1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_CPUMASK_H
3 #define __LINUX_CPUMASK_H
4 
5 /*
6  * Cpumasks provide a bitmap suitable for representing the
7  * set of CPUs in a system, one bit position per CPU number.  In general,
8  * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9  */
10 #include <linux/kernel.h>
11 #include <linux/threads.h>
12 #include <linux/bitmap.h>
13 #include <linux/atomic.h>
14 #include <linux/bug.h>
15 #include <linux/gfp_types.h>
16 #include <linux/numa.h>
17 
18 /* Don't assign or return these: may not be this big! */
19 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
20 
21 /**
22  * cpumask_bits - get the bits in a cpumask
23  * @maskp: the struct cpumask *
24  *
25  * You should only assume nr_cpu_ids bits of this mask are valid.  This is
26  * a macro so it's const-correct.
27  */
28 #define cpumask_bits(maskp) ((maskp)->bits)
29 
30 /**
31  * cpumask_pr_args - printf args to output a cpumask
32  * @maskp: cpumask to be printed
33  *
34  * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
35  */
36 #define cpumask_pr_args(maskp)		nr_cpu_ids, cpumask_bits(maskp)
37 
38 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
39 #define nr_cpu_ids ((unsigned int)NR_CPUS)
40 #else
41 extern unsigned int nr_cpu_ids;
42 #endif
43 
set_nr_cpu_ids(unsigned int nr)44 static inline void set_nr_cpu_ids(unsigned int nr)
45 {
46 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
47 	WARN_ON(nr != nr_cpu_ids);
48 #else
49 	nr_cpu_ids = nr;
50 #endif
51 }
52 
53 /*
54  * We have several different "preferred sizes" for the cpumask
55  * operations, depending on operation.
56  *
57  * For example, the bitmap scanning and operating operations have
58  * optimized routines that work for the single-word case, but only when
59  * the size is constant. So if NR_CPUS fits in one single word, we are
60  * better off using that small constant, in order to trigger the
61  * optimized bit finding. That is 'small_cpumask_size'.
62  *
63  * The clearing and copying operations will similarly perform better
64  * with a constant size, but we limit that size arbitrarily to four
65  * words. We call this 'large_cpumask_size'.
66  *
67  * Finally, some operations just want the exact limit, either because
68  * they set bits or just don't have any faster fixed-sized versions. We
69  * call this just 'nr_cpumask_bits'.
70  *
71  * Note that these optional constants are always guaranteed to be at
72  * least as big as 'nr_cpu_ids' itself is, and all our cpumask
73  * allocations are at least that size (see cpumask_size()). The
74  * optimization comes from being able to potentially use a compile-time
75  * constant instead of a run-time generated exact number of CPUs.
76  */
77 #if NR_CPUS <= BITS_PER_LONG
78   #define small_cpumask_bits ((unsigned int)NR_CPUS)
79   #define large_cpumask_bits ((unsigned int)NR_CPUS)
80 #elif NR_CPUS <= 4*BITS_PER_LONG
81   #define small_cpumask_bits nr_cpu_ids
82   #define large_cpumask_bits ((unsigned int)NR_CPUS)
83 #else
84   #define small_cpumask_bits nr_cpu_ids
85   #define large_cpumask_bits nr_cpu_ids
86 #endif
87 #define nr_cpumask_bits nr_cpu_ids
88 
89 /*
90  * The following particular system cpumasks and operations manage
91  * possible, present, active and online cpus.
92  *
93  *     cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
94  *     cpu_present_mask - has bit 'cpu' set iff cpu is populated
95  *     cpu_online_mask  - has bit 'cpu' set iff cpu available to scheduler
96  *     cpu_active_mask  - has bit 'cpu' set iff cpu available to migration
97  *
98  *  If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
99  *
100  *  The cpu_possible_mask is fixed at boot time, as the set of CPU IDs
101  *  that it is possible might ever be plugged in at anytime during the
102  *  life of that system boot.  The cpu_present_mask is dynamic(*),
103  *  representing which CPUs are currently plugged in.  And
104  *  cpu_online_mask is the dynamic subset of cpu_present_mask,
105  *  indicating those CPUs available for scheduling.
106  *
107  *  If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
108  *  depending on what ACPI reports as currently plugged in, otherwise
109  *  cpu_present_mask is just a copy of cpu_possible_mask.
110  *
111  *  (*) Well, cpu_present_mask is dynamic in the hotplug case.  If not
112  *      hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
113  *
114  * Subtleties:
115  * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
116  *    assumption that their single CPU is online.  The UP
117  *    cpu_{online,possible,present}_masks are placebos.  Changing them
118  *    will have no useful affect on the following num_*_cpus()
119  *    and cpu_*() macros in the UP case.  This ugliness is a UP
120  *    optimization - don't waste any instructions or memory references
121  *    asking if you're online or how many CPUs there are if there is
122  *    only one CPU.
123  */
124 
125 extern struct cpumask __cpu_possible_mask;
126 extern struct cpumask __cpu_online_mask;
127 extern struct cpumask __cpu_present_mask;
128 extern struct cpumask __cpu_active_mask;
129 extern struct cpumask __cpu_dying_mask;
130 #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
131 #define cpu_online_mask   ((const struct cpumask *)&__cpu_online_mask)
132 #define cpu_present_mask  ((const struct cpumask *)&__cpu_present_mask)
133 #define cpu_active_mask   ((const struct cpumask *)&__cpu_active_mask)
134 #define cpu_dying_mask    ((const struct cpumask *)&__cpu_dying_mask)
135 
136 extern atomic_t __num_online_cpus;
137 
138 extern cpumask_t cpus_booted_once_mask;
139 
cpu_max_bits_warn(unsigned int cpu,unsigned int bits)140 static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
141 {
142 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
143 	WARN_ON_ONCE(cpu >= bits);
144 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
145 }
146 
147 /* verify cpu argument to cpumask_* operators */
cpumask_check(unsigned int cpu)148 static __always_inline unsigned int cpumask_check(unsigned int cpu)
149 {
150 	cpu_max_bits_warn(cpu, small_cpumask_bits);
151 	return cpu;
152 }
153 
154 /**
155  * cpumask_first - get the first cpu in a cpumask
156  * @srcp: the cpumask pointer
157  *
158  * Return: >= nr_cpu_ids if no cpus set.
159  */
cpumask_first(const struct cpumask * srcp)160 static inline unsigned int cpumask_first(const struct cpumask *srcp)
161 {
162 	return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
163 }
164 
165 /**
166  * cpumask_first_zero - get the first unset cpu in a cpumask
167  * @srcp: the cpumask pointer
168  *
169  * Return: >= nr_cpu_ids if all cpus are set.
170  */
cpumask_first_zero(const struct cpumask * srcp)171 static inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
172 {
173 	return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
174 }
175 
176 /**
177  * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
178  * @srcp1: the first input
179  * @srcp2: the second input
180  *
181  * Return: >= nr_cpu_ids if no cpus set in both.  See also cpumask_next_and().
182  */
183 static inline
cpumask_first_and(const struct cpumask * srcp1,const struct cpumask * srcp2)184 unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
185 {
186 	return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
187 }
188 
189 /**
190  * cpumask_last - get the last CPU in a cpumask
191  * @srcp:	- the cpumask pointer
192  *
193  * Return:	>= nr_cpumask_bits if no CPUs set.
194  */
cpumask_last(const struct cpumask * srcp)195 static inline unsigned int cpumask_last(const struct cpumask *srcp)
196 {
197 	return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
198 }
199 
200 /**
201  * cpumask_next - get the next cpu in a cpumask
202  * @n: the cpu prior to the place to search (i.e. return will be > @n)
203  * @srcp: the cpumask pointer
204  *
205  * Return: >= nr_cpu_ids if no further cpus set.
206  */
207 static inline
cpumask_next(int n,const struct cpumask * srcp)208 unsigned int cpumask_next(int n, const struct cpumask *srcp)
209 {
210 	/* -1 is a legal arg here. */
211 	if (n != -1)
212 		cpumask_check(n);
213 	return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
214 }
215 
216 /**
217  * cpumask_next_zero - get the next unset cpu in a cpumask
218  * @n: the cpu prior to the place to search (i.e. return will be > @n)
219  * @srcp: the cpumask pointer
220  *
221  * Return: >= nr_cpu_ids if no further cpus unset.
222  */
cpumask_next_zero(int n,const struct cpumask * srcp)223 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
224 {
225 	/* -1 is a legal arg here. */
226 	if (n != -1)
227 		cpumask_check(n);
228 	return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
229 }
230 
231 #if NR_CPUS == 1
232 /* Uniprocessor: there is only one valid CPU */
cpumask_local_spread(unsigned int i,int node)233 static inline unsigned int cpumask_local_spread(unsigned int i, int node)
234 {
235 	return 0;
236 }
237 
cpumask_any_and_distribute(const struct cpumask * src1p,const struct cpumask * src2p)238 static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
239 						      const struct cpumask *src2p)
240 {
241 	return cpumask_first_and(src1p, src2p);
242 }
243 
cpumask_any_distribute(const struct cpumask * srcp)244 static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp)
245 {
246 	return cpumask_first(srcp);
247 }
248 #else
249 unsigned int cpumask_local_spread(unsigned int i, int node);
250 unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
251 			       const struct cpumask *src2p);
252 unsigned int cpumask_any_distribute(const struct cpumask *srcp);
253 #endif /* NR_CPUS */
254 
255 /**
256  * cpumask_next_and - get the next cpu in *src1p & *src2p
257  * @n: the cpu prior to the place to search (i.e. return will be > @n)
258  * @src1p: the first cpumask pointer
259  * @src2p: the second cpumask pointer
260  *
261  * Return: >= nr_cpu_ids if no further cpus set in both.
262  */
263 static inline
cpumask_next_and(int n,const struct cpumask * src1p,const struct cpumask * src2p)264 unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
265 		     const struct cpumask *src2p)
266 {
267 	/* -1 is a legal arg here. */
268 	if (n != -1)
269 		cpumask_check(n);
270 	return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
271 		small_cpumask_bits, n + 1);
272 }
273 
274 /**
275  * for_each_cpu - iterate over every cpu in a mask
276  * @cpu: the (optionally unsigned) integer iterator
277  * @mask: the cpumask pointer
278  *
279  * After the loop, cpu is >= nr_cpu_ids.
280  */
281 #define for_each_cpu(cpu, mask)				\
282 	for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
283 
284 #if NR_CPUS == 1
285 static inline
cpumask_next_wrap(int n,const struct cpumask * mask,int start,bool wrap)286 unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap)
287 {
288 	cpumask_check(start);
289 	if (n != -1)
290 		cpumask_check(n);
291 
292 	/*
293 	 * Return the first available CPU when wrapping, or when starting before cpu0,
294 	 * since there is only one valid option.
295 	 */
296 	if (wrap && n >= 0)
297 		return nr_cpumask_bits;
298 
299 	return cpumask_first(mask);
300 }
301 #else
302 unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
303 #endif
304 
305 /**
306  * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
307  * @cpu: the (optionally unsigned) integer iterator
308  * @mask: the cpumask pointer
309  * @start: the start location
310  *
311  * The implementation does not assume any bit in @mask is set (including @start).
312  *
313  * After the loop, cpu is >= nr_cpu_ids.
314  */
315 #define for_each_cpu_wrap(cpu, mask, start)				\
316 	for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
317 
318 /**
319  * for_each_cpu_and - iterate over every cpu in both masks
320  * @cpu: the (optionally unsigned) integer iterator
321  * @mask1: the first cpumask pointer
322  * @mask2: the second cpumask pointer
323  *
324  * This saves a temporary CPU mask in many places.  It is equivalent to:
325  *	struct cpumask tmp;
326  *	cpumask_and(&tmp, &mask1, &mask2);
327  *	for_each_cpu(cpu, &tmp)
328  *		...
329  *
330  * After the loop, cpu is >= nr_cpu_ids.
331  */
332 #define for_each_cpu_and(cpu, mask1, mask2)				\
333 	for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
334 
335 /**
336  * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
337  *			 those present in another.
338  * @cpu: the (optionally unsigned) integer iterator
339  * @mask1: the first cpumask pointer
340  * @mask2: the second cpumask pointer
341  *
342  * This saves a temporary CPU mask in many places.  It is equivalent to:
343  *	struct cpumask tmp;
344  *	cpumask_andnot(&tmp, &mask1, &mask2);
345  *	for_each_cpu(cpu, &tmp)
346  *		...
347  *
348  * After the loop, cpu is >= nr_cpu_ids.
349  */
350 #define for_each_cpu_andnot(cpu, mask1, mask2)				\
351 	for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
352 
353 /**
354  * for_each_cpu_or - iterate over every cpu present in either mask
355  * @cpu: the (optionally unsigned) integer iterator
356  * @mask1: the first cpumask pointer
357  * @mask2: the second cpumask pointer
358  *
359  * This saves a temporary CPU mask in many places.  It is equivalent to:
360  *	struct cpumask tmp;
361  *	cpumask_or(&tmp, &mask1, &mask2);
362  *	for_each_cpu(cpu, &tmp)
363  *		...
364  *
365  * After the loop, cpu is >= nr_cpu_ids.
366  */
367 #define for_each_cpu_or(cpu, mask1, mask2)				\
368 	for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
369 
370 /**
371  * cpumask_any_but - return a "random" in a cpumask, but not this one.
372  * @mask: the cpumask to search
373  * @cpu: the cpu to ignore.
374  *
375  * Often used to find any cpu but smp_processor_id() in a mask.
376  * Return: >= nr_cpu_ids if no cpus set.
377  */
378 static inline
cpumask_any_but(const struct cpumask * mask,unsigned int cpu)379 unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu)
380 {
381 	unsigned int i;
382 
383 	cpumask_check(cpu);
384 	for_each_cpu(i, mask)
385 		if (i != cpu)
386 			break;
387 	return i;
388 }
389 
390 /**
391  * cpumask_nth - get the Nth cpu in a cpumask
392  * @srcp: the cpumask pointer
393  * @cpu: the Nth cpu to find, starting from 0
394  *
395  * Return: >= nr_cpu_ids if such cpu doesn't exist.
396  */
cpumask_nth(unsigned int cpu,const struct cpumask * srcp)397 static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
398 {
399 	return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
400 }
401 
402 /**
403  * cpumask_nth_and - get the Nth cpu in 2 cpumasks
404  * @srcp1: the cpumask pointer
405  * @srcp2: the cpumask pointer
406  * @cpu: the Nth cpu to find, starting from 0
407  *
408  * Return: >= nr_cpu_ids if such cpu doesn't exist.
409  */
410 static inline
cpumask_nth_and(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2)411 unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
412 							const struct cpumask *srcp2)
413 {
414 	return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
415 				small_cpumask_bits, cpumask_check(cpu));
416 }
417 
418 /**
419  * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd.
420  * @srcp1: the cpumask pointer
421  * @srcp2: the cpumask pointer
422  * @cpu: the Nth cpu to find, starting from 0
423  *
424  * Return: >= nr_cpu_ids if such cpu doesn't exist.
425  */
426 static inline
cpumask_nth_andnot(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2)427 unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1,
428 							const struct cpumask *srcp2)
429 {
430 	return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
431 				small_cpumask_bits, cpumask_check(cpu));
432 }
433 
434 /**
435  * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
436  * @srcp1: the cpumask pointer
437  * @srcp2: the cpumask pointer
438  * @srcp3: the cpumask pointer
439  * @cpu: the Nth cpu to find, starting from 0
440  *
441  * Return: >= nr_cpu_ids if such cpu doesn't exist.
442  */
443 static __always_inline
cpumask_nth_and_andnot(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2,const struct cpumask * srcp3)444 unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
445 							const struct cpumask *srcp2,
446 							const struct cpumask *srcp3)
447 {
448 	return find_nth_and_andnot_bit(cpumask_bits(srcp1),
449 					cpumask_bits(srcp2),
450 					cpumask_bits(srcp3),
451 					small_cpumask_bits, cpumask_check(cpu));
452 }
453 
454 #define CPU_BITS_NONE						\
455 {								\
456 	[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL			\
457 }
458 
459 #define CPU_BITS_CPU0						\
460 {								\
461 	[0] =  1UL						\
462 }
463 
464 /**
465  * cpumask_set_cpu - set a cpu in a cpumask
466  * @cpu: cpu number (< nr_cpu_ids)
467  * @dstp: the cpumask pointer
468  */
cpumask_set_cpu(unsigned int cpu,struct cpumask * dstp)469 static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
470 {
471 	set_bit(cpumask_check(cpu), cpumask_bits(dstp));
472 }
473 
__cpumask_set_cpu(unsigned int cpu,struct cpumask * dstp)474 static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
475 {
476 	__set_bit(cpumask_check(cpu), cpumask_bits(dstp));
477 }
478 
479 
480 /**
481  * cpumask_clear_cpu - clear a cpu in a cpumask
482  * @cpu: cpu number (< nr_cpu_ids)
483  * @dstp: the cpumask pointer
484  */
cpumask_clear_cpu(int cpu,struct cpumask * dstp)485 static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
486 {
487 	clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
488 }
489 
__cpumask_clear_cpu(int cpu,struct cpumask * dstp)490 static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
491 {
492 	__clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
493 }
494 
495 /**
496  * cpumask_test_cpu - test for a cpu in a cpumask
497  * @cpu: cpu number (< nr_cpu_ids)
498  * @cpumask: the cpumask pointer
499  *
500  * Return: true if @cpu is set in @cpumask, else returns false
501  */
cpumask_test_cpu(int cpu,const struct cpumask * cpumask)502 static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
503 {
504 	return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
505 }
506 
507 /**
508  * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
509  * @cpu: cpu number (< nr_cpu_ids)
510  * @cpumask: the cpumask pointer
511  *
512  * test_and_set_bit wrapper for cpumasks.
513  *
514  * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
515  */
cpumask_test_and_set_cpu(int cpu,struct cpumask * cpumask)516 static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
517 {
518 	return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
519 }
520 
521 /**
522  * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
523  * @cpu: cpu number (< nr_cpu_ids)
524  * @cpumask: the cpumask pointer
525  *
526  * test_and_clear_bit wrapper for cpumasks.
527  *
528  * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
529  */
cpumask_test_and_clear_cpu(int cpu,struct cpumask * cpumask)530 static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
531 {
532 	return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
533 }
534 
535 /**
536  * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
537  * @dstp: the cpumask pointer
538  */
cpumask_setall(struct cpumask * dstp)539 static inline void cpumask_setall(struct cpumask *dstp)
540 {
541 	if (small_const_nbits(small_cpumask_bits)) {
542 		cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits);
543 		return;
544 	}
545 	bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
546 }
547 
548 /**
549  * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
550  * @dstp: the cpumask pointer
551  */
cpumask_clear(struct cpumask * dstp)552 static inline void cpumask_clear(struct cpumask *dstp)
553 {
554 	bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
555 }
556 
557 /**
558  * cpumask_and - *dstp = *src1p & *src2p
559  * @dstp: the cpumask result
560  * @src1p: the first input
561  * @src2p: the second input
562  *
563  * Return: false if *@dstp is empty, else returns true
564  */
cpumask_and(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)565 static inline bool cpumask_and(struct cpumask *dstp,
566 			       const struct cpumask *src1p,
567 			       const struct cpumask *src2p)
568 {
569 	return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
570 				       cpumask_bits(src2p), small_cpumask_bits);
571 }
572 
573 /**
574  * cpumask_or - *dstp = *src1p | *src2p
575  * @dstp: the cpumask result
576  * @src1p: the first input
577  * @src2p: the second input
578  */
cpumask_or(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)579 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
580 			      const struct cpumask *src2p)
581 {
582 	bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
583 				      cpumask_bits(src2p), small_cpumask_bits);
584 }
585 
586 /**
587  * cpumask_xor - *dstp = *src1p ^ *src2p
588  * @dstp: the cpumask result
589  * @src1p: the first input
590  * @src2p: the second input
591  */
cpumask_xor(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)592 static inline void cpumask_xor(struct cpumask *dstp,
593 			       const struct cpumask *src1p,
594 			       const struct cpumask *src2p)
595 {
596 	bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
597 				       cpumask_bits(src2p), small_cpumask_bits);
598 }
599 
600 /**
601  * cpumask_andnot - *dstp = *src1p & ~*src2p
602  * @dstp: the cpumask result
603  * @src1p: the first input
604  * @src2p: the second input
605  *
606  * Return: false if *@dstp is empty, else returns true
607  */
cpumask_andnot(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)608 static inline bool cpumask_andnot(struct cpumask *dstp,
609 				  const struct cpumask *src1p,
610 				  const struct cpumask *src2p)
611 {
612 	return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
613 					  cpumask_bits(src2p), small_cpumask_bits);
614 }
615 
616 /**
617  * cpumask_equal - *src1p == *src2p
618  * @src1p: the first input
619  * @src2p: the second input
620  *
621  * Return: true if the cpumasks are equal, false if not
622  */
cpumask_equal(const struct cpumask * src1p,const struct cpumask * src2p)623 static inline bool cpumask_equal(const struct cpumask *src1p,
624 				const struct cpumask *src2p)
625 {
626 	return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
627 						 small_cpumask_bits);
628 }
629 
630 /**
631  * cpumask_or_equal - *src1p | *src2p == *src3p
632  * @src1p: the first input
633  * @src2p: the second input
634  * @src3p: the third input
635  *
636  * Return: true if first cpumask ORed with second cpumask == third cpumask,
637  *	   otherwise false
638  */
cpumask_or_equal(const struct cpumask * src1p,const struct cpumask * src2p,const struct cpumask * src3p)639 static inline bool cpumask_or_equal(const struct cpumask *src1p,
640 				    const struct cpumask *src2p,
641 				    const struct cpumask *src3p)
642 {
643 	return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
644 			       cpumask_bits(src3p), small_cpumask_bits);
645 }
646 
647 /**
648  * cpumask_intersects - (*src1p & *src2p) != 0
649  * @src1p: the first input
650  * @src2p: the second input
651  *
652  * Return: true if first cpumask ANDed with second cpumask is non-empty,
653  *	   otherwise false
654  */
cpumask_intersects(const struct cpumask * src1p,const struct cpumask * src2p)655 static inline bool cpumask_intersects(const struct cpumask *src1p,
656 				     const struct cpumask *src2p)
657 {
658 	return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
659 						      small_cpumask_bits);
660 }
661 
662 /**
663  * cpumask_subset - (*src1p & ~*src2p) == 0
664  * @src1p: the first input
665  * @src2p: the second input
666  *
667  * Return: true if *@src1p is a subset of *@src2p, else returns false
668  */
cpumask_subset(const struct cpumask * src1p,const struct cpumask * src2p)669 static inline bool cpumask_subset(const struct cpumask *src1p,
670 				 const struct cpumask *src2p)
671 {
672 	return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
673 						  small_cpumask_bits);
674 }
675 
676 /**
677  * cpumask_empty - *srcp == 0
678  * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
679  *
680  * Return: true if srcp is empty (has no bits set), else false
681  */
cpumask_empty(const struct cpumask * srcp)682 static inline bool cpumask_empty(const struct cpumask *srcp)
683 {
684 	return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
685 }
686 
687 /**
688  * cpumask_full - *srcp == 0xFFFFFFFF...
689  * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
690  *
691  * Return: true if srcp is full (has all bits set), else false
692  */
cpumask_full(const struct cpumask * srcp)693 static inline bool cpumask_full(const struct cpumask *srcp)
694 {
695 	return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
696 }
697 
698 /**
699  * cpumask_weight - Count of bits in *srcp
700  * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
701  *
702  * Return: count of bits set in *srcp
703  */
cpumask_weight(const struct cpumask * srcp)704 static inline unsigned int cpumask_weight(const struct cpumask *srcp)
705 {
706 	return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
707 }
708 
709 /**
710  * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
711  * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
712  * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
713  *
714  * Return: count of bits set in both *srcp1 and *srcp2
715  */
cpumask_weight_and(const struct cpumask * srcp1,const struct cpumask * srcp2)716 static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1,
717 						const struct cpumask *srcp2)
718 {
719 	return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
720 }
721 
722 /**
723  * cpumask_shift_right - *dstp = *srcp >> n
724  * @dstp: the cpumask result
725  * @srcp: the input to shift
726  * @n: the number of bits to shift by
727  */
cpumask_shift_right(struct cpumask * dstp,const struct cpumask * srcp,int n)728 static inline void cpumask_shift_right(struct cpumask *dstp,
729 				       const struct cpumask *srcp, int n)
730 {
731 	bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
732 					       small_cpumask_bits);
733 }
734 
735 /**
736  * cpumask_shift_left - *dstp = *srcp << n
737  * @dstp: the cpumask result
738  * @srcp: the input to shift
739  * @n: the number of bits to shift by
740  */
cpumask_shift_left(struct cpumask * dstp,const struct cpumask * srcp,int n)741 static inline void cpumask_shift_left(struct cpumask *dstp,
742 				      const struct cpumask *srcp, int n)
743 {
744 	bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
745 					      nr_cpumask_bits);
746 }
747 
748 /**
749  * cpumask_copy - *dstp = *srcp
750  * @dstp: the result
751  * @srcp: the input cpumask
752  */
cpumask_copy(struct cpumask * dstp,const struct cpumask * srcp)753 static inline void cpumask_copy(struct cpumask *dstp,
754 				const struct cpumask *srcp)
755 {
756 	bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
757 }
758 
759 /**
760  * cpumask_any - pick a "random" cpu from *srcp
761  * @srcp: the input cpumask
762  *
763  * Return: >= nr_cpu_ids if no cpus set.
764  */
765 #define cpumask_any(srcp) cpumask_first(srcp)
766 
767 /**
768  * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
769  * @mask1: the first input cpumask
770  * @mask2: the second input cpumask
771  *
772  * Return: >= nr_cpu_ids if no cpus set.
773  */
774 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
775 
776 /**
777  * cpumask_of - the cpumask containing just a given cpu
778  * @cpu: the cpu (<= nr_cpu_ids)
779  */
780 #define cpumask_of(cpu) (get_cpu_mask(cpu))
781 
782 /**
783  * cpumask_parse_user - extract a cpumask from a user string
784  * @buf: the buffer to extract from
785  * @len: the length of the buffer
786  * @dstp: the cpumask to set.
787  *
788  * Return: -errno, or 0 for success.
789  */
cpumask_parse_user(const char __user * buf,int len,struct cpumask * dstp)790 static inline int cpumask_parse_user(const char __user *buf, int len,
791 				     struct cpumask *dstp)
792 {
793 	return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
794 }
795 
796 /**
797  * cpumask_parselist_user - extract a cpumask from a user string
798  * @buf: the buffer to extract from
799  * @len: the length of the buffer
800  * @dstp: the cpumask to set.
801  *
802  * Return: -errno, or 0 for success.
803  */
cpumask_parselist_user(const char __user * buf,int len,struct cpumask * dstp)804 static inline int cpumask_parselist_user(const char __user *buf, int len,
805 				     struct cpumask *dstp)
806 {
807 	return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
808 				     nr_cpumask_bits);
809 }
810 
811 /**
812  * cpumask_parse - extract a cpumask from a string
813  * @buf: the buffer to extract from
814  * @dstp: the cpumask to set.
815  *
816  * Return: -errno, or 0 for success.
817  */
cpumask_parse(const char * buf,struct cpumask * dstp)818 static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
819 {
820 	return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
821 }
822 
823 /**
824  * cpulist_parse - extract a cpumask from a user string of ranges
825  * @buf: the buffer to extract from
826  * @dstp: the cpumask to set.
827  *
828  * Return: -errno, or 0 for success.
829  */
cpulist_parse(const char * buf,struct cpumask * dstp)830 static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
831 {
832 	return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
833 }
834 
835 /**
836  * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes
837  *
838  * Return: size to allocate for a &struct cpumask in bytes
839  */
cpumask_size(void)840 static inline unsigned int cpumask_size(void)
841 {
842 	return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long);
843 }
844 
845 /*
846  * cpumask_var_t: struct cpumask for stack usage.
847  *
848  * Oh, the wicked games we play!  In order to make kernel coding a
849  * little more difficult, we typedef cpumask_var_t to an array or a
850  * pointer: doing &mask on an array is a noop, so it still works.
851  *
852  * i.e.
853  *	cpumask_var_t tmpmask;
854  *	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
855  *		return -ENOMEM;
856  *
857  *	  ... use 'tmpmask' like a normal struct cpumask * ...
858  *
859  *	free_cpumask_var(tmpmask);
860  *
861  *
862  * However, one notable exception is there. alloc_cpumask_var() allocates
863  * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
864  * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
865  *
866  *	cpumask_var_t tmpmask;
867  *	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
868  *		return -ENOMEM;
869  *
870  *	var = *tmpmask;
871  *
872  * This code makes NR_CPUS length memcopy and brings to a memory corruption.
873  * cpumask_copy() provide safe copy functionality.
874  *
875  * Note that there is another evil here: If you define a cpumask_var_t
876  * as a percpu variable then the way to obtain the address of the cpumask
877  * structure differently influences what this_cpu_* operation needs to be
878  * used. Please use this_cpu_cpumask_var_t in those cases. The direct use
879  * of this_cpu_ptr() or this_cpu_read() will lead to failures when the
880  * other type of cpumask_var_t implementation is configured.
881  *
882  * Please also note that __cpumask_var_read_mostly can be used to declare
883  * a cpumask_var_t variable itself (not its content) as read mostly.
884  */
885 #ifdef CONFIG_CPUMASK_OFFSTACK
886 typedef struct cpumask *cpumask_var_t;
887 
888 #define this_cpu_cpumask_var_ptr(x)	this_cpu_read(x)
889 #define __cpumask_var_read_mostly	__read_mostly
890 
891 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
892 
893 static inline
zalloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)894 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
895 {
896 	return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
897 }
898 
899 /**
900  * alloc_cpumask_var - allocate a struct cpumask
901  * @mask: pointer to cpumask_var_t where the cpumask is returned
902  * @flags: GFP_ flags
903  *
904  * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
905  * a nop returning a constant 1 (in <linux/cpumask.h>).
906  *
907  * See alloc_cpumask_var_node.
908  *
909  * Return: %true if allocation succeeded, %false if not
910  */
911 static inline
alloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)912 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
913 {
914 	return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
915 }
916 
917 static inline
zalloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)918 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
919 {
920 	return alloc_cpumask_var(mask, flags | __GFP_ZERO);
921 }
922 
923 void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
924 void free_cpumask_var(cpumask_var_t mask);
925 void free_bootmem_cpumask_var(cpumask_var_t mask);
926 
cpumask_available(cpumask_var_t mask)927 static inline bool cpumask_available(cpumask_var_t mask)
928 {
929 	return mask != NULL;
930 }
931 
932 #else
933 typedef struct cpumask cpumask_var_t[1];
934 
935 #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
936 #define __cpumask_var_read_mostly
937 
alloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)938 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
939 {
940 	return true;
941 }
942 
alloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)943 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
944 					  int node)
945 {
946 	return true;
947 }
948 
zalloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)949 static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
950 {
951 	cpumask_clear(*mask);
952 	return true;
953 }
954 
zalloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)955 static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
956 					  int node)
957 {
958 	cpumask_clear(*mask);
959 	return true;
960 }
961 
alloc_bootmem_cpumask_var(cpumask_var_t * mask)962 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
963 {
964 }
965 
free_cpumask_var(cpumask_var_t mask)966 static inline void free_cpumask_var(cpumask_var_t mask)
967 {
968 }
969 
free_bootmem_cpumask_var(cpumask_var_t mask)970 static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
971 {
972 }
973 
cpumask_available(cpumask_var_t mask)974 static inline bool cpumask_available(cpumask_var_t mask)
975 {
976 	return true;
977 }
978 #endif /* CONFIG_CPUMASK_OFFSTACK */
979 
980 /* It's common to want to use cpu_all_mask in struct member initializers,
981  * so it has to refer to an address rather than a pointer. */
982 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
983 #define cpu_all_mask to_cpumask(cpu_all_bits)
984 
985 /* First bits of cpu_bit_bitmap are in fact unset. */
986 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
987 
988 #if NR_CPUS == 1
989 /* Uniprocessor: the possible/online/present masks are always "1" */
990 #define for_each_possible_cpu(cpu)	for ((cpu) = 0; (cpu) < 1; (cpu)++)
991 #define for_each_online_cpu(cpu)	for ((cpu) = 0; (cpu) < 1; (cpu)++)
992 #define for_each_present_cpu(cpu)	for ((cpu) = 0; (cpu) < 1; (cpu)++)
993 #else
994 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
995 #define for_each_online_cpu(cpu)   for_each_cpu((cpu), cpu_online_mask)
996 #define for_each_present_cpu(cpu)  for_each_cpu((cpu), cpu_present_mask)
997 #endif
998 
999 /* Wrappers for arch boot code to manipulate normally-constant masks */
1000 void init_cpu_present(const struct cpumask *src);
1001 void init_cpu_possible(const struct cpumask *src);
1002 void init_cpu_online(const struct cpumask *src);
1003 
reset_cpu_possible_mask(void)1004 static inline void reset_cpu_possible_mask(void)
1005 {
1006 	bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
1007 }
1008 
1009 static inline void
set_cpu_possible(unsigned int cpu,bool possible)1010 set_cpu_possible(unsigned int cpu, bool possible)
1011 {
1012 	if (possible)
1013 		cpumask_set_cpu(cpu, &__cpu_possible_mask);
1014 	else
1015 		cpumask_clear_cpu(cpu, &__cpu_possible_mask);
1016 }
1017 
1018 static inline void
set_cpu_present(unsigned int cpu,bool present)1019 set_cpu_present(unsigned int cpu, bool present)
1020 {
1021 	if (present)
1022 		cpumask_set_cpu(cpu, &__cpu_present_mask);
1023 	else
1024 		cpumask_clear_cpu(cpu, &__cpu_present_mask);
1025 }
1026 
1027 void set_cpu_online(unsigned int cpu, bool online);
1028 
1029 static inline void
set_cpu_active(unsigned int cpu,bool active)1030 set_cpu_active(unsigned int cpu, bool active)
1031 {
1032 	if (active)
1033 		cpumask_set_cpu(cpu, &__cpu_active_mask);
1034 	else
1035 		cpumask_clear_cpu(cpu, &__cpu_active_mask);
1036 }
1037 
1038 static inline void
set_cpu_dying(unsigned int cpu,bool dying)1039 set_cpu_dying(unsigned int cpu, bool dying)
1040 {
1041 	if (dying)
1042 		cpumask_set_cpu(cpu, &__cpu_dying_mask);
1043 	else
1044 		cpumask_clear_cpu(cpu, &__cpu_dying_mask);
1045 }
1046 
1047 /**
1048  * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask *
1049  * @bitmap: the bitmap
1050  *
1051  * There are a few places where cpumask_var_t isn't appropriate and
1052  * static cpumasks must be used (eg. very early boot), yet we don't
1053  * expose the definition of 'struct cpumask'.
1054  *
1055  * This does the conversion, and can be used as a constant initializer.
1056  */
1057 #define to_cpumask(bitmap)						\
1058 	((struct cpumask *)(1 ? (bitmap)				\
1059 			    : (void *)sizeof(__check_is_bitmap(bitmap))))
1060 
__check_is_bitmap(const unsigned long * bitmap)1061 static inline int __check_is_bitmap(const unsigned long *bitmap)
1062 {
1063 	return 1;
1064 }
1065 
1066 /*
1067  * Special-case data structure for "single bit set only" constant CPU masks.
1068  *
1069  * We pre-generate all the 64 (or 32) possible bit positions, with enough
1070  * padding to the left and the right, and return the constant pointer
1071  * appropriately offset.
1072  */
1073 extern const unsigned long
1074 	cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
1075 
get_cpu_mask(unsigned int cpu)1076 static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
1077 {
1078 	const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
1079 	p -= cpu / BITS_PER_LONG;
1080 	return to_cpumask(p);
1081 }
1082 
1083 #if NR_CPUS > 1
1084 /**
1085  * num_online_cpus() - Read the number of online CPUs
1086  *
1087  * Despite the fact that __num_online_cpus is of type atomic_t, this
1088  * interface gives only a momentary snapshot and is not protected against
1089  * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
1090  * region.
1091  *
1092  * Return: momentary snapshot of the number of online CPUs
1093  */
num_online_cpus(void)1094 static __always_inline unsigned int num_online_cpus(void)
1095 {
1096 	return raw_atomic_read(&__num_online_cpus);
1097 }
1098 #define num_possible_cpus()	cpumask_weight(cpu_possible_mask)
1099 #define num_present_cpus()	cpumask_weight(cpu_present_mask)
1100 #define num_active_cpus()	cpumask_weight(cpu_active_mask)
1101 
cpu_online(unsigned int cpu)1102 static inline bool cpu_online(unsigned int cpu)
1103 {
1104 	return cpumask_test_cpu(cpu, cpu_online_mask);
1105 }
1106 
cpu_possible(unsigned int cpu)1107 static inline bool cpu_possible(unsigned int cpu)
1108 {
1109 	return cpumask_test_cpu(cpu, cpu_possible_mask);
1110 }
1111 
cpu_present(unsigned int cpu)1112 static inline bool cpu_present(unsigned int cpu)
1113 {
1114 	return cpumask_test_cpu(cpu, cpu_present_mask);
1115 }
1116 
cpu_active(unsigned int cpu)1117 static inline bool cpu_active(unsigned int cpu)
1118 {
1119 	return cpumask_test_cpu(cpu, cpu_active_mask);
1120 }
1121 
cpu_dying(unsigned int cpu)1122 static inline bool cpu_dying(unsigned int cpu)
1123 {
1124 	return cpumask_test_cpu(cpu, cpu_dying_mask);
1125 }
1126 
1127 #else
1128 
1129 #define num_online_cpus()	1U
1130 #define num_possible_cpus()	1U
1131 #define num_present_cpus()	1U
1132 #define num_active_cpus()	1U
1133 
cpu_online(unsigned int cpu)1134 static inline bool cpu_online(unsigned int cpu)
1135 {
1136 	return cpu == 0;
1137 }
1138 
cpu_possible(unsigned int cpu)1139 static inline bool cpu_possible(unsigned int cpu)
1140 {
1141 	return cpu == 0;
1142 }
1143 
cpu_present(unsigned int cpu)1144 static inline bool cpu_present(unsigned int cpu)
1145 {
1146 	return cpu == 0;
1147 }
1148 
cpu_active(unsigned int cpu)1149 static inline bool cpu_active(unsigned int cpu)
1150 {
1151 	return cpu == 0;
1152 }
1153 
cpu_dying(unsigned int cpu)1154 static inline bool cpu_dying(unsigned int cpu)
1155 {
1156 	return false;
1157 }
1158 
1159 #endif /* NR_CPUS > 1 */
1160 
1161 #define cpu_is_offline(cpu)	unlikely(!cpu_online(cpu))
1162 
1163 #if NR_CPUS <= BITS_PER_LONG
1164 #define CPU_BITS_ALL						\
1165 {								\
1166 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1167 }
1168 
1169 #else /* NR_CPUS > BITS_PER_LONG */
1170 
1171 #define CPU_BITS_ALL						\
1172 {								\
1173 	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,		\
1174 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1175 }
1176 #endif /* NR_CPUS > BITS_PER_LONG */
1177 
1178 /**
1179  * cpumap_print_to_pagebuf  - copies the cpumask into the buffer either
1180  *	as comma-separated list of cpus or hex values of cpumask
1181  * @list: indicates whether the cpumap must be list
1182  * @mask: the cpumask to copy
1183  * @buf: the buffer to copy into
1184  *
1185  * Return: the length of the (null-terminated) @buf string, zero if
1186  * nothing is copied.
1187  */
1188 static inline ssize_t
cpumap_print_to_pagebuf(bool list,char * buf,const struct cpumask * mask)1189 cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
1190 {
1191 	return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
1192 				      nr_cpu_ids);
1193 }
1194 
1195 /**
1196  * cpumap_print_bitmask_to_buf  - copies the cpumask into the buffer as
1197  *	hex values of cpumask
1198  *
1199  * @buf: the buffer to copy into
1200  * @mask: the cpumask to copy
1201  * @off: in the string from which we are copying, we copy to @buf
1202  * @count: the maximum number of bytes to print
1203  *
1204  * The function prints the cpumask into the buffer as hex values of
1205  * cpumask; Typically used by bin_attribute to export cpumask bitmask
1206  * ABI.
1207  *
1208  * Return: the length of how many bytes have been copied, excluding
1209  * terminating '\0'.
1210  */
1211 static inline ssize_t
cpumap_print_bitmask_to_buf(char * buf,const struct cpumask * mask,loff_t off,size_t count)1212 cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
1213 		loff_t off, size_t count)
1214 {
1215 	return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
1216 				   nr_cpu_ids, off, count) - 1;
1217 }
1218 
1219 /**
1220  * cpumap_print_list_to_buf  - copies the cpumask into the buffer as
1221  *	comma-separated list of cpus
1222  * @buf: the buffer to copy into
1223  * @mask: the cpumask to copy
1224  * @off: in the string from which we are copying, we copy to @buf
1225  * @count: the maximum number of bytes to print
1226  *
1227  * Everything is same with the above cpumap_print_bitmask_to_buf()
1228  * except the print format.
1229  *
1230  * Return: the length of how many bytes have been copied, excluding
1231  * terminating '\0'.
1232  */
1233 static inline ssize_t
cpumap_print_list_to_buf(char * buf,const struct cpumask * mask,loff_t off,size_t count)1234 cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
1235 		loff_t off, size_t count)
1236 {
1237 	return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
1238 				   nr_cpu_ids, off, count) - 1;
1239 }
1240 
1241 #if NR_CPUS <= BITS_PER_LONG
1242 #define CPU_MASK_ALL							\
1243 (cpumask_t) { {								\
1244 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1245 } }
1246 #else
1247 #define CPU_MASK_ALL							\
1248 (cpumask_t) { {								\
1249 	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,			\
1250 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1251 } }
1252 #endif /* NR_CPUS > BITS_PER_LONG */
1253 
1254 #define CPU_MASK_NONE							\
1255 (cpumask_t) { {								\
1256 	[0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL				\
1257 } }
1258 
1259 #define CPU_MASK_CPU0							\
1260 (cpumask_t) { {								\
1261 	[0] =  1UL							\
1262 } }
1263 
1264 /*
1265  * Provide a valid theoretical max size for cpumap and cpulist sysfs files
1266  * to avoid breaking userspace which may allocate a buffer based on the size
1267  * reported by e.g. fstat.
1268  *
1269  * for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
1270  *
1271  * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
1272  * to 2 orders of magnitude larger than 8192. And then we divide by 2 to
1273  * cover a worst-case of every other cpu being on one of two nodes for a
1274  * very large NR_CPUS.
1275  *
1276  *  Use PAGE_SIZE as a minimum for smaller configurations while avoiding
1277  *  unsigned comparison to -1.
1278  */
1279 #define CPUMAP_FILE_MAX_BYTES  (((NR_CPUS * 9)/32 > PAGE_SIZE) \
1280 					? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
1281 #define CPULIST_FILE_MAX_BYTES  (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
1282 
1283 #endif /* __LINUX_CPUMASK_H */
1284