033 }
2034 
set_page_node(struct page * page,unsigned long node)2035 static inline void set_page_node(struct page *page, unsigned long node)
2036 {
2037 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2038 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2039 }
2040 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2041 static inline void set_page_links(struct page *page, enum zone_type zone,
2042 	unsigned long node, unsigned long pfn)
2043 {
2044 	set_page_zone(page, zone);
2045 	set_page_node(page, node);
2046 #ifdef SECTION_IN_PAGE_FLAGS
2047 	set_page_section(page, pfn_to_section_nr(pfn));
2048 #endif
2049 }
2050 
2051 /**
2052  * folio_nr_pages - The number of pages in the folio.
2053  * @folio: The folio.
2054  *
2055  * Return: A positive power of two.
2056  */
folio_nr_pages(struct folio * folio)2057 static inline long folio_nr_pages(struct folio *folio)
2058 {
2059 	if (!folio_test_large(folio))
2060 		return 1;
2061 #ifdef CONFIG_64BIT
2062 	return folio->_folio_nr_pages;
2063 #else
2064 	return 1L << (folio->_flags_1 & 0xff);
2065 #endif
2066 }
2067 
2068 /*
2069  * compound_nr() returns the number of pages in this potentially compound
2070  * page.  compound_nr() can be called on a tail page, and is defined to
2071  * return 1 in that case.
2072  */
compound_nr(struct page * page)2073 static inline unsigned long compound_nr(struct page *page)
2074 {
2075 	struct folio *folio = (struct folio *)page;
2076 
2077 	if (!test_bit(PG_head, &folio->flags))
2078 		return 1;
2079 #ifdef CONFIG_64BIT
2080 	return folio->_folio_nr_pages;
2081 #else
2082 	return 1L << (folio->_flags_1 & 0xff);
2083 #endif
2084 }
2085 
2086 /**
2087  * thp_nr_pages - The number of regular pages in this huge page.
2088  * @page: The head page of a huge page.
2089  */
thp_nr_pages(struct page * page)2090 static inline int thp_nr_pages(struct page *page)
2091 {
2092 	return folio_nr_pages((struct folio *)page);
2093 }
2094 
2095 /**
2096  * folio_next - Move to the next physical folio.
2097  * @folio: The folio we're currently operating on.
2098  *
2099  * If you have physically contiguous memory which may span more than
2100  * one folio (eg a &struct bio_vec), use this function to move from one
2101  * folio to the next.  Do not use it if the memory is only virtually
2102  * contiguous as the folios are almost certainly not adjacent to each
2103  * other.  This is the folio equivalent to writing ``page++``.
2104  *
2105  * Context: We assume that the folios are refcounted and/or locked at a
2106  * higher level and do not adjust the reference counts.
2107  * Return: The next struct folio.
2108  */
folio_next(struct folio * folio)2109 static inline struct folio *folio_next(struct folio *folio)
2110 {
2111 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2112 }
2113 
2114 /**
2115  * folio_shift - The size of the memory described by this folio.
2116  * @folio: The folio.
2117  *
2118  * A folio represents a number of bytes which is a power-of-two in size.
2119  * This function tells you which power-of-two the folio is.  See also
2120  * folio_size() and folio_order().
2121  *
2122  * Context: The caller should have a reference on the folio to prevent
2123  * it from being split.  It is not necessary for the folio to be locked.
2124  * Return: The base-2 logarithm of the size of this folio.
2125  */
folio_shift(struct folio * folio)2126 static inline unsigned int folio_shift(struct folio *folio)
2127 {
2128 	return PAGE_SHIFT + folio_order(folio);
2129 }
2130 
2131 /**
2132  * folio_size - The number of bytes in a folio.
2133  * @folio: The folio.
2134  *
2135  * Context: The caller should have a reference on the folio to prevent
2136  * it from being split.  It is not necessary for the folio to be locked.
2137  * Return: The number of bytes in this folio.
2138  */
folio_size(struct folio * folio)2139 static inline size_t folio_size(struct folio *folio)
2140 {
2141 	return PAGE_SIZE << folio_order(folio);
2142 }
2143 
2144 /**
2145  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2146  * @folio: The folio.
2147  *
2148  * folio_estimated_sharers() aims to serve as a function to efficiently
2149  * estimate the number of processes sharing a folio. This is done by
2150  * looking at the precise mapcount of the first subpage in the folio, and
2151  * assuming the other subpages are the same. This may not be true for large
2152  * folios. If you want exact mapcounts for exact calculations, look at
2153  * page_mapcount() or folio_total_mapcount().
2154  *
2155  * Return: The estimated number of processes sharing a folio.
2156  */
folio_estimated_sharers(struct folio * folio)2157 static inline int folio_estimated_sharers(struct folio *folio)
2158 {
2159 	return page_mapcount(folio_page(folio, 0));
2160 }
2161 
2162 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)2163 static inline int arch_make_page_accessible(struct page *page)
2164 {
2165 	return 0;
2166 }
2167 #endif
2168 
2169 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2170 static inline int arch_make_folio_accessible(struct folio *folio)
2171 {
2172 	int ret;
2173 	long i, nr = folio_nr_pages(folio);
2174 
2175 	for (i = 0; i < nr; i++) {
2176 		ret = arch_make_page_accessible(folio_page(folio, i));
2177 		if (ret)
2178 			break;
2179 	}
2180 
2181 	return ret;
2182 }
2183 #endif
2184 
2185 /*
2186  * Some inline functions in vmstat.h depend on page_zone()
2187  */
2188 #include <linux/vmstat.h>
2189 
lowmem_page_address(const struct page * page)2190 static __always_inline void *lowmem_page_address(const struct page *page)
2191 {
2192 	return page_to_virt(page);
2193 }
2194 
2195 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2196 #define HASHED_PAGE_VIRTUAL
2197 #endif
2198 
2199 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2200 static inline void *page_address(const struct page *page)
2201 {
2202 	return page->virtual;
2203 }
set_page_address(struct page * page,void * address)2204 static inline void set_page_address(struct page *page, void *address)
2205 {
2206 	page->virtual = address;
2207 }
2208 #define page_address_init()  do { } while(0)
2209 #endif
2210 
2211 #if defined(HASHED_PAGE_VIRTUAL)
2212 void *page_address(const struct page *page);
2213 void set_page_address(struct page *page, void *virtual);
2214 void page_address_init(void);
2215 #endif
2216 
2217 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2218 #define page_address(page) lowmem_page_address(page)
2219 #define set_page_address(page, address)  do { } while(0)
2220 #define page_address_init()  do { } while(0)
2221 #endif
2222 
folio_address(const struct folio * folio)2223 static inline void *folio_address(const struct folio *folio)
2224 {
2225 	return page_address(&folio->page);
2226 }
2227 
2228 extern pgoff_t __page_file_index(struct page *page);
2229 
2230 /*
2231  * Return the pagecache index of the passed page.  Regular pagecache pages
2232  * use ->index whereas swapcache pages use swp_offset(->private)
2233  */
page_index(struct page * page)2234 static inline pgoff_t page_index(struct page *page)
2235 {
2236 	if (unlikely(PageSwapCache(page)))
2237 		return __page_file_index(page);
2238 	return page->index;
2239 }
2240 
2241 /*
2242  * Return true only if the page has been allocated with
2243  * ALLOC_NO_WATERMARKS and the low watermark was not
2244  * met implying that the system is under some pressure.
2245  */
page_is_pfmemalloc(const struct page * page)2246 static inline bool page_is_pfmemalloc(const struct page *page)
2247 {
2248 	/*
2249 	 * lru.next has bit 1 set if the page is allocated from the
2250 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2251 	 * they do not need to preserve that information.
2252 	 */
2253 	return (uintptr_t)page->lru.next & BIT(1);
2254 }
2255 
2256 /*
2257  * Return true only if the folio has been allocated with
2258  * ALLOC_NO_WATERMARKS and the low watermark was not
2259  * met implying that the system is under some pressure.
2260  */
folio_is_pfmemalloc(const struct folio * folio)2261 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2262 {
2263 	/*
2264 	 * lru.next has bit 1 set if the page is allocated from the
2265 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2266 	 * they do not need to preserve that information.
2267 	 */
2268 	return (uintptr_t)folio->lru.next & BIT(1);
2269 }
2270 
2271 /*
2272  * Only to be called by the page allocator on a freshly allocated
2273  * page.
2274  */
set_page_pfmemalloc(struct page * page)2275 static inline void set_page_pfmemalloc(struct page *page)
2276 {
2277 	page->lru.next = (void *)BIT(1);
2278 }
2279 
clear_page_pfmemalloc(struct page * page)2280 static inline void clear_page_pfmemalloc(struct page *page)
2281 {
2282 	page->lru.next = NULL;
2283 }
2284 
2285 /*
2286  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2287  */
2288 extern void pagefault_out_of_memory(void);
2289 
2290 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2291 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2292 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2293 
2294 /*
2295  * Parameter block passed down to zap_pte_range in exceptional cases.
2296  */
2297 struct zap_details {
2298 	struct folio *single_folio;	/* Locked folio to be unmapped */
2299 	bool even_cows;			/* Zap COWed private pages too? */
2300 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2301 };
2302 
2303 /*
2304  * Whether to drop the pte markers, for example, the uffd-wp information for
2305  * file-backed memory.  This should only be specified when we will completely
2306  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2307  * default, the flag is not set.
2308  */
2309 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2310 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2311 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2312 
2313 #ifdef CONFIG_SCHED_MM_CID
2314 void sched_mm_cid_before_execve(struct task_struct *t);
2315 void sched_mm_cid_after_execve(struct task_struct *t);
2316 void sched_mm_cid_fork(struct task_struct *t);
2317 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2318 static inline int task_mm_cid(struct task_struct *t)
2319 {
2320 	return t->mm_cid;
2321 }
2322 #else
sched_mm_cid_before_execve(struct task_struct * t)2323 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2324 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2325 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2326 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2327 static inline int task_mm_cid(struct task_struct *t)
2328 {
2329 	/*
2330 	 * Use the processor id as a fall-back when the mm cid feature is
2331 	 * disabled. This provides functional per-cpu data structure accesses
2332 	 * in user-space, althrough it won't provide the memory usage benefits.
2333 	 */
2334 	return raw_smp_processor_id();
2335 }
2336 #endif
2337 
2338 #ifdef CONFIG_MMU
2339 extern bool can_do_mlock(void);
2340 #else
can_do_mlock(void)2341 static inline bool can_do_mlock(void) { return false; }
2342 #endif
2343 extern int user_shm_lock(size_t, struct ucounts *);
2344 extern void user_shm_unlock(size_t, struct ucounts *);
2345 
2346 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2347 			     pte_t pte);
2348 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2349 			     pte_t pte);
2350 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2351 				  unsigned long addr, pmd_t pmd);
2352 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2353 				pmd_t pmd);
2354 
2355 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2356 		  unsigned long size);
2357 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2358 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2359 static inline void zap_vma_pages(struct vm_area_struct *vma)
2360 {
2361 	zap_page_range_single(vma, vma->vm_start,
2362 			      vma->vm_end - vma->vm_start, NULL);
2363 }
2364 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2365 		struct vm_area_struct *start_vma, unsigned long start,
2366 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2367 
2368 struct mmu_notifier_range;
2369 
2370 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2371 		unsigned long end, unsigned long floor, unsigned long ceiling);
2372 int
2373 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2374 int follow_pte(struct mm_struct *mm, unsigned long address,
2375 	       pte_t **ptepp, spinlock_t **ptlp);
2376 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2377 	unsigned long *pfn);
2378 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2379 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2380 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2381 			void *buf, int len, int write);
2382 
2383 extern void truncate_pagecache(struct inode *inode, loff_t new);
2384 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2385 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2386 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2387 int generic_error_remove_folio(struct address_space *mapping,
2388 		struct folio *folio);
2389 
2390 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2391 		unsigned long address, struct pt_regs *regs);
2392 
2393 #ifdef CONFIG_MMU
2394 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2395 				  unsigned long address, unsigned int flags,
2396 				  struct pt_regs *regs);
2397 extern int fixup_user_fault(struct mm_struct *mm,
2398 			    unsigned long address, unsigned int fault_flags,
2399 			    bool *unlocked);
2400 void unmap_mapping_pages(struct address_space *mapping,
2401 		pgoff_t start, pgoff_t nr, bool even_cows);
2402 void unmap_mapping_range(struct address_space *mapping,
2403 		loff_t const holebegin, loff_t const holelen, int even_cows);
2404 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2405 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2406 					 unsigned long address, unsigned int flags,
2407 					 struct pt_regs *regs)
2408 {
2409 	/* should never happen if there's no MMU */
2410 	BUG();
2411 	return VM_FAULT_SIGBUS;
2412 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2413 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2414 		unsigned int fault_flags, bool *unlocked)
2415 {
2416 	/* should never happen if there's no MMU */
2417 	BUG();
2418 	return -EFAULT;
2419 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2420 static inline void unmap_mapping_pages(struct address_space *mapping,
2421 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2422 static inline void unmap_mapping_range(struct address_space *mapping,
2423 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2424 #endif
2425 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2426 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2427 		loff_t const holebegin, loff_t const holelen)
2428 {
2429 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2430 }
2431 
2432 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2433 						unsigned long addr);
2434 
2435 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2436 		void *buf, int len, unsigned int gup_flags);
2437 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2438 		void *buf, int len, unsigned int gup_flags);
2439 
2440 long get_user_pages_remote(struct mm_struct *mm,
2441 			   unsigned long start, unsigned long nr_pages,
2442 			   unsigned int gup_flags, struct page **pages,
2443 			   int *locked);
2444 long pin_user_pages_remote(struct mm_struct *mm,
2445 			   unsigned long start, unsigned long nr_pages,
2446 			   unsigned int gup_flags, struct page **pages,
2447 			   int *locked);
2448 
2449 /*
2450  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2451  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2452 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2453 						    unsigned long addr,
2454 						    int gup_flags,
2455 						    struct vm_area_struct **vmap)
2456 {
2457 	struct page *page;
2458 	struct vm_area_struct *vma;
2459 	int got;
2460 
2461 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2462 		return ERR_PTR(-EINVAL);
2463 
2464 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2465 
2466 	if (got < 0)
2467 		return ERR_PTR(got);
2468 
2469 	vma = vma_lookup(mm, addr);
2470 	if (WARN_ON_ONCE(!vma)) {
2471 		put_page(page);
2472 		return ERR_PTR(-EINVAL);
2473 	}
2474 
2475 	*vmap = vma;
2476 	return page;
2477 }
2478 
2479 long get_user_pages(unsigned long start, unsigned long nr_pages,
2480 		    unsigned int gup_flags, struct page **pages);
2481 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2482 		    unsigned int gup_flags, struct page **pages);
2483 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2484 		    struct page **pages, unsigned int gup_flags);
2485 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2486 		    struct page **pages, unsigned int gup_flags);
2487 
2488 int get_user_pages_fast(unsigned long start, int nr_pages,
2489 			unsigned int gup_flags, struct page **pages);
2490 int pin_user_pages_fast(unsigned long start, int nr_pages,
2491 			unsigned int gup_flags, struct page **pages);
2492 void folio_add_pin(struct folio *folio);
2493 
2494 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2495 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2496 			struct task_struct *task, bool bypass_rlim);
2497 
2498 struct kvec;
2499 struct page *get_dump_page(unsigned long addr);
2500 
2501 bool folio_mark_dirty(struct folio *folio);
2502 bool set_page_dirty(struct page *page);
2503 int set_page_dirty_lock(struct page *page);
2504 
2505 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2506 
2507 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2508 		unsigned long old_addr, struct vm_area_struct *new_vma,
2509 		unsigned long new_addr, unsigned long len,
2510 		bool need_rmap_locks, bool for_stack);
2511 
2512 /*
2513  * Flags used by change_protection().  For now we make it a bitmap so
2514  * that we can pass in multiple flags just like parameters.  However
2515  * for now all the callers are only use one of the flags at the same
2516  * time.
2517  */
2518 /*
2519  * Whether we should manually check if we can map individual PTEs writable,
2520  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2521  * PTEs automatically in a writable mapping.
2522  */
2523 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2524 /* Whether this protection change is for NUMA hints */
2525 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2526 /* Whether this change is for write protecting */
2527 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2528 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2529 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2530 					    MM_CP_UFFD_WP_RESOLVE)
2531 
2532 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2533 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
vma_wants_manual_pte_write_upgrade(struct vm_area_struct * vma)2534 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2535 {
2536 	/*
2537 	 * We want to check manually if we can change individual PTEs writable
2538 	 * if we can't do that automatically for all PTEs in a mapping. For
2539 	 * private mappings, that's always the case when we have write
2540 	 * permissions as we properly have to handle COW.
2541 	 */
2542 	if (vma->vm_flags & VM_SHARED)
2543 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2544 	return !!(vma->vm_flags & VM_WRITE);
2545 
2546 }
2547 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2548 			     pte_t pte);
2549 extern long change_protection(struct mmu_gather *tlb,
2550 			      struct vm_area_struct *vma, unsigned long start,
2551 			      unsigned long end, unsigned long cp_flags);
2552 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2553 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2554 	  unsigned long start, unsigned long end, unsigned long newflags);
2555 
2556 /*
2557  * doesn't attempt to fault and will return short.
2558  */
2559 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2560 			     unsigned int gup_flags, struct page **pages);
2561 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2562 static inline bool get_user_page_fast_only(unsigned long addr,
2563 			unsigned int gup_flags, struct page **pagep)
2564 {
2565 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2566 }
2567 /*
2568  * per-process(per-mm_struct) statistics.
2569  */
get_mm_counter(struct mm_struct * mm,int member)2570 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2571 {
2572 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2573 }
2574 
2575 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2576 
add_mm_counter(struct mm_struct * mm,int member,long value)2577 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2578 {
2579 	percpu_counter_add(&mm->rss_stat[member], value);
2580 
2581 	mm_trace_rss_stat(mm, member);
2582 }
2583 
inc_mm_counter(struct mm_struct * mm,int member)2584 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2585 {
2586 	percpu_counter_inc(&mm->rss_stat[member]);
2587 
2588 	mm_trace_rss_stat(mm, member);
2589 }
2590 
dec_mm_counter(struct mm_struct * mm,int member)2591 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2592 {
2593 	percpu_counter_dec(&mm->rss_stat[member]);
2594 
2595 	mm_trace_rss_stat(mm, member);
2596 }
2597 
2598 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2599 static inline int mm_counter_file(struct page *page)
2600 {
2601 	if (PageSwapBacked(page))
2602 		return MM_SHMEMPAGES;
2603 	return MM_FILEPAGES;
2604 }
2605 
mm_counter(struct page * page)2606 static inline int mm_counter(struct page *page)
2607 {
2608 	if (PageAnon(page))
2609 		return MM_ANONPAGES;
2610 	return mm_counter_file(page);
2611 }
2612 
get_mm_rss(struct mm_struct * mm)2613 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2614 {
2615 	return get_mm_counter(mm, MM_FILEPAGES) +
2616 		get_mm_counter(mm, MM_ANONPAGES) +
2617 		get_mm_counter(mm, MM_SHMEMPAGES);
2618 }
2619 
get_mm_hiwater_rss(struct mm_struct * mm)2620 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2621 {
2622 	return max(mm->hiwater_rss, get_mm_rss(mm));
2623 }
2624 
get_mm_hiwater_vm(struct mm_struct * mm)2625 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2626 {
2627 	return max(mm->hiwater_vm, mm->total_vm);
2628 }
2629 
update_hiwater_rss(struct mm_struct * mm)2630 static inline void update_hiwater_rss(struct mm_struct *mm)
2631 {
2632 	unsigned long _rss = get_mm_rss(mm);
2633 
2634 	if ((mm)->hiwater_rss < _rss)
2635 		(mm)->hiwater_rss = _rss;
2636 }
2637 
update_hiwater_vm(struct mm_struct * mm)2638 static inline void update_hiwater_vm(struct mm_struct *mm)
2639 {
2640 	if (mm->hiwater_vm < mm->total_vm)
2641 		mm->hiwater_vm = mm->total_vm;
2642 }
2643 
reset_mm_hiwater_rss(struct mm_struct * mm)2644 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2645 {
2646 	mm->hiwater_rss = get_mm_rss(mm);
2647 }
2648 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2649 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2650 					 struct mm_struct *mm)
2651 {
2652 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2653 
2654 	if (*maxrss < hiwater_rss)
2655 		*maxrss = hiwater_rss;
2656 }
2657 
2658 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2659 static inline int pte_special(pte_t pte)
2660 {
2661 	return 0;
2662 }
2663 
pte_mkspecial(pte_t pte)2664 static inline pte_t pte_mkspecial(pte_t pte)
2665 {
2666 	return pte;
2667 }
2668 #endif
2669 
2670 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2671 static inline int pte_devmap(pte_t pte)
2672 {
2673 	return 0;
2674 }
2675 #endif
2676 
2677 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2678 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2679 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2680 				    spinlock_t **ptl)
2681 {
2682 	pte_t *ptep;
2683 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2684 	return ptep;
2685 }
2686 
2687 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2688 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2689 						unsigned long address)
2690 {
2691 	return 0;
2692 }
2693 #else
2694 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2695 #endif
2696 
2697 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2698 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2699 						unsigned long address)
2700 {
2701 	return 0;
2702 }
mm_inc_nr_puds(struct mm_struct * mm)2703 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2704 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2705 
2706 #else
2707 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2708 
mm_inc_nr_puds(struct mm_struct * mm)2709 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2710 {
2711 	if (mm_pud_folded(mm))
2712 		return;
2713 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2714 }
2715 
mm_dec_nr_puds(struct mm_struct * mm)2716 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2717 {
2718 	if (mm_pud_folded(mm))
2719 		return;
2720 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2721 }
2722 #endif
2723 
2724 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2725 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2726 						unsigned long address)
2727 {
2728 	return 0;
2729 }
2730 
mm_inc_nr_pmds(struct mm_struct * mm)2731 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2732 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2733 
2734 #else
2735 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2736 
mm_inc_nr_pmds(struct mm_struct * mm)2737 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2738 {
2739 	if (mm_pmd_folded(mm))
2740 		return;
2741 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2742 }
2743 
mm_dec_nr_pmds(struct mm_struct * mm)2744 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2745 {
2746 	if (mm_pmd_folded(mm))
2747 		return;
2748 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2749 }
2750 #endif
2751 
2752 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2753 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2754 {
2755 	atomic_long_set(&mm->pgtables_bytes, 0);
2756 }
2757 
mm_pgtables_bytes(const struct mm_struct * mm)2758 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2759 {
2760 	return atomic_long_read(&mm->pgtables_bytes);
2761 }
2762 
mm_inc_nr_ptes(struct mm_struct * mm)2763 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2764 {
2765 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2766 }
2767 
mm_dec_nr_ptes(struct mm_struct * mm)2768 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2769 {
2770 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2771 }
2772 #else
2773 
mm_pgtables_bytes_init(struct mm_struct * mm)2774 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2775 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2776 {
2777 	return 0;
2778 }
2779 
mm_inc_nr_ptes(struct mm_struct * mm)2780 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2781 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2782 #endif
2783 
2784 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2785 int __pte_alloc_kernel(pmd_t *pmd);
2786 
2787 #if defined(CONFIG_MMU)
2788 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2789 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2790 		unsigned long address)
2791 {
2792 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2793 		NULL : p4d_offset(pgd, address);
2794 }
2795 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2796 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2797 		unsigned long address)
2798 {
2799 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2800 		NULL : pud_offset(p4d, address);
2801 }
2802 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2803 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2804 {
2805 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2806 		NULL: pmd_offset(pud, address);
2807 }
2808 #endif /* CONFIG_MMU */
2809 
virt_to_ptdesc(const void * x)2810 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2811 {
2812 	return page_ptdesc(virt_to_page(x));
2813 }
2814 
ptdesc_to_virt(const struct ptdesc * pt)2815 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2816 {
2817 	return page_to_virt(ptdesc_page(pt));
2818 }
2819 
ptdesc_address(const struct ptdesc * pt)2820 static inline void *ptdesc_address(const struct ptdesc *pt)
2821 {
2822 	return folio_address(ptdesc_folio(pt));
2823 }
2824 
pagetable_is_reserved(struct ptdesc * pt)2825 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2826 {
2827 	return folio_test_reserved(ptdesc_folio(pt));
2828 }
2829 
2830 /**
2831  * pagetable_alloc - Allocate pagetables
2832  * @gfp:    GFP flags
2833  * @order:  desired pagetable order
2834  *
2835  * pagetable_alloc allocates memory for page tables as well as a page table
2836  * descriptor to describe that memory.
2837  *
2838  * Return: The ptdesc describing the allocated page tables.
2839  */
pagetable_alloc(gfp_t gfp,unsigned int order)2840 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2841 {
2842 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2843 
2844 	return page_ptdesc(page);
2845 }
2846 
2847 /**
2848  * pagetable_free - Free pagetables
2849  * @pt:	The page table descriptor
2850  *
2851  * pagetable_free frees the memory of all page tables described by a page
2852  * table descriptor and the memory for the descriptor itself.
2853  */
pagetable_free(struct ptdesc * pt)2854 static inline void pagetable_free(struct ptdesc *pt)
2855 {
2856 	struct page *page = ptdesc_page(pt);
2857 
2858 	__free_pages(page, compound_order(page));
2859 }
2860 
2861 #if USE_SPLIT_PTE_PTLOCKS
2862 #if ALLOC_SPLIT_PTLOCKS
2863 void __init ptlock_cache_init(void);
2864 bool ptlock_alloc(struct ptdesc *ptdesc);
2865 void ptlock_free(struct ptdesc *ptdesc);
2866 
ptlock_ptr(struct ptdesc * ptdesc)2867 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2868 {
2869 	return ptdesc->ptl;
2870 }
2871 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2872 static inline void ptlock_cache_init(void)
2873 {
2874 }
2875 
ptlock_alloc(struct ptdesc * ptdesc)2876 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2877 {
2878 	return true;
2879 }
2880 
ptlock_free(struct ptdesc * ptdesc)2881 static inline void ptlock_free(struct ptdesc *ptdesc)
2882 {
2883 }
2884 
ptlock_ptr(struct ptdesc * ptdesc)2885 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2886 {
2887 	return &ptdesc->ptl;
2888 }
2889 #endif /* ALLOC_SPLIT_PTLOCKS */
2890 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2891 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2892 {
2893 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2894 }
2895 
ptlock_init(struct ptdesc * ptdesc)2896 static inline bool ptlock_init(struct ptdesc *ptdesc)
2897 {
2898 	/*
2899 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2900 	 * with 0. Make sure nobody took it in use in between.
2901 	 *
2902 	 * It can happen if arch try to use slab for page table allocation:
2903 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2904 	 */
2905 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2906 	if (!ptlock_alloc(ptdesc))
2907 		return false;
2908 	spin_lock_init(ptlock_ptr(ptdesc));
2909 	return true;
2910 }
2911 
2912 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2913 /*
2914  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2915  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2916 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2917 {
2918 	return &mm->page_table_lock;
2919 }
ptlock_cache_init(void)2920 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2921 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2922 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2923 #endif /* USE_SPLIT_PTE_PTLOCKS */
2924 
pagetable_pte_ctor(struct ptdesc * ptdesc)2925 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2926 {
2927 	struct folio *folio = ptdesc_folio(ptdesc);
2928 
2929 	if (!ptlock_init(ptdesc))
2930 		return false;
2931 	__folio_set_pgtable(folio);
2932 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2933 	return true;
2934 }
2935 
pagetable_pte_dtor(struct ptdesc * ptdesc)2936 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2937 {
2938 	struct folio *folio = ptdesc_folio(ptdesc);
2939 
2940 	ptlock_free(ptdesc);
2941 	__folio_clear_pgtable(folio);
2942 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2943 }
2944 
2945 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
pte_offset_map(pmd_t * pmd,unsigned long addr)2946 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2947 {
2948 	return __pte_offset_map(pmd, addr, NULL);
2949 }
2950 
2951 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2952 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)2953 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2954 			unsigned long addr, spinlock_t **ptlp)
2955 {
2956 	pte_t *pte;
2957 
2958 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2959 	return pte;
2960 }
2961 
2962 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2963 			unsigned long addr, spinlock_t **ptlp);
2964 
2965 #define pte_unmap_unlock(pte, ptl)	do {		\
2966 	spin_unlock(ptl);				\
2967 	pte_unmap(pte);					\
2968 } while (0)
2969 
2970 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2971 
2972 #define pte_alloc_map(mm, pmd, address)			\
2973 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2974 
2975 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2976 	(pte_alloc(mm, pmd) ?			\
2977 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2978 
2979 #define pte_alloc_kernel(pmd, address)			\
2980 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2981 		NULL: pte_offset_kernel(pmd, address))
2982 
2983 #if USE_SPLIT_PMD_PTLOCKS
2984 
pmd_pgtable_page(pmd_t * pmd)2985 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2986 {
2987 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2988 	return virt_to_page((void *)((unsigned long) pmd & mask));
2989 }
2990 
pmd_ptdesc(pmd_t * pmd)2991 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
2992 {
2993 	return page_ptdesc(pmd_pgtable_page(pmd));
2994 }
2995 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2996 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2997 {
2998 	return ptlock_ptr(pmd_ptdesc(pmd));
2999 }
3000 
pmd_ptlock_init(struct ptdesc * ptdesc)3001 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3002 {
3003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3004 	ptdesc->pmd_huge_pte = NULL;
3005 #endif
3006 	return ptlock_init(ptdesc);
3007 }
3008 
pmd_ptlock_free(struct ptdesc * ptdesc)3009 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3010 {
3011 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3012 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3013 #endif
3014 	ptlock_free(ptdesc);
3015 }
3016 
3017 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3018 
3019 #else
3020 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3021 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3022 {
3023 	return &mm->page_table_lock;
3024 }
3025 
pmd_ptlock_init(struct ptdesc * ptdesc)3026 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
pmd_ptlock_free(struct ptdesc * ptdesc)3027 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3028 
3029 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3030 
3031 #endif
3032 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3033 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3034 {
3035 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3036 	spin_lock(ptl);
3037 	return ptl;
3038 }
3039 
pagetable_pmd_ctor(struct ptdesc * ptdesc)3040 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3041 {
3042 	struct folio *folio = ptdesc_folio(ptdesc);
3043 
3044 	if (!pmd_ptlock_init(ptdesc))
3045 		return false;
3046 	__folio_set_pgtable(folio);
3047 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3048 	return true;
3049 }
3050 
pagetable_pmd_dtor(struct ptdesc * ptdesc)3051 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3052 {
3053 	struct folio *folio = ptdesc_folio(ptdesc);
3054 
3055 	pmd_ptlock_free(ptdesc);
3056 	__folio_clear_pgtable(folio);
3057 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3058 }
3059 
3060 /*
3061  * No scalability reason to split PUD locks yet, but follow the same pattern
3062  * as the PMD locks to make it easier if we decide to.  The VM should not be
3063  * considered ready to switch to split PUD locks yet; there may be places
3064  * which need to be converted from page_table_lock.
3065  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3066 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3067 {
3068 	return &mm->page_table_lock;
3069 }
3070 
pud_lock(struct mm_struct * mm,pud_t * pud)3071 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3072 {
3073 	spinlock_t *ptl = pud_lockptr(mm, pud);
3074 
3075 	spin_lock(ptl);
3076 	return ptl;
3077 }
3078 
pagetable_pud_ctor(struct ptdesc * ptdesc)3079 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3080 {
3081 	struct folio *folio = ptdesc_folio(ptdesc);
3082 
3083 	__folio_set_pgtable(folio);
3084 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3085 }
3086 
pagetable_pud_dtor(struct ptdesc * ptdesc)3087 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3088 {
3089 	struct folio *folio = ptdesc_folio(ptdesc);
3090 
3091 	__folio_clear_pgtable(folio);
3092 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3093 }
3094 
3095 extern void __init pagecache_init(void);
3096 extern void free_initmem(void);
3097 
3098 /*
3099  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3100  * into the buddy system. The freed pages will be poisoned with pattern
3101  * "poison" if it's within range [0, UCHAR_MAX].
3102  * Return pages freed into the buddy system.
3103  */
3104 extern unsigned long free_reserved_area(void *start, void *end,
3105 					int poison, const char *s);
3106 
3107 extern void adjust_managed_page_count(struct page *page, long count);
3108 
3109 extern void reserve_bootmem_region(phys_addr_t start,
3110 				   phys_addr_t end, int nid);
3111 
3112 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)3113 static inline void free_reserved_page(struct page *page)
3114 {
3115 	ClearPageReserved(page);
3116 	init_page_count(page);
3117 	__free_page(page);
3118 	adjust_managed_page_count(page, 1);
3119 }
3120 #define free_highmem_page(page) free_reserved_page(page)
3121 
mark_page_reserved(struct page * page)3122 static inline void mark_page_reserved(struct page *page)
3123 {
3124 	SetPageReserved(page);
3125 	adjust_managed_page_count(page, -1);
3126 }
3127 
free_reserved_ptdesc(struct ptdesc * pt)3128 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3129 {
3130 	free_reserved_page(ptdesc_page(pt));
3131 }
3132 
3133 /*
3134  * Default method to free all the __init memory into the buddy system.
3135  * The freed pages will be poisoned with pattern "poison" if it's within
3136  * range [0, UCHAR_MAX].
3137  * Return pages freed into the buddy system.
3138  */
free_initmem_default(int poison)3139 static inline unsigned long free_initmem_default(int poison)
3140 {
3141 	extern char __init_begin[], __init_end[];
3142 
3143 	return free_reserved_area(&__init_begin, &__init_end,
3144 				  poison, "unused kernel image (initmem)");
3145 }
3146 
get_num_physpages(void)3147 static inline unsigned long get_num_physpages(void)
3148 {
3149 	int nid;
3150 	unsigned long phys_pages = 0;
3151 
3152 	for_each_online_node(nid)
3153 		phys_pages += node_present_pages(nid);
3154 
3155 	return phys_pages;
3156 }
3157 
3158 /*
3159  * Using memblock node mappings, an architecture may initialise its
3160  * zones, allocate the backing mem_map and account for memory holes in an
3161  * architecture independent manner.
3162  *
3163  * An architecture is expected to register range of page frames backed by
3164  * physical memory with memblock_add[_node]() before calling
3165  * free_area_init() passing in the PFN each zone ends at. At a basic
3166  * usage, an architecture is expected to do something like
3167  *
3168  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3169  * 							 max_highmem_pfn};
3170  * for_each_valid_physical_page_range()
3171  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3172  * free_area_init(max_zone_pfns);
3173  */
3174 void free_area_init(unsigned long *max_zone_pfn);
3175 unsigned long node_map_pfn_alignment(void);
3176 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3177 						unsigned long end_pfn);
3178 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3179 						unsigned long end_pfn);
3180 extern void get_pfn_range_for_nid(unsigned int nid,
3181 			unsigned long *start_pfn, unsigned long *end_pfn);
3182 
3183 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3184 static inline int early_pfn_to_nid(unsigned long pfn)
3185 {
3186 	return 0;
3187 }
3188 #else
3189 /* please see mm/page_alloc.c */
3190 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3191 #endif
3192 
3193 extern void set_dma_reserve(unsigned long new_dma_reserve);
3194 extern void mem_init(void);
3195 extern void __init mmap_init(void);
3196 
3197 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3198 static inline void show_mem(void)
3199 {
3200 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3201 }
3202 extern long si_mem_available(void);
3203 extern void si_meminfo(struct sysinfo * val);
3204 extern void si_meminfo_node(struct sysinfo *val, int nid);
3205 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3206 extern unsigned long arch_reserved_kernel_pages(void);
3207 #endif
3208 
3209 extern __printf(3, 4)
3210 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3211 
3212 extern void setup_per_cpu_pageset(void);
3213 
3214 /* nommu.c */
3215 extern atomic_long_t mmap_pages_allocated;
3216 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3217 
3218 /* interval_tree.c */
3219 void vma_interval_tree_insert(struct vm_area_struct *node,
3220 			      struct rb_root_cached *root);
3221 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3222 				    struct vm_area_struct *prev,
3223 				    struct rb_root_cached *root);
3224 void vma_interval_tree_remove(struct vm_area_struct *node,
3225 			      struct rb_root_cached *root);
3226 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3227 				unsigned long start, unsigned long last);
3228 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3229 				unsigned long start, unsigned long last);
3230 
3231 #define vma_interval_tree_foreach(vma, root, start, last)		\
3232 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3233 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3234 
3235 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3236 				   struct rb_root_cached *root);
3237 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3238 				   struct rb_root_cached *root);
3239 struct anon_vma_chain *
3240 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3241 				  unsigned long start, unsigned long last);
3242 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3243 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3244 #ifdef CONFIG_DEBUG_VM_RB
3245 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3246 #endif
3247 
3248 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3249 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3250 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3251 
3252 /* mmap.c */
3253 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3254 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3255 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3256 		      struct vm_area_struct *next);
3257 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3258 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3259 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3260 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3261 extern void unlink_file_vma(struct vm_area_struct *);
3262 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3263 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3264 	bool *need_rmap_locks);
3265 extern void exit_mmap(struct mm_struct *);
3266 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3267 				  struct vm_area_struct *prev,
3268 				  struct vm_area_struct *vma,
3269 				  unsigned long start, unsigned long end,
3270 				  unsigned long vm_flags,
3271 				  struct mempolicy *policy,
3272 				  struct vm_userfaultfd_ctx uffd_ctx,
3273 				  struct anon_vma_name *anon_name);
3274 
3275 /* We are about to modify the VMA's flags. */
3276 static inline struct vm_area_struct
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags)3277 *vma_modify_flags(struct vma_iterator *vmi,
3278 		  struct vm_area_struct *prev,
3279 		  struct vm_area_struct *vma,
3280 		  unsigned long start, unsigned long end,
3281 		  unsigned long new_flags)
3282 {
3283 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3284 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3285 			  anon_vma_name(vma));
3286 }
3287 
3288 /* We are about to modify the VMA's flags and/or anon_name. */
3289 static inline struct vm_area_struct
vma_modify_flags_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * new_name)3290 *vma_modify_flags_name(struct vma_iterator *vmi,
3291 		       struct vm_area_struct *prev,
3292 		       struct vm_area_struct *vma,
3293 		       unsigned long start,
3294 		       unsigned long end,
3295 		       unsigned long new_flags,
3296 		       struct anon_vma_name *new_name)
3297 {
3298 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3299 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3300 }
3301 
3302 /* We are about to modify the VMA's memory policy. */
3303 static inline struct vm_area_struct
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)3304 *vma_modify_policy(struct vma_iterator *vmi,
3305 		   struct vm_area_struct *prev,
3306 		   struct vm_area_struct *vma,
3307 		   unsigned long start, unsigned long end,
3308 		   struct mempolicy *new_pol)
3309 {
3310 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3311 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3312 }
3313 
3314 /* We are about to modify the VMA's flags and/or uffd context. */
3315 static inline struct vm_area_struct
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct vm_userfaultfd_ctx new_ctx)3316 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3317 		       struct vm_area_struct *prev,
3318 		       struct vm_area_struct *vma,
3319 		       unsigned long start, unsigned long end,
3320 		       unsigned long new_flags,
3321 		       struct vm_userfaultfd_ctx new_ctx)
3322 {
3323 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3324 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3325 }
3326 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3327 static inline int check_data_rlimit(unsigned long rlim,
3328 				    unsigned long new,
3329 				    unsigned long start,
3330 				    unsigned long end_data,
3331 				    unsigned long start_data)
3332 {
3333 	if (rlim < RLIM_INFINITY) {
3334 		if (((new - start) + (end_data - start_data)) > rlim)
3335 			return -ENOSPC;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 extern int mm_take_all_locks(struct mm_struct *mm);
3342 extern void mm_drop_all_locks(struct mm_struct *mm);
3343 
3344 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3345 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3346 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3347 extern struct file *get_task_exe_file(struct task_struct *task);
3348 
3349 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3350 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3351 
3352 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3353 				   const struct vm_special_mapping *sm);
3354 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3355 				   unsigned long addr, unsigned long len,
3356 				   unsigned long flags,
3357 				   const struct vm_special_mapping *spec);
3358 /* This is an obsolete alternative to _install_special_mapping. */
3359 extern int install_special_mapping(struct mm_struct *mm,
3360 				   unsigned long addr, unsigned long len,
3361 				   unsigned long flags, struct page **pages);
3362 
3363 unsigned long randomize_stack_top(unsigned long stack_top);
3364 unsigned long randomize_page(unsigned long start, unsigned long range);
3365 
3366 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3367 
3368 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3369 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3370 	struct list_head *uf);
3371 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3372 	unsigned long len, unsigned long prot, unsigned long flags,
3373 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3374 	struct list_head *uf);
3375 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3376 			 unsigned long start, size_t len, struct list_head *uf,
3377 			 bool unlock);
3378 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3379 		     struct list_head *uf);
3380 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3381 
3382 #ifdef CONFIG_MMU
3383 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3384 			 unsigned long start, unsigned long end,
3385 			 struct list_head *uf, bool unlock);
3386 extern int __mm_populate(unsigned long addr, unsigned long len,
3387 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3388 static inline void mm_populate(unsigned long addr, unsigned long len)
3389 {
3390 	/* Ignore errors */
3391 	(void) __mm_populate(addr, len, 1);
3392 }
3393 #else
mm_populate(unsigned long addr,unsigned long len)3394 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3395 #endif
3396 
3397 /* This takes the mm semaphore itself */
3398 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3399 extern int vm_munmap(unsigned long, size_t);
3400 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3401         unsigned long, unsigned long,
3402         unsigned long, unsigned long);
3403 
3404 struct vm_unmapped_area_info {
3405 #define VM_UNMAPPED_AREA_TOPDOWN 1
3406 	unsigned long flags;
3407 	unsigned long length;
3408 	unsigned long low_limit;
3409 	unsigned long high_limit;
3410 	unsigned long align_mask;
3411 	unsigned long align_offset;
3412 };
3413 
3414 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3415 
3416 /* truncate.c */
3417 extern void truncate_inode_pages(struct address_space *, loff_t);
3418 extern void truncate_inode_pages_range(struct address_space *,
3419 				       loff_t lstart, loff_t lend);
3420 extern void truncate_inode_pages_final(struct address_space *);
3421 
3422 /* generic vm_area_ops exported for stackable file systems */
3423 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3424 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3425 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3426 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3427 
3428 extern unsigned long stack_guard_gap;
3429 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3430 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3431 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3432 
3433 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3434 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3435 
3436 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3437 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3438 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3439 					     struct vm_area_struct **pprev);
3440 
3441 /*
3442  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3443  * NULL if none.  Assume start_addr < end_addr.
3444  */
3445 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3446 			unsigned long start_addr, unsigned long end_addr);
3447 
3448 /**
3449  * vma_lookup() - Find a VMA at a specific address
3450  * @mm: The process address space.
3451  * @addr: The user address.
3452  *
3453  * Return: The vm_area_struct at the given address, %NULL otherwise.
3454  */
3455 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3456 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3457 {
3458 	return mtree_load(&mm->mm_mt, addr);
3459 }
3460 
stack_guard_start_gap(struct vm_area_struct * vma)3461 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3462 {
3463 	if (vma->vm_flags & VM_GROWSDOWN)
3464 		return stack_guard_gap;
3465 
3466 	/* See reasoning around the VM_SHADOW_STACK definition */
3467 	if (vma->vm_flags & VM_SHADOW_STACK)
3468 		return PAGE_SIZE;
3469 
3470 	return 0;
3471 }
3472 
vm_start_gap(struct vm_area_struct * vma)3473 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3474 {
3475 	unsigned long gap = stack_guard_start_gap(vma);
3476 	unsigned long vm_start = vma->vm_start;
3477 
3478 	vm_start -= gap;
3479 	if (vm_start > vma->vm_start)
3480 		vm_start = 0;
3481 	return vm_start;
3482 }
3483 
vm_end_gap(struct vm_area_struct * vma)3484 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3485 {
3486 	unsigned long vm_end = vma->vm_end;
3487 
3488 	if (vma->vm_flags & VM_GROWSUP) {
3489 		vm_end += stack_guard_gap;
3490 		if (vm_end < vma->vm_end)
3491 			vm_end = -PAGE_SIZE;
3492 	}
3493 	return vm_end;
3494 }
3495 
vma_pages(struct vm_area_struct * vma)3496 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3497 {
3498 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3499 }
3500 
3501 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3502 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3503 				unsigned long vm_start, unsigned long vm_end)
3504 {
3505 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3506 
3507 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3508 		vma = NULL;
3509 
3510 	return vma;
3511 }
3512 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3513 static inline bool range_in_vma(struct vm_area_struct *vma,
3514 				unsigned long start, unsigned long end)
3515 {
3516 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3517 }
3518 
3519 #ifdef CONFIG_MMU
3520 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3521 void vma_set_page_prot(struct vm_area_struct *vma);
3522 #else
vm_get_page_prot(unsigned long vm_flags)3523 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3524 {
3525 	return __pgprot(0);
3526 }
vma_set_page_prot(struct vm_area_struct * vma)3527 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3528 {
3529 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3530 }
3531 #endif
3532 
3533 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3534 
3535 #ifdef CONFIG_NUMA_BALANCING
3536 unsigned long change_prot_numa(struct vm_area_struct *vma,
3537 			unsigned long start, unsigned long end);
3538 #endif
3539 
3540 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3541 		unsigned long addr);
3542 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3543 			unsigned long pfn, unsigned long size, pgprot_t);
3544 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3545 		unsigned long pfn, unsigned long size, pgprot_t prot);
3546 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3547 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3548 			struct page **pages, unsigned long *num);
3549 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3550 				unsigned long num);
3551 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3552 				unsigned long num);
3553 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3554 			unsigned long pfn);
3555 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3556 			unsigned long pfn, pgprot_t pgprot);
3557 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3558 			pfn_t pfn);
3559 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3560 		unsigned long addr, pfn_t pfn);
3561 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3562 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3563 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3564 				unsigned long addr, struct page *page)
3565 {
3566 	int err = vm_insert_page(vma, addr, page);
3567 
3568 	if (err == -ENOMEM)
3569 		return VM_FAULT_OOM;
3570 	if (err < 0 && err != -EBUSY)
3571 		return VM_FAULT_SIGBUS;
3572 
3573 	return VM_FAULT_NOPAGE;
3574 }
3575 
3576 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3577 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3578 				     unsigned long addr, unsigned long pfn,
3579 				     unsigned long size, pgprot_t prot)
3580 {
3581 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3582 }
3583 #endif
3584 
vmf_error(int err)3585 static inline vm_fault_t vmf_error(int err)
3586 {
3587 	if (err == -ENOMEM)
3588 		return VM_FAULT_OOM;
3589 	else if (err == -EHWPOISON)
3590 		return VM_FAULT_HWPOISON;
3591 	return VM_FAULT_SIGBUS;
3592 }
3593 
3594 /*
3595  * Convert errno to return value for ->page_mkwrite() calls.
3596  *
3597  * This should eventually be merged with vmf_error() above, but will need a
3598  * careful audit of all vmf_error() callers.
3599  */
vmf_fs_error(int err)3600 static inline vm_fault_t vmf_fs_error(int err)
3601 {
3602 	if (err == 0)
3603 		return VM_FAULT_LOCKED;
3604 	if (err == -EFAULT || err == -EAGAIN)
3605 		return VM_FAULT_NOPAGE;
3606 	if (err == -ENOMEM)
3607 		return VM_FAULT_OOM;
3608 	/* -ENOSPC, -EDQUOT, -EIO ... */
3609 	return VM_FAULT_SIGBUS;
3610 }
3611 
3612 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3613 			 unsigned int foll_flags);
3614 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3615 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3616 {
3617 	if (vm_fault & VM_FAULT_OOM)
3618 		return -ENOMEM;
3619 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3620 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3621 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3622 		return -EFAULT;
3623 	return 0;
3624 }
3625 
3626 /*
3627  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3628  * a (NUMA hinting) fault is required.
3629  */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3630 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3631 					   unsigned int flags)
3632 {
3633 	/*
3634 	 * If callers don't want to honor NUMA hinting faults, no need to
3635 	 * determine if we would actually have to trigger a NUMA hinting fault.
3636 	 */
3637 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3638 		return true;
3639 
3640 	/*
3641 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3642 	 *
3643 	 * Requiring a fault here even for inaccessible VMAs would mean that
3644 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3645 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3646 	 */
3647 	return !vma_is_accessible(vma);
3648 }
3649 
3650 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3651 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3652 			       unsigned long size, pte_fn_t fn, void *data);
3653 extern int apply_to_existing_page_range(struct mm_struct *mm,
3654 				   unsigned long address, unsigned long size,
3655 				   pte_fn_t fn, void *data);
3656 
3657 #ifdef CONFIG_PAGE_POISONING
3658 extern void __kernel_poison_pages(struct page *page, int numpages);
3659 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3660 extern bool _page_poisoning_enabled_early;
3661 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3662 static inline bool page_poisoning_enabled(void)
3663 {
3664 	return _page_poisoning_enabled_early;
3665 }
3666 /*
3667  * For use in fast paths after init_mem_debugging() has run, or when a
3668  * false negative result is not harmful when called too early.
3669  */
page_poisoning_enabled_static(void)3670 static inline bool page_poisoning_enabled_static(void)
3671 {
3672 	return static_branch_unlikely(&_page_poisoning_enabled);
3673 }
kernel_poison_pages(struct page * page,int numpages)3674 static inline void kernel_poison_pages(struct page *page, int numpages)
3675 {
3676 	if (page_poisoning_enabled_static())
3677 		__kernel_poison_pages(page, numpages);
3678 }
kernel_unpoison_pages(struct page * page,int numpages)3679 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3680 {
3681 	if (page_poisoning_enabled_static())
3682 		__kernel_unpoison_pages(page, numpages);
3683 }
3684 #else
page_poisoning_enabled(void)3685 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3686 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3687 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3688 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3689 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3690 #endif
3691 
3692 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3693 static inline bool want_init_on_alloc(gfp_t flags)
3694 {
3695 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3696 				&init_on_alloc))
3697 		return true;
3698 	return flags & __GFP_ZERO;
3699 }
3700 
3701 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3702 static inline bool want_init_on_free(void)
3703 {
3704 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3705 				   &init_on_free);
3706 }
3707 
3708 extern bool _debug_pagealloc_enabled_early;
3709 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3710 
debug_pagealloc_enabled(void)3711 static inline bool debug_pagealloc_enabled(void)
3712 {
3713 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3714 		_debug_pagealloc_enabled_early;
3715 }
3716 
3717 /*
3718  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3719  * or when a false negative result is not harmful when called too early.
3720  */
debug_pagealloc_enabled_static(void)3721 static inline bool debug_pagealloc_enabled_static(void)
3722 {
3723 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3724 		return false;
3725 
3726 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3727 }
3728 
3729 /*
3730  * To support DEBUG_PAGEALLOC architecture must ensure that
3731  * __kernel_map_pages() never fails
3732  */
3733 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3734 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3735 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3736 {
3737 	if (debug_pagealloc_enabled_static())
3738 		__kernel_map_pages(page, numpages, 1);
3739 }
3740 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3741 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3742 {
3743 	if (debug_pagealloc_enabled_static())
3744 		__kernel_map_pages(page, numpages, 0);
3745 }
3746 
3747 extern unsigned int _debug_guardpage_minorder;
3748 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3749 
debug_guardpage_minorder(void)3750 static inline unsigned int debug_guardpage_minorder(void)
3751 {
3752 	return _debug_guardpage_minorder;
3753 }
3754 
debug_guardpage_enabled(void)3755 static inline bool debug_guardpage_enabled(void)
3756 {
3757 	return static_branch_unlikely(&_debug_guardpage_enabled);
3758 }
3759 
page_is_guard(struct page * page)3760 static inline bool page_is_guard(struct page *page)
3761 {
3762 	if (!debug_guardpage_enabled())
3763 		return false;
3764 
3765 	return PageGuard(page);
3766 }
3767 
3768 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3769 		      int migratetype);
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3770 static inline bool set_page_guard(struct zone *zone, struct page *page,
3771 				  unsigned int order, int migratetype)
3772 {
3773 	if (!debug_guardpage_enabled())
3774 		return false;
3775 	return __set_page_guard(zone, page, order, migratetype);
3776 }
3777 
3778 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3779 			int migratetype);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3780 static inline void clear_page_guard(struct zone *zone, struct page *page,
3781 				    unsigned int order, int migratetype)
3782 {
3783 	if (!debug_guardpage_enabled())
3784 		return;
3785 	__clear_page_guard(zone, page, order, migratetype);
3786 }
3787 
3788 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3789 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3790 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3791 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3792 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3793 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3794 static inline bool set_page_guard(struct zone *zone, struct page *page,
3795 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3796 static inline void clear_page_guard(struct zone *zone, struct page *page,
3797 				unsigned int order, int migratetype) {}
3798 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3799 
3800 #ifdef __HAVE_ARCH_GATE_AREA
3801 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3802 extern int in_gate_area_no_mm(unsigned long addr);
3803 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3804 #else
get_gate_vma(struct mm_struct * mm)3805 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3806 {
3807 	return NULL;
3808 }
in_gate_area_no_mm(unsigned long addr)3809 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3810 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3811 {
3812 	return 0;
3813 }
3814 #endif	/* __HAVE_ARCH_GATE_AREA */
3815 
3816 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3817 
3818 #ifdef CONFIG_SYSCTL
3819 extern int sysctl_drop_caches;
3820 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3821 		loff_t *);
3822 #endif
3823 
3824 void drop_slab(void);
3825 
3826 #ifndef CONFIG_MMU
3827 #define randomize_va_space 0
3828 #else
3829 extern int randomize_va_space;
3830 #endif
3831 
3832 const char * arch_vma_name(struct vm_area_struct *vma);
3833 #ifdef CONFIG_MMU
3834 void print_vma_addr(char *prefix, unsigned long rip);
3835 #else
print_vma_addr(char * prefix,unsigned long rip)3836 static inline void print_vma_addr(char *prefix, unsigned long rip)
3837 {
3838 }
3839 #endif
3840 
3841 void *sparse_buffer_alloc(unsigned long size);
3842 struct page * __populate_section_memmap(unsigned long pfn,
3843 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3844 		struct dev_pagemap *pgmap);
3845 void pmd_init(void *addr);
3846 void pud_init(void *addr);
3847 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3848 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3849 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3850 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3851 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3852 			    struct vmem_altmap *altmap, struct page *reuse);
3853 void *vmemmap_alloc_block(unsigned long size, int node);
3854 struct vmem_altmap;
3855 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3856 			      struct vmem_altmap *altmap);
3857 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3858 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3859 		     unsigned long addr, unsigned long next);
3860 int vmemmap_check_pmd(pmd_t *pmd, int node,
3861 		      unsigned long addr, unsigned long next);
3862 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3863 			       int node, struct vmem_altmap *altmap);
3864 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3865 			       int node, struct vmem_altmap *altmap);
3866 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3867 		struct vmem_altmap *altmap);
3868 void vmemmap_populate_print_last(void);
3869 #ifdef CONFIG_MEMORY_HOTPLUG
3870 void vmemmap_free(unsigned long start, unsigned long end,
3871 		struct vmem_altmap *altmap);
3872 #endif
3873 
3874 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3875 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3876 {
3877 	/* number of pfns from base where pfn_to_page() is valid */
3878 	if (altmap)
3879 		return altmap->reserve + altmap->free;
3880 	return 0;
3881 }
3882 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3883 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3884 				    unsigned long nr_pfns)
3885 {
3886 	altmap->alloc -= nr_pfns;
3887 }
3888 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3889 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3890 {
3891 	return 0;
3892 }
3893 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3894 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3895 				    unsigned long nr_pfns)
3896 {
3897 }
3898 #endif
3899 
3900 #define VMEMMAP_RESERVE_NR	2
3901 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3902 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3903 					  struct dev_pagemap *pgmap)
3904 {
3905 	unsigned long nr_pages;
3906 	unsigned long nr_vmemmap_pages;
3907 
3908 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3909 		return false;
3910 
3911 	nr_pages = pgmap_vmemmap_nr(pgmap);
3912 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3913 	/*
3914 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3915 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3916 	 */
3917 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3918 }
3919 /*
3920  * If we don't have an architecture override, use the generic rule
3921  */
3922 #ifndef vmemmap_can_optimize
3923 #define vmemmap_can_optimize __vmemmap_can_optimize
3924 #endif
3925 
3926 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3927 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3928 					   struct dev_pagemap *pgmap)
3929 {
3930 	return false;
3931 }
3932 #endif
3933 
3934 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3935 				  unsigned long nr_pages);
3936 
3937 enum mf_flags {
3938 	MF_COUNT_INCREASED = 1 << 0,
3939 	MF_ACTION_REQUIRED = 1 << 1,
3940 	MF_MUST_KILL = 1 << 2,
3941 	MF_SOFT_OFFLINE = 1 << 3,
3942 	MF_UNPOISON = 1 << 4,
3943 	MF_SW_SIMULATED = 1 << 5,
3944 	MF_NO_RETRY = 1 << 6,
3945 	MF_MEM_PRE_REMOVE = 1 << 7,
3946 };
3947 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3948 		      unsigned long count, int mf_flags);
3949 extern int memory_failure(unsigned long pfn, int flags);
3950 extern void memory_failure_queue_kick(int cpu);
3951 extern int unpoison_memory(unsigned long pfn);
3952 extern void shake_page(struct page *p);
3953 extern atomic_long_t num_poisoned_pages __read_mostly;
3954 extern int soft_offline_page(unsigned long pfn, int flags);
3955 #ifdef CONFIG_MEMORY_FAILURE
3956 /*
3957  * Sysfs entries for memory failure handling statistics.
3958  */
3959 extern const struct attribute_group memory_failure_attr_group;
3960 extern void memory_failure_queue(unsigned long pfn, int flags);
3961 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3962 					bool *migratable_cleared);
3963 void num_poisoned_pages_inc(unsigned long pfn);
3964 void num_poisoned_pages_sub(unsigned long pfn, long i);
3965 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3966 #else
memory_failure_queue(unsigned long pfn,int flags)3967 static inline void memory_failure_queue(unsigned long pfn, int flags)
3968 {
3969 }
3970 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3971 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3972 					bool *migratable_cleared)
3973 {
3974 	return 0;
3975 }
3976 
num_poisoned_pages_inc(unsigned long pfn)3977 static inline void num_poisoned_pages_inc(unsigned long pfn)
3978 {
3979 }
3980 
num_poisoned_pages_sub(unsigned long pfn,long i)3981 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3982 {
3983 }
3984 #endif
3985 
3986 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3987 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3988 		     struct vm_area_struct *vma, struct list_head *to_kill,
3989 		     unsigned long ksm_addr);
3990 #endif
3991 
3992 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3993 extern void memblk_nr_poison_inc(unsigned long pfn);
3994 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3995 #else
memblk_nr_poison_inc(unsigned long pfn)3996 static inline void memblk_nr_poison_inc(unsigned long pfn)
3997 {
3998 }
3999 
memblk_nr_poison_sub(unsigned long pfn,long i)4000 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4001 {
4002 }
4003 #endif
4004 
4005 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4006 static inline int arch_memory_failure(unsigned long pfn, int flags)
4007 {
4008 	return -ENXIO;
4009 }
4010 #endif
4011 
4012 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4013 static inline bool arch_is_platform_page(u64 paddr)
4014 {
4015 	return false;
4016 }
4017 #endif
4018 
4019 /*
4020  * Error handlers for various types of pages.
4021  */
4022 enum mf_result {
4023 	MF_IGNORED,	/* Error: cannot be handled */
4024 	MF_FAILED,	/* Error: handling failed */
4025 	MF_DELAYED,	/* Will be handled later */
4026 	MF_RECOVERED,	/* Successfully recovered */
4027 };
4028 
4029 enum mf_action_page_type {
4030 	MF_MSG_KERNEL,
4031 	MF_MSG_KERNEL_HIGH_ORDER,
4032 	MF_MSG_SLAB,
4033 	MF_MSG_DIFFERENT_COMPOUND,
4034 	MF_MSG_HUGE,
4035 	MF_MSG_FREE_HUGE,
4036 	MF_MSG_UNMAP_FAILED,
4037 	MF_MSG_DIRTY_SWAPCACHE,
4038 	MF_MSG_CLEAN_SWAPCACHE,
4039 	MF_MSG_DIRTY_MLOCKED_LRU,
4040 	MF_MSG_CLEAN_MLOCKED_LRU,
4041 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4042 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4043 	MF_MSG_DIRTY_LRU,
4044 	MF_MSG_CLEAN_LRU,
4045 	MF_MSG_TRUNCATED_LRU,
4046 	MF_MSG_BUDDY,
4047 	MF_MSG_DAX,
4048 	MF_MSG_UNSPLIT_THP,
4049 	MF_MSG_UNKNOWN,
4050 };
4051 
4052 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4053 extern void clear_huge_page(struct page *page,
4054 			    unsigned long addr_hint,
4055 			    unsigned int pages_per_huge_page);
4056 int copy_user_large_folio(struct folio *dst, struct folio *src,
4057 			  unsigned long addr_hint,
4058 			  struct vm_area_struct *vma);
4059 long copy_folio_from_user(struct folio *dst_folio,
4060 			   const void __user *usr_src,
4061 			   bool allow_pagefault);
4062 
4063 /**
4064  * vma_is_special_huge - Are transhuge page-table entries considered special?
4065  * @vma: Pointer to the struct vm_area_struct to consider
4066  *
4067  * Whether transhuge page-table entries are considered "special" following
4068  * the definition in vm_normal_page().
4069  *
4070  * Return: true if transhuge page-table entries should be considered special,
4071  * false otherwise.
4072  */
vma_is_special_huge(const struct vm_area_struct * vma)4073 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4074 {
4075 	return vma_is_dax(vma) || (vma->vm_file &&
4076 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4077 }
4078 
4079 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4080 
4081 #if MAX_NUMNODES > 1
4082 void __init setup_nr_node_ids(void);
4083 #else
setup_nr_node_ids(void)4084 static inline void setup_nr_node_ids(void) {}
4085 #endif
4086 
4087 extern int memcmp_pages(struct page *page1, struct page *page2);
4088 
pages_identical(struct page * page1,struct page * page2)4089 static inline int pages_identical(struct page *page1, struct page *page2)
4090 {
4091 	return !memcmp_pages(page1, page2);
4092 }
4093 
4094 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4095 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4096 						pgoff_t first_index, pgoff_t nr,
4097 						pgoff_t bitmap_pgoff,
4098 						unsigned long *bitmap,
4099 						pgoff_t *start,
4100 						pgoff_t *end);
4101 
4102 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4103 				      pgoff_t first_index, pgoff_t nr);
4104 #endif
4105 
4106 extern int sysctl_nr_trim_pages;
4107 
4108 #ifdef CONFIG_PRINTK
4109 void mem_dump_obj(void *object);
4110 #else
mem_dump_obj(void * object)4111 static inline void mem_dump_obj(void *object) {}
4112 #endif
4113 
4114 /**
4115  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4116  *                    handle them.
4117  * @seals: the seals to check
4118  * @vma: the vma to operate on
4119  *
4120  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4121  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4122  */
seal_check_write(int seals,struct vm_area_struct * vma)4123 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4124 {
4125 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4126 		/*
4127 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4128 		 * write seals are active.
4129 		 */
4130 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4131 			return -EPERM;
4132 
4133 		/*
4134 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4135 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4136 		 * revert protections on such mappings. Do this only for shared
4137 		 * mappings. For private mappings, don't need to mask
4138 		 * VM_MAYWRITE as we still want them to be COW-writable.
4139 		 */
4140 		if (vma->vm_flags & VM_SHARED)
4141 			vm_flags_clear(vma, VM_MAYWRITE);
4142 	}
4143 
4144 	return 0;
4145 }
4146 
4147 #ifdef CONFIG_ANON_VMA_NAME
4148 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4149 			  unsigned long len_in,
4150 			  struct anon_vma_name *anon_name);
4151 #else
4152 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4153 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4154 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4155 	return 0;
4156 }
4157 #endif
4158 
4159 #ifdef CONFIG_UNACCEPTED_MEMORY
4160 
4161 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4162 void accept_memory(phys_addr_t start, phys_addr_t end);
4163 
4164 #else
4165 
range_contains_unaccepted_memory(phys_addr_t start,phys_addr_t end)4166 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4167 						    phys_addr_t end)
4168 {
4169 	return false;
4170 }
4171 
accept_memory(phys_addr_t start,phys_addr_t end)4172 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4173 {
4174 }
4175 
4176 #endif
4177 
pfn_is_unaccepted_memory(unsigned long pfn)4178 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4179 {
4180 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4181 
4182 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4183 }
4184 
4185 #endif /* _LINUX_MM_H */
4186