1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
151 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
152 
is_error_page(struct page * page)153 static inline bool is_error_page(struct page *page)
154 {
155 	return IS_ERR(page);
156 }
157 
158 #define KVM_REQUEST_MASK           GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
160 #define KVM_REQUEST_WAIT           BIT(9)
161 #define KVM_REQUEST_NO_ACTION      BIT(10)
162 /*
163  * Architecture-independent vcpu->requests bit members
164  * Bits 3-7 are reserved for more arch-independent bits.
165  */
166 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK			2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
170 #define KVM_REQUEST_ARCH_BASE		8
171 
172 /*
173  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
177  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178  * guarantee the vCPU received an IPI and has actually exited guest mode.
179  */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181 
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
187 
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 				 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 				      struct kvm_vcpu *except);
193 
194 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
195 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
196 
197 extern struct mutex kvm_lock;
198 extern struct list_head vm_list;
199 
200 struct kvm_io_range {
201 	gpa_t addr;
202 	int len;
203 	struct kvm_io_device *dev;
204 };
205 
206 #define NR_IOBUS_DEVS 1000
207 
208 struct kvm_io_bus {
209 	int dev_count;
210 	int ioeventfd_count;
211 	struct kvm_io_range range[];
212 };
213 
214 enum kvm_bus {
215 	KVM_MMIO_BUS,
216 	KVM_PIO_BUS,
217 	KVM_VIRTIO_CCW_NOTIFY_BUS,
218 	KVM_FAST_MMIO_BUS,
219 	KVM_NR_BUSES
220 };
221 
222 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
223 		     int len, const void *val);
224 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
225 			    gpa_t addr, int len, const void *val, long cookie);
226 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
227 		    int len, void *val);
228 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
229 			    int len, struct kvm_io_device *dev);
230 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 			      struct kvm_io_device *dev);
232 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 					 gpa_t addr);
234 
235 #ifdef CONFIG_KVM_ASYNC_PF
236 struct kvm_async_pf {
237 	struct work_struct work;
238 	struct list_head link;
239 	struct list_head queue;
240 	struct kvm_vcpu *vcpu;
241 	struct mm_struct *mm;
242 	gpa_t cr2_or_gpa;
243 	unsigned long addr;
244 	struct kvm_arch_async_pf arch;
245 	bool   wakeup_all;
246 	bool notpresent_injected;
247 };
248 
249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
252 			unsigned long hva, struct kvm_arch_async_pf *arch);
253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
254 #endif
255 
256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
257 union kvm_mmu_notifier_arg {
258 	pte_t pte;
259 	unsigned long attributes;
260 };
261 
262 struct kvm_gfn_range {
263 	struct kvm_memory_slot *slot;
264 	gfn_t start;
265 	gfn_t end;
266 	union kvm_mmu_notifier_arg arg;
267 	bool may_block;
268 };
269 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
270 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273 #endif
274 
275 enum {
276 	OUTSIDE_GUEST_MODE,
277 	IN_GUEST_MODE,
278 	EXITING_GUEST_MODE,
279 	READING_SHADOW_PAGE_TABLES,
280 };
281 
282 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
283 
284 struct kvm_host_map {
285 	/*
286 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 	 * a 'struct page' for it. When using mem= kernel parameter some memory
288 	 * can be used as guest memory but they are not managed by host
289 	 * kernel).
290 	 * If 'pfn' is not managed by the host kernel, this field is
291 	 * initialized to KVM_UNMAPPED_PAGE.
292 	 */
293 	struct page *page;
294 	void *hva;
295 	kvm_pfn_t pfn;
296 	kvm_pfn_t gfn;
297 };
298 
299 /*
300  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301  * directly to check for that.
302  */
kvm_vcpu_mapped(struct kvm_host_map * map)303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304 {
305 	return !!map->hva;
306 }
307 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 {
310 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
311 }
312 
313 /*
314  * Sometimes a large or cross-page mmio needs to be broken up into separate
315  * exits for userspace servicing.
316  */
317 struct kvm_mmio_fragment {
318 	gpa_t gpa;
319 	void *data;
320 	unsigned len;
321 };
322 
323 struct kvm_vcpu {
324 	struct kvm *kvm;
325 #ifdef CONFIG_PREEMPT_NOTIFIERS
326 	struct preempt_notifier preempt_notifier;
327 #endif
328 	int cpu;
329 	int vcpu_id; /* id given by userspace at creation */
330 	int vcpu_idx; /* index into kvm->vcpu_array */
331 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332 #ifdef CONFIG_PROVE_RCU
333 	int srcu_depth;
334 #endif
335 	int mode;
336 	u64 requests;
337 	unsigned long guest_debug;
338 
339 	struct mutex mutex;
340 	struct kvm_run *run;
341 
342 #ifndef __KVM_HAVE_ARCH_WQP
343 	struct rcuwait wait;
344 #endif
345 	struct pid __rcu *pid;
346 	int sigset_active;
347 	sigset_t sigset;
348 	unsigned int halt_poll_ns;
349 	bool valid_wakeup;
350 
351 #ifdef CONFIG_HAS_IOMEM
352 	int mmio_needed;
353 	int mmio_read_completed;
354 	int mmio_is_write;
355 	int mmio_cur_fragment;
356 	int mmio_nr_fragments;
357 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358 #endif
359 
360 #ifdef CONFIG_KVM_ASYNC_PF
361 	struct {
362 		u32 queued;
363 		struct list_head queue;
364 		struct list_head done;
365 		spinlock_t lock;
366 	} async_pf;
367 #endif
368 
369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 	/*
371 	 * Cpu relax intercept or pause loop exit optimization
372 	 * in_spin_loop: set when a vcpu does a pause loop exit
373 	 *  or cpu relax intercepted.
374 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 	 */
376 	struct {
377 		bool in_spin_loop;
378 		bool dy_eligible;
379 	} spin_loop;
380 #endif
381 	bool preempted;
382 	bool ready;
383 	struct kvm_vcpu_arch arch;
384 	struct kvm_vcpu_stat stat;
385 	char stats_id[KVM_STATS_NAME_SIZE];
386 	struct kvm_dirty_ring dirty_ring;
387 
388 	/*
389 	 * The most recently used memslot by this vCPU and the slots generation
390 	 * for which it is valid.
391 	 * No wraparound protection is needed since generations won't overflow in
392 	 * thousands of years, even assuming 1M memslot operations per second.
393 	 */
394 	struct kvm_memory_slot *last_used_slot;
395 	u64 last_used_slot_gen;
396 };
397 
398 /*
399  * Start accounting time towards a guest.
400  * Must be called before entering guest context.
401  */
guest_timing_enter_irqoff(void)402 static __always_inline void guest_timing_enter_irqoff(void)
403 {
404 	/*
405 	 * This is running in ioctl context so its safe to assume that it's the
406 	 * stime pending cputime to flush.
407 	 */
408 	instrumentation_begin();
409 	vtime_account_guest_enter();
410 	instrumentation_end();
411 }
412 
413 /*
414  * Enter guest context and enter an RCU extended quiescent state.
415  *
416  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
417  * unsafe to use any code which may directly or indirectly use RCU, tracing
418  * (including IRQ flag tracing), or lockdep. All code in this period must be
419  * non-instrumentable.
420  */
guest_context_enter_irqoff(void)421 static __always_inline void guest_context_enter_irqoff(void)
422 {
423 	/*
424 	 * KVM does not hold any references to rcu protected data when it
425 	 * switches CPU into a guest mode. In fact switching to a guest mode
426 	 * is very similar to exiting to userspace from rcu point of view. In
427 	 * addition CPU may stay in a guest mode for quite a long time (up to
428 	 * one time slice). Lets treat guest mode as quiescent state, just like
429 	 * we do with user-mode execution.
430 	 */
431 	if (!context_tracking_guest_enter()) {
432 		instrumentation_begin();
433 		rcu_virt_note_context_switch();
434 		instrumentation_end();
435 	}
436 }
437 
438 /*
439  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
440  * guest_state_enter_irqoff().
441  */
guest_enter_irqoff(void)442 static __always_inline void guest_enter_irqoff(void)
443 {
444 	guest_timing_enter_irqoff();
445 	guest_context_enter_irqoff();
446 }
447 
448 /**
449  * guest_state_enter_irqoff - Fixup state when entering a guest
450  *
451  * Entry to a guest will enable interrupts, but the kernel state is interrupts
452  * disabled when this is invoked. Also tell RCU about it.
453  *
454  * 1) Trace interrupts on state
455  * 2) Invoke context tracking if enabled to adjust RCU state
456  * 3) Tell lockdep that interrupts are enabled
457  *
458  * Invoked from architecture specific code before entering a guest.
459  * Must be called with interrupts disabled and the caller must be
460  * non-instrumentable.
461  * The caller has to invoke guest_timing_enter_irqoff() before this.
462  *
463  * Note: this is analogous to exit_to_user_mode().
464  */
guest_state_enter_irqoff(void)465 static __always_inline void guest_state_enter_irqoff(void)
466 {
467 	instrumentation_begin();
468 	trace_hardirqs_on_prepare();
469 	lockdep_hardirqs_on_prepare();
470 	instrumentation_end();
471 
472 	guest_context_enter_irqoff();
473 	lockdep_hardirqs_on(CALLER_ADDR0);
474 }
475 
476 /*
477  * Exit guest context and exit an RCU extended quiescent state.
478  *
479  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
480  * unsafe to use any code which may directly or indirectly use RCU, tracing
481  * (including IRQ flag tracing), or lockdep. All code in this period must be
482  * non-instrumentable.
483  */
guest_context_exit_irqoff(void)484 static __always_inline void guest_context_exit_irqoff(void)
485 {
486 	context_tracking_guest_exit();
487 }
488 
489 /*
490  * Stop accounting time towards a guest.
491  * Must be called after exiting guest context.
492  */
guest_timing_exit_irqoff(void)493 static __always_inline void guest_timing_exit_irqoff(void)
494 {
495 	instrumentation_begin();
496 	/* Flush the guest cputime we spent on the guest */
497 	vtime_account_guest_exit();
498 	instrumentation_end();
499 }
500 
501 /*
502  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
503  * guest_timing_exit_irqoff().
504  */
guest_exit_irqoff(void)505 static __always_inline void guest_exit_irqoff(void)
506 {
507 	guest_context_exit_irqoff();
508 	guest_timing_exit_irqoff();
509 }
510 
guest_exit(void)511 static inline void guest_exit(void)
512 {
513 	unsigned long flags;
514 
515 	local_irq_save(flags);
516 	guest_exit_irqoff();
517 	local_irq_restore(flags);
518 }
519 
520 /**
521  * guest_state_exit_irqoff - Establish state when returning from guest mode
522  *
523  * Entry from a guest disables interrupts, but guest mode is traced as
524  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
525  *
526  * 1) Tell lockdep that interrupts are disabled
527  * 2) Invoke context tracking if enabled to reactivate RCU
528  * 3) Trace interrupts off state
529  *
530  * Invoked from architecture specific code after exiting a guest.
531  * Must be invoked with interrupts disabled and the caller must be
532  * non-instrumentable.
533  * The caller has to invoke guest_timing_exit_irqoff() after this.
534  *
535  * Note: this is analogous to enter_from_user_mode().
536  */
guest_state_exit_irqoff(void)537 static __always_inline void guest_state_exit_irqoff(void)
538 {
539 	lockdep_hardirqs_off(CALLER_ADDR0);
540 	guest_context_exit_irqoff();
541 
542 	instrumentation_begin();
543 	trace_hardirqs_off_finish();
544 	instrumentation_end();
545 }
546 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)547 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
548 {
549 	/*
550 	 * The memory barrier ensures a previous write to vcpu->requests cannot
551 	 * be reordered with the read of vcpu->mode.  It pairs with the general
552 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
553 	 */
554 	smp_mb__before_atomic();
555 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
556 }
557 
558 /*
559  * Some of the bitops functions do not support too long bitmaps.
560  * This number must be determined not to exceed such limits.
561  */
562 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
563 
564 /*
565  * Since at idle each memslot belongs to two memslot sets it has to contain
566  * two embedded nodes for each data structure that it forms a part of.
567  *
568  * Two memslot sets (one active and one inactive) are necessary so the VM
569  * continues to run on one memslot set while the other is being modified.
570  *
571  * These two memslot sets normally point to the same set of memslots.
572  * They can, however, be desynchronized when performing a memslot management
573  * operation by replacing the memslot to be modified by its copy.
574  * After the operation is complete, both memslot sets once again point to
575  * the same, common set of memslot data.
576  *
577  * The memslots themselves are independent of each other so they can be
578  * individually added or deleted.
579  */
580 struct kvm_memory_slot {
581 	struct hlist_node id_node[2];
582 	struct interval_tree_node hva_node[2];
583 	struct rb_node gfn_node[2];
584 	gfn_t base_gfn;
585 	unsigned long npages;
586 	unsigned long *dirty_bitmap;
587 	struct kvm_arch_memory_slot arch;
588 	unsigned long userspace_addr;
589 	u32 flags;
590 	short id;
591 	u16 as_id;
592 
593 #ifdef CONFIG_KVM_PRIVATE_MEM
594 	struct {
595 		struct file __rcu *file;
596 		pgoff_t pgoff;
597 	} gmem;
598 #endif
599 };
600 
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)601 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
602 {
603 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
604 }
605 
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)606 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
607 {
608 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
609 }
610 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)611 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
612 {
613 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
614 }
615 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)616 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
617 {
618 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
619 
620 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
621 }
622 
623 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
624 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
625 #endif
626 
627 struct kvm_s390_adapter_int {
628 	u64 ind_addr;
629 	u64 summary_addr;
630 	u64 ind_offset;
631 	u32 summary_offset;
632 	u32 adapter_id;
633 };
634 
635 struct kvm_hv_sint {
636 	u32 vcpu;
637 	u32 sint;
638 };
639 
640 struct kvm_xen_evtchn {
641 	u32 port;
642 	u32 vcpu_id;
643 	int vcpu_idx;
644 	u32 priority;
645 };
646 
647 struct kvm_kernel_irq_routing_entry {
648 	u32 gsi;
649 	u32 type;
650 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
651 		   struct kvm *kvm, int irq_source_id, int level,
652 		   bool line_status);
653 	union {
654 		struct {
655 			unsigned irqchip;
656 			unsigned pin;
657 		} irqchip;
658 		struct {
659 			u32 address_lo;
660 			u32 address_hi;
661 			u32 data;
662 			u32 flags;
663 			u32 devid;
664 		} msi;
665 		struct kvm_s390_adapter_int adapter;
666 		struct kvm_hv_sint hv_sint;
667 		struct kvm_xen_evtchn xen_evtchn;
668 	};
669 	struct hlist_node link;
670 };
671 
672 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
673 struct kvm_irq_routing_table {
674 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
675 	u32 nr_rt_entries;
676 	/*
677 	 * Array indexed by gsi. Each entry contains list of irq chips
678 	 * the gsi is connected to.
679 	 */
680 	struct hlist_head map[] __counted_by(nr_rt_entries);
681 };
682 #endif
683 
684 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
685 
686 #ifndef KVM_INTERNAL_MEM_SLOTS
687 #define KVM_INTERNAL_MEM_SLOTS 0
688 #endif
689 
690 #define KVM_MEM_SLOTS_NUM SHRT_MAX
691 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
692 
693 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)694 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
695 {
696 	return KVM_MAX_NR_ADDRESS_SPACES;
697 }
698 
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)699 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
700 {
701 	return 0;
702 }
703 #endif
704 
705 /*
706  * Arch code must define kvm_arch_has_private_mem if support for private memory
707  * is enabled.
708  */
709 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)710 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
711 {
712 	return false;
713 }
714 #endif
715 
716 struct kvm_memslots {
717 	u64 generation;
718 	atomic_long_t last_used_slot;
719 	struct rb_root_cached hva_tree;
720 	struct rb_root gfn_tree;
721 	/*
722 	 * The mapping table from slot id to memslot.
723 	 *
724 	 * 7-bit bucket count matches the size of the old id to index array for
725 	 * 512 slots, while giving good performance with this slot count.
726 	 * Higher bucket counts bring only small performance improvements but
727 	 * always result in higher memory usage (even for lower memslot counts).
728 	 */
729 	DECLARE_HASHTABLE(id_hash, 7);
730 	int node_idx;
731 };
732 
733 struct kvm {
734 #ifdef KVM_HAVE_MMU_RWLOCK
735 	rwlock_t mmu_lock;
736 #else
737 	spinlock_t mmu_lock;
738 #endif /* KVM_HAVE_MMU_RWLOCK */
739 
740 	struct mutex slots_lock;
741 
742 	/*
743 	 * Protects the arch-specific fields of struct kvm_memory_slots in
744 	 * use by the VM. To be used under the slots_lock (above) or in a
745 	 * kvm->srcu critical section where acquiring the slots_lock would
746 	 * lead to deadlock with the synchronize_srcu in
747 	 * kvm_swap_active_memslots().
748 	 */
749 	struct mutex slots_arch_lock;
750 	struct mm_struct *mm; /* userspace tied to this vm */
751 	unsigned long nr_memslot_pages;
752 	/* The two memslot sets - active and inactive (per address space) */
753 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
754 	/* The current active memslot set for each address space */
755 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
756 	struct xarray vcpu_array;
757 	/*
758 	 * Protected by slots_lock, but can be read outside if an
759 	 * incorrect answer is acceptable.
760 	 */
761 	atomic_t nr_memslots_dirty_logging;
762 
763 	/* Used to wait for completion of MMU notifiers.  */
764 	spinlock_t mn_invalidate_lock;
765 	unsigned long mn_active_invalidate_count;
766 	struct rcuwait mn_memslots_update_rcuwait;
767 
768 	/* For management / invalidation of gfn_to_pfn_caches */
769 	spinlock_t gpc_lock;
770 	struct list_head gpc_list;
771 
772 	/*
773 	 * created_vcpus is protected by kvm->lock, and is incremented
774 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
775 	 * incremented after storing the kvm_vcpu pointer in vcpus,
776 	 * and is accessed atomically.
777 	 */
778 	atomic_t online_vcpus;
779 	int max_vcpus;
780 	int created_vcpus;
781 	int last_boosted_vcpu;
782 	struct list_head vm_list;
783 	struct mutex lock;
784 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
785 #ifdef CONFIG_HAVE_KVM_IRQCHIP
786 	struct {
787 		spinlock_t        lock;
788 		struct list_head  items;
789 		/* resampler_list update side is protected by resampler_lock. */
790 		struct list_head  resampler_list;
791 		struct mutex      resampler_lock;
792 	} irqfds;
793 #endif
794 	struct list_head ioeventfds;
795 	struct kvm_vm_stat stat;
796 	struct kvm_arch arch;
797 	refcount_t users_count;
798 #ifdef CONFIG_KVM_MMIO
799 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
800 	spinlock_t ring_lock;
801 	struct list_head coalesced_zones;
802 #endif
803 
804 	struct mutex irq_lock;
805 #ifdef CONFIG_HAVE_KVM_IRQCHIP
806 	/*
807 	 * Update side is protected by irq_lock.
808 	 */
809 	struct kvm_irq_routing_table __rcu *irq_routing;
810 
811 	struct hlist_head irq_ack_notifier_list;
812 #endif
813 
814 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
815 	struct mmu_notifier mmu_notifier;
816 	unsigned long mmu_invalidate_seq;
817 	long mmu_invalidate_in_progress;
818 	gfn_t mmu_invalidate_range_start;
819 	gfn_t mmu_invalidate_range_end;
820 #endif
821 	struct list_head devices;
822 	u64 manual_dirty_log_protect;
823 	struct dentry *debugfs_dentry;
824 	struct kvm_stat_data **debugfs_stat_data;
825 	struct srcu_struct srcu;
826 	struct srcu_struct irq_srcu;
827 	pid_t userspace_pid;
828 	bool override_halt_poll_ns;
829 	unsigned int max_halt_poll_ns;
830 	u32 dirty_ring_size;
831 	bool dirty_ring_with_bitmap;
832 	bool vm_bugged;
833 	bool vm_dead;
834 
835 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
836 	struct notifier_block pm_notifier;
837 #endif
838 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
839 	/* Protected by slots_locks (for writes) and RCU (for reads) */
840 	struct xarray mem_attr_array;
841 #endif
842 	char stats_id[KVM_STATS_NAME_SIZE];
843 };
844 
845 #define kvm_err(fmt, ...) \
846 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
847 #define kvm_info(fmt, ...) \
848 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
849 #define kvm_debug(fmt, ...) \
850 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
851 #define kvm_debug_ratelimited(fmt, ...) \
852 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
853 			     ## __VA_ARGS__)
854 #define kvm_pr_unimpl(fmt, ...) \
855 	pr_err_ratelimited("kvm [%i]: " fmt, \
856 			   task_tgid_nr(current), ## __VA_ARGS__)
857 
858 /* The guest did something we don't support. */
859 #define vcpu_unimpl(vcpu, fmt, ...)					\
860 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
861 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
862 
863 #define vcpu_debug(vcpu, fmt, ...)					\
864 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
865 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
866 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
867 			      ## __VA_ARGS__)
868 #define vcpu_err(vcpu, fmt, ...)					\
869 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
870 
kvm_vm_dead(struct kvm * kvm)871 static inline void kvm_vm_dead(struct kvm *kvm)
872 {
873 	kvm->vm_dead = true;
874 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
875 }
876 
kvm_vm_bugged(struct kvm * kvm)877 static inline void kvm_vm_bugged(struct kvm *kvm)
878 {
879 	kvm->vm_bugged = true;
880 	kvm_vm_dead(kvm);
881 }
882 
883 
884 #define KVM_BUG(cond, kvm, fmt...)				\
885 ({								\
886 	bool __ret = !!(cond);					\
887 								\
888 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
889 		kvm_vm_bugged(kvm);				\
890 	unlikely(__ret);					\
891 })
892 
893 #define KVM_BUG_ON(cond, kvm)					\
894 ({								\
895 	bool __ret = !!(cond);					\
896 								\
897 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
898 		kvm_vm_bugged(kvm);				\
899 	unlikely(__ret);					\
900 })
901 
902 /*
903  * Note, "data corruption" refers to corruption of host kernel data structures,
904  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
905  * and contained to a single VM should *never* BUG() and potentially panic the
906  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
907  * is corrupted and that corruption can have a cascading effect to other parts
908  * of the hosts and/or to other VMs.
909  */
910 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
911 ({								\
912 	bool __ret = !!(cond);					\
913 								\
914 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
915 		BUG_ON(__ret);					\
916 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
917 		kvm_vm_bugged(kvm);				\
918 	unlikely(__ret);					\
919 })
920 
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)921 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
922 {
923 #ifdef CONFIG_PROVE_RCU
924 	WARN_ONCE(vcpu->srcu_depth++,
925 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
926 #endif
927 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
928 }
929 
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)930 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
931 {
932 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
933 
934 #ifdef CONFIG_PROVE_RCU
935 	WARN_ONCE(--vcpu->srcu_depth,
936 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
937 #endif
938 }
939 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)940 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
941 {
942 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
943 }
944 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)945 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
946 {
947 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
948 				      lockdep_is_held(&kvm->slots_lock) ||
949 				      !refcount_read(&kvm->users_count));
950 }
951 
kvm_get_vcpu(struct kvm * kvm,int i)952 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
953 {
954 	int num_vcpus = atomic_read(&kvm->online_vcpus);
955 	i = array_index_nospec(i, num_vcpus);
956 
957 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
958 	smp_rmb();
959 	return xa_load(&kvm->vcpu_array, i);
960 }
961 
962 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
963 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
964 			  (atomic_read(&kvm->online_vcpus) - 1))
965 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)966 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
967 {
968 	struct kvm_vcpu *vcpu = NULL;
969 	unsigned long i;
970 
971 	if (id < 0)
972 		return NULL;
973 	if (id < KVM_MAX_VCPUS)
974 		vcpu = kvm_get_vcpu(kvm, id);
975 	if (vcpu && vcpu->vcpu_id == id)
976 		return vcpu;
977 	kvm_for_each_vcpu(i, vcpu, kvm)
978 		if (vcpu->vcpu_id == id)
979 			return vcpu;
980 	return NULL;
981 }
982 
983 void kvm_destroy_vcpus(struct kvm *kvm);
984 
985 void vcpu_load(struct kvm_vcpu *vcpu);
986 void vcpu_put(struct kvm_vcpu *vcpu);
987 
988 #ifdef __KVM_HAVE_IOAPIC
989 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
990 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
991 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)992 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
993 {
994 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)995 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
996 {
997 }
998 #endif
999 
1000 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1001 int kvm_irqfd_init(void);
1002 void kvm_irqfd_exit(void);
1003 #else
kvm_irqfd_init(void)1004 static inline int kvm_irqfd_init(void)
1005 {
1006 	return 0;
1007 }
1008 
kvm_irqfd_exit(void)1009 static inline void kvm_irqfd_exit(void)
1010 {
1011 }
1012 #endif
1013 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1014 void kvm_exit(void);
1015 
1016 void kvm_get_kvm(struct kvm *kvm);
1017 bool kvm_get_kvm_safe(struct kvm *kvm);
1018 void kvm_put_kvm(struct kvm *kvm);
1019 bool file_is_kvm(struct file *file);
1020 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1021 
__kvm_memslots(struct kvm * kvm,int as_id)1022 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1023 {
1024 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1025 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1026 			lockdep_is_held(&kvm->slots_lock) ||
1027 			!refcount_read(&kvm->users_count));
1028 }
1029 
kvm_memslots(struct kvm * kvm)1030 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1031 {
1032 	return __kvm_memslots(kvm, 0);
1033 }
1034 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1035 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1036 {
1037 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1038 
1039 	return __kvm_memslots(vcpu->kvm, as_id);
1040 }
1041 
kvm_memslots_empty(struct kvm_memslots * slots)1042 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1043 {
1044 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1045 }
1046 
1047 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1048 
1049 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1050 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1051 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1052 		} else
1053 
1054 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1055 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1056 {
1057 	struct kvm_memory_slot *slot;
1058 	int idx = slots->node_idx;
1059 
1060 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1061 		if (slot->id == id)
1062 			return slot;
1063 	}
1064 
1065 	return NULL;
1066 }
1067 
1068 /* Iterator used for walking memslots that overlap a gfn range. */
1069 struct kvm_memslot_iter {
1070 	struct kvm_memslots *slots;
1071 	struct rb_node *node;
1072 	struct kvm_memory_slot *slot;
1073 };
1074 
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1075 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1076 {
1077 	iter->node = rb_next(iter->node);
1078 	if (!iter->node)
1079 		return;
1080 
1081 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1082 }
1083 
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1084 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1085 					  struct kvm_memslots *slots,
1086 					  gfn_t start)
1087 {
1088 	int idx = slots->node_idx;
1089 	struct rb_node *tmp;
1090 	struct kvm_memory_slot *slot;
1091 
1092 	iter->slots = slots;
1093 
1094 	/*
1095 	 * Find the so called "upper bound" of a key - the first node that has
1096 	 * its key strictly greater than the searched one (the start gfn in our case).
1097 	 */
1098 	iter->node = NULL;
1099 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1100 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1101 		if (start < slot->base_gfn) {
1102 			iter->node = tmp;
1103 			tmp = tmp->rb_left;
1104 		} else {
1105 			tmp = tmp->rb_right;
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Find the slot with the lowest gfn that can possibly intersect with
1111 	 * the range, so we'll ideally have slot start <= range start
1112 	 */
1113 	if (iter->node) {
1114 		/*
1115 		 * A NULL previous node means that the very first slot
1116 		 * already has a higher start gfn.
1117 		 * In this case slot start > range start.
1118 		 */
1119 		tmp = rb_prev(iter->node);
1120 		if (tmp)
1121 			iter->node = tmp;
1122 	} else {
1123 		/* a NULL node below means no slots */
1124 		iter->node = rb_last(&slots->gfn_tree);
1125 	}
1126 
1127 	if (iter->node) {
1128 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1129 
1130 		/*
1131 		 * It is possible in the slot start < range start case that the
1132 		 * found slot ends before or at range start (slot end <= range start)
1133 		 * and so it does not overlap the requested range.
1134 		 *
1135 		 * In such non-overlapping case the next slot (if it exists) will
1136 		 * already have slot start > range start, otherwise the logic above
1137 		 * would have found it instead of the current slot.
1138 		 */
1139 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1140 			kvm_memslot_iter_next(iter);
1141 	}
1142 }
1143 
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1144 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1145 {
1146 	if (!iter->node)
1147 		return false;
1148 
1149 	/*
1150 	 * If this slot starts beyond or at the end of the range so does
1151 	 * every next one
1152 	 */
1153 	return iter->slot->base_gfn < end;
1154 }
1155 
1156 /* Iterate over each memslot at least partially intersecting [start, end) range */
1157 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1158 	for (kvm_memslot_iter_start(iter, slots, start);		\
1159 	     kvm_memslot_iter_is_valid(iter, end);			\
1160 	     kvm_memslot_iter_next(iter))
1161 
1162 /*
1163  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1164  * - create a new memory slot
1165  * - delete an existing memory slot
1166  * - modify an existing memory slot
1167  *   -- move it in the guest physical memory space
1168  *   -- just change its flags
1169  *
1170  * Since flags can be changed by some of these operations, the following
1171  * differentiation is the best we can do for __kvm_set_memory_region():
1172  */
1173 enum kvm_mr_change {
1174 	KVM_MR_CREATE,
1175 	KVM_MR_DELETE,
1176 	KVM_MR_MOVE,
1177 	KVM_MR_FLAGS_ONLY,
1178 };
1179 
1180 int kvm_set_memory_region(struct kvm *kvm,
1181 			  const struct kvm_userspace_memory_region2 *mem);
1182 int __kvm_set_memory_region(struct kvm *kvm,
1183 			    const struct kvm_userspace_memory_region2 *mem);
1184 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1185 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1186 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1187 				const struct kvm_memory_slot *old,
1188 				struct kvm_memory_slot *new,
1189 				enum kvm_mr_change change);
1190 void kvm_arch_commit_memory_region(struct kvm *kvm,
1191 				struct kvm_memory_slot *old,
1192 				const struct kvm_memory_slot *new,
1193 				enum kvm_mr_change change);
1194 /* flush all memory translations */
1195 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1196 /* flush memory translations pointing to 'slot' */
1197 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1198 				   struct kvm_memory_slot *slot);
1199 
1200 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1201 			    struct page **pages, int nr_pages);
1202 
1203 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1204 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1206 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1207 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1208 				      bool *writable);
1209 void kvm_release_page_clean(struct page *page);
1210 void kvm_release_page_dirty(struct page *page);
1211 
1212 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1213 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1214 		      bool *writable);
1215 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1216 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1217 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1218 			       bool atomic, bool interruptible, bool *async,
1219 			       bool write_fault, bool *writable, hva_t *hva);
1220 
1221 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1222 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1223 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1224 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1225 
1226 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1227 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1228 			int len);
1229 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1230 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1231 			   void *data, unsigned long len);
1232 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1233 				 void *data, unsigned int offset,
1234 				 unsigned long len);
1235 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1236 			 int offset, int len);
1237 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1238 		    unsigned long len);
1239 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1240 			   void *data, unsigned long len);
1241 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1242 				  void *data, unsigned int offset,
1243 				  unsigned long len);
1244 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1245 			      gpa_t gpa, unsigned long len);
1246 
1247 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1248 ({									\
1249 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1250 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1251 	int __ret = -EFAULT;						\
1252 									\
1253 	if (!kvm_is_error_hva(__addr))					\
1254 		__ret = get_user(v, __uaddr);				\
1255 	__ret;								\
1256 })
1257 
1258 #define kvm_get_guest(kvm, gpa, v)					\
1259 ({									\
1260 	gpa_t __gpa = gpa;						\
1261 	struct kvm *__kvm = kvm;					\
1262 									\
1263 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1264 			offset_in_page(__gpa), v);			\
1265 })
1266 
1267 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1268 ({									\
1269 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1270 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1271 	int __ret = -EFAULT;						\
1272 									\
1273 	if (!kvm_is_error_hva(__addr))					\
1274 		__ret = put_user(v, __uaddr);				\
1275 	if (!__ret)							\
1276 		mark_page_dirty(kvm, gfn);				\
1277 	__ret;								\
1278 })
1279 
1280 #define kvm_put_guest(kvm, gpa, v)					\
1281 ({									\
1282 	gpa_t __gpa = gpa;						\
1283 	struct kvm *__kvm = kvm;					\
1284 									\
1285 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1286 			offset_in_page(__gpa), v);			\
1287 })
1288 
1289 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1290 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1291 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1292 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1293 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1294 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1295 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1296 
1297 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1298 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1299 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1300 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1301 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1302 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1303 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1304 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1305 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1306 			     int len);
1307 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1308 			       unsigned long len);
1309 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1310 			unsigned long len);
1311 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1312 			      int offset, int len);
1313 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1314 			 unsigned long len);
1315 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1316 
1317 /**
1318  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1319  *
1320  * @gpc:	   struct gfn_to_pfn_cache object.
1321  * @kvm:	   pointer to kvm instance.
1322  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1323  *		   invalidation.
1324  * @usage:	   indicates if the resulting host physical PFN is used while
1325  *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1326  *		   the cache from MMU notifiers---but not for KVM memslot
1327  *		   changes!---will also force @vcpu to exit the guest and
1328  *		   refresh the cache); and/or if the PFN used directly
1329  *		   by KVM (and thus needs a kernel virtual mapping).
1330  *
1331  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1332  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1333  * the caller before init).
1334  */
1335 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1336 		  struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1337 
1338 /**
1339  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1340  *                    physical address.
1341  *
1342  * @gpc:	   struct gfn_to_pfn_cache object.
1343  * @gpa:	   guest physical address to map.
1344  * @len:	   sanity check; the range being access must fit a single page.
1345  *
1346  * @return:	   0 for success.
1347  *		   -EINVAL for a mapping which would cross a page boundary.
1348  *		   -EFAULT for an untranslatable guest physical address.
1349  *
1350  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1351  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1352  * to ensure that the cache is valid before accessing the target page.
1353  */
1354 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1355 
1356 /**
1357  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1358  *
1359  * @gpc:	   struct gfn_to_pfn_cache object.
1360  * @len:	   sanity check; the range being access must fit a single page.
1361  *
1362  * @return:	   %true if the cache is still valid and the address matches.
1363  *		   %false if the cache is not valid.
1364  *
1365  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1366  * while calling this function, and then continue to hold the lock until the
1367  * access is complete.
1368  *
1369  * Callers in IN_GUEST_MODE may do so without locking, although they should
1370  * still hold a read lock on kvm->scru for the memslot checks.
1371  */
1372 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1373 
1374 /**
1375  * kvm_gpc_refresh - update a previously initialized cache.
1376  *
1377  * @gpc:	   struct gfn_to_pfn_cache object.
1378  * @len:	   sanity check; the range being access must fit a single page.
1379  *
1380  * @return:	   0 for success.
1381  *		   -EINVAL for a mapping which would cross a page boundary.
1382  *		   -EFAULT for an untranslatable guest physical address.
1383  *
1384  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1385  * return from this function does not mean the page can be immediately
1386  * accessed because it may have raced with an invalidation. Callers must
1387  * still lock and check the cache status, as this function does not return
1388  * with the lock still held to permit access.
1389  */
1390 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1391 
1392 /**
1393  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1394  *
1395  * @gpc:	   struct gfn_to_pfn_cache object.
1396  *
1397  * This removes a cache from the VM's list to be processed on MMU notifier
1398  * invocation.
1399  */
1400 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1401 
1402 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1403 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1404 
1405 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1406 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1407 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1408 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1409 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1410 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1411 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1412 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1413 
1414 void kvm_flush_remote_tlbs(struct kvm *kvm);
1415 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1416 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1417 				   const struct kvm_memory_slot *memslot);
1418 
1419 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1420 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1421 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1422 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1423 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1424 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1425 #endif
1426 
1427 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1428 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1429 void kvm_mmu_invalidate_end(struct kvm *kvm);
1430 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1431 
1432 long kvm_arch_dev_ioctl(struct file *filp,
1433 			unsigned int ioctl, unsigned long arg);
1434 long kvm_arch_vcpu_ioctl(struct file *filp,
1435 			 unsigned int ioctl, unsigned long arg);
1436 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1437 
1438 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1439 
1440 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1441 					struct kvm_memory_slot *slot,
1442 					gfn_t gfn_offset,
1443 					unsigned long mask);
1444 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1445 
1446 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1447 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1448 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1449 		      int *is_dirty, struct kvm_memory_slot **memslot);
1450 #endif
1451 
1452 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1453 			bool line_status);
1454 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1455 			    struct kvm_enable_cap *cap);
1456 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1457 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1458 			      unsigned long arg);
1459 
1460 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1461 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1462 
1463 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1464 				    struct kvm_translation *tr);
1465 
1466 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1467 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1468 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1469 				  struct kvm_sregs *sregs);
1470 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1471 				  struct kvm_sregs *sregs);
1472 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1473 				    struct kvm_mp_state *mp_state);
1474 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1475 				    struct kvm_mp_state *mp_state);
1476 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1477 					struct kvm_guest_debug *dbg);
1478 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1479 
1480 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1481 
1482 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1483 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1484 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1485 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1486 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1487 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1488 
1489 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1490 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1491 #endif
1492 
1493 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1494 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1495 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1496 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1497 #endif
1498 
1499 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1500 int kvm_arch_hardware_enable(void);
1501 void kvm_arch_hardware_disable(void);
1502 #endif
1503 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1504 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1505 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1506 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1507 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1508 int kvm_arch_post_init_vm(struct kvm *kvm);
1509 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1510 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1511 
1512 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1513 /*
1514  * All architectures that want to use vzalloc currently also
1515  * need their own kvm_arch_alloc_vm implementation.
1516  */
kvm_arch_alloc_vm(void)1517 static inline struct kvm *kvm_arch_alloc_vm(void)
1518 {
1519 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1520 }
1521 #endif
1522 
__kvm_arch_free_vm(struct kvm * kvm)1523 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1524 {
1525 	kvfree(kvm);
1526 }
1527 
1528 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1529 static inline void kvm_arch_free_vm(struct kvm *kvm)
1530 {
1531 	__kvm_arch_free_vm(kvm);
1532 }
1533 #endif
1534 
1535 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1536 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1537 {
1538 	return -ENOTSUPP;
1539 }
1540 #else
1541 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1542 #endif
1543 
1544 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1545 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1546 						    gfn_t gfn, u64 nr_pages)
1547 {
1548 	return -EOPNOTSUPP;
1549 }
1550 #else
1551 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1552 #endif
1553 
1554 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1555 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1556 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1557 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1558 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1559 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1560 {
1561 }
1562 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1563 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1564 {
1565 }
1566 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1567 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1568 {
1569 	return false;
1570 }
1571 #endif
1572 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1573 void kvm_arch_start_assignment(struct kvm *kvm);
1574 void kvm_arch_end_assignment(struct kvm *kvm);
1575 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1576 #else
kvm_arch_start_assignment(struct kvm * kvm)1577 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1578 {
1579 }
1580 
kvm_arch_end_assignment(struct kvm * kvm)1581 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1582 {
1583 }
1584 
kvm_arch_has_assigned_device(struct kvm * kvm)1585 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1586 {
1587 	return false;
1588 }
1589 #endif
1590 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1591 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1592 {
1593 #ifdef __KVM_HAVE_ARCH_WQP
1594 	return vcpu->arch.waitp;
1595 #else
1596 	return &vcpu->wait;
1597 #endif
1598 }
1599 
1600 /*
1601  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1602  * true if the vCPU was blocking and was awakened, false otherwise.
1603  */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1604 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1605 {
1606 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1607 }
1608 
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1609 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1610 {
1611 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1612 }
1613 
1614 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1615 /*
1616  * returns true if the virtual interrupt controller is initialized and
1617  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1618  * controller is dynamically instantiated and this is not always true.
1619  */
1620 bool kvm_arch_intc_initialized(struct kvm *kvm);
1621 #else
kvm_arch_intc_initialized(struct kvm * kvm)1622 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1623 {
1624 	return true;
1625 }
1626 #endif
1627 
1628 #ifdef CONFIG_GUEST_PERF_EVENTS
1629 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1630 
1631 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1632 void kvm_unregister_perf_callbacks(void);
1633 #else
kvm_register_perf_callbacks(void * ign)1634 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1635 static inline void kvm_unregister_perf_callbacks(void) {}
1636 #endif /* CONFIG_GUEST_PERF_EVENTS */
1637 
1638 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1639 void kvm_arch_destroy_vm(struct kvm *kvm);
1640 void kvm_arch_sync_events(struct kvm *kvm);
1641 
1642 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1643 
1644 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1645 bool kvm_is_zone_device_page(struct page *page);
1646 
1647 struct kvm_irq_ack_notifier {
1648 	struct hlist_node link;
1649 	unsigned gsi;
1650 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1651 };
1652 
1653 int kvm_irq_map_gsi(struct kvm *kvm,
1654 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1655 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1656 
1657 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1658 		bool line_status);
1659 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1660 		int irq_source_id, int level, bool line_status);
1661 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1662 			       struct kvm *kvm, int irq_source_id,
1663 			       int level, bool line_status);
1664 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1665 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1666 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1667 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1668 				   struct kvm_irq_ack_notifier *kian);
1669 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1670 				   struct kvm_irq_ack_notifier *kian);
1671 int kvm_request_irq_source_id(struct kvm *kvm);
1672 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1673 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1674 
1675 /*
1676  * Returns a pointer to the memslot if it contains gfn.
1677  * Otherwise returns NULL.
1678  */
1679 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1680 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1681 {
1682 	if (!slot)
1683 		return NULL;
1684 
1685 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1686 		return slot;
1687 	else
1688 		return NULL;
1689 }
1690 
1691 /*
1692  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1693  *
1694  * With "approx" set returns the memslot also when the address falls
1695  * in a hole. In that case one of the memslots bordering the hole is
1696  * returned.
1697  */
1698 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1699 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1700 {
1701 	struct kvm_memory_slot *slot;
1702 	struct rb_node *node;
1703 	int idx = slots->node_idx;
1704 
1705 	slot = NULL;
1706 	for (node = slots->gfn_tree.rb_node; node; ) {
1707 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1708 		if (gfn >= slot->base_gfn) {
1709 			if (gfn < slot->base_gfn + slot->npages)
1710 				return slot;
1711 			node = node->rb_right;
1712 		} else
1713 			node = node->rb_left;
1714 	}
1715 
1716 	return approx ? slot : NULL;
1717 }
1718 
1719 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1720 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1721 {
1722 	struct kvm_memory_slot *slot;
1723 
1724 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1725 	slot = try_get_memslot(slot, gfn);
1726 	if (slot)
1727 		return slot;
1728 
1729 	slot = search_memslots(slots, gfn, approx);
1730 	if (slot) {
1731 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1732 		return slot;
1733 	}
1734 
1735 	return NULL;
1736 }
1737 
1738 /*
1739  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1740  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1741  * because that would bloat other code too much.
1742  */
1743 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1744 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1745 {
1746 	return ____gfn_to_memslot(slots, gfn, false);
1747 }
1748 
1749 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1750 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1751 {
1752 	/*
1753 	 * The index was checked originally in search_memslots.  To avoid
1754 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1755 	 * table walks, do not let the processor speculate loads outside
1756 	 * the guest's registered memslots.
1757 	 */
1758 	unsigned long offset = gfn - slot->base_gfn;
1759 	offset = array_index_nospec(offset, slot->npages);
1760 	return slot->userspace_addr + offset * PAGE_SIZE;
1761 }
1762 
memslot_id(struct kvm * kvm,gfn_t gfn)1763 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1764 {
1765 	return gfn_to_memslot(kvm, gfn)->id;
1766 }
1767 
1768 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1769 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1770 {
1771 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1772 
1773 	return slot->base_gfn + gfn_offset;
1774 }
1775 
gfn_to_gpa(gfn_t gfn)1776 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1777 {
1778 	return (gpa_t)gfn << PAGE_SHIFT;
1779 }
1780 
gpa_to_gfn(gpa_t gpa)1781 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1782 {
1783 	return (gfn_t)(gpa >> PAGE_SHIFT);
1784 }
1785 
pfn_to_hpa(kvm_pfn_t pfn)1786 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1787 {
1788 	return (hpa_t)pfn << PAGE_SHIFT;
1789 }
1790 
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1791 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1792 {
1793 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1794 
1795 	return kvm_is_error_hva(hva);
1796 }
1797 
1798 enum kvm_stat_kind {
1799 	KVM_STAT_VM,
1800 	KVM_STAT_VCPU,
1801 };
1802 
1803 struct kvm_stat_data {
1804 	struct kvm *kvm;
1805 	const struct _kvm_stats_desc *desc;
1806 	enum kvm_stat_kind kind;
1807 };
1808 
1809 struct _kvm_stats_desc {
1810 	struct kvm_stats_desc desc;
1811 	char name[KVM_STATS_NAME_SIZE];
1812 };
1813 
1814 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1815 	.flags = type | unit | base |					       \
1816 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1817 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1818 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1819 	.exponent = exp,						       \
1820 	.size = sz,							       \
1821 	.bucket_size = bsz
1822 
1823 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1824 	{								       \
1825 		{							       \
1826 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1827 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1828 		},							       \
1829 		.name = #stat,						       \
1830 	}
1831 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1832 	{								       \
1833 		{							       \
1834 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1835 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1836 		},							       \
1837 		.name = #stat,						       \
1838 	}
1839 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1840 	{								       \
1841 		{							       \
1842 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1843 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1844 		},							       \
1845 		.name = #stat,						       \
1846 	}
1847 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1848 	{								       \
1849 		{							       \
1850 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1851 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1852 		},							       \
1853 		.name = #stat,						       \
1854 	}
1855 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1856 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1857 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1858 
1859 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1860 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1861 		unit, base, exponent, 1, 0)
1862 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1863 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1864 		unit, base, exponent, 1, 0)
1865 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1866 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1867 		unit, base, exponent, 1, 0)
1868 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1869 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1870 		unit, base, exponent, sz, bsz)
1871 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1872 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1873 		unit, base, exponent, sz, 0)
1874 
1875 /* Cumulative counter, read/write */
1876 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1877 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1878 		KVM_STATS_BASE_POW10, 0)
1879 /* Instantaneous counter, read only */
1880 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1881 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1882 		KVM_STATS_BASE_POW10, 0)
1883 /* Peak counter, read/write */
1884 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1885 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1886 		KVM_STATS_BASE_POW10, 0)
1887 
1888 /* Instantaneous boolean value, read only */
1889 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1890 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1891 		KVM_STATS_BASE_POW10, 0)
1892 /* Peak (sticky) boolean value, read/write */
1893 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1894 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1895 		KVM_STATS_BASE_POW10, 0)
1896 
1897 /* Cumulative time in nanosecond */
1898 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1899 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1900 		KVM_STATS_BASE_POW10, -9)
1901 /* Linear histogram for time in nanosecond */
1902 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1903 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1904 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1905 /* Logarithmic histogram for time in nanosecond */
1906 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1907 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1908 		KVM_STATS_BASE_POW10, -9, sz)
1909 
1910 #define KVM_GENERIC_VM_STATS()						       \
1911 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1912 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1913 
1914 #define KVM_GENERIC_VCPU_STATS()					       \
1915 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1916 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1917 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1918 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1919 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1920 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1921 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1922 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1923 			HALT_POLL_HIST_COUNT),				       \
1924 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1925 			HALT_POLL_HIST_COUNT),				       \
1926 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1927 			HALT_POLL_HIST_COUNT),				       \
1928 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1929 
1930 extern struct dentry *kvm_debugfs_dir;
1931 
1932 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1933 		       const struct _kvm_stats_desc *desc,
1934 		       void *stats, size_t size_stats,
1935 		       char __user *user_buffer, size_t size, loff_t *offset);
1936 
1937 /**
1938  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1939  * statistics data.
1940  *
1941  * @data: start address of the stats data
1942  * @size: the number of bucket of the stats data
1943  * @value: the new value used to update the linear histogram's bucket
1944  * @bucket_size: the size (width) of a bucket
1945  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1946 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1947 						u64 value, size_t bucket_size)
1948 {
1949 	size_t index = div64_u64(value, bucket_size);
1950 
1951 	index = min(index, size - 1);
1952 	++data[index];
1953 }
1954 
1955 /**
1956  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1957  * statistics data.
1958  *
1959  * @data: start address of the stats data
1960  * @size: the number of bucket of the stats data
1961  * @value: the new value used to update the logarithmic histogram's bucket
1962  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1963 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1964 {
1965 	size_t index = fls64(value);
1966 
1967 	index = min(index, size - 1);
1968 	++data[index];
1969 }
1970 
1971 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1972 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1973 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1974 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1975 
1976 
1977 extern const struct kvm_stats_header kvm_vm_stats_header;
1978 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1979 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1980 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1981 
1982 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)1983 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1984 {
1985 	if (unlikely(kvm->mmu_invalidate_in_progress))
1986 		return 1;
1987 	/*
1988 	 * Ensure the read of mmu_invalidate_in_progress happens before
1989 	 * the read of mmu_invalidate_seq.  This interacts with the
1990 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1991 	 * that the caller either sees the old (non-zero) value of
1992 	 * mmu_invalidate_in_progress or the new (incremented) value of
1993 	 * mmu_invalidate_seq.
1994 	 *
1995 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1996 	 * than under kvm->mmu_lock, for scalability, so can't rely on
1997 	 * kvm->mmu_lock to keep things ordered.
1998 	 */
1999 	smp_rmb();
2000 	if (kvm->mmu_invalidate_seq != mmu_seq)
2001 		return 1;
2002 	return 0;
2003 }
2004 
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2005 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2006 					   unsigned long mmu_seq,
2007 					   gfn_t gfn)
2008 {
2009 	lockdep_assert_held(&kvm->mmu_lock);
2010 	/*
2011 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2012 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2013 	 * that might be being invalidated. Note that it may include some false
2014 	 * positives, due to shortcuts when handing concurrent invalidations.
2015 	 */
2016 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2017 		/*
2018 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2019 		 * but before updating the range is a KVM bug.
2020 		 */
2021 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2022 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2023 			return 1;
2024 
2025 		if (gfn >= kvm->mmu_invalidate_range_start &&
2026 		    gfn < kvm->mmu_invalidate_range_end)
2027 			return 1;
2028 	}
2029 
2030 	if (kvm->mmu_invalidate_seq != mmu_seq)
2031 		return 1;
2032 	return 0;
2033 }
2034 
2035 /*
2036  * This lockless version of the range-based retry check *must* be paired with a
2037  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2038  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2039  * get false negatives and false positives.
2040  */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2041 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2042 						   unsigned long mmu_seq,
2043 						   gfn_t gfn)
2044 {
2045 	/*
2046 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2047 	 * are always read from memory, e.g. so that checking for retry in a
2048 	 * loop won't result in an infinite retry loop.  Don't force loads for
2049 	 * start+end, as the key to avoiding infinite retry loops is observing
2050 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2051 	 * due to stale start+end values is acceptable.
2052 	 */
2053 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2054 	    gfn >= kvm->mmu_invalidate_range_start &&
2055 	    gfn < kvm->mmu_invalidate_range_end)
2056 		return true;
2057 
2058 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2059 }
2060 #endif
2061 
2062 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2063 
2064 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2065 
2066 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2067 int kvm_set_irq_routing(struct kvm *kvm,
2068 			const struct kvm_irq_routing_entry *entries,
2069 			unsigned nr,
2070 			unsigned flags);
2071 int kvm_set_routing_entry(struct kvm *kvm,
2072 			  struct kvm_kernel_irq_routing_entry *e,
2073 			  const struct kvm_irq_routing_entry *ue);
2074 void kvm_free_irq_routing(struct kvm *kvm);
2075 
2076 #else
2077 
kvm_free_irq_routing(struct kvm * kvm)2078 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2079 
2080 #endif
2081 
2082 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2083 
2084 void kvm_eventfd_init(struct kvm *kvm);
2085 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2086 
2087 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2088 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2089 void kvm_irqfd_release(struct kvm *kvm);
2090 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2091 				unsigned int irqchip,
2092 				unsigned int pin);
2093 void kvm_irq_routing_update(struct kvm *);
2094 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2095 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2096 {
2097 	return -EINVAL;
2098 }
2099 
kvm_irqfd_release(struct kvm * kvm)2100 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2101 
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2102 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2103 					      unsigned int irqchip,
2104 					      unsigned int pin)
2105 {
2106 	return false;
2107 }
2108 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2109 
2110 void kvm_arch_irq_routing_update(struct kvm *kvm);
2111 
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2112 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2113 {
2114 	/*
2115 	 * Ensure the rest of the request is published to kvm_check_request's
2116 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2117 	 */
2118 	smp_wmb();
2119 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2120 }
2121 
kvm_make_request(int req,struct kvm_vcpu * vcpu)2122 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2123 {
2124 	/*
2125 	 * Request that don't require vCPU action should never be logged in
2126 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2127 	 * logged indefinitely and prevent the vCPU from entering the guest.
2128 	 */
2129 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2130 		     (req & KVM_REQUEST_NO_ACTION));
2131 
2132 	__kvm_make_request(req, vcpu);
2133 }
2134 
kvm_request_pending(struct kvm_vcpu * vcpu)2135 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2136 {
2137 	return READ_ONCE(vcpu->requests);
2138 }
2139 
kvm_test_request(int req,struct kvm_vcpu * vcpu)2140 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2141 {
2142 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2143 }
2144 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2145 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2146 {
2147 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2148 }
2149 
kvm_check_request(int req,struct kvm_vcpu * vcpu)2150 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2151 {
2152 	if (kvm_test_request(req, vcpu)) {
2153 		kvm_clear_request(req, vcpu);
2154 
2155 		/*
2156 		 * Ensure the rest of the request is visible to kvm_check_request's
2157 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2158 		 */
2159 		smp_mb__after_atomic();
2160 		return true;
2161 	} else {
2162 		return false;
2163 	}
2164 }
2165 
2166 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2167 extern bool kvm_rebooting;
2168 #endif
2169 
2170 extern unsigned int halt_poll_ns;
2171 extern unsigned int halt_poll_ns_grow;
2172 extern unsigned int halt_poll_ns_grow_start;
2173 extern unsigned int halt_poll_ns_shrink;
2174 
2175 struct kvm_device {
2176 	const struct kvm_device_ops *ops;
2177 	struct kvm *kvm;
2178 	void *private;
2179 	struct list_head vm_node;
2180 };
2181 
2182 /* create, destroy, and name are mandatory */
2183 struct kvm_device_ops {
2184 	const char *name;
2185 
2186 	/*
2187 	 * create is called holding kvm->lock and any operations not suitable
2188 	 * to do while holding the lock should be deferred to init (see
2189 	 * below).
2190 	 */
2191 	int (*create)(struct kvm_device *dev, u32 type);
2192 
2193 	/*
2194 	 * init is called after create if create is successful and is called
2195 	 * outside of holding kvm->lock.
2196 	 */
2197 	void (*init)(struct kvm_device *dev);
2198 
2199 	/*
2200 	 * Destroy is responsible for freeing dev.
2201 	 *
2202 	 * Destroy may be called before or after destructors are called
2203 	 * on emulated I/O regions, depending on whether a reference is
2204 	 * held by a vcpu or other kvm component that gets destroyed
2205 	 * after the emulated I/O.
2206 	 */
2207 	void (*destroy)(struct kvm_device *dev);
2208 
2209 	/*
2210 	 * Release is an alternative method to free the device. It is
2211 	 * called when the device file descriptor is closed. Once
2212 	 * release is called, the destroy method will not be called
2213 	 * anymore as the device is removed from the device list of
2214 	 * the VM. kvm->lock is held.
2215 	 */
2216 	void (*release)(struct kvm_device *dev);
2217 
2218 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2219 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2220 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2221 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2222 		      unsigned long arg);
2223 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2224 };
2225 
2226 struct kvm_device *kvm_device_from_filp(struct file *filp);
2227 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2228 void kvm_unregister_device_ops(u32 type);
2229 
2230 extern struct kvm_device_ops kvm_mpic_ops;
2231 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2232 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2233 
2234 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2235 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2236 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2237 {
2238 	vcpu->spin_loop.in_spin_loop = val;
2239 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2240 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2241 {
2242 	vcpu->spin_loop.dy_eligible = val;
2243 }
2244 
2245 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2246 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2247 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2248 {
2249 }
2250 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2251 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2252 {
2253 }
2254 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2255 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2256 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2257 {
2258 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2259 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2260 }
2261 
2262 struct kvm_vcpu *kvm_get_running_vcpu(void);
2263 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2264 
2265 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2266 bool kvm_arch_has_irq_bypass(void);
2267 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2268 			   struct irq_bypass_producer *);
2269 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2270 			   struct irq_bypass_producer *);
2271 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2272 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2273 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2274 				  uint32_t guest_irq, bool set);
2275 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2276 				  struct kvm_kernel_irq_routing_entry *);
2277 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2278 
2279 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2280 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2281 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2282 {
2283 	return vcpu->valid_wakeup;
2284 }
2285 
2286 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2287 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2288 {
2289 	return true;
2290 }
2291 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2292 
2293 #ifdef CONFIG_HAVE_KVM_NO_POLL
2294 /* Callback that tells if we must not poll */
2295 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2296 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2297 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2298 {
2299 	return false;
2300 }
2301 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2302 
2303 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2304 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2305 			       unsigned int ioctl, unsigned long arg);
2306 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2307 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2308 					     unsigned int ioctl,
2309 					     unsigned long arg)
2310 {
2311 	return -ENOIOCTLCMD;
2312 }
2313 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2314 
2315 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2316 
2317 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2318 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2319 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2320 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2321 {
2322 	return 0;
2323 }
2324 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2325 
2326 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2327 
2328 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2329 				uintptr_t data, const char *name,
2330 				struct task_struct **thread_ptr);
2331 
2332 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2333 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2334 {
2335 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2336 	vcpu->stat.signal_exits++;
2337 }
2338 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2339 
2340 /*
2341  * If more than one page is being (un)accounted, @virt must be the address of
2342  * the first page of a block of pages what were allocated together (i.e
2343  * accounted together).
2344  *
2345  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2346  * is thread-safe.
2347  */
kvm_account_pgtable_pages(void * virt,int nr)2348 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2349 {
2350 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2351 }
2352 
2353 /*
2354  * This defines how many reserved entries we want to keep before we
2355  * kick the vcpu to the userspace to avoid dirty ring full.  This
2356  * value can be tuned to higher if e.g. PML is enabled on the host.
2357  */
2358 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2359 
2360 /* Max number of entries allowed for each kvm dirty ring */
2361 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2362 
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2363 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2364 						 gpa_t gpa, gpa_t size,
2365 						 bool is_write, bool is_exec,
2366 						 bool is_private)
2367 {
2368 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2369 	vcpu->run->memory_fault.gpa = gpa;
2370 	vcpu->run->memory_fault.size = size;
2371 
2372 	/* RWX flags are not (yet) defined or communicated to userspace. */
2373 	vcpu->run->memory_fault.flags = 0;
2374 	if (is_private)
2375 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2376 }
2377 
2378 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2379 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2380 {
2381 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2382 }
2383 
2384 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2385 				     unsigned long attrs);
2386 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2387 					struct kvm_gfn_range *range);
2388 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2389 					 struct kvm_gfn_range *range);
2390 
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2391 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2392 {
2393 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2394 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2395 }
2396 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2397 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2398 {
2399 	return false;
2400 }
2401 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2402 
2403 #ifdef CONFIG_KVM_PRIVATE_MEM
2404 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2405 		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2406 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,int * max_order)2407 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2408 				   struct kvm_memory_slot *slot, gfn_t gfn,
2409 				   kvm_pfn_t *pfn, int *max_order)
2410 {
2411 	KVM_BUG_ON(1, kvm);
2412 	return -EIO;
2413 }
2414 #endif /* CONFIG_KVM_PRIVATE_MEM */
2415 
2416 #endif
2417