1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fscrypt.h: declarations for per-file encryption
4 *
5 * Filesystems that implement per-file encryption must include this header
6 * file.
7 *
8 * Copyright (C) 2015, Google, Inc.
9 *
10 * Written by Michael Halcrow, 2015.
11 * Modified by Jaegeuk Kim, 2015.
12 */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20
21 /*
22 * The lengths of all file contents blocks must be divisible by this value.
23 * This is needed to ensure that all contents encryption modes will work, as
24 * some of the supported modes don't support arbitrarily byte-aligned messages.
25 *
26 * Since the needed alignment is 16 bytes, most filesystems will meet this
27 * requirement naturally, as typical block sizes are powers of 2. However, if a
28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29 * compression), then it will need to pad to this alignment before encryption.
30 */
31 #define FSCRYPT_CONTENTS_ALIGNMENT 16
32
33 union fscrypt_policy;
34 struct fscrypt_inode_info;
35 struct fs_parameter;
36 struct seq_file;
37
38 struct fscrypt_str {
39 unsigned char *name;
40 u32 len;
41 };
42
43 struct fscrypt_name {
44 const struct qstr *usr_fname;
45 struct fscrypt_str disk_name;
46 u32 hash;
47 u32 minor_hash;
48 struct fscrypt_str crypto_buf;
49 bool is_nokey_name;
50 };
51
52 #define FSTR_INIT(n, l) { .name = n, .len = l }
53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
54 #define fname_name(p) ((p)->disk_name.name)
55 #define fname_len(p) ((p)->disk_name.len)
56
57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40
59
60 #ifdef CONFIG_FS_ENCRYPTION
61
62 /* Crypto operations for filesystems */
63 struct fscrypt_operations {
64
65 /*
66 * If set, then fs/crypto/ will allocate a global bounce page pool the
67 * first time an encryption key is set up for a file. The bounce page
68 * pool is required by the following functions:
69 *
70 * - fscrypt_encrypt_pagecache_blocks()
71 * - fscrypt_zeroout_range() for files not using inline crypto
72 *
73 * If the filesystem doesn't use those, it doesn't need to set this.
74 */
75 unsigned int needs_bounce_pages : 1;
76
77 /*
78 * If set, then fs/crypto/ will allow the use of encryption settings
79 * that assume inode numbers fit in 32 bits (i.e.
80 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
81 * prerequisites for these settings are also met. This is only useful
82 * if the filesystem wants to support inline encryption hardware that is
83 * limited to 32-bit or 64-bit data unit numbers and where programming
84 * keyslots is very slow.
85 */
86 unsigned int has_32bit_inodes : 1;
87
88 /*
89 * If set, then fs/crypto/ will allow users to select a crypto data unit
90 * size that is less than the filesystem block size. This is done via
91 * the log2_data_unit_size field of the fscrypt policy. This flag is
92 * not compatible with filesystems that encrypt variable-length blocks
93 * (i.e. blocks that aren't all equal to filesystem's block size), for
94 * example as a result of compression. It's also not compatible with
95 * the fscrypt_encrypt_block_inplace() and
96 * fscrypt_decrypt_block_inplace() functions.
97 */
98 unsigned int supports_subblock_data_units : 1;
99
100 /*
101 * This field exists only for backwards compatibility reasons and should
102 * only be set by the filesystems that are setting it already. It
103 * contains the filesystem-specific key description prefix that is
104 * accepted for "logon" keys for v1 fscrypt policies. This
105 * functionality is deprecated in favor of the generic prefix
106 * "fscrypt:", which itself is deprecated in favor of the filesystem
107 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that
108 * are newly adding fscrypt support should not set this field.
109 */
110 const char *legacy_key_prefix;
111
112 /*
113 * Get the fscrypt context of the given inode.
114 *
115 * @inode: the inode whose context to get
116 * @ctx: the buffer into which to get the context
117 * @len: length of the @ctx buffer in bytes
118 *
119 * Return: On success, returns the length of the context in bytes; this
120 * may be less than @len. On failure, returns -ENODATA if the
121 * inode doesn't have a context, -ERANGE if the context is
122 * longer than @len, or another -errno code.
123 */
124 int (*get_context)(struct inode *inode, void *ctx, size_t len);
125
126 /*
127 * Set an fscrypt context on the given inode.
128 *
129 * @inode: the inode whose context to set. The inode won't already have
130 * an fscrypt context.
131 * @ctx: the context to set
132 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
133 * @fs_data: If called from fscrypt_set_context(), this will be the
134 * value the filesystem passed to fscrypt_set_context().
135 * Otherwise (i.e. when called from
136 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
137 *
138 * i_rwsem will be held for write.
139 *
140 * Return: 0 on success, -errno on failure.
141 */
142 int (*set_context)(struct inode *inode, const void *ctx, size_t len,
143 void *fs_data);
144
145 /*
146 * Get the dummy fscrypt policy in use on the filesystem (if any).
147 *
148 * Filesystems only need to implement this function if they support the
149 * test_dummy_encryption mount option.
150 *
151 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
152 * mounted with test_dummy_encryption; otherwise NULL.
153 */
154 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
155
156 /*
157 * Check whether a directory is empty. i_rwsem will be held for write.
158 */
159 bool (*empty_dir)(struct inode *inode);
160
161 /*
162 * Check whether the filesystem's inode numbers and UUID are stable,
163 * meaning that they will never be changed even by offline operations
164 * such as filesystem shrinking and therefore can be used in the
165 * encryption without the possibility of files becoming unreadable.
166 *
167 * Filesystems only need to implement this function if they want to
168 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These
169 * flags are designed to work around the limitations of UFS and eMMC
170 * inline crypto hardware, and they shouldn't be used in scenarios where
171 * such hardware isn't being used.
172 *
173 * Leaving this NULL is equivalent to always returning false.
174 */
175 bool (*has_stable_inodes)(struct super_block *sb);
176
177 /*
178 * Return an array of pointers to the block devices to which the
179 * filesystem may write encrypted file contents, NULL if the filesystem
180 * only has a single such block device, or an ERR_PTR() on error.
181 *
182 * On successful non-NULL return, *num_devs is set to the number of
183 * devices in the returned array. The caller must free the returned
184 * array using kfree().
185 *
186 * If the filesystem can use multiple block devices (other than block
187 * devices that aren't used for encrypted file contents, such as
188 * external journal devices), and wants to support inline encryption,
189 * then it must implement this function. Otherwise it's not needed.
190 */
191 struct block_device **(*get_devices)(struct super_block *sb,
192 unsigned int *num_devs);
193 };
194
195 static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode * inode)196 fscrypt_get_inode_info(const struct inode *inode)
197 {
198 /*
199 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
200 * I.e., another task may publish ->i_crypt_info concurrently, executing
201 * a RELEASE barrier. We need to use smp_load_acquire() here to safely
202 * ACQUIRE the memory the other task published.
203 */
204 return smp_load_acquire(&inode->i_crypt_info);
205 }
206
207 /**
208 * fscrypt_needs_contents_encryption() - check whether an inode needs
209 * contents encryption
210 * @inode: the inode to check
211 *
212 * Return: %true iff the inode is an encrypted regular file and the kernel was
213 * built with fscrypt support.
214 *
215 * If you need to know whether the encrypt bit is set even when the kernel was
216 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
217 */
fscrypt_needs_contents_encryption(const struct inode * inode)218 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
219 {
220 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
221 }
222
223 /*
224 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
225 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
226 * cleared. Note that we don't have to support arbitrary moves of this flag
227 * because fscrypt doesn't allow no-key names to be the source or target of a
228 * rename().
229 */
fscrypt_handle_d_move(struct dentry * dentry)230 static inline void fscrypt_handle_d_move(struct dentry *dentry)
231 {
232 dentry->d_flags &= ~DCACHE_NOKEY_NAME;
233 }
234
235 /**
236 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
237 * @dentry: the dentry to check
238 *
239 * This returns true if the dentry is a no-key dentry. A no-key dentry is a
240 * dentry that was created in an encrypted directory that hasn't had its
241 * encryption key added yet. Such dentries may be either positive or negative.
242 *
243 * When a filesystem is asked to create a new filename in an encrypted directory
244 * and the new filename's dentry is a no-key dentry, it must fail the operation
245 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
246 * ->rename(), and ->link(). (However, ->rename() and ->link() are already
247 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
248 *
249 * This is necessary because creating a filename requires the directory's
250 * encryption key, but just checking for the key on the directory inode during
251 * the final filesystem operation doesn't guarantee that the key was available
252 * during the preceding dentry lookup. And the key must have already been
253 * available during the dentry lookup in order for it to have been checked
254 * whether the filename already exists in the directory and for the new file's
255 * dentry not to be invalidated due to it incorrectly having the no-key flag.
256 *
257 * Return: %true if the dentry is a no-key name
258 */
fscrypt_is_nokey_name(const struct dentry * dentry)259 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
260 {
261 return dentry->d_flags & DCACHE_NOKEY_NAME;
262 }
263
264 /* crypto.c */
265 void fscrypt_enqueue_decrypt_work(struct work_struct *);
266
267 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
268 unsigned int len,
269 unsigned int offs,
270 gfp_t gfp_flags);
271 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
272 unsigned int len, unsigned int offs,
273 u64 lblk_num, gfp_t gfp_flags);
274
275 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
276 size_t offs);
277 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
278 unsigned int len, unsigned int offs,
279 u64 lblk_num);
280
fscrypt_is_bounce_page(struct page * page)281 static inline bool fscrypt_is_bounce_page(struct page *page)
282 {
283 return page->mapping == NULL;
284 }
285
fscrypt_pagecache_page(struct page * bounce_page)286 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
287 {
288 return (struct page *)page_private(bounce_page);
289 }
290
fscrypt_is_bounce_folio(struct folio * folio)291 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
292 {
293 return folio->mapping == NULL;
294 }
295
fscrypt_pagecache_folio(struct folio * bounce_folio)296 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
297 {
298 return bounce_folio->private;
299 }
300
301 void fscrypt_free_bounce_page(struct page *bounce_page);
302
303 /* policy.c */
304 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
305 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
306 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
307 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
308 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
309 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
310 int fscrypt_set_context(struct inode *inode, void *fs_data);
311
312 struct fscrypt_dummy_policy {
313 const union fscrypt_policy *policy;
314 };
315
316 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
317 struct fscrypt_dummy_policy *dummy_policy);
318 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
319 const struct fscrypt_dummy_policy *p2);
320 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
321 struct super_block *sb);
322 static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy * dummy_policy)323 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
324 {
325 return dummy_policy->policy != NULL;
326 }
327 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)328 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
329 {
330 kfree(dummy_policy->policy);
331 dummy_policy->policy = NULL;
332 }
333
334 /* keyring.c */
335 void fscrypt_destroy_keyring(struct super_block *sb);
336 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
337 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
338 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
339 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
340
341 /* keysetup.c */
342 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
343 bool *encrypt_ret);
344 void fscrypt_put_encryption_info(struct inode *inode);
345 void fscrypt_free_inode(struct inode *inode);
346 int fscrypt_drop_inode(struct inode *inode);
347
348 /* fname.c */
349 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
350 u8 *out, unsigned int olen);
351 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
352 u32 max_len, u32 *encrypted_len_ret);
353 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
354 int lookup, struct fscrypt_name *fname);
355
fscrypt_free_filename(struct fscrypt_name * fname)356 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
357 {
358 kfree(fname->crypto_buf.name);
359 }
360
361 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
362 struct fscrypt_str *crypto_str);
363 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
364 int fscrypt_fname_disk_to_usr(const struct inode *inode,
365 u32 hash, u32 minor_hash,
366 const struct fscrypt_str *iname,
367 struct fscrypt_str *oname);
368 bool fscrypt_match_name(const struct fscrypt_name *fname,
369 const u8 *de_name, u32 de_name_len);
370 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
371 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
372
373 /* bio.c */
374 bool fscrypt_decrypt_bio(struct bio *bio);
375 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
376 sector_t pblk, unsigned int len);
377
378 /* hooks.c */
379 int fscrypt_file_open(struct inode *inode, struct file *filp);
380 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
381 struct dentry *dentry);
382 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
383 struct inode *new_dir, struct dentry *new_dentry,
384 unsigned int flags);
385 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
386 struct fscrypt_name *fname);
387 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
388 int __fscrypt_prepare_readdir(struct inode *dir);
389 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
390 int fscrypt_prepare_setflags(struct inode *inode,
391 unsigned int oldflags, unsigned int flags);
392 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
393 unsigned int len, unsigned int max_len,
394 struct fscrypt_str *disk_link);
395 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
396 unsigned int len, struct fscrypt_str *disk_link);
397 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
398 unsigned int max_size,
399 struct delayed_call *done);
400 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)401 static inline void fscrypt_set_ops(struct super_block *sb,
402 const struct fscrypt_operations *s_cop)
403 {
404 sb->s_cop = s_cop;
405 }
406 #else /* !CONFIG_FS_ENCRYPTION */
407
408 static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode * inode)409 fscrypt_get_inode_info(const struct inode *inode)
410 {
411 return NULL;
412 }
413
fscrypt_needs_contents_encryption(const struct inode * inode)414 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
415 {
416 return false;
417 }
418
fscrypt_handle_d_move(struct dentry * dentry)419 static inline void fscrypt_handle_d_move(struct dentry *dentry)
420 {
421 }
422
fscrypt_is_nokey_name(const struct dentry * dentry)423 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
424 {
425 return false;
426 }
427
428 /* crypto.c */
fscrypt_enqueue_decrypt_work(struct work_struct * work)429 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
430 {
431 }
432
fscrypt_encrypt_pagecache_blocks(struct page * page,unsigned int len,unsigned int offs,gfp_t gfp_flags)433 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
434 unsigned int len,
435 unsigned int offs,
436 gfp_t gfp_flags)
437 {
438 return ERR_PTR(-EOPNOTSUPP);
439 }
440
fscrypt_encrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num,gfp_t gfp_flags)441 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
442 struct page *page,
443 unsigned int len,
444 unsigned int offs, u64 lblk_num,
445 gfp_t gfp_flags)
446 {
447 return -EOPNOTSUPP;
448 }
449
fscrypt_decrypt_pagecache_blocks(struct folio * folio,size_t len,size_t offs)450 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
451 size_t len, size_t offs)
452 {
453 return -EOPNOTSUPP;
454 }
455
fscrypt_decrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num)456 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
457 struct page *page,
458 unsigned int len,
459 unsigned int offs, u64 lblk_num)
460 {
461 return -EOPNOTSUPP;
462 }
463
fscrypt_is_bounce_page(struct page * page)464 static inline bool fscrypt_is_bounce_page(struct page *page)
465 {
466 return false;
467 }
468
fscrypt_pagecache_page(struct page * bounce_page)469 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
470 {
471 WARN_ON_ONCE(1);
472 return ERR_PTR(-EINVAL);
473 }
474
fscrypt_is_bounce_folio(struct folio * folio)475 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
476 {
477 return false;
478 }
479
fscrypt_pagecache_folio(struct folio * bounce_folio)480 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
481 {
482 WARN_ON_ONCE(1);
483 return ERR_PTR(-EINVAL);
484 }
485
fscrypt_free_bounce_page(struct page * bounce_page)486 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
487 {
488 }
489
490 /* policy.c */
fscrypt_ioctl_set_policy(struct file * filp,const void __user * arg)491 static inline int fscrypt_ioctl_set_policy(struct file *filp,
492 const void __user *arg)
493 {
494 return -EOPNOTSUPP;
495 }
496
fscrypt_ioctl_get_policy(struct file * filp,void __user * arg)497 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
498 {
499 return -EOPNOTSUPP;
500 }
501
fscrypt_ioctl_get_policy_ex(struct file * filp,void __user * arg)502 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
503 void __user *arg)
504 {
505 return -EOPNOTSUPP;
506 }
507
fscrypt_ioctl_get_nonce(struct file * filp,void __user * arg)508 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
509 {
510 return -EOPNOTSUPP;
511 }
512
fscrypt_has_permitted_context(struct inode * parent,struct inode * child)513 static inline int fscrypt_has_permitted_context(struct inode *parent,
514 struct inode *child)
515 {
516 return 0;
517 }
518
fscrypt_set_context(struct inode * inode,void * fs_data)519 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
520 {
521 return -EOPNOTSUPP;
522 }
523
524 struct fscrypt_dummy_policy {
525 };
526
527 static inline int
fscrypt_parse_test_dummy_encryption(const struct fs_parameter * param,struct fscrypt_dummy_policy * dummy_policy)528 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
529 struct fscrypt_dummy_policy *dummy_policy)
530 {
531 return -EINVAL;
532 }
533
534 static inline bool
fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy * p1,const struct fscrypt_dummy_policy * p2)535 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
536 const struct fscrypt_dummy_policy *p2)
537 {
538 return true;
539 }
540
fscrypt_show_test_dummy_encryption(struct seq_file * seq,char sep,struct super_block * sb)541 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
542 char sep,
543 struct super_block *sb)
544 {
545 }
546
547 static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy * dummy_policy)548 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
549 {
550 return false;
551 }
552
553 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)554 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
555 {
556 }
557
558 /* keyring.c */
fscrypt_destroy_keyring(struct super_block * sb)559 static inline void fscrypt_destroy_keyring(struct super_block *sb)
560 {
561 }
562
fscrypt_ioctl_add_key(struct file * filp,void __user * arg)563 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
564 {
565 return -EOPNOTSUPP;
566 }
567
fscrypt_ioctl_remove_key(struct file * filp,void __user * arg)568 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
569 {
570 return -EOPNOTSUPP;
571 }
572
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * arg)573 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
574 void __user *arg)
575 {
576 return -EOPNOTSUPP;
577 }
578
fscrypt_ioctl_get_key_status(struct file * filp,void __user * arg)579 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
580 void __user *arg)
581 {
582 return -EOPNOTSUPP;
583 }
584
585 /* keysetup.c */
586
fscrypt_prepare_new_inode(struct inode * dir,struct inode * inode,bool * encrypt_ret)587 static inline int fscrypt_prepare_new_inode(struct inode *dir,
588 struct inode *inode,
589 bool *encrypt_ret)
590 {
591 if (IS_ENCRYPTED(dir))
592 return -EOPNOTSUPP;
593 return 0;
594 }
595
fscrypt_put_encryption_info(struct inode * inode)596 static inline void fscrypt_put_encryption_info(struct inode *inode)
597 {
598 return;
599 }
600
fscrypt_free_inode(struct inode * inode)601 static inline void fscrypt_free_inode(struct inode *inode)
602 {
603 }
604
fscrypt_drop_inode(struct inode * inode)605 static inline int fscrypt_drop_inode(struct inode *inode)
606 {
607 return 0;
608 }
609
610 /* fname.c */
fscrypt_setup_filename(struct inode * dir,const struct qstr * iname,int lookup,struct fscrypt_name * fname)611 static inline int fscrypt_setup_filename(struct inode *dir,
612 const struct qstr *iname,
613 int lookup, struct fscrypt_name *fname)
614 {
615 if (IS_ENCRYPTED(dir))
616 return -EOPNOTSUPP;
617
618 memset(fname, 0, sizeof(*fname));
619 fname->usr_fname = iname;
620 fname->disk_name.name = (unsigned char *)iname->name;
621 fname->disk_name.len = iname->len;
622 return 0;
623 }
624
fscrypt_free_filename(struct fscrypt_name * fname)625 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
626 {
627 return;
628 }
629
fscrypt_fname_alloc_buffer(u32 max_encrypted_len,struct fscrypt_str * crypto_str)630 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
631 struct fscrypt_str *crypto_str)
632 {
633 return -EOPNOTSUPP;
634 }
635
fscrypt_fname_free_buffer(struct fscrypt_str * crypto_str)636 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
637 {
638 return;
639 }
640
fscrypt_fname_disk_to_usr(const struct inode * inode,u32 hash,u32 minor_hash,const struct fscrypt_str * iname,struct fscrypt_str * oname)641 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
642 u32 hash, u32 minor_hash,
643 const struct fscrypt_str *iname,
644 struct fscrypt_str *oname)
645 {
646 return -EOPNOTSUPP;
647 }
648
fscrypt_match_name(const struct fscrypt_name * fname,const u8 * de_name,u32 de_name_len)649 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
650 const u8 *de_name, u32 de_name_len)
651 {
652 /* Encryption support disabled; use standard comparison */
653 if (de_name_len != fname->disk_name.len)
654 return false;
655 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
656 }
657
fscrypt_fname_siphash(const struct inode * dir,const struct qstr * name)658 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
659 const struct qstr *name)
660 {
661 WARN_ON_ONCE(1);
662 return 0;
663 }
664
fscrypt_d_revalidate(struct dentry * dentry,unsigned int flags)665 static inline int fscrypt_d_revalidate(struct dentry *dentry,
666 unsigned int flags)
667 {
668 return 1;
669 }
670
671 /* bio.c */
fscrypt_decrypt_bio(struct bio * bio)672 static inline bool fscrypt_decrypt_bio(struct bio *bio)
673 {
674 return true;
675 }
676
fscrypt_zeroout_range(const struct inode * inode,pgoff_t lblk,sector_t pblk,unsigned int len)677 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
678 sector_t pblk, unsigned int len)
679 {
680 return -EOPNOTSUPP;
681 }
682
683 /* hooks.c */
684
fscrypt_file_open(struct inode * inode,struct file * filp)685 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
686 {
687 if (IS_ENCRYPTED(inode))
688 return -EOPNOTSUPP;
689 return 0;
690 }
691
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)692 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
693 struct dentry *dentry)
694 {
695 return -EOPNOTSUPP;
696 }
697
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)698 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
699 struct dentry *old_dentry,
700 struct inode *new_dir,
701 struct dentry *new_dentry,
702 unsigned int flags)
703 {
704 return -EOPNOTSUPP;
705 }
706
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)707 static inline int __fscrypt_prepare_lookup(struct inode *dir,
708 struct dentry *dentry,
709 struct fscrypt_name *fname)
710 {
711 return -EOPNOTSUPP;
712 }
713
fscrypt_prepare_lookup_partial(struct inode * dir,struct dentry * dentry)714 static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
715 struct dentry *dentry)
716 {
717 return -EOPNOTSUPP;
718 }
719
__fscrypt_prepare_readdir(struct inode * dir)720 static inline int __fscrypt_prepare_readdir(struct inode *dir)
721 {
722 return -EOPNOTSUPP;
723 }
724
__fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)725 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
726 struct iattr *attr)
727 {
728 return -EOPNOTSUPP;
729 }
730
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)731 static inline int fscrypt_prepare_setflags(struct inode *inode,
732 unsigned int oldflags,
733 unsigned int flags)
734 {
735 return 0;
736 }
737
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)738 static inline int fscrypt_prepare_symlink(struct inode *dir,
739 const char *target,
740 unsigned int len,
741 unsigned int max_len,
742 struct fscrypt_str *disk_link)
743 {
744 if (IS_ENCRYPTED(dir))
745 return -EOPNOTSUPP;
746 disk_link->name = (unsigned char *)target;
747 disk_link->len = len + 1;
748 if (disk_link->len > max_len)
749 return -ENAMETOOLONG;
750 return 0;
751 }
752
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)753 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
754 const char *target,
755 unsigned int len,
756 struct fscrypt_str *disk_link)
757 {
758 return -EOPNOTSUPP;
759 }
760
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)761 static inline const char *fscrypt_get_symlink(struct inode *inode,
762 const void *caddr,
763 unsigned int max_size,
764 struct delayed_call *done)
765 {
766 return ERR_PTR(-EOPNOTSUPP);
767 }
768
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)769 static inline int fscrypt_symlink_getattr(const struct path *path,
770 struct kstat *stat)
771 {
772 return -EOPNOTSUPP;
773 }
774
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)775 static inline void fscrypt_set_ops(struct super_block *sb,
776 const struct fscrypt_operations *s_cop)
777 {
778 }
779
780 #endif /* !CONFIG_FS_ENCRYPTION */
781
782 /* inline_crypt.c */
783 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
784
785 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
786
787 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
788 const struct inode *inode, u64 first_lblk,
789 gfp_t gfp_mask);
790
791 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
792 const struct buffer_head *first_bh,
793 gfp_t gfp_mask);
794
795 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
796 u64 next_lblk);
797
798 bool fscrypt_mergeable_bio_bh(struct bio *bio,
799 const struct buffer_head *next_bh);
800
801 bool fscrypt_dio_supported(struct inode *inode);
802
803 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
804
805 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
806
__fscrypt_inode_uses_inline_crypto(const struct inode * inode)807 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
808 {
809 return false;
810 }
811
fscrypt_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,u64 first_lblk,gfp_t gfp_mask)812 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
813 const struct inode *inode,
814 u64 first_lblk, gfp_t gfp_mask) { }
815
fscrypt_set_bio_crypt_ctx_bh(struct bio * bio,const struct buffer_head * first_bh,gfp_t gfp_mask)816 static inline void fscrypt_set_bio_crypt_ctx_bh(
817 struct bio *bio,
818 const struct buffer_head *first_bh,
819 gfp_t gfp_mask) { }
820
fscrypt_mergeable_bio(struct bio * bio,const struct inode * inode,u64 next_lblk)821 static inline bool fscrypt_mergeable_bio(struct bio *bio,
822 const struct inode *inode,
823 u64 next_lblk)
824 {
825 return true;
826 }
827
fscrypt_mergeable_bio_bh(struct bio * bio,const struct buffer_head * next_bh)828 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
829 const struct buffer_head *next_bh)
830 {
831 return true;
832 }
833
fscrypt_dio_supported(struct inode * inode)834 static inline bool fscrypt_dio_supported(struct inode *inode)
835 {
836 return !fscrypt_needs_contents_encryption(inode);
837 }
838
fscrypt_limit_io_blocks(const struct inode * inode,u64 lblk,u64 nr_blocks)839 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
840 u64 nr_blocks)
841 {
842 return nr_blocks;
843 }
844 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
845
846 /**
847 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
848 * encryption
849 * @inode: an inode. If encrypted, its key must be set up.
850 *
851 * Return: true if the inode requires file contents encryption and if the
852 * encryption should be done in the block layer via blk-crypto rather
853 * than in the filesystem layer.
854 */
fscrypt_inode_uses_inline_crypto(const struct inode * inode)855 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
856 {
857 return fscrypt_needs_contents_encryption(inode) &&
858 __fscrypt_inode_uses_inline_crypto(inode);
859 }
860
861 /**
862 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
863 * encryption
864 * @inode: an inode. If encrypted, its key must be set up.
865 *
866 * Return: true if the inode requires file contents encryption and if the
867 * encryption should be done in the filesystem layer rather than in the
868 * block layer via blk-crypto.
869 */
fscrypt_inode_uses_fs_layer_crypto(const struct inode * inode)870 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
871 {
872 return fscrypt_needs_contents_encryption(inode) &&
873 !__fscrypt_inode_uses_inline_crypto(inode);
874 }
875
876 /**
877 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
878 * @inode: the inode to check
879 *
880 * Return: %true if the inode has had its encryption key set up, else %false.
881 *
882 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
883 * set up the key first.
884 */
fscrypt_has_encryption_key(const struct inode * inode)885 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
886 {
887 return fscrypt_get_inode_info(inode) != NULL;
888 }
889
890 /**
891 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
892 * directory
893 * @old_dentry: an existing dentry for the inode being linked
894 * @dir: the target directory
895 * @dentry: negative dentry for the target filename
896 *
897 * A new link can only be added to an encrypted directory if the directory's
898 * encryption key is available --- since otherwise we'd have no way to encrypt
899 * the filename.
900 *
901 * We also verify that the link will not violate the constraint that all files
902 * in an encrypted directory tree use the same encryption policy.
903 *
904 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
905 * -EXDEV if the link would result in an inconsistent encryption policy, or
906 * another -errno code.
907 */
fscrypt_prepare_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)908 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
909 struct inode *dir,
910 struct dentry *dentry)
911 {
912 if (IS_ENCRYPTED(dir))
913 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
914 return 0;
915 }
916
917 /**
918 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
919 * directories
920 * @old_dir: source directory
921 * @old_dentry: dentry for source file
922 * @new_dir: target directory
923 * @new_dentry: dentry for target location (may be negative unless exchanging)
924 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
925 *
926 * Prepare for ->rename() where the source and/or target directories may be
927 * encrypted. A new link can only be added to an encrypted directory if the
928 * directory's encryption key is available --- since otherwise we'd have no way
929 * to encrypt the filename. A rename to an existing name, on the other hand,
930 * *is* cryptographically possible without the key. However, we take the more
931 * conservative approach and just forbid all no-key renames.
932 *
933 * We also verify that the rename will not violate the constraint that all files
934 * in an encrypted directory tree use the same encryption policy.
935 *
936 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
937 * rename would cause inconsistent encryption policies, or another -errno code.
938 */
fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)939 static inline int fscrypt_prepare_rename(struct inode *old_dir,
940 struct dentry *old_dentry,
941 struct inode *new_dir,
942 struct dentry *new_dentry,
943 unsigned int flags)
944 {
945 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
946 return __fscrypt_prepare_rename(old_dir, old_dentry,
947 new_dir, new_dentry, flags);
948 return 0;
949 }
950
951 /**
952 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
953 * directory
954 * @dir: directory being searched
955 * @dentry: filename being looked up
956 * @fname: (output) the name to use to search the on-disk directory
957 *
958 * Prepare for ->lookup() in a directory which may be encrypted by determining
959 * the name that will actually be used to search the directory on-disk. If the
960 * directory's encryption policy is supported by this kernel and its encryption
961 * key is available, then the lookup is assumed to be by plaintext name;
962 * otherwise, it is assumed to be by no-key name.
963 *
964 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
965 * name. In this case the filesystem must assign the dentry a dentry_operations
966 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
967 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
968 * directory's encryption key is later added.
969 *
970 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
971 * filename isn't a valid no-key name, so a negative dentry should be created;
972 * or another -errno code.
973 */
fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)974 static inline int fscrypt_prepare_lookup(struct inode *dir,
975 struct dentry *dentry,
976 struct fscrypt_name *fname)
977 {
978 if (IS_ENCRYPTED(dir))
979 return __fscrypt_prepare_lookup(dir, dentry, fname);
980
981 memset(fname, 0, sizeof(*fname));
982 fname->usr_fname = &dentry->d_name;
983 fname->disk_name.name = (unsigned char *)dentry->d_name.name;
984 fname->disk_name.len = dentry->d_name.len;
985 return 0;
986 }
987
988 /**
989 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
990 * @dir: the directory inode
991 *
992 * If the directory is encrypted and it doesn't already have its encryption key
993 * set up, try to set it up so that the filenames will be listed in plaintext
994 * form rather than in no-key form.
995 *
996 * Return: 0 on success; -errno on error. Note that the encryption key being
997 * unavailable is not considered an error. It is also not an error if
998 * the encryption policy is unsupported by this kernel; that is treated
999 * like the key being unavailable, so that files can still be deleted.
1000 */
fscrypt_prepare_readdir(struct inode * dir)1001 static inline int fscrypt_prepare_readdir(struct inode *dir)
1002 {
1003 if (IS_ENCRYPTED(dir))
1004 return __fscrypt_prepare_readdir(dir);
1005 return 0;
1006 }
1007
1008 /**
1009 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
1010 * attributes
1011 * @dentry: dentry through which the inode is being changed
1012 * @attr: attributes to change
1013 *
1014 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
1015 * most attribute changes are allowed even without the encryption key. However,
1016 * without the encryption key we do have to forbid truncates. This is needed
1017 * because the size being truncated to may not be a multiple of the filesystem
1018 * block size, and in that case we'd have to decrypt the final block, zero the
1019 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a
1020 * filesystem block boundary, but it's simpler to just forbid all truncates ---
1021 * and we already forbid all other contents modifications without the key.)
1022 *
1023 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
1024 * if a problem occurred while setting up the encryption key.
1025 */
fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)1026 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
1027 struct iattr *attr)
1028 {
1029 if (IS_ENCRYPTED(d_inode(dentry)))
1030 return __fscrypt_prepare_setattr(dentry, attr);
1031 return 0;
1032 }
1033
1034 /**
1035 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
1036 * @inode: symlink inode
1037 * @target: plaintext symlink target
1038 * @len: length of @target excluding null terminator
1039 * @disk_link: (in/out) the on-disk symlink target being prepared
1040 *
1041 * If the symlink target needs to be encrypted, then this function encrypts it
1042 * into @disk_link->name. fscrypt_prepare_symlink() must have been called
1043 * previously to compute @disk_link->len. If the filesystem did not allocate a
1044 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1045 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1046 *
1047 * Return: 0 on success, -errno on failure
1048 */
fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)1049 static inline int fscrypt_encrypt_symlink(struct inode *inode,
1050 const char *target,
1051 unsigned int len,
1052 struct fscrypt_str *disk_link)
1053 {
1054 if (IS_ENCRYPTED(inode))
1055 return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1056 return 0;
1057 }
1058
1059 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
fscrypt_finalize_bounce_page(struct page ** pagep)1060 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1061 {
1062 struct page *page = *pagep;
1063
1064 if (fscrypt_is_bounce_page(page)) {
1065 *pagep = fscrypt_pagecache_page(page);
1066 fscrypt_free_bounce_page(page);
1067 }
1068 }
1069
1070 #endif /* _LINUX_FSCRYPT_H */
1071