1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58
59 /*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
82
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES 1
85 #endif
86
87 /*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101 /*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109
110 /*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118
119 /*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 return pfn == KVM_PFN_NOSLOT;
133 }
134
135 /*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139 #ifndef KVM_HVA_ERR_BAD
140
141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 return addr >= PAGE_OFFSET;
147 }
148
149 #endif
150
151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
152
is_error_page(struct page * page)153 static inline bool is_error_page(struct page *page)
154 {
155 return IS_ERR(page);
156 }
157
158 #define KVM_REQUEST_MASK GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP BIT(8)
160 #define KVM_REQUEST_WAIT BIT(9)
161 #define KVM_REQUEST_NO_ACTION BIT(10)
162 /*
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
165 */
166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK 2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170 #define KVM_REQUEST_ARCH_BASE 8
171
172 /*
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 struct kvm_vcpu *except);
193
194 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
195 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
196
197 extern struct mutex kvm_lock;
198 extern struct list_head vm_list;
199
200 struct kvm_io_range {
201 gpa_t addr;
202 int len;
203 struct kvm_io_device *dev;
204 };
205
206 #define NR_IOBUS_DEVS 1000
207
208 struct kvm_io_bus {
209 int dev_count;
210 int ioeventfd_count;
211 struct kvm_io_range range[];
212 };
213
214 enum kvm_bus {
215 KVM_MMIO_BUS,
216 KVM_PIO_BUS,
217 KVM_VIRTIO_CCW_NOTIFY_BUS,
218 KVM_FAST_MMIO_BUS,
219 KVM_NR_BUSES
220 };
221
222 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
223 int len, const void *val);
224 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
225 gpa_t addr, int len, const void *val, long cookie);
226 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
227 int len, void *val);
228 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
229 int len, struct kvm_io_device *dev);
230 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 struct kvm_io_device *dev);
232 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 gpa_t addr);
234
235 #ifdef CONFIG_KVM_ASYNC_PF
236 struct kvm_async_pf {
237 struct work_struct work;
238 struct list_head link;
239 struct list_head queue;
240 struct kvm_vcpu *vcpu;
241 struct mm_struct *mm;
242 gpa_t cr2_or_gpa;
243 unsigned long addr;
244 struct kvm_arch_async_pf arch;
245 bool wakeup_all;
246 bool notpresent_injected;
247 };
248
249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
252 unsigned long hva, struct kvm_arch_async_pf *arch);
253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
254 #endif
255
256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
257 union kvm_mmu_notifier_arg {
258 pte_t pte;
259 unsigned long attributes;
260 };
261
262 struct kvm_gfn_range {
263 struct kvm_memory_slot *slot;
264 gfn_t start;
265 gfn_t end;
266 union kvm_mmu_notifier_arg arg;
267 bool may_block;
268 };
269 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
270 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273 #endif
274
275 enum {
276 OUTSIDE_GUEST_MODE,
277 IN_GUEST_MODE,
278 EXITING_GUEST_MODE,
279 READING_SHADOW_PAGE_TABLES,
280 };
281
282 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
283
284 struct kvm_host_map {
285 /*
286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 * a 'struct page' for it. When using mem= kernel parameter some memory
288 * can be used as guest memory but they are not managed by host
289 * kernel).
290 * If 'pfn' is not managed by the host kernel, this field is
291 * initialized to KVM_UNMAPPED_PAGE.
292 */
293 struct page *page;
294 void *hva;
295 kvm_pfn_t pfn;
296 kvm_pfn_t gfn;
297 };
298
299 /*
300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301 * directly to check for that.
302 */
kvm_vcpu_mapped(struct kvm_host_map * map)303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304 {
305 return !!map->hva;
306 }
307
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 {
310 return single_task_running() && !need_resched() && ktime_before(cur, stop);
311 }
312
313 /*
314 * Sometimes a large or cross-page mmio needs to be broken up into separate
315 * exits for userspace servicing.
316 */
317 struct kvm_mmio_fragment {
318 gpa_t gpa;
319 void *data;
320 unsigned len;
321 };
322
323 struct kvm_vcpu {
324 struct kvm *kvm;
325 #ifdef CONFIG_PREEMPT_NOTIFIERS
326 struct preempt_notifier preempt_notifier;
327 #endif
328 int cpu;
329 int vcpu_id; /* id given by userspace at creation */
330 int vcpu_idx; /* index into kvm->vcpu_array */
331 int ____srcu_idx; /* Don't use this directly. You've been warned. */
332 #ifdef CONFIG_PROVE_RCU
333 int srcu_depth;
334 #endif
335 int mode;
336 u64 requests;
337 unsigned long guest_debug;
338
339 struct mutex mutex;
340 struct kvm_run *run;
341
342 #ifndef __KVM_HAVE_ARCH_WQP
343 struct rcuwait wait;
344 #endif
345 struct pid __rcu *pid;
346 int sigset_active;
347 sigset_t sigset;
348 unsigned int halt_poll_ns;
349 bool valid_wakeup;
350
351 #ifdef CONFIG_HAS_IOMEM
352 int mmio_needed;
353 int mmio_read_completed;
354 int mmio_is_write;
355 int mmio_cur_fragment;
356 int mmio_nr_fragments;
357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358 #endif
359
360 #ifdef CONFIG_KVM_ASYNC_PF
361 struct {
362 u32 queued;
363 struct list_head queue;
364 struct list_head done;
365 spinlock_t lock;
366 } async_pf;
367 #endif
368
369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 /*
371 * Cpu relax intercept or pause loop exit optimization
372 * in_spin_loop: set when a vcpu does a pause loop exit
373 * or cpu relax intercepted.
374 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 */
376 struct {
377 bool in_spin_loop;
378 bool dy_eligible;
379 } spin_loop;
380 #endif
381 bool preempted;
382 bool ready;
383 struct kvm_vcpu_arch arch;
384 struct kvm_vcpu_stat stat;
385 char stats_id[KVM_STATS_NAME_SIZE];
386 struct kvm_dirty_ring dirty_ring;
387
388 /*
389 * The most recently used memslot by this vCPU and the slots generation
390 * for which it is valid.
391 * No wraparound protection is needed since generations won't overflow in
392 * thousands of years, even assuming 1M memslot operations per second.
393 */
394 struct kvm_memory_slot *last_used_slot;
395 u64 last_used_slot_gen;
396 };
397
398 /*
399 * Start accounting time towards a guest.
400 * Must be called before entering guest context.
401 */
guest_timing_enter_irqoff(void)402 static __always_inline void guest_timing_enter_irqoff(void)
403 {
404 /*
405 * This is running in ioctl context so its safe to assume that it's the
406 * stime pending cputime to flush.
407 */
408 instrumentation_begin();
409 vtime_account_guest_enter();
410 instrumentation_end();
411 }
412
413 /*
414 * Enter guest context and enter an RCU extended quiescent state.
415 *
416 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
417 * unsafe to use any code which may directly or indirectly use RCU, tracing
418 * (including IRQ flag tracing), or lockdep. All code in this period must be
419 * non-instrumentable.
420 */
guest_context_enter_irqoff(void)421 static __always_inline void guest_context_enter_irqoff(void)
422 {
423 /*
424 * KVM does not hold any references to rcu protected data when it
425 * switches CPU into a guest mode. In fact switching to a guest mode
426 * is very similar to exiting to userspace from rcu point of view. In
427 * addition CPU may stay in a guest mode for quite a long time (up to
428 * one time slice). Lets treat guest mode as quiescent state, just like
429 * we do with user-mode execution.
430 */
431 if (!context_tracking_guest_enter()) {
432 instrumentation_begin();
433 rcu_virt_note_context_switch();
434 instrumentation_end();
435 }
436 }
437
438 /*
439 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
440 * guest_state_enter_irqoff().
441 */
guest_enter_irqoff(void)442 static __always_inline void guest_enter_irqoff(void)
443 {
444 guest_timing_enter_irqoff();
445 guest_context_enter_irqoff();
446 }
447
448 /**
449 * guest_state_enter_irqoff - Fixup state when entering a guest
450 *
451 * Entry to a guest will enable interrupts, but the kernel state is interrupts
452 * disabled when this is invoked. Also tell RCU about it.
453 *
454 * 1) Trace interrupts on state
455 * 2) Invoke context tracking if enabled to adjust RCU state
456 * 3) Tell lockdep that interrupts are enabled
457 *
458 * Invoked from architecture specific code before entering a guest.
459 * Must be called with interrupts disabled and the caller must be
460 * non-instrumentable.
461 * The caller has to invoke guest_timing_enter_irqoff() before this.
462 *
463 * Note: this is analogous to exit_to_user_mode().
464 */
guest_state_enter_irqoff(void)465 static __always_inline void guest_state_enter_irqoff(void)
466 {
467 instrumentation_begin();
468 trace_hardirqs_on_prepare();
469 lockdep_hardirqs_on_prepare();
470 instrumentation_end();
471
472 guest_context_enter_irqoff();
473 lockdep_hardirqs_on(CALLER_ADDR0);
474 }
475
476 /*
477 * Exit guest context and exit an RCU extended quiescent state.
478 *
479 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
480 * unsafe to use any code which may directly or indirectly use RCU, tracing
481 * (including IRQ flag tracing), or lockdep. All code in this period must be
482 * non-instrumentable.
483 */
guest_context_exit_irqoff(void)484 static __always_inline void guest_context_exit_irqoff(void)
485 {
486 context_tracking_guest_exit();
487 }
488
489 /*
490 * Stop accounting time towards a guest.
491 * Must be called after exiting guest context.
492 */
guest_timing_exit_irqoff(void)493 static __always_inline void guest_timing_exit_irqoff(void)
494 {
495 instrumentation_begin();
496 /* Flush the guest cputime we spent on the guest */
497 vtime_account_guest_exit();
498 instrumentation_end();
499 }
500
501 /*
502 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
503 * guest_timing_exit_irqoff().
504 */
guest_exit_irqoff(void)505 static __always_inline void guest_exit_irqoff(void)
506 {
507 guest_context_exit_irqoff();
508 guest_timing_exit_irqoff();
509 }
510
guest_exit(void)511 static inline void guest_exit(void)
512 {
513 unsigned long flags;
514
515 local_irq_save(flags);
516 guest_exit_irqoff();
517 local_irq_restore(flags);
518 }
519
520 /**
521 * guest_state_exit_irqoff - Establish state when returning from guest mode
522 *
523 * Entry from a guest disables interrupts, but guest mode is traced as
524 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
525 *
526 * 1) Tell lockdep that interrupts are disabled
527 * 2) Invoke context tracking if enabled to reactivate RCU
528 * 3) Trace interrupts off state
529 *
530 * Invoked from architecture specific code after exiting a guest.
531 * Must be invoked with interrupts disabled and the caller must be
532 * non-instrumentable.
533 * The caller has to invoke guest_timing_exit_irqoff() after this.
534 *
535 * Note: this is analogous to enter_from_user_mode().
536 */
guest_state_exit_irqoff(void)537 static __always_inline void guest_state_exit_irqoff(void)
538 {
539 lockdep_hardirqs_off(CALLER_ADDR0);
540 guest_context_exit_irqoff();
541
542 instrumentation_begin();
543 trace_hardirqs_off_finish();
544 instrumentation_end();
545 }
546
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)547 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
548 {
549 /*
550 * The memory barrier ensures a previous write to vcpu->requests cannot
551 * be reordered with the read of vcpu->mode. It pairs with the general
552 * memory barrier following the write of vcpu->mode in VCPU RUN.
553 */
554 smp_mb__before_atomic();
555 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
556 }
557
558 /*
559 * Some of the bitops functions do not support too long bitmaps.
560 * This number must be determined not to exceed such limits.
561 */
562 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
563
564 /*
565 * Since at idle each memslot belongs to two memslot sets it has to contain
566 * two embedded nodes for each data structure that it forms a part of.
567 *
568 * Two memslot sets (one active and one inactive) are necessary so the VM
569 * continues to run on one memslot set while the other is being modified.
570 *
571 * These two memslot sets normally point to the same set of memslots.
572 * They can, however, be desynchronized when performing a memslot management
573 * operation by replacing the memslot to be modified by its copy.
574 * After the operation is complete, both memslot sets once again point to
575 * the same, common set of memslot data.
576 *
577 * The memslots themselves are independent of each other so they can be
578 * individually added or deleted.
579 */
580 struct kvm_memory_slot {
581 struct hlist_node id_node[2];
582 struct interval_tree_node hva_node[2];
583 struct rb_node gfn_node[2];
584 gfn_t base_gfn;
585 unsigned long npages;
586 unsigned long *dirty_bitmap;
587 struct kvm_arch_memory_slot arch;
588 unsigned long userspace_addr;
589 u32 flags;
590 short id;
591 u16 as_id;
592
593 #ifdef CONFIG_KVM_PRIVATE_MEM
594 struct {
595 struct file __rcu *file;
596 pgoff_t pgoff;
597 } gmem;
598 #endif
599 };
600
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)601 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
602 {
603 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
604 }
605
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)606 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
607 {
608 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
609 }
610
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)611 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
612 {
613 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
614 }
615
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)616 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
617 {
618 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
619
620 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
621 }
622
623 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
624 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
625 #endif
626
627 struct kvm_s390_adapter_int {
628 u64 ind_addr;
629 u64 summary_addr;
630 u64 ind_offset;
631 u32 summary_offset;
632 u32 adapter_id;
633 };
634
635 struct kvm_hv_sint {
636 u32 vcpu;
637 u32 sint;
638 };
639
640 struct kvm_xen_evtchn {
641 u32 port;
642 u32 vcpu_id;
643 int vcpu_idx;
644 u32 priority;
645 };
646
647 struct kvm_kernel_irq_routing_entry {
648 u32 gsi;
649 u32 type;
650 int (*set)(struct kvm_kernel_irq_routing_entry *e,
651 struct kvm *kvm, int irq_source_id, int level,
652 bool line_status);
653 union {
654 struct {
655 unsigned irqchip;
656 unsigned pin;
657 } irqchip;
658 struct {
659 u32 address_lo;
660 u32 address_hi;
661 u32 data;
662 u32 flags;
663 u32 devid;
664 } msi;
665 struct kvm_s390_adapter_int adapter;
666 struct kvm_hv_sint hv_sint;
667 struct kvm_xen_evtchn xen_evtchn;
668 };
669 struct hlist_node link;
670 };
671
672 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
673 struct kvm_irq_routing_table {
674 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
675 u32 nr_rt_entries;
676 /*
677 * Array indexed by gsi. Each entry contains list of irq chips
678 * the gsi is connected to.
679 */
680 struct hlist_head map[] __counted_by(nr_rt_entries);
681 };
682 #endif
683
684 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
685
686 #ifndef KVM_INTERNAL_MEM_SLOTS
687 #define KVM_INTERNAL_MEM_SLOTS 0
688 #endif
689
690 #define KVM_MEM_SLOTS_NUM SHRT_MAX
691 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
692
693 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)694 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
695 {
696 return KVM_MAX_NR_ADDRESS_SPACES;
697 }
698
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)699 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
700 {
701 return 0;
702 }
703 #endif
704
705 /*
706 * Arch code must define kvm_arch_has_private_mem if support for private memory
707 * is enabled.
708 */
709 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)710 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
711 {
712 return false;
713 }
714 #endif
715
716 struct kvm_memslots {
717 u64 generation;
718 atomic_long_t last_used_slot;
719 struct rb_root_cached hva_tree;
720 struct rb_root gfn_tree;
721 /*
722 * The mapping table from slot id to memslot.
723 *
724 * 7-bit bucket count matches the size of the old id to index array for
725 * 512 slots, while giving good performance with this slot count.
726 * Higher bucket counts bring only small performance improvements but
727 * always result in higher memory usage (even for lower memslot counts).
728 */
729 DECLARE_HASHTABLE(id_hash, 7);
730 int node_idx;
731 };
732
733 struct kvm {
734 #ifdef KVM_HAVE_MMU_RWLOCK
735 rwlock_t mmu_lock;
736 #else
737 spinlock_t mmu_lock;
738 #endif /* KVM_HAVE_MMU_RWLOCK */
739
740 struct mutex slots_lock;
741
742 /*
743 * Protects the arch-specific fields of struct kvm_memory_slots in
744 * use by the VM. To be used under the slots_lock (above) or in a
745 * kvm->srcu critical section where acquiring the slots_lock would
746 * lead to deadlock with the synchronize_srcu in
747 * kvm_swap_active_memslots().
748 */
749 struct mutex slots_arch_lock;
750 struct mm_struct *mm; /* userspace tied to this vm */
751 unsigned long nr_memslot_pages;
752 /* The two memslot sets - active and inactive (per address space) */
753 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
754 /* The current active memslot set for each address space */
755 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
756 struct xarray vcpu_array;
757 /*
758 * Protected by slots_lock, but can be read outside if an
759 * incorrect answer is acceptable.
760 */
761 atomic_t nr_memslots_dirty_logging;
762
763 /* Used to wait for completion of MMU notifiers. */
764 spinlock_t mn_invalidate_lock;
765 unsigned long mn_active_invalidate_count;
766 struct rcuwait mn_memslots_update_rcuwait;
767
768 /* For management / invalidation of gfn_to_pfn_caches */
769 spinlock_t gpc_lock;
770 struct list_head gpc_list;
771
772 /*
773 * created_vcpus is protected by kvm->lock, and is incremented
774 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
775 * incremented after storing the kvm_vcpu pointer in vcpus,
776 * and is accessed atomically.
777 */
778 atomic_t online_vcpus;
779 int max_vcpus;
780 int created_vcpus;
781 int last_boosted_vcpu;
782 struct list_head vm_list;
783 struct mutex lock;
784 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
785 #ifdef CONFIG_HAVE_KVM_IRQCHIP
786 struct {
787 spinlock_t lock;
788 struct list_head items;
789 /* resampler_list update side is protected by resampler_lock. */
790 struct list_head resampler_list;
791 struct mutex resampler_lock;
792 } irqfds;
793 #endif
794 struct list_head ioeventfds;
795 struct kvm_vm_stat stat;
796 struct kvm_arch arch;
797 refcount_t users_count;
798 #ifdef CONFIG_KVM_MMIO
799 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
800 spinlock_t ring_lock;
801 struct list_head coalesced_zones;
802 #endif
803
804 struct mutex irq_lock;
805 #ifdef CONFIG_HAVE_KVM_IRQCHIP
806 /*
807 * Update side is protected by irq_lock.
808 */
809 struct kvm_irq_routing_table __rcu *irq_routing;
810
811 struct hlist_head irq_ack_notifier_list;
812 #endif
813
814 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
815 struct mmu_notifier mmu_notifier;
816 unsigned long mmu_invalidate_seq;
817 long mmu_invalidate_in_progress;
818 gfn_t mmu_invalidate_range_start;
819 gfn_t mmu_invalidate_range_end;
820 #endif
821 struct list_head devices;
822 u64 manual_dirty_log_protect;
823 struct dentry *debugfs_dentry;
824 struct kvm_stat_data **debugfs_stat_data;
825 struct srcu_struct srcu;
826 struct srcu_struct irq_srcu;
827 pid_t userspace_pid;
828 bool override_halt_poll_ns;
829 unsigned int max_halt_poll_ns;
830 u32 dirty_ring_size;
831 bool dirty_ring_with_bitmap;
832 bool vm_bugged;
833 bool vm_dead;
834
835 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
836 struct notifier_block pm_notifier;
837 #endif
838 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
839 /* Protected by slots_locks (for writes) and RCU (for reads) */
840 struct xarray mem_attr_array;
841 #endif
842 char stats_id[KVM_STATS_NAME_SIZE];
843 };
844
845 #define kvm_err(fmt, ...) \
846 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
847 #define kvm_info(fmt, ...) \
848 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
849 #define kvm_debug(fmt, ...) \
850 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
851 #define kvm_debug_ratelimited(fmt, ...) \
852 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
853 ## __VA_ARGS__)
854 #define kvm_pr_unimpl(fmt, ...) \
855 pr_err_ratelimited("kvm [%i]: " fmt, \
856 task_tgid_nr(current), ## __VA_ARGS__)
857
858 /* The guest did something we don't support. */
859 #define vcpu_unimpl(vcpu, fmt, ...) \
860 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
861 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
862
863 #define vcpu_debug(vcpu, fmt, ...) \
864 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
865 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
866 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
867 ## __VA_ARGS__)
868 #define vcpu_err(vcpu, fmt, ...) \
869 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
870
kvm_vm_dead(struct kvm * kvm)871 static inline void kvm_vm_dead(struct kvm *kvm)
872 {
873 kvm->vm_dead = true;
874 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
875 }
876
kvm_vm_bugged(struct kvm * kvm)877 static inline void kvm_vm_bugged(struct kvm *kvm)
878 {
879 kvm->vm_bugged = true;
880 kvm_vm_dead(kvm);
881 }
882
883
884 #define KVM_BUG(cond, kvm, fmt...) \
885 ({ \
886 bool __ret = !!(cond); \
887 \
888 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
889 kvm_vm_bugged(kvm); \
890 unlikely(__ret); \
891 })
892
893 #define KVM_BUG_ON(cond, kvm) \
894 ({ \
895 bool __ret = !!(cond); \
896 \
897 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
898 kvm_vm_bugged(kvm); \
899 unlikely(__ret); \
900 })
901
902 /*
903 * Note, "data corruption" refers to corruption of host kernel data structures,
904 * not guest data. Guest data corruption, suspected or confirmed, that is tied
905 * and contained to a single VM should *never* BUG() and potentially panic the
906 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
907 * is corrupted and that corruption can have a cascading effect to other parts
908 * of the hosts and/or to other VMs.
909 */
910 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
911 ({ \
912 bool __ret = !!(cond); \
913 \
914 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
915 BUG_ON(__ret); \
916 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
917 kvm_vm_bugged(kvm); \
918 unlikely(__ret); \
919 })
920
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)921 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
922 {
923 #ifdef CONFIG_PROVE_RCU
924 WARN_ONCE(vcpu->srcu_depth++,
925 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
926 #endif
927 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
928 }
929
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)930 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
931 {
932 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
933
934 #ifdef CONFIG_PROVE_RCU
935 WARN_ONCE(--vcpu->srcu_depth,
936 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
937 #endif
938 }
939
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)940 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
941 {
942 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
943 }
944
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)945 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
946 {
947 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
948 lockdep_is_held(&kvm->slots_lock) ||
949 !refcount_read(&kvm->users_count));
950 }
951
kvm_get_vcpu(struct kvm * kvm,int i)952 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
953 {
954 int num_vcpus = atomic_read(&kvm->online_vcpus);
955 i = array_index_nospec(i, num_vcpus);
956
957 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
958 smp_rmb();
959 return xa_load(&kvm->vcpu_array, i);
960 }
961
962 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
963 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
964 (atomic_read(&kvm->online_vcpus) - 1))
965
kvm_get_vcpu_by_id(struct kvm * kvm,int id)966 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
967 {
968 struct kvm_vcpu *vcpu = NULL;
969 unsigned long i;
970
971 if (id < 0)
972 return NULL;
973 if (id < KVM_MAX_VCPUS)
974 vcpu = kvm_get_vcpu(kvm, id);
975 if (vcpu && vcpu->vcpu_id == id)
976 return vcpu;
977 kvm_for_each_vcpu(i, vcpu, kvm)
978 if (vcpu->vcpu_id == id)
979 return vcpu;
980 return NULL;
981 }
982
983 void kvm_destroy_vcpus(struct kvm *kvm);
984
985 void vcpu_load(struct kvm_vcpu *vcpu);
986 void vcpu_put(struct kvm_vcpu *vcpu);
987
988 #ifdef __KVM_HAVE_IOAPIC
989 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
990 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
991 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)992 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
993 {
994 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)995 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
996 {
997 }
998 #endif
999
1000 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1001 int kvm_irqfd_init(void);
1002 void kvm_irqfd_exit(void);
1003 #else
kvm_irqfd_init(void)1004 static inline int kvm_irqfd_init(void)
1005 {
1006 return 0;
1007 }
1008
kvm_irqfd_exit(void)1009 static inline void kvm_irqfd_exit(void)
1010 {
1011 }
1012 #endif
1013 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1014 void kvm_exit(void);
1015
1016 void kvm_get_kvm(struct kvm *kvm);
1017 bool kvm_get_kvm_safe(struct kvm *kvm);
1018 void kvm_put_kvm(struct kvm *kvm);
1019 bool file_is_kvm(struct file *file);
1020 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1021
__kvm_memslots(struct kvm * kvm,int as_id)1022 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1023 {
1024 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1025 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1026 lockdep_is_held(&kvm->slots_lock) ||
1027 !refcount_read(&kvm->users_count));
1028 }
1029
kvm_memslots(struct kvm * kvm)1030 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1031 {
1032 return __kvm_memslots(kvm, 0);
1033 }
1034
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1035 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1036 {
1037 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1038
1039 return __kvm_memslots(vcpu->kvm, as_id);
1040 }
1041
kvm_memslots_empty(struct kvm_memslots * slots)1042 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1043 {
1044 return RB_EMPTY_ROOT(&slots->gfn_tree);
1045 }
1046
1047 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1048
1049 #define kvm_for_each_memslot(memslot, bkt, slots) \
1050 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1051 if (WARN_ON_ONCE(!memslot->npages)) { \
1052 } else
1053
1054 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1055 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1056 {
1057 struct kvm_memory_slot *slot;
1058 int idx = slots->node_idx;
1059
1060 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1061 if (slot->id == id)
1062 return slot;
1063 }
1064
1065 return NULL;
1066 }
1067
1068 /* Iterator used for walking memslots that overlap a gfn range. */
1069 struct kvm_memslot_iter {
1070 struct kvm_memslots *slots;
1071 struct rb_node *node;
1072 struct kvm_memory_slot *slot;
1073 };
1074
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1075 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1076 {
1077 iter->node = rb_next(iter->node);
1078 if (!iter->node)
1079 return;
1080
1081 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1082 }
1083
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1084 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1085 struct kvm_memslots *slots,
1086 gfn_t start)
1087 {
1088 int idx = slots->node_idx;
1089 struct rb_node *tmp;
1090 struct kvm_memory_slot *slot;
1091
1092 iter->slots = slots;
1093
1094 /*
1095 * Find the so called "upper bound" of a key - the first node that has
1096 * its key strictly greater than the searched one (the start gfn in our case).
1097 */
1098 iter->node = NULL;
1099 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1100 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1101 if (start < slot->base_gfn) {
1102 iter->node = tmp;
1103 tmp = tmp->rb_left;
1104 } else {
1105 tmp = tmp->rb_right;
1106 }
1107 }
1108
1109 /*
1110 * Find the slot with the lowest gfn that can possibly intersect with
1111 * the range, so we'll ideally have slot start <= range start
1112 */
1113 if (iter->node) {
1114 /*
1115 * A NULL previous node means that the very first slot
1116 * already has a higher start gfn.
1117 * In this case slot start > range start.
1118 */
1119 tmp = rb_prev(iter->node);
1120 if (tmp)
1121 iter->node = tmp;
1122 } else {
1123 /* a NULL node below means no slots */
1124 iter->node = rb_last(&slots->gfn_tree);
1125 }
1126
1127 if (iter->node) {
1128 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1129
1130 /*
1131 * It is possible in the slot start < range start case that the
1132 * found slot ends before or at range start (slot end <= range start)
1133 * and so it does not overlap the requested range.
1134 *
1135 * In such non-overlapping case the next slot (if it exists) will
1136 * already have slot start > range start, otherwise the logic above
1137 * would have found it instead of the current slot.
1138 */
1139 if (iter->slot->base_gfn + iter->slot->npages <= start)
1140 kvm_memslot_iter_next(iter);
1141 }
1142 }
1143
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1144 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1145 {
1146 if (!iter->node)
1147 return false;
1148
1149 /*
1150 * If this slot starts beyond or at the end of the range so does
1151 * every next one
1152 */
1153 return iter->slot->base_gfn < end;
1154 }
1155
1156 /* Iterate over each memslot at least partially intersecting [start, end) range */
1157 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1158 for (kvm_memslot_iter_start(iter, slots, start); \
1159 kvm_memslot_iter_is_valid(iter, end); \
1160 kvm_memslot_iter_next(iter))
1161
1162 /*
1163 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1164 * - create a new memory slot
1165 * - delete an existing memory slot
1166 * - modify an existing memory slot
1167 * -- move it in the guest physical memory space
1168 * -- just change its flags
1169 *
1170 * Since flags can be changed by some of these operations, the following
1171 * differentiation is the best we can do for __kvm_set_memory_region():
1172 */
1173 enum kvm_mr_change {
1174 KVM_MR_CREATE,
1175 KVM_MR_DELETE,
1176 KVM_MR_MOVE,
1177 KVM_MR_FLAGS_ONLY,
1178 };
1179
1180 int kvm_set_memory_region(struct kvm *kvm,
1181 const struct kvm_userspace_memory_region2 *mem);
1182 int __kvm_set_memory_region(struct kvm *kvm,
1183 const struct kvm_userspace_memory_region2 *mem);
1184 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1185 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1186 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1187 const struct kvm_memory_slot *old,
1188 struct kvm_memory_slot *new,
1189 enum kvm_mr_change change);
1190 void kvm_arch_commit_memory_region(struct kvm *kvm,
1191 struct kvm_memory_slot *old,
1192 const struct kvm_memory_slot *new,
1193 enum kvm_mr_change change);
1194 /* flush all memory translations */
1195 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1196 /* flush memory translations pointing to 'slot' */
1197 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1198 struct kvm_memory_slot *slot);
1199
1200 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1201 struct page **pages, int nr_pages);
1202
1203 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1204 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1206 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1207 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1208 bool *writable);
1209 void kvm_release_page_clean(struct page *page);
1210 void kvm_release_page_dirty(struct page *page);
1211
1212 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1213 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1214 bool *writable);
1215 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1216 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1217 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1218 bool atomic, bool interruptible, bool *async,
1219 bool write_fault, bool *writable, hva_t *hva);
1220
1221 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1222 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1223 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1224 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1225
1226 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1227 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1228 int len);
1229 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1230 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1231 void *data, unsigned long len);
1232 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1233 void *data, unsigned int offset,
1234 unsigned long len);
1235 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1236 int offset, int len);
1237 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1238 unsigned long len);
1239 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1240 void *data, unsigned long len);
1241 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1242 void *data, unsigned int offset,
1243 unsigned long len);
1244 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1245 gpa_t gpa, unsigned long len);
1246
1247 #define __kvm_get_guest(kvm, gfn, offset, v) \
1248 ({ \
1249 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1250 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1251 int __ret = -EFAULT; \
1252 \
1253 if (!kvm_is_error_hva(__addr)) \
1254 __ret = get_user(v, __uaddr); \
1255 __ret; \
1256 })
1257
1258 #define kvm_get_guest(kvm, gpa, v) \
1259 ({ \
1260 gpa_t __gpa = gpa; \
1261 struct kvm *__kvm = kvm; \
1262 \
1263 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1264 offset_in_page(__gpa), v); \
1265 })
1266
1267 #define __kvm_put_guest(kvm, gfn, offset, v) \
1268 ({ \
1269 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1270 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1271 int __ret = -EFAULT; \
1272 \
1273 if (!kvm_is_error_hva(__addr)) \
1274 __ret = put_user(v, __uaddr); \
1275 if (!__ret) \
1276 mark_page_dirty(kvm, gfn); \
1277 __ret; \
1278 })
1279
1280 #define kvm_put_guest(kvm, gpa, v) \
1281 ({ \
1282 gpa_t __gpa = gpa; \
1283 struct kvm *__kvm = kvm; \
1284 \
1285 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1286 offset_in_page(__gpa), v); \
1287 })
1288
1289 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1290 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1291 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1292 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1293 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1294 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1295 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1296
1297 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1298 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1299 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1300 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1301 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1302 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1303 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1304 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1305 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1306 int len);
1307 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1308 unsigned long len);
1309 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1310 unsigned long len);
1311 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1312 int offset, int len);
1313 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1314 unsigned long len);
1315 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1316
1317 /**
1318 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1319 *
1320 * @gpc: struct gfn_to_pfn_cache object.
1321 * @kvm: pointer to kvm instance.
1322 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1323 * invalidation.
1324 * @usage: indicates if the resulting host physical PFN is used while
1325 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1326 * the cache from MMU notifiers---but not for KVM memslot
1327 * changes!---will also force @vcpu to exit the guest and
1328 * refresh the cache); and/or if the PFN used directly
1329 * by KVM (and thus needs a kernel virtual mapping).
1330 *
1331 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1332 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1333 * the caller before init).
1334 */
1335 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1336 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1337
1338 /**
1339 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1340 * physical address.
1341 *
1342 * @gpc: struct gfn_to_pfn_cache object.
1343 * @gpa: guest physical address to map.
1344 * @len: sanity check; the range being access must fit a single page.
1345 *
1346 * @return: 0 for success.
1347 * -EINVAL for a mapping which would cross a page boundary.
1348 * -EFAULT for an untranslatable guest physical address.
1349 *
1350 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1351 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1352 * to ensure that the cache is valid before accessing the target page.
1353 */
1354 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1355
1356 /**
1357 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1358 *
1359 * @gpc: struct gfn_to_pfn_cache object.
1360 * @len: sanity check; the range being access must fit a single page.
1361 *
1362 * @return: %true if the cache is still valid and the address matches.
1363 * %false if the cache is not valid.
1364 *
1365 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1366 * while calling this function, and then continue to hold the lock until the
1367 * access is complete.
1368 *
1369 * Callers in IN_GUEST_MODE may do so without locking, although they should
1370 * still hold a read lock on kvm->scru for the memslot checks.
1371 */
1372 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1373
1374 /**
1375 * kvm_gpc_refresh - update a previously initialized cache.
1376 *
1377 * @gpc: struct gfn_to_pfn_cache object.
1378 * @len: sanity check; the range being access must fit a single page.
1379 *
1380 * @return: 0 for success.
1381 * -EINVAL for a mapping which would cross a page boundary.
1382 * -EFAULT for an untranslatable guest physical address.
1383 *
1384 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1385 * return from this function does not mean the page can be immediately
1386 * accessed because it may have raced with an invalidation. Callers must
1387 * still lock and check the cache status, as this function does not return
1388 * with the lock still held to permit access.
1389 */
1390 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1391
1392 /**
1393 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1394 *
1395 * @gpc: struct gfn_to_pfn_cache object.
1396 *
1397 * This removes a cache from the VM's list to be processed on MMU notifier
1398 * invocation.
1399 */
1400 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1401
1402 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1403 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1404
1405 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1406 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1407 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1408 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1409 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1410 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1411 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1412 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1413
1414 void kvm_flush_remote_tlbs(struct kvm *kvm);
1415 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1416 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1417 const struct kvm_memory_slot *memslot);
1418
1419 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1420 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1421 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1422 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1423 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1424 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1425 #endif
1426
1427 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1428 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1429 void kvm_mmu_invalidate_end(struct kvm *kvm);
1430 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1431
1432 long kvm_arch_dev_ioctl(struct file *filp,
1433 unsigned int ioctl, unsigned long arg);
1434 long kvm_arch_vcpu_ioctl(struct file *filp,
1435 unsigned int ioctl, unsigned long arg);
1436 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1437
1438 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1439
1440 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1441 struct kvm_memory_slot *slot,
1442 gfn_t gfn_offset,
1443 unsigned long mask);
1444 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1445
1446 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1447 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1448 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1449 int *is_dirty, struct kvm_memory_slot **memslot);
1450 #endif
1451
1452 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1453 bool line_status);
1454 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1455 struct kvm_enable_cap *cap);
1456 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1457 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1458 unsigned long arg);
1459
1460 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1461 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1462
1463 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1464 struct kvm_translation *tr);
1465
1466 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1467 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1468 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1469 struct kvm_sregs *sregs);
1470 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1471 struct kvm_sregs *sregs);
1472 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1473 struct kvm_mp_state *mp_state);
1474 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1475 struct kvm_mp_state *mp_state);
1476 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1477 struct kvm_guest_debug *dbg);
1478 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1479
1480 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1481
1482 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1483 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1484 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1485 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1486 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1487 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1488
1489 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1490 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1491 #endif
1492
1493 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1494 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1495 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1496 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1497 #endif
1498
1499 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1500 int kvm_arch_hardware_enable(void);
1501 void kvm_arch_hardware_disable(void);
1502 #endif
1503 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1504 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1505 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1506 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1507 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1508 int kvm_arch_post_init_vm(struct kvm *kvm);
1509 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1510 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1511
1512 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1513 /*
1514 * All architectures that want to use vzalloc currently also
1515 * need their own kvm_arch_alloc_vm implementation.
1516 */
kvm_arch_alloc_vm(void)1517 static inline struct kvm *kvm_arch_alloc_vm(void)
1518 {
1519 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1520 }
1521 #endif
1522
__kvm_arch_free_vm(struct kvm * kvm)1523 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1524 {
1525 kvfree(kvm);
1526 }
1527
1528 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1529 static inline void kvm_arch_free_vm(struct kvm *kvm)
1530 {
1531 __kvm_arch_free_vm(kvm);
1532 }
1533 #endif
1534
1535 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1536 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1537 {
1538 return -ENOTSUPP;
1539 }
1540 #else
1541 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1542 #endif
1543
1544 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1545 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1546 gfn_t gfn, u64 nr_pages)
1547 {
1548 return -EOPNOTSUPP;
1549 }
1550 #else
1551 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1552 #endif
1553
1554 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1555 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1556 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1557 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1558 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1559 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1560 {
1561 }
1562
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1563 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1564 {
1565 }
1566
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1567 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1568 {
1569 return false;
1570 }
1571 #endif
1572 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1573 void kvm_arch_start_assignment(struct kvm *kvm);
1574 void kvm_arch_end_assignment(struct kvm *kvm);
1575 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1576 #else
kvm_arch_start_assignment(struct kvm * kvm)1577 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1578 {
1579 }
1580
kvm_arch_end_assignment(struct kvm * kvm)1581 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1582 {
1583 }
1584
kvm_arch_has_assigned_device(struct kvm * kvm)1585 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1586 {
1587 return false;
1588 }
1589 #endif
1590
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1591 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1592 {
1593 #ifdef __KVM_HAVE_ARCH_WQP
1594 return vcpu->arch.waitp;
1595 #else
1596 return &vcpu->wait;
1597 #endif
1598 }
1599
1600 /*
1601 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1602 * true if the vCPU was blocking and was awakened, false otherwise.
1603 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1604 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1605 {
1606 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1607 }
1608
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1609 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1610 {
1611 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1612 }
1613
1614 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1615 /*
1616 * returns true if the virtual interrupt controller is initialized and
1617 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1618 * controller is dynamically instantiated and this is not always true.
1619 */
1620 bool kvm_arch_intc_initialized(struct kvm *kvm);
1621 #else
kvm_arch_intc_initialized(struct kvm * kvm)1622 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1623 {
1624 return true;
1625 }
1626 #endif
1627
1628 #ifdef CONFIG_GUEST_PERF_EVENTS
1629 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1630
1631 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1632 void kvm_unregister_perf_callbacks(void);
1633 #else
kvm_register_perf_callbacks(void * ign)1634 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1635 static inline void kvm_unregister_perf_callbacks(void) {}
1636 #endif /* CONFIG_GUEST_PERF_EVENTS */
1637
1638 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1639 void kvm_arch_destroy_vm(struct kvm *kvm);
1640 void kvm_arch_sync_events(struct kvm *kvm);
1641
1642 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1643
1644 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1645 bool kvm_is_zone_device_page(struct page *page);
1646
1647 struct kvm_irq_ack_notifier {
1648 struct hlist_node link;
1649 unsigned gsi;
1650 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1651 };
1652
1653 int kvm_irq_map_gsi(struct kvm *kvm,
1654 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1655 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1656
1657 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1658 bool line_status);
1659 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1660 int irq_source_id, int level, bool line_status);
1661 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1662 struct kvm *kvm, int irq_source_id,
1663 int level, bool line_status);
1664 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1665 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1666 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1667 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1668 struct kvm_irq_ack_notifier *kian);
1669 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1670 struct kvm_irq_ack_notifier *kian);
1671 int kvm_request_irq_source_id(struct kvm *kvm);
1672 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1673 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1674
1675 /*
1676 * Returns a pointer to the memslot if it contains gfn.
1677 * Otherwise returns NULL.
1678 */
1679 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1680 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1681 {
1682 if (!slot)
1683 return NULL;
1684
1685 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1686 return slot;
1687 else
1688 return NULL;
1689 }
1690
1691 /*
1692 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1693 *
1694 * With "approx" set returns the memslot also when the address falls
1695 * in a hole. In that case one of the memslots bordering the hole is
1696 * returned.
1697 */
1698 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1699 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1700 {
1701 struct kvm_memory_slot *slot;
1702 struct rb_node *node;
1703 int idx = slots->node_idx;
1704
1705 slot = NULL;
1706 for (node = slots->gfn_tree.rb_node; node; ) {
1707 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1708 if (gfn >= slot->base_gfn) {
1709 if (gfn < slot->base_gfn + slot->npages)
1710 return slot;
1711 node = node->rb_right;
1712 } else
1713 node = node->rb_left;
1714 }
1715
1716 return approx ? slot : NULL;
1717 }
1718
1719 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1720 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1721 {
1722 struct kvm_memory_slot *slot;
1723
1724 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1725 slot = try_get_memslot(slot, gfn);
1726 if (slot)
1727 return slot;
1728
1729 slot = search_memslots(slots, gfn, approx);
1730 if (slot) {
1731 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1732 return slot;
1733 }
1734
1735 return NULL;
1736 }
1737
1738 /*
1739 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1740 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1741 * because that would bloat other code too much.
1742 */
1743 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1744 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1745 {
1746 return ____gfn_to_memslot(slots, gfn, false);
1747 }
1748
1749 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1750 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1751 {
1752 /*
1753 * The index was checked originally in search_memslots. To avoid
1754 * that a malicious guest builds a Spectre gadget out of e.g. page
1755 * table walks, do not let the processor speculate loads outside
1756 * the guest's registered memslots.
1757 */
1758 unsigned long offset = gfn - slot->base_gfn;
1759 offset = array_index_nospec(offset, slot->npages);
1760 return slot->userspace_addr + offset * PAGE_SIZE;
1761 }
1762
memslot_id(struct kvm * kvm,gfn_t gfn)1763 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1764 {
1765 return gfn_to_memslot(kvm, gfn)->id;
1766 }
1767
1768 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1769 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1770 {
1771 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1772
1773 return slot->base_gfn + gfn_offset;
1774 }
1775
gfn_to_gpa(gfn_t gfn)1776 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1777 {
1778 return (gpa_t)gfn << PAGE_SHIFT;
1779 }
1780
gpa_to_gfn(gpa_t gpa)1781 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1782 {
1783 return (gfn_t)(gpa >> PAGE_SHIFT);
1784 }
1785
pfn_to_hpa(kvm_pfn_t pfn)1786 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1787 {
1788 return (hpa_t)pfn << PAGE_SHIFT;
1789 }
1790
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1791 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1792 {
1793 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1794
1795 return kvm_is_error_hva(hva);
1796 }
1797
1798 enum kvm_stat_kind {
1799 KVM_STAT_VM,
1800 KVM_STAT_VCPU,
1801 };
1802
1803 struct kvm_stat_data {
1804 struct kvm *kvm;
1805 const struct _kvm_stats_desc *desc;
1806 enum kvm_stat_kind kind;
1807 };
1808
1809 struct _kvm_stats_desc {
1810 struct kvm_stats_desc desc;
1811 char name[KVM_STATS_NAME_SIZE];
1812 };
1813
1814 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1815 .flags = type | unit | base | \
1816 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1817 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1818 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1819 .exponent = exp, \
1820 .size = sz, \
1821 .bucket_size = bsz
1822
1823 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1824 { \
1825 { \
1826 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1827 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1828 }, \
1829 .name = #stat, \
1830 }
1831 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1832 { \
1833 { \
1834 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1835 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1836 }, \
1837 .name = #stat, \
1838 }
1839 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1840 { \
1841 { \
1842 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1843 .offset = offsetof(struct kvm_vm_stat, stat) \
1844 }, \
1845 .name = #stat, \
1846 }
1847 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1848 { \
1849 { \
1850 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1851 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1852 }, \
1853 .name = #stat, \
1854 }
1855 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1856 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1857 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1858
1859 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1860 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1861 unit, base, exponent, 1, 0)
1862 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1863 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1864 unit, base, exponent, 1, 0)
1865 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1866 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1867 unit, base, exponent, 1, 0)
1868 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1869 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1870 unit, base, exponent, sz, bsz)
1871 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1872 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1873 unit, base, exponent, sz, 0)
1874
1875 /* Cumulative counter, read/write */
1876 #define STATS_DESC_COUNTER(SCOPE, name) \
1877 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1878 KVM_STATS_BASE_POW10, 0)
1879 /* Instantaneous counter, read only */
1880 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1881 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1882 KVM_STATS_BASE_POW10, 0)
1883 /* Peak counter, read/write */
1884 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1885 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1886 KVM_STATS_BASE_POW10, 0)
1887
1888 /* Instantaneous boolean value, read only */
1889 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1890 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1891 KVM_STATS_BASE_POW10, 0)
1892 /* Peak (sticky) boolean value, read/write */
1893 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
1894 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1895 KVM_STATS_BASE_POW10, 0)
1896
1897 /* Cumulative time in nanosecond */
1898 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1899 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1900 KVM_STATS_BASE_POW10, -9)
1901 /* Linear histogram for time in nanosecond */
1902 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1903 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1904 KVM_STATS_BASE_POW10, -9, sz, bsz)
1905 /* Logarithmic histogram for time in nanosecond */
1906 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1907 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1908 KVM_STATS_BASE_POW10, -9, sz)
1909
1910 #define KVM_GENERIC_VM_STATS() \
1911 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1912 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1913
1914 #define KVM_GENERIC_VCPU_STATS() \
1915 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1916 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1917 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1918 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1919 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1920 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1921 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1922 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1923 HALT_POLL_HIST_COUNT), \
1924 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1925 HALT_POLL_HIST_COUNT), \
1926 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1927 HALT_POLL_HIST_COUNT), \
1928 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1929
1930 extern struct dentry *kvm_debugfs_dir;
1931
1932 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1933 const struct _kvm_stats_desc *desc,
1934 void *stats, size_t size_stats,
1935 char __user *user_buffer, size_t size, loff_t *offset);
1936
1937 /**
1938 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1939 * statistics data.
1940 *
1941 * @data: start address of the stats data
1942 * @size: the number of bucket of the stats data
1943 * @value: the new value used to update the linear histogram's bucket
1944 * @bucket_size: the size (width) of a bucket
1945 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1946 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1947 u64 value, size_t bucket_size)
1948 {
1949 size_t index = div64_u64(value, bucket_size);
1950
1951 index = min(index, size - 1);
1952 ++data[index];
1953 }
1954
1955 /**
1956 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1957 * statistics data.
1958 *
1959 * @data: start address of the stats data
1960 * @size: the number of bucket of the stats data
1961 * @value: the new value used to update the logarithmic histogram's bucket
1962 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1963 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1964 {
1965 size_t index = fls64(value);
1966
1967 index = min(index, size - 1);
1968 ++data[index];
1969 }
1970
1971 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1972 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1973 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1974 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1975
1976
1977 extern const struct kvm_stats_header kvm_vm_stats_header;
1978 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1979 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1980 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1981
1982 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)1983 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1984 {
1985 if (unlikely(kvm->mmu_invalidate_in_progress))
1986 return 1;
1987 /*
1988 * Ensure the read of mmu_invalidate_in_progress happens before
1989 * the read of mmu_invalidate_seq. This interacts with the
1990 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1991 * that the caller either sees the old (non-zero) value of
1992 * mmu_invalidate_in_progress or the new (incremented) value of
1993 * mmu_invalidate_seq.
1994 *
1995 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1996 * than under kvm->mmu_lock, for scalability, so can't rely on
1997 * kvm->mmu_lock to keep things ordered.
1998 */
1999 smp_rmb();
2000 if (kvm->mmu_invalidate_seq != mmu_seq)
2001 return 1;
2002 return 0;
2003 }
2004
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2005 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2006 unsigned long mmu_seq,
2007 gfn_t gfn)
2008 {
2009 lockdep_assert_held(&kvm->mmu_lock);
2010 /*
2011 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2012 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2013 * that might be being invalidated. Note that it may include some false
2014 * positives, due to shortcuts when handing concurrent invalidations.
2015 */
2016 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2017 /*
2018 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2019 * but before updating the range is a KVM bug.
2020 */
2021 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2022 kvm->mmu_invalidate_range_end == INVALID_GPA))
2023 return 1;
2024
2025 if (gfn >= kvm->mmu_invalidate_range_start &&
2026 gfn < kvm->mmu_invalidate_range_end)
2027 return 1;
2028 }
2029
2030 if (kvm->mmu_invalidate_seq != mmu_seq)
2031 return 1;
2032 return 0;
2033 }
2034
2035 /*
2036 * This lockless version of the range-based retry check *must* be paired with a
2037 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2038 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2039 * get false negatives and false positives.
2040 */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2041 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2042 unsigned long mmu_seq,
2043 gfn_t gfn)
2044 {
2045 /*
2046 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2047 * are always read from memory, e.g. so that checking for retry in a
2048 * loop won't result in an infinite retry loop. Don't force loads for
2049 * start+end, as the key to avoiding infinite retry loops is observing
2050 * the 1=>0 transition of in-progress, i.e. getting false negatives
2051 * due to stale start+end values is acceptable.
2052 */
2053 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2054 gfn >= kvm->mmu_invalidate_range_start &&
2055 gfn < kvm->mmu_invalidate_range_end)
2056 return true;
2057
2058 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2059 }
2060 #endif
2061
2062 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2063
2064 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2065
2066 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2067 int kvm_set_irq_routing(struct kvm *kvm,
2068 const struct kvm_irq_routing_entry *entries,
2069 unsigned nr,
2070 unsigned flags);
2071 int kvm_set_routing_entry(struct kvm *kvm,
2072 struct kvm_kernel_irq_routing_entry *e,
2073 const struct kvm_irq_routing_entry *ue);
2074 void kvm_free_irq_routing(struct kvm *kvm);
2075
2076 #else
2077
kvm_free_irq_routing(struct kvm * kvm)2078 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2079
2080 #endif
2081
2082 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2083
2084 void kvm_eventfd_init(struct kvm *kvm);
2085 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2086
2087 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2088 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2089 void kvm_irqfd_release(struct kvm *kvm);
2090 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2091 unsigned int irqchip,
2092 unsigned int pin);
2093 void kvm_irq_routing_update(struct kvm *);
2094 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2095 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2096 {
2097 return -EINVAL;
2098 }
2099
kvm_irqfd_release(struct kvm * kvm)2100 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2101
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2102 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2103 unsigned int irqchip,
2104 unsigned int pin)
2105 {
2106 return false;
2107 }
2108 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2109
2110 void kvm_arch_irq_routing_update(struct kvm *kvm);
2111
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2112 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2113 {
2114 /*
2115 * Ensure the rest of the request is published to kvm_check_request's
2116 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2117 */
2118 smp_wmb();
2119 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2120 }
2121
kvm_make_request(int req,struct kvm_vcpu * vcpu)2122 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2123 {
2124 /*
2125 * Request that don't require vCPU action should never be logged in
2126 * vcpu->requests. The vCPU won't clear the request, so it will stay
2127 * logged indefinitely and prevent the vCPU from entering the guest.
2128 */
2129 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2130 (req & KVM_REQUEST_NO_ACTION));
2131
2132 __kvm_make_request(req, vcpu);
2133 }
2134
kvm_request_pending(struct kvm_vcpu * vcpu)2135 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2136 {
2137 return READ_ONCE(vcpu->requests);
2138 }
2139
kvm_test_request(int req,struct kvm_vcpu * vcpu)2140 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2141 {
2142 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2143 }
2144
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2145 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2146 {
2147 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2148 }
2149
kvm_check_request(int req,struct kvm_vcpu * vcpu)2150 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2151 {
2152 if (kvm_test_request(req, vcpu)) {
2153 kvm_clear_request(req, vcpu);
2154
2155 /*
2156 * Ensure the rest of the request is visible to kvm_check_request's
2157 * caller. Paired with the smp_wmb in kvm_make_request.
2158 */
2159 smp_mb__after_atomic();
2160 return true;
2161 } else {
2162 return false;
2163 }
2164 }
2165
2166 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2167 extern bool kvm_rebooting;
2168 #endif
2169
2170 extern unsigned int halt_poll_ns;
2171 extern unsigned int halt_poll_ns_grow;
2172 extern unsigned int halt_poll_ns_grow_start;
2173 extern unsigned int halt_poll_ns_shrink;
2174
2175 struct kvm_device {
2176 const struct kvm_device_ops *ops;
2177 struct kvm *kvm;
2178 void *private;
2179 struct list_head vm_node;
2180 };
2181
2182 /* create, destroy, and name are mandatory */
2183 struct kvm_device_ops {
2184 const char *name;
2185
2186 /*
2187 * create is called holding kvm->lock and any operations not suitable
2188 * to do while holding the lock should be deferred to init (see
2189 * below).
2190 */
2191 int (*create)(struct kvm_device *dev, u32 type);
2192
2193 /*
2194 * init is called after create if create is successful and is called
2195 * outside of holding kvm->lock.
2196 */
2197 void (*init)(struct kvm_device *dev);
2198
2199 /*
2200 * Destroy is responsible for freeing dev.
2201 *
2202 * Destroy may be called before or after destructors are called
2203 * on emulated I/O regions, depending on whether a reference is
2204 * held by a vcpu or other kvm component that gets destroyed
2205 * after the emulated I/O.
2206 */
2207 void (*destroy)(struct kvm_device *dev);
2208
2209 /*
2210 * Release is an alternative method to free the device. It is
2211 * called when the device file descriptor is closed. Once
2212 * release is called, the destroy method will not be called
2213 * anymore as the device is removed from the device list of
2214 * the VM. kvm->lock is held.
2215 */
2216 void (*release)(struct kvm_device *dev);
2217
2218 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2219 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2220 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2221 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2222 unsigned long arg);
2223 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2224 };
2225
2226 struct kvm_device *kvm_device_from_filp(struct file *filp);
2227 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2228 void kvm_unregister_device_ops(u32 type);
2229
2230 extern struct kvm_device_ops kvm_mpic_ops;
2231 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2232 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2233
2234 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2235
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2236 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2237 {
2238 vcpu->spin_loop.in_spin_loop = val;
2239 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2240 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2241 {
2242 vcpu->spin_loop.dy_eligible = val;
2243 }
2244
2245 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2246
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2247 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2248 {
2249 }
2250
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2251 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2252 {
2253 }
2254 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2255
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2256 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2257 {
2258 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2259 !(memslot->flags & KVM_MEMSLOT_INVALID));
2260 }
2261
2262 struct kvm_vcpu *kvm_get_running_vcpu(void);
2263 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2264
2265 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2266 bool kvm_arch_has_irq_bypass(void);
2267 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2268 struct irq_bypass_producer *);
2269 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2270 struct irq_bypass_producer *);
2271 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2272 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2273 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2274 uint32_t guest_irq, bool set);
2275 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2276 struct kvm_kernel_irq_routing_entry *);
2277 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2278
2279 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2280 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2281 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2282 {
2283 return vcpu->valid_wakeup;
2284 }
2285
2286 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2287 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2288 {
2289 return true;
2290 }
2291 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2292
2293 #ifdef CONFIG_HAVE_KVM_NO_POLL
2294 /* Callback that tells if we must not poll */
2295 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2296 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2297 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2298 {
2299 return false;
2300 }
2301 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2302
2303 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2304 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2305 unsigned int ioctl, unsigned long arg);
2306 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2307 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2308 unsigned int ioctl,
2309 unsigned long arg)
2310 {
2311 return -ENOIOCTLCMD;
2312 }
2313 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2314
2315 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2316
2317 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2318 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2319 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2320 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2321 {
2322 return 0;
2323 }
2324 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2325
2326 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2327
2328 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2329 uintptr_t data, const char *name,
2330 struct task_struct **thread_ptr);
2331
2332 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2333 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2334 {
2335 vcpu->run->exit_reason = KVM_EXIT_INTR;
2336 vcpu->stat.signal_exits++;
2337 }
2338 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2339
2340 /*
2341 * If more than one page is being (un)accounted, @virt must be the address of
2342 * the first page of a block of pages what were allocated together (i.e
2343 * accounted together).
2344 *
2345 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2346 * is thread-safe.
2347 */
kvm_account_pgtable_pages(void * virt,int nr)2348 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2349 {
2350 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2351 }
2352
2353 /*
2354 * This defines how many reserved entries we want to keep before we
2355 * kick the vcpu to the userspace to avoid dirty ring full. This
2356 * value can be tuned to higher if e.g. PML is enabled on the host.
2357 */
2358 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2359
2360 /* Max number of entries allowed for each kvm dirty ring */
2361 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2362
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2363 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2364 gpa_t gpa, gpa_t size,
2365 bool is_write, bool is_exec,
2366 bool is_private)
2367 {
2368 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2369 vcpu->run->memory_fault.gpa = gpa;
2370 vcpu->run->memory_fault.size = size;
2371
2372 /* RWX flags are not (yet) defined or communicated to userspace. */
2373 vcpu->run->memory_fault.flags = 0;
2374 if (is_private)
2375 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2376 }
2377
2378 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2379 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2380 {
2381 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2382 }
2383
2384 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2385 unsigned long attrs);
2386 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2387 struct kvm_gfn_range *range);
2388 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2389 struct kvm_gfn_range *range);
2390
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2391 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2392 {
2393 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2394 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2395 }
2396 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2397 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2398 {
2399 return false;
2400 }
2401 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2402
2403 #ifdef CONFIG_KVM_PRIVATE_MEM
2404 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2405 gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2406 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,int * max_order)2407 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2408 struct kvm_memory_slot *slot, gfn_t gfn,
2409 kvm_pfn_t *pfn, int *max_order)
2410 {
2411 KVM_BUG_ON(1, kvm);
2412 return -EIO;
2413 }
2414 #endif /* CONFIG_KVM_PRIVATE_MEM */
2415
2416 #endif
2417