1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <Liam.Howlett@Oracle.com>
8  *              Matthew Wilcox <willy@infradead.org>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40 
41 #define MAPLE_NODE_MASK		255UL
42 
43 /*
44  * The node->parent of the root node has bit 0 set and the rest of the pointer
45  * is a pointer to the tree itself.  No more bits are available in this pointer
46  * (on m68k, the data structure may only be 2-byte aligned).
47  *
48  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
49  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
50  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
51  * extra bit to store the offset.  This extra bit comes from a reuse of the last
52  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
53  * is part of the type or the slot.
54  *
55  * Once the type is decided, the decision of an allocation range type or a range
56  * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
57  * flag.
58  *
59  *  Node types:
60  *   0x??1 = Root
61  *   0x?00 = 16 bit nodes
62  *   0x010 = 32 bit nodes
63  *   0x110 = 64 bit nodes
64  *
65  *  Slot size and location in the parent pointer:
66  *   type  : slot location
67  *   0x??1 : Root
68  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
69  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
70  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
71  */
72 
73 /*
74  * This metadata is used to optimize the gap updating code and in reverse
75  * searching for gaps or any other code that needs to find the end of the data.
76  */
77 struct maple_metadata {
78 	unsigned char end;
79 	unsigned char gap;
80 };
81 
82 /*
83  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
84  * store almost any bit pattern.  As noted above, the optimisation of storing an
85  * entry at 0 in the root pointer cannot be done for data which have the bottom
86  * two bits set to '10'.  We also reserve values with the bottom two bits set to
87  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
88  * return errnos as a negative errno shifted right by two bits and the bottom
89  * two bits set to '10', and while choosing to store these values in the array
90  * is not an error, it may lead to confusion if you're testing for an error with
91  * mas_is_err().
92  *
93  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
95  *
96  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
97  * indicate that the tree is specifying ranges,  Pivots may appear in the
98  * subtree with an entry attached to the value whereas keys are unique to a
99  * specific position of a B-tree.  Pivot values are inclusive of the slot with
100  * the same index.
101  */
102 
103 struct maple_range_64 {
104 	struct maple_pnode *parent;
105 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 	union {
107 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 		struct {
109 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 			struct maple_metadata meta;
111 		};
112 	};
113 };
114 
115 /*
116  * At tree creation time, the user can specify that they're willing to trade off
117  * storing fewer entries in a tree in return for storing more information in
118  * each node.
119  *
120  * The maple tree supports recording the largest range of NULL entries available
121  * in this node, also called gaps.  This optimises the tree for allocating a
122  * range.
123  */
124 struct maple_arange_64 {
125 	struct maple_pnode *parent;
126 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 	struct maple_metadata meta;
130 };
131 
132 struct maple_alloc {
133 	unsigned long total;
134 	unsigned char node_count;
135 	unsigned int request_count;
136 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138 
139 struct maple_topiary {
140 	struct maple_pnode *parent;
141 	struct maple_enode *next; /* Overlaps the pivot */
142 };
143 
144 enum maple_type {
145 	maple_dense,
146 	maple_leaf_64,
147 	maple_range_64,
148 	maple_arange_64,
149 };
150 
151 
152 /**
153  * DOC: Maple tree flags
154  *
155  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
156  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
157  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
158  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
159  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
160  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
161  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
162  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
163  *
164  * MAPLE_HEIGHT_MAX	The largest height that can be stored
165  */
166 #define MT_FLAGS_ALLOC_RANGE	0x01
167 #define MT_FLAGS_USE_RCU	0x02
168 #define MT_FLAGS_HEIGHT_OFFSET	0x02
169 #define MT_FLAGS_HEIGHT_MASK	0x7C
170 #define MT_FLAGS_LOCK_MASK	0x300
171 #define MT_FLAGS_LOCK_IRQ	0x100
172 #define MT_FLAGS_LOCK_BH	0x200
173 #define MT_FLAGS_LOCK_EXTERN	0x300
174 
175 #define MAPLE_HEIGHT_MAX	31
176 
177 
178 #define MAPLE_NODE_TYPE_MASK	0x0F
179 #define MAPLE_NODE_TYPE_SHIFT	0x03
180 
181 #define MAPLE_RESERVED_RANGE	4096
182 
183 #ifdef CONFIG_LOCKDEP
184 typedef struct lockdep_map *lockdep_map_p;
185 #define mt_lock_is_held(mt)                                             \
186 	(!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
187 
188 #define mt_write_lock_is_held(mt)					\
189 	(!(mt)->ma_external_lock ||					\
190 	 lock_is_held_type((mt)->ma_external_lock, 0))
191 
192 #define mt_set_external_lock(mt, lock)					\
193 	(mt)->ma_external_lock = &(lock)->dep_map
194 
195 #define mt_on_stack(mt)			(mt).ma_external_lock = NULL
196 #else
197 typedef struct { /* nothing */ } lockdep_map_p;
198 #define mt_lock_is_held(mt)		1
199 #define mt_write_lock_is_held(mt)	1
200 #define mt_set_external_lock(mt, lock)	do { } while (0)
201 #define mt_on_stack(mt)			do { } while (0)
202 #endif
203 
204 /*
205  * If the tree contains a single entry at index 0, it is usually stored in
206  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
207  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
208  * stored in a node.  Bits 3-6 are used to store enum maple_type.
209  *
210  * The flags are used both to store some immutable information about this tree
211  * (set at tree creation time) and dynamic information set under the spinlock.
212  *
213  * Another use of flags are to indicate global states of the tree.  This is the
214  * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
215  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
216  * re-allocating and RCU freeing nodes when there is a single user.
217  */
218 struct maple_tree {
219 	union {
220 		spinlock_t	ma_lock;
221 		lockdep_map_p	ma_external_lock;
222 	};
223 	unsigned int	ma_flags;
224 	void __rcu      *ma_root;
225 };
226 
227 /**
228  * MTREE_INIT() - Initialize a maple tree
229  * @name: The maple tree name
230  * @__flags: The maple tree flags
231  *
232  */
233 #define MTREE_INIT(name, __flags) {					\
234 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
235 	.ma_flags = __flags,						\
236 	.ma_root = NULL,						\
237 }
238 
239 /**
240  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
241  * @name: The tree name
242  * @__flags: The maple tree flags
243  * @__lock: The external lock
244  */
245 #ifdef CONFIG_LOCKDEP
246 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
247 	.ma_external_lock = &(__lock).dep_map,				\
248 	.ma_flags = (__flags),						\
249 	.ma_root = NULL,						\
250 }
251 #else
252 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
253 #endif
254 
255 #define DEFINE_MTREE(name)						\
256 	struct maple_tree name = MTREE_INIT(name, 0)
257 
258 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
259 #define mtree_lock_nested(mas, subclass) \
260 		spin_lock_nested((&(mt)->ma_lock), subclass)
261 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
262 
263 /*
264  * The Maple Tree squeezes various bits in at various points which aren't
265  * necessarily obvious.  Usually, this is done by observing that pointers are
266  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
267  * don't use the high bits of pointers to store additional information because
268  * we don't know what bits are unused on any given architecture.
269  *
270  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
271  * low bits for our own purposes.  Nodes are currently of 4 types:
272  * 1. Single pointer (Range is 0-0)
273  * 2. Non-leaf Allocation Range nodes
274  * 3. Non-leaf Range nodes
275  * 4. Leaf Range nodes All nodes consist of a number of node slots,
276  *    pivots, and a parent pointer.
277  */
278 
279 struct maple_node {
280 	union {
281 		struct {
282 			struct maple_pnode *parent;
283 			void __rcu *slot[MAPLE_NODE_SLOTS];
284 		};
285 		struct {
286 			void *pad;
287 			struct rcu_head rcu;
288 			struct maple_enode *piv_parent;
289 			unsigned char parent_slot;
290 			enum maple_type type;
291 			unsigned char slot_len;
292 			unsigned int ma_flags;
293 		};
294 		struct maple_range_64 mr64;
295 		struct maple_arange_64 ma64;
296 		struct maple_alloc alloc;
297 	};
298 };
299 
300 /*
301  * More complicated stores can cause two nodes to become one or three and
302  * potentially alter the height of the tree.  Either half of the tree may need
303  * to be rebalanced against the other.  The ma_topiary struct is used to track
304  * which nodes have been 'cut' from the tree so that the change can be done
305  * safely at a later date.  This is done to support RCU.
306  */
307 struct ma_topiary {
308 	struct maple_enode *head;
309 	struct maple_enode *tail;
310 	struct maple_tree *mtree;
311 };
312 
313 void *mtree_load(struct maple_tree *mt, unsigned long index);
314 
315 int mtree_insert(struct maple_tree *mt, unsigned long index,
316 		void *entry, gfp_t gfp);
317 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
318 		unsigned long last, void *entry, gfp_t gfp);
319 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
320 		void *entry, unsigned long size, unsigned long min,
321 		unsigned long max, gfp_t gfp);
322 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
323 		void *entry, unsigned long size, unsigned long min,
324 		unsigned long max, gfp_t gfp);
325 
326 int mtree_store_range(struct maple_tree *mt, unsigned long first,
327 		      unsigned long last, void *entry, gfp_t gfp);
328 int mtree_store(struct maple_tree *mt, unsigned long index,
329 		void *entry, gfp_t gfp);
330 void *mtree_erase(struct maple_tree *mt, unsigned long index);
331 
332 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
333 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
334 
335 void mtree_destroy(struct maple_tree *mt);
336 void __mt_destroy(struct maple_tree *mt);
337 
338 /**
339  * mtree_empty() - Determine if a tree has any present entries.
340  * @mt: Maple Tree.
341  *
342  * Context: Any context.
343  * Return: %true if the tree contains only NULL pointers.
344  */
mtree_empty(const struct maple_tree * mt)345 static inline bool mtree_empty(const struct maple_tree *mt)
346 {
347 	return mt->ma_root == NULL;
348 }
349 
350 /* Advanced API */
351 
352 /*
353  * Maple State Status
354  * ma_active means the maple state is pointing to a node and offset and can
355  * continue operating on the tree.
356  * ma_start means we have not searched the tree.
357  * ma_root means we have searched the tree and the entry we found lives in
358  * the root of the tree (ie it has index 0, length 1 and is the only entry in
359  * the tree).
360  * ma_none means we have searched the tree and there is no node in the
361  * tree for this entry.  For example, we searched for index 1 in an empty
362  * tree.  Or we have a tree which points to a full leaf node and we
363  * searched for an entry which is larger than can be contained in that
364  * leaf node.
365  * ma_pause means the data within the maple state may be stale, restart the
366  * operation
367  * ma_overflow means the search has reached the upper limit of the search
368  * ma_underflow means the search has reached the lower limit of the search
369  * ma_error means there was an error, check the node for the error number.
370  */
371 enum maple_status {
372 	ma_active,
373 	ma_start,
374 	ma_root,
375 	ma_none,
376 	ma_pause,
377 	ma_overflow,
378 	ma_underflow,
379 	ma_error,
380 };
381 
382 /*
383  * The maple state is defined in the struct ma_state and is used to keep track
384  * of information during operations, and even between operations when using the
385  * advanced API.
386  *
387  * If state->node has bit 0 set then it references a tree location which is not
388  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
389  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
390  * node type.
391  *
392  * state->alloc either has a request number of nodes or an allocated node.  If
393  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
394  * and the remaining bits are the value.  If state->alloc is a node, then the
395  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
396  * storing more allocated nodes, a total number of nodes allocated, and the
397  * node_count in this node.  node_count is the number of allocated nodes in this
398  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
399  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
400  * by removing a node from the state->alloc node until state->alloc->node_count
401  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
402  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
403  * state->alloc into the pushed node's slot[0].
404  *
405  * The state also contains the implied min/max of the state->node, the depth of
406  * this search, and the offset. The implied min/max are either from the parent
407  * node or are 0-oo for the root node.  The depth is incremented or decremented
408  * every time a node is walked down or up.  The offset is the slot/pivot of
409  * interest in the node - either for reading or writing.
410  *
411  * When returning a value the maple state index and last respectively contain
412  * the start and end of the range for the entry.  Ranges are inclusive in the
413  * Maple Tree.
414  *
415  * The status of the state is used to determine how the next action should treat
416  * the state.  For instance, if the status is ma_start then the next action
417  * should start at the root of the tree and walk down.  If the status is
418  * ma_pause then the node may be stale data and should be discarded.  If the
419  * status is ma_overflow, then the last action hit the upper limit.
420  *
421  */
422 struct ma_state {
423 	struct maple_tree *tree;	/* The tree we're operating in */
424 	unsigned long index;		/* The index we're operating on - range start */
425 	unsigned long last;		/* The last index we're operating on - range end */
426 	struct maple_enode *node;	/* The node containing this entry */
427 	unsigned long min;		/* The minimum index of this node - implied pivot min */
428 	unsigned long max;		/* The maximum index of this node - implied pivot max */
429 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
430 	enum maple_status status;	/* The status of the state (active, start, none, etc) */
431 	unsigned char depth;		/* depth of tree descent during write */
432 	unsigned char offset;
433 	unsigned char mas_flags;
434 	unsigned char end;		/* The end of the node */
435 };
436 
437 struct ma_wr_state {
438 	struct ma_state *mas;
439 	struct maple_node *node;	/* Decoded mas->node */
440 	unsigned long r_min;		/* range min */
441 	unsigned long r_max;		/* range max */
442 	enum maple_type type;		/* mas->node type */
443 	unsigned char offset_end;	/* The offset where the write ends */
444 	unsigned long *pivots;		/* mas->node->pivots pointer */
445 	unsigned long end_piv;		/* The pivot at the offset end */
446 	void __rcu **slots;		/* mas->node->slots pointer */
447 	void *entry;			/* The entry to write */
448 	void *content;			/* The existing entry that is being overwritten */
449 };
450 
451 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
452 #define mas_lock_nested(mas, subclass) \
453 		spin_lock_nested(&((mas)->tree->ma_lock), subclass)
454 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
455 
456 /*
457  * Special values for ma_state.node.
458  * MA_ERROR represents an errno.  After dropping the lock and attempting
459  * to resolve the error, the walk would have to be restarted from the
460  * top of the tree as the tree may have been modified.
461  */
462 #define MA_ERROR(err) \
463 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
464 
465 #define MA_STATE(name, mt, first, end)					\
466 	struct ma_state name = {					\
467 		.tree = mt,						\
468 		.index = first,						\
469 		.last = end,						\
470 		.node = NULL,						\
471 		.status = ma_start,					\
472 		.min = 0,						\
473 		.max = ULONG_MAX,					\
474 		.alloc = NULL,						\
475 		.mas_flags = 0,						\
476 	}
477 
478 #define MA_WR_STATE(name, ma_state, wr_entry)				\
479 	struct ma_wr_state name = {					\
480 		.mas = ma_state,					\
481 		.content = NULL,					\
482 		.entry = wr_entry,					\
483 	}
484 
485 #define MA_TOPIARY(name, tree)						\
486 	struct ma_topiary name = {					\
487 		.head = NULL,						\
488 		.tail = NULL,						\
489 		.mtree = tree,						\
490 	}
491 
492 void *mas_walk(struct ma_state *mas);
493 void *mas_store(struct ma_state *mas, void *entry);
494 void *mas_erase(struct ma_state *mas);
495 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
496 void mas_store_prealloc(struct ma_state *mas, void *entry);
497 void *mas_find(struct ma_state *mas, unsigned long max);
498 void *mas_find_range(struct ma_state *mas, unsigned long max);
499 void *mas_find_rev(struct ma_state *mas, unsigned long min);
500 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
501 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
502 
503 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
504 void mas_pause(struct ma_state *mas);
505 void maple_tree_init(void);
506 void mas_destroy(struct ma_state *mas);
507 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
508 
509 void *mas_prev(struct ma_state *mas, unsigned long min);
510 void *mas_prev_range(struct ma_state *mas, unsigned long max);
511 void *mas_next(struct ma_state *mas, unsigned long max);
512 void *mas_next_range(struct ma_state *mas, unsigned long max);
513 
514 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
515 		   unsigned long size);
516 /*
517  * This finds an empty area from the highest address to the lowest.
518  * AKA "Topdown" version,
519  */
520 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
521 		       unsigned long max, unsigned long size);
522 
mas_init(struct ma_state * mas,struct maple_tree * tree,unsigned long addr)523 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
524 			    unsigned long addr)
525 {
526 	memset(mas, 0, sizeof(struct ma_state));
527 	mas->tree = tree;
528 	mas->index = mas->last = addr;
529 	mas->max = ULONG_MAX;
530 	mas->status = ma_start;
531 	mas->node = NULL;
532 }
533 
mas_is_active(struct ma_state * mas)534 static inline bool mas_is_active(struct ma_state *mas)
535 {
536 	return mas->status == ma_active;
537 }
538 
mas_is_err(struct ma_state * mas)539 static inline bool mas_is_err(struct ma_state *mas)
540 {
541 	return mas->status == ma_error;
542 }
543 
544 /**
545  * mas_reset() - Reset a Maple Tree operation state.
546  * @mas: Maple Tree operation state.
547  *
548  * Resets the error or walk state of the @mas so future walks of the
549  * array will start from the root.  Use this if you have dropped the
550  * lock and want to reuse the ma_state.
551  *
552  * Context: Any context.
553  */
mas_reset(struct ma_state * mas)554 static __always_inline void mas_reset(struct ma_state *mas)
555 {
556 	mas->status = ma_start;
557 	mas->node = NULL;
558 }
559 
560 /**
561  * mas_for_each() - Iterate over a range of the maple tree.
562  * @__mas: Maple Tree operation state (maple_state)
563  * @__entry: Entry retrieved from the tree
564  * @__max: maximum index to retrieve from the tree
565  *
566  * When returned, mas->index and mas->last will hold the entire range for the
567  * entry.
568  *
569  * Note: may return the zero entry.
570  */
571 #define mas_for_each(__mas, __entry, __max) \
572 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
573 
574 #ifdef CONFIG_DEBUG_MAPLE_TREE
575 enum mt_dump_format {
576 	mt_dump_dec,
577 	mt_dump_hex,
578 };
579 
580 extern atomic_t maple_tree_tests_run;
581 extern atomic_t maple_tree_tests_passed;
582 
583 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
584 void mas_dump(const struct ma_state *mas);
585 void mas_wr_dump(const struct ma_wr_state *wr_mas);
586 void mt_validate(struct maple_tree *mt);
587 void mt_cache_shrink(void);
588 #define MT_BUG_ON(__tree, __x) do {					\
589 	atomic_inc(&maple_tree_tests_run);				\
590 	if (__x) {							\
591 		pr_info("BUG at %s:%d (%u)\n",				\
592 		__func__, __LINE__, __x);				\
593 		mt_dump(__tree, mt_dump_hex);				\
594 		pr_info("Pass: %u Run:%u\n",				\
595 			atomic_read(&maple_tree_tests_passed),		\
596 			atomic_read(&maple_tree_tests_run));		\
597 		dump_stack();						\
598 	} else {							\
599 		atomic_inc(&maple_tree_tests_passed);			\
600 	}								\
601 } while (0)
602 
603 #define MAS_BUG_ON(__mas, __x) do {					\
604 	atomic_inc(&maple_tree_tests_run);				\
605 	if (__x) {							\
606 		pr_info("BUG at %s:%d (%u)\n",				\
607 		__func__, __LINE__, __x);				\
608 		mas_dump(__mas);					\
609 		mt_dump((__mas)->tree, mt_dump_hex);			\
610 		pr_info("Pass: %u Run:%u\n",				\
611 			atomic_read(&maple_tree_tests_passed),		\
612 			atomic_read(&maple_tree_tests_run));		\
613 		dump_stack();						\
614 	} else {							\
615 		atomic_inc(&maple_tree_tests_passed);			\
616 	}								\
617 } while (0)
618 
619 #define MAS_WR_BUG_ON(__wrmas, __x) do {				\
620 	atomic_inc(&maple_tree_tests_run);				\
621 	if (__x) {							\
622 		pr_info("BUG at %s:%d (%u)\n",				\
623 		__func__, __LINE__, __x);				\
624 		mas_wr_dump(__wrmas);					\
625 		mas_dump((__wrmas)->mas);				\
626 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
627 		pr_info("Pass: %u Run:%u\n",				\
628 			atomic_read(&maple_tree_tests_passed),		\
629 			atomic_read(&maple_tree_tests_run));		\
630 		dump_stack();						\
631 	} else {							\
632 		atomic_inc(&maple_tree_tests_passed);			\
633 	}								\
634 } while (0)
635 
636 #define MT_WARN_ON(__tree, __x)  ({					\
637 	int ret = !!(__x);						\
638 	atomic_inc(&maple_tree_tests_run);				\
639 	if (ret) {							\
640 		pr_info("WARN at %s:%d (%u)\n",				\
641 		__func__, __LINE__, __x);				\
642 		mt_dump(__tree, mt_dump_hex);				\
643 		pr_info("Pass: %u Run:%u\n",				\
644 			atomic_read(&maple_tree_tests_passed),		\
645 			atomic_read(&maple_tree_tests_run));		\
646 		dump_stack();						\
647 	} else {							\
648 		atomic_inc(&maple_tree_tests_passed);			\
649 	}								\
650 	unlikely(ret);							\
651 })
652 
653 #define MAS_WARN_ON(__mas, __x) ({					\
654 	int ret = !!(__x);						\
655 	atomic_inc(&maple_tree_tests_run);				\
656 	if (ret) {							\
657 		pr_info("WARN at %s:%d (%u)\n",				\
658 		__func__, __LINE__, __x);				\
659 		mas_dump(__mas);					\
660 		mt_dump((__mas)->tree, mt_dump_hex);			\
661 		pr_info("Pass: %u Run:%u\n",				\
662 			atomic_read(&maple_tree_tests_passed),		\
663 			atomic_read(&maple_tree_tests_run));		\
664 		dump_stack();						\
665 	} else {							\
666 		atomic_inc(&maple_tree_tests_passed);			\
667 	}								\
668 	unlikely(ret);							\
669 })
670 
671 #define MAS_WR_WARN_ON(__wrmas, __x) ({					\
672 	int ret = !!(__x);						\
673 	atomic_inc(&maple_tree_tests_run);				\
674 	if (ret) {							\
675 		pr_info("WARN at %s:%d (%u)\n",				\
676 		__func__, __LINE__, __x);				\
677 		mas_wr_dump(__wrmas);					\
678 		mas_dump((__wrmas)->mas);				\
679 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
680 		pr_info("Pass: %u Run:%u\n",				\
681 			atomic_read(&maple_tree_tests_passed),		\
682 			atomic_read(&maple_tree_tests_run));		\
683 		dump_stack();						\
684 	} else {							\
685 		atomic_inc(&maple_tree_tests_passed);			\
686 	}								\
687 	unlikely(ret);							\
688 })
689 #else
690 #define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
691 #define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
692 #define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
693 #define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
694 #define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
695 #define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
696 #endif /* CONFIG_DEBUG_MAPLE_TREE */
697 
698 /**
699  * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
700  * current location.
701  * @mas: Maple Tree operation state.
702  * @start: New start of range in the Maple Tree.
703  * @last: New end of range in the Maple Tree.
704  *
705  * set the internal maple state values to a sub-range.
706  * Please use mas_set_range() if you do not know where you are in the tree.
707  */
__mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)708 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
709 		unsigned long last)
710 {
711 	/* Ensure the range starts within the current slot */
712 	MAS_WARN_ON(mas, mas_is_active(mas) &&
713 		   (mas->index > start || mas->last < start));
714 	mas->index = start;
715 	mas->last = last;
716 }
717 
718 /**
719  * mas_set_range() - Set up Maple Tree operation state for a different index.
720  * @mas: Maple Tree operation state.
721  * @start: New start of range in the Maple Tree.
722  * @last: New end of range in the Maple Tree.
723  *
724  * Move the operation state to refer to a different range.  This will
725  * have the effect of starting a walk from the top; see mas_next()
726  * to move to an adjacent index.
727  */
728 static inline
mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)729 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
730 {
731 	mas_reset(mas);
732 	__mas_set_range(mas, start, last);
733 }
734 
735 /**
736  * mas_set() - Set up Maple Tree operation state for a different index.
737  * @mas: Maple Tree operation state.
738  * @index: New index into the Maple Tree.
739  *
740  * Move the operation state to refer to a different index.  This will
741  * have the effect of starting a walk from the top; see mas_next()
742  * to move to an adjacent index.
743  */
mas_set(struct ma_state * mas,unsigned long index)744 static inline void mas_set(struct ma_state *mas, unsigned long index)
745 {
746 
747 	mas_set_range(mas, index, index);
748 }
749 
mt_external_lock(const struct maple_tree * mt)750 static inline bool mt_external_lock(const struct maple_tree *mt)
751 {
752 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
753 }
754 
755 /**
756  * mt_init_flags() - Initialise an empty maple tree with flags.
757  * @mt: Maple Tree
758  * @flags: maple tree flags.
759  *
760  * If you need to initialise a Maple Tree with special flags (eg, an
761  * allocation tree), use this function.
762  *
763  * Context: Any context.
764  */
mt_init_flags(struct maple_tree * mt,unsigned int flags)765 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
766 {
767 	mt->ma_flags = flags;
768 	if (!mt_external_lock(mt))
769 		spin_lock_init(&mt->ma_lock);
770 	rcu_assign_pointer(mt->ma_root, NULL);
771 }
772 
773 /**
774  * mt_init() - Initialise an empty maple tree.
775  * @mt: Maple Tree
776  *
777  * An empty Maple Tree.
778  *
779  * Context: Any context.
780  */
mt_init(struct maple_tree * mt)781 static inline void mt_init(struct maple_tree *mt)
782 {
783 	mt_init_flags(mt, 0);
784 }
785 
mt_in_rcu(struct maple_tree * mt)786 static inline bool mt_in_rcu(struct maple_tree *mt)
787 {
788 #ifdef CONFIG_MAPLE_RCU_DISABLED
789 	return false;
790 #endif
791 	return mt->ma_flags & MT_FLAGS_USE_RCU;
792 }
793 
794 /**
795  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
796  * @mt: The Maple Tree
797  */
mt_clear_in_rcu(struct maple_tree * mt)798 static inline void mt_clear_in_rcu(struct maple_tree *mt)
799 {
800 	if (!mt_in_rcu(mt))
801 		return;
802 
803 	if (mt_external_lock(mt)) {
804 		WARN_ON(!mt_lock_is_held(mt));
805 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
806 	} else {
807 		mtree_lock(mt);
808 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
809 		mtree_unlock(mt);
810 	}
811 }
812 
813 /**
814  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
815  * @mt: The Maple Tree
816  */
mt_set_in_rcu(struct maple_tree * mt)817 static inline void mt_set_in_rcu(struct maple_tree *mt)
818 {
819 	if (mt_in_rcu(mt))
820 		return;
821 
822 	if (mt_external_lock(mt)) {
823 		WARN_ON(!mt_lock_is_held(mt));
824 		mt->ma_flags |= MT_FLAGS_USE_RCU;
825 	} else {
826 		mtree_lock(mt);
827 		mt->ma_flags |= MT_FLAGS_USE_RCU;
828 		mtree_unlock(mt);
829 	}
830 }
831 
mt_height(const struct maple_tree * mt)832 static inline unsigned int mt_height(const struct maple_tree *mt)
833 {
834 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
835 }
836 
837 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
838 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
839 		    unsigned long max);
840 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
841 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
842 
843 /**
844  * mt_for_each - Iterate over each entry starting at index until max.
845  * @__tree: The Maple Tree
846  * @__entry: The current entry
847  * @__index: The index to start the search from. Subsequently used as iterator.
848  * @__max: The maximum limit for @index
849  *
850  * This iterator skips all entries, which resolve to a NULL pointer,
851  * e.g. entries which has been reserved with XA_ZERO_ENTRY.
852  */
853 #define mt_for_each(__tree, __entry, __index, __max) \
854 	for (__entry = mt_find(__tree, &(__index), __max); \
855 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
856 
857 #endif /*_LINUX_MAPLE_TREE_H */
858