1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11
12 struct blk_mq_tags;
13 struct blk_flush_queue;
14
15 #define BLKDEV_MIN_RQ 4
16 #define BLKDEV_DEFAULT_RQ 128
17
18 enum rq_end_io_ret {
19 RQ_END_IO_NONE,
20 RQ_END_IO_FREE,
21 };
22
23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24
25 /*
26 * request flags */
27 typedef __u32 __bitwise req_flags_t;
28
29 /* drive already may have started this one */
30 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
31 /* request for flush sequence */
32 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
33 /* merge of different types, fail separately */
34 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
35 /* don't call prep for this one */
36 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
37 /* use hctx->sched_tags */
38 #define RQF_SCHED_TAGS ((__force req_flags_t)(1 << 8))
39 /* use an I/O scheduler for this request */
40 #define RQF_USE_SCHED ((__force req_flags_t)(1 << 9))
41 /* vaguely specified driver internal error. Ignored by the block layer */
42 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
43 /* don't warn about errors */
44 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
45 /* account into disk and partition IO statistics */
46 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
47 /* runtime pm request */
48 #define RQF_PM ((__force req_flags_t)(1 << 15))
49 /* on IO scheduler merge hash */
50 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
51 /* track IO completion time */
52 #define RQF_STATS ((__force req_flags_t)(1 << 17))
53 /* Look at ->special_vec for the actual data payload instead of the
54 bio chain. */
55 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
56 /* The per-zone write lock is held for this request */
57 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
58 /* ->timeout has been called, don't expire again */
59 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
60 #define RQF_RESV ((__force req_flags_t)(1 << 23))
61
62 /* flags that prevent us from merging requests: */
63 #define RQF_NOMERGE_FLAGS \
64 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
65
66 enum mq_rq_state {
67 MQ_RQ_IDLE = 0,
68 MQ_RQ_IN_FLIGHT = 1,
69 MQ_RQ_COMPLETE = 2,
70 };
71
72 /*
73 * Try to put the fields that are referenced together in the same cacheline.
74 *
75 * If you modify this structure, make sure to update blk_rq_init() and
76 * especially blk_mq_rq_ctx_init() to take care of the added fields.
77 */
78 struct request {
79 struct request_queue *q;
80 struct blk_mq_ctx *mq_ctx;
81 struct blk_mq_hw_ctx *mq_hctx;
82
83 blk_opf_t cmd_flags; /* op and common flags */
84 req_flags_t rq_flags;
85
86 int tag;
87 int internal_tag;
88
89 unsigned int timeout;
90
91 /* the following two fields are internal, NEVER access directly */
92 unsigned int __data_len; /* total data len */
93 sector_t __sector; /* sector cursor */
94
95 struct bio *bio;
96 struct bio *biotail;
97
98 union {
99 struct list_head queuelist;
100 struct request *rq_next;
101 };
102
103 struct block_device *part;
104 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
105 /* Time that the first bio started allocating this request. */
106 u64 alloc_time_ns;
107 #endif
108 /* Time that this request was allocated for this IO. */
109 u64 start_time_ns;
110 /* Time that I/O was submitted to the device. */
111 u64 io_start_time_ns;
112
113 #ifdef CONFIG_BLK_WBT
114 unsigned short wbt_flags;
115 #endif
116 /*
117 * rq sectors used for blk stats. It has the same value
118 * with blk_rq_sectors(rq), except that it never be zeroed
119 * by completion.
120 */
121 unsigned short stats_sectors;
122
123 /*
124 * Number of scatter-gather DMA addr+len pairs after
125 * physical address coalescing is performed.
126 */
127 unsigned short nr_phys_segments;
128
129 #ifdef CONFIG_BLK_DEV_INTEGRITY
130 unsigned short nr_integrity_segments;
131 #endif
132
133 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
134 struct bio_crypt_ctx *crypt_ctx;
135 struct blk_crypto_keyslot *crypt_keyslot;
136 #endif
137
138 unsigned short ioprio;
139
140 enum mq_rq_state state;
141 atomic_t ref;
142
143 unsigned long deadline;
144
145 /*
146 * The hash is used inside the scheduler, and killed once the
147 * request reaches the dispatch list. The ipi_list is only used
148 * to queue the request for softirq completion, which is long
149 * after the request has been unhashed (and even removed from
150 * the dispatch list).
151 */
152 union {
153 struct hlist_node hash; /* merge hash */
154 struct llist_node ipi_list;
155 };
156
157 /*
158 * The rb_node is only used inside the io scheduler, requests
159 * are pruned when moved to the dispatch queue. special_vec must
160 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
161 * insert into an IO scheduler.
162 */
163 union {
164 struct rb_node rb_node; /* sort/lookup */
165 struct bio_vec special_vec;
166 };
167
168 /*
169 * Three pointers are available for the IO schedulers, if they need
170 * more they have to dynamically allocate it.
171 */
172 struct {
173 struct io_cq *icq;
174 void *priv[2];
175 } elv;
176
177 struct {
178 unsigned int seq;
179 rq_end_io_fn *saved_end_io;
180 } flush;
181
182 u64 fifo_time;
183
184 /*
185 * completion callback.
186 */
187 rq_end_io_fn *end_io;
188 void *end_io_data;
189 };
190
req_op(const struct request * req)191 static inline enum req_op req_op(const struct request *req)
192 {
193 return req->cmd_flags & REQ_OP_MASK;
194 }
195
blk_rq_is_passthrough(struct request * rq)196 static inline bool blk_rq_is_passthrough(struct request *rq)
197 {
198 return blk_op_is_passthrough(rq->cmd_flags);
199 }
200
req_get_ioprio(struct request * req)201 static inline unsigned short req_get_ioprio(struct request *req)
202 {
203 return req->ioprio;
204 }
205
206 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
207
208 #define rq_dma_dir(rq) \
209 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
210
211 #define rq_list_add(listptr, rq) do { \
212 (rq)->rq_next = *(listptr); \
213 *(listptr) = rq; \
214 } while (0)
215
216 #define rq_list_add_tail(lastpptr, rq) do { \
217 (rq)->rq_next = NULL; \
218 **(lastpptr) = rq; \
219 *(lastpptr) = &rq->rq_next; \
220 } while (0)
221
222 #define rq_list_pop(listptr) \
223 ({ \
224 struct request *__req = NULL; \
225 if ((listptr) && *(listptr)) { \
226 __req = *(listptr); \
227 *(listptr) = __req->rq_next; \
228 } \
229 __req; \
230 })
231
232 #define rq_list_peek(listptr) \
233 ({ \
234 struct request *__req = NULL; \
235 if ((listptr) && *(listptr)) \
236 __req = *(listptr); \
237 __req; \
238 })
239
240 #define rq_list_for_each(listptr, pos) \
241 for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
242
243 #define rq_list_for_each_safe(listptr, pos, nxt) \
244 for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \
245 pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
246
247 #define rq_list_next(rq) (rq)->rq_next
248 #define rq_list_empty(list) ((list) == (struct request *) NULL)
249
250 /**
251 * rq_list_move() - move a struct request from one list to another
252 * @src: The source list @rq is currently in
253 * @dst: The destination list that @rq will be appended to
254 * @rq: The request to move
255 * @prev: The request preceding @rq in @src (NULL if @rq is the head)
256 */
rq_list_move(struct request ** src,struct request ** dst,struct request * rq,struct request * prev)257 static inline void rq_list_move(struct request **src, struct request **dst,
258 struct request *rq, struct request *prev)
259 {
260 if (prev)
261 prev->rq_next = rq->rq_next;
262 else
263 *src = rq->rq_next;
264 rq_list_add(dst, rq);
265 }
266
267 /**
268 * enum blk_eh_timer_return - How the timeout handler should proceed
269 * @BLK_EH_DONE: The block driver completed the command or will complete it at
270 * a later time.
271 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
272 * request to complete.
273 */
274 enum blk_eh_timer_return {
275 BLK_EH_DONE,
276 BLK_EH_RESET_TIMER,
277 };
278
279 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
280 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
281
282 /**
283 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
284 * block device
285 */
286 struct blk_mq_hw_ctx {
287 struct {
288 /** @lock: Protects the dispatch list. */
289 spinlock_t lock;
290 /**
291 * @dispatch: Used for requests that are ready to be
292 * dispatched to the hardware but for some reason (e.g. lack of
293 * resources) could not be sent to the hardware. As soon as the
294 * driver can send new requests, requests at this list will
295 * be sent first for a fairer dispatch.
296 */
297 struct list_head dispatch;
298 /**
299 * @state: BLK_MQ_S_* flags. Defines the state of the hw
300 * queue (active, scheduled to restart, stopped).
301 */
302 unsigned long state;
303 } ____cacheline_aligned_in_smp;
304
305 /**
306 * @run_work: Used for scheduling a hardware queue run at a later time.
307 */
308 struct delayed_work run_work;
309 /** @cpumask: Map of available CPUs where this hctx can run. */
310 cpumask_var_t cpumask;
311 /**
312 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
313 * selection from @cpumask.
314 */
315 int next_cpu;
316 /**
317 * @next_cpu_batch: Counter of how many works left in the batch before
318 * changing to the next CPU.
319 */
320 int next_cpu_batch;
321
322 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
323 unsigned long flags;
324
325 /**
326 * @sched_data: Pointer owned by the IO scheduler attached to a request
327 * queue. It's up to the IO scheduler how to use this pointer.
328 */
329 void *sched_data;
330 /**
331 * @queue: Pointer to the request queue that owns this hardware context.
332 */
333 struct request_queue *queue;
334 /** @fq: Queue of requests that need to perform a flush operation. */
335 struct blk_flush_queue *fq;
336
337 /**
338 * @driver_data: Pointer to data owned by the block driver that created
339 * this hctx
340 */
341 void *driver_data;
342
343 /**
344 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
345 * pending request in that software queue.
346 */
347 struct sbitmap ctx_map;
348
349 /**
350 * @dispatch_from: Software queue to be used when no scheduler was
351 * selected.
352 */
353 struct blk_mq_ctx *dispatch_from;
354 /**
355 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
356 * decide if the hw_queue is busy using Exponential Weighted Moving
357 * Average algorithm.
358 */
359 unsigned int dispatch_busy;
360
361 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
362 unsigned short type;
363 /** @nr_ctx: Number of software queues. */
364 unsigned short nr_ctx;
365 /** @ctxs: Array of software queues. */
366 struct blk_mq_ctx **ctxs;
367
368 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
369 spinlock_t dispatch_wait_lock;
370 /**
371 * @dispatch_wait: Waitqueue to put requests when there is no tag
372 * available at the moment, to wait for another try in the future.
373 */
374 wait_queue_entry_t dispatch_wait;
375
376 /**
377 * @wait_index: Index of next available dispatch_wait queue to insert
378 * requests.
379 */
380 atomic_t wait_index;
381
382 /**
383 * @tags: Tags owned by the block driver. A tag at this set is only
384 * assigned when a request is dispatched from a hardware queue.
385 */
386 struct blk_mq_tags *tags;
387 /**
388 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
389 * scheduler associated with a request queue, a tag is assigned when
390 * that request is allocated. Else, this member is not used.
391 */
392 struct blk_mq_tags *sched_tags;
393
394 /** @numa_node: NUMA node the storage adapter has been connected to. */
395 unsigned int numa_node;
396 /** @queue_num: Index of this hardware queue. */
397 unsigned int queue_num;
398
399 /**
400 * @nr_active: Number of active requests. Only used when a tag set is
401 * shared across request queues.
402 */
403 atomic_t nr_active;
404
405 /** @cpuhp_online: List to store request if CPU is going to die */
406 struct hlist_node cpuhp_online;
407 /** @cpuhp_dead: List to store request if some CPU die. */
408 struct hlist_node cpuhp_dead;
409 /** @kobj: Kernel object for sysfs. */
410 struct kobject kobj;
411
412 #ifdef CONFIG_BLK_DEBUG_FS
413 /**
414 * @debugfs_dir: debugfs directory for this hardware queue. Named
415 * as cpu<cpu_number>.
416 */
417 struct dentry *debugfs_dir;
418 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
419 struct dentry *sched_debugfs_dir;
420 #endif
421
422 /**
423 * @hctx_list: if this hctx is not in use, this is an entry in
424 * q->unused_hctx_list.
425 */
426 struct list_head hctx_list;
427 };
428
429 /**
430 * struct blk_mq_queue_map - Map software queues to hardware queues
431 * @mq_map: CPU ID to hardware queue index map. This is an array
432 * with nr_cpu_ids elements. Each element has a value in the range
433 * [@queue_offset, @queue_offset + @nr_queues).
434 * @nr_queues: Number of hardware queues to map CPU IDs onto.
435 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
436 * driver to map each hardware queue type (enum hctx_type) onto a distinct
437 * set of hardware queues.
438 */
439 struct blk_mq_queue_map {
440 unsigned int *mq_map;
441 unsigned int nr_queues;
442 unsigned int queue_offset;
443 };
444
445 /**
446 * enum hctx_type - Type of hardware queue
447 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
448 * @HCTX_TYPE_READ: Just for READ I/O.
449 * @HCTX_TYPE_POLL: Polled I/O of any kind.
450 * @HCTX_MAX_TYPES: Number of types of hctx.
451 */
452 enum hctx_type {
453 HCTX_TYPE_DEFAULT,
454 HCTX_TYPE_READ,
455 HCTX_TYPE_POLL,
456
457 HCTX_MAX_TYPES,
458 };
459
460 /**
461 * struct blk_mq_tag_set - tag set that can be shared between request queues
462 * @ops: Pointers to functions that implement block driver behavior.
463 * @map: One or more ctx -> hctx mappings. One map exists for each
464 * hardware queue type (enum hctx_type) that the driver wishes
465 * to support. There are no restrictions on maps being of the
466 * same size, and it's perfectly legal to share maps between
467 * types.
468 * @nr_maps: Number of elements in the @map array. A number in the range
469 * [1, HCTX_MAX_TYPES].
470 * @nr_hw_queues: Number of hardware queues supported by the block driver that
471 * owns this data structure.
472 * @queue_depth: Number of tags per hardware queue, reserved tags included.
473 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
474 * allocations.
475 * @cmd_size: Number of additional bytes to allocate per request. The block
476 * driver owns these additional bytes.
477 * @numa_node: NUMA node the storage adapter has been connected to.
478 * @timeout: Request processing timeout in jiffies.
479 * @flags: Zero or more BLK_MQ_F_* flags.
480 * @driver_data: Pointer to data owned by the block driver that created this
481 * tag set.
482 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
483 * elements.
484 * @shared_tags:
485 * Shared set of tags. Has @nr_hw_queues elements. If set,
486 * shared by all @tags.
487 * @tag_list_lock: Serializes tag_list accesses.
488 * @tag_list: List of the request queues that use this tag set. See also
489 * request_queue.tag_set_list.
490 * @srcu: Use as lock when type of the request queue is blocking
491 * (BLK_MQ_F_BLOCKING).
492 */
493 struct blk_mq_tag_set {
494 const struct blk_mq_ops *ops;
495 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
496 unsigned int nr_maps;
497 unsigned int nr_hw_queues;
498 unsigned int queue_depth;
499 unsigned int reserved_tags;
500 unsigned int cmd_size;
501 int numa_node;
502 unsigned int timeout;
503 unsigned int flags;
504 void *driver_data;
505
506 struct blk_mq_tags **tags;
507
508 struct blk_mq_tags *shared_tags;
509
510 struct mutex tag_list_lock;
511 struct list_head tag_list;
512 struct srcu_struct *srcu;
513 };
514
515 /**
516 * struct blk_mq_queue_data - Data about a request inserted in a queue
517 *
518 * @rq: Request pointer.
519 * @last: If it is the last request in the queue.
520 */
521 struct blk_mq_queue_data {
522 struct request *rq;
523 bool last;
524 };
525
526 typedef bool (busy_tag_iter_fn)(struct request *, void *);
527
528 /**
529 * struct blk_mq_ops - Callback functions that implements block driver
530 * behaviour.
531 */
532 struct blk_mq_ops {
533 /**
534 * @queue_rq: Queue a new request from block IO.
535 */
536 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
537 const struct blk_mq_queue_data *);
538
539 /**
540 * @commit_rqs: If a driver uses bd->last to judge when to submit
541 * requests to hardware, it must define this function. In case of errors
542 * that make us stop issuing further requests, this hook serves the
543 * purpose of kicking the hardware (which the last request otherwise
544 * would have done).
545 */
546 void (*commit_rqs)(struct blk_mq_hw_ctx *);
547
548 /**
549 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
550 * that each request belongs to the same queue. If the driver doesn't
551 * empty the @rqlist completely, then the rest will be queued
552 * individually by the block layer upon return.
553 */
554 void (*queue_rqs)(struct request **rqlist);
555
556 /**
557 * @get_budget: Reserve budget before queue request, once .queue_rq is
558 * run, it is driver's responsibility to release the
559 * reserved budget. Also we have to handle failure case
560 * of .get_budget for avoiding I/O deadlock.
561 */
562 int (*get_budget)(struct request_queue *);
563
564 /**
565 * @put_budget: Release the reserved budget.
566 */
567 void (*put_budget)(struct request_queue *, int);
568
569 /**
570 * @set_rq_budget_token: store rq's budget token
571 */
572 void (*set_rq_budget_token)(struct request *, int);
573 /**
574 * @get_rq_budget_token: retrieve rq's budget token
575 */
576 int (*get_rq_budget_token)(struct request *);
577
578 /**
579 * @timeout: Called on request timeout.
580 */
581 enum blk_eh_timer_return (*timeout)(struct request *);
582
583 /**
584 * @poll: Called to poll for completion of a specific tag.
585 */
586 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
587
588 /**
589 * @complete: Mark the request as complete.
590 */
591 void (*complete)(struct request *);
592
593 /**
594 * @init_hctx: Called when the block layer side of a hardware queue has
595 * been set up, allowing the driver to allocate/init matching
596 * structures.
597 */
598 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
599 /**
600 * @exit_hctx: Ditto for exit/teardown.
601 */
602 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
603
604 /**
605 * @init_request: Called for every command allocated by the block layer
606 * to allow the driver to set up driver specific data.
607 *
608 * Tag greater than or equal to queue_depth is for setting up
609 * flush request.
610 */
611 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
612 unsigned int, unsigned int);
613 /**
614 * @exit_request: Ditto for exit/teardown.
615 */
616 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
617 unsigned int);
618
619 /**
620 * @cleanup_rq: Called before freeing one request which isn't completed
621 * yet, and usually for freeing the driver private data.
622 */
623 void (*cleanup_rq)(struct request *);
624
625 /**
626 * @busy: If set, returns whether or not this queue currently is busy.
627 */
628 bool (*busy)(struct request_queue *);
629
630 /**
631 * @map_queues: This allows drivers specify their own queue mapping by
632 * overriding the setup-time function that builds the mq_map.
633 */
634 void (*map_queues)(struct blk_mq_tag_set *set);
635
636 #ifdef CONFIG_BLK_DEBUG_FS
637 /**
638 * @show_rq: Used by the debugfs implementation to show driver-specific
639 * information about a request.
640 */
641 void (*show_rq)(struct seq_file *m, struct request *rq);
642 #endif
643 };
644
645 enum {
646 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
647 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
648 /*
649 * Set when this device requires underlying blk-mq device for
650 * completing IO:
651 */
652 BLK_MQ_F_STACKING = 1 << 2,
653 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
654 BLK_MQ_F_BLOCKING = 1 << 5,
655 /* Do not allow an I/O scheduler to be configured. */
656 BLK_MQ_F_NO_SCHED = 1 << 6,
657 /*
658 * Select 'none' during queue registration in case of a single hwq
659 * or shared hwqs instead of 'mq-deadline'.
660 */
661 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
662 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
663 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
664
665 BLK_MQ_S_STOPPED = 0,
666 BLK_MQ_S_TAG_ACTIVE = 1,
667 BLK_MQ_S_SCHED_RESTART = 2,
668
669 /* hw queue is inactive after all its CPUs become offline */
670 BLK_MQ_S_INACTIVE = 3,
671
672 BLK_MQ_MAX_DEPTH = 10240,
673
674 BLK_MQ_CPU_WORK_BATCH = 8,
675 };
676 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
677 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
678 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
679 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
680 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
681 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
682
683 #define BLK_MQ_NO_HCTX_IDX (-1U)
684
685 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
686 struct lock_class_key *lkclass);
687 #define blk_mq_alloc_disk(set, queuedata) \
688 ({ \
689 static struct lock_class_key __key; \
690 \
691 __blk_mq_alloc_disk(set, queuedata, &__key); \
692 })
693 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
694 struct lock_class_key *lkclass);
695 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
696 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
697 struct request_queue *q);
698 void blk_mq_destroy_queue(struct request_queue *);
699
700 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
701 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
702 const struct blk_mq_ops *ops, unsigned int queue_depth,
703 unsigned int set_flags);
704 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
705
706 void blk_mq_free_request(struct request *rq);
707 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
708 unsigned int poll_flags);
709
710 bool blk_mq_queue_inflight(struct request_queue *q);
711
712 enum {
713 /* return when out of requests */
714 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
715 /* allocate from reserved pool */
716 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
717 /* set RQF_PM */
718 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
719 };
720
721 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
722 blk_mq_req_flags_t flags);
723 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
724 blk_opf_t opf, blk_mq_req_flags_t flags,
725 unsigned int hctx_idx);
726
727 /*
728 * Tag address space map.
729 */
730 struct blk_mq_tags {
731 unsigned int nr_tags;
732 unsigned int nr_reserved_tags;
733 unsigned int active_queues;
734
735 struct sbitmap_queue bitmap_tags;
736 struct sbitmap_queue breserved_tags;
737
738 struct request **rqs;
739 struct request **static_rqs;
740 struct list_head page_list;
741
742 /*
743 * used to clear request reference in rqs[] before freeing one
744 * request pool
745 */
746 spinlock_t lock;
747 };
748
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)749 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
750 unsigned int tag)
751 {
752 if (tag < tags->nr_tags) {
753 prefetch(tags->rqs[tag]);
754 return tags->rqs[tag];
755 }
756
757 return NULL;
758 }
759
760 enum {
761 BLK_MQ_UNIQUE_TAG_BITS = 16,
762 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
763 };
764
765 u32 blk_mq_unique_tag(struct request *rq);
766
blk_mq_unique_tag_to_hwq(u32 unique_tag)767 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
768 {
769 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
770 }
771
blk_mq_unique_tag_to_tag(u32 unique_tag)772 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
773 {
774 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
775 }
776
777 /**
778 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
779 * @rq: target request.
780 */
blk_mq_rq_state(struct request * rq)781 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
782 {
783 return READ_ONCE(rq->state);
784 }
785
blk_mq_request_started(struct request * rq)786 static inline int blk_mq_request_started(struct request *rq)
787 {
788 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
789 }
790
blk_mq_request_completed(struct request * rq)791 static inline int blk_mq_request_completed(struct request *rq)
792 {
793 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
794 }
795
796 /*
797 *
798 * Set the state to complete when completing a request from inside ->queue_rq.
799 * This is used by drivers that want to ensure special complete actions that
800 * need access to the request are called on failure, e.g. by nvme for
801 * multipathing.
802 */
blk_mq_set_request_complete(struct request * rq)803 static inline void blk_mq_set_request_complete(struct request *rq)
804 {
805 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
806 }
807
808 /*
809 * Complete the request directly instead of deferring it to softirq or
810 * completing it another CPU. Useful in preemptible instead of an interrupt.
811 */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))812 static inline void blk_mq_complete_request_direct(struct request *rq,
813 void (*complete)(struct request *rq))
814 {
815 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
816 complete(rq);
817 }
818
819 void blk_mq_start_request(struct request *rq);
820 void blk_mq_end_request(struct request *rq, blk_status_t error);
821 void __blk_mq_end_request(struct request *rq, blk_status_t error);
822 void blk_mq_end_request_batch(struct io_comp_batch *ib);
823
824 /*
825 * Only need start/end time stamping if we have iostat or
826 * blk stats enabled, or using an IO scheduler.
827 */
blk_mq_need_time_stamp(struct request * rq)828 static inline bool blk_mq_need_time_stamp(struct request *rq)
829 {
830 /*
831 * passthrough io doesn't use iostat accounting, cgroup stats
832 * and io scheduler functionalities.
833 */
834 if (blk_rq_is_passthrough(rq))
835 return false;
836 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
837 }
838
blk_mq_is_reserved_rq(struct request * rq)839 static inline bool blk_mq_is_reserved_rq(struct request *rq)
840 {
841 return rq->rq_flags & RQF_RESV;
842 }
843
844 /*
845 * Batched completions only work when there is no I/O error and no special
846 * ->end_io handler.
847 */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,int ioerror,void (* complete)(struct io_comp_batch *))848 static inline bool blk_mq_add_to_batch(struct request *req,
849 struct io_comp_batch *iob, int ioerror,
850 void (*complete)(struct io_comp_batch *))
851 {
852 /*
853 * blk_mq_end_request_batch() can't end request allocated from
854 * sched tags
855 */
856 if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
857 (req->end_io && !blk_rq_is_passthrough(req)))
858 return false;
859
860 if (!iob->complete)
861 iob->complete = complete;
862 else if (iob->complete != complete)
863 return false;
864 iob->need_ts |= blk_mq_need_time_stamp(req);
865 rq_list_add(&iob->req_list, req);
866 return true;
867 }
868
869 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
870 void blk_mq_kick_requeue_list(struct request_queue *q);
871 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
872 void blk_mq_complete_request(struct request *rq);
873 bool blk_mq_complete_request_remote(struct request *rq);
874 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
875 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
876 void blk_mq_stop_hw_queues(struct request_queue *q);
877 void blk_mq_start_hw_queues(struct request_queue *q);
878 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
879 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
880 void blk_mq_quiesce_queue(struct request_queue *q);
881 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
882 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
883 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
884 void blk_mq_unquiesce_queue(struct request_queue *q);
885 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
886 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
887 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
888 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
889 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
890 busy_tag_iter_fn *fn, void *priv);
891 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
892 void blk_mq_freeze_queue(struct request_queue *q);
893 void blk_mq_unfreeze_queue(struct request_queue *q);
894 void blk_freeze_queue_start(struct request_queue *q);
895 void blk_mq_freeze_queue_wait(struct request_queue *q);
896 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
897 unsigned long timeout);
898
899 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
900 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
901
902 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
903
904 unsigned int blk_mq_rq_cpu(struct request *rq);
905
906 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)907 static inline bool blk_should_fake_timeout(struct request_queue *q)
908 {
909 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
910 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
911 return __blk_should_fake_timeout(q);
912 return false;
913 }
914
915 /**
916 * blk_mq_rq_from_pdu - cast a PDU to a request
917 * @pdu: the PDU (Protocol Data Unit) to be casted
918 *
919 * Return: request
920 *
921 * Driver command data is immediately after the request. So subtract request
922 * size to get back to the original request.
923 */
blk_mq_rq_from_pdu(void * pdu)924 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
925 {
926 return pdu - sizeof(struct request);
927 }
928
929 /**
930 * blk_mq_rq_to_pdu - cast a request to a PDU
931 * @rq: the request to be casted
932 *
933 * Return: pointer to the PDU
934 *
935 * Driver command data is immediately after the request. So add request to get
936 * the PDU.
937 */
blk_mq_rq_to_pdu(struct request * rq)938 static inline void *blk_mq_rq_to_pdu(struct request *rq)
939 {
940 return rq + 1;
941 }
942
943 #define queue_for_each_hw_ctx(q, hctx, i) \
944 xa_for_each(&(q)->hctx_table, (i), (hctx))
945
946 #define hctx_for_each_ctx(hctx, ctx, i) \
947 for ((i) = 0; (i) < (hctx)->nr_ctx && \
948 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
949
blk_mq_cleanup_rq(struct request * rq)950 static inline void blk_mq_cleanup_rq(struct request *rq)
951 {
952 if (rq->q->mq_ops->cleanup_rq)
953 rq->q->mq_ops->cleanup_rq(rq);
954 }
955
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)956 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
957 unsigned int nr_segs)
958 {
959 rq->nr_phys_segments = nr_segs;
960 rq->__data_len = bio->bi_iter.bi_size;
961 rq->bio = rq->biotail = bio;
962 rq->ioprio = bio_prio(bio);
963 }
964
965 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
966 struct lock_class_key *key);
967
rq_is_sync(struct request * rq)968 static inline bool rq_is_sync(struct request *rq)
969 {
970 return op_is_sync(rq->cmd_flags);
971 }
972
973 void blk_rq_init(struct request_queue *q, struct request *rq);
974 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
975 struct bio_set *bs, gfp_t gfp_mask,
976 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
977 void blk_rq_unprep_clone(struct request *rq);
978 blk_status_t blk_insert_cloned_request(struct request *rq);
979
980 struct rq_map_data {
981 struct page **pages;
982 unsigned long offset;
983 unsigned short page_order;
984 unsigned short nr_entries;
985 bool null_mapped;
986 bool from_user;
987 };
988
989 int blk_rq_map_user(struct request_queue *, struct request *,
990 struct rq_map_data *, void __user *, unsigned long, gfp_t);
991 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
992 void __user *, unsigned long, gfp_t, bool, int, bool, int);
993 int blk_rq_map_user_iov(struct request_queue *, struct request *,
994 struct rq_map_data *, const struct iov_iter *, gfp_t);
995 int blk_rq_unmap_user(struct bio *);
996 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
997 unsigned int, gfp_t);
998 int blk_rq_append_bio(struct request *rq, struct bio *bio);
999 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1000 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1001 bool blk_rq_is_poll(struct request *rq);
1002
1003 struct req_iterator {
1004 struct bvec_iter iter;
1005 struct bio *bio;
1006 };
1007
1008 #define __rq_for_each_bio(_bio, rq) \
1009 if ((rq->bio)) \
1010 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1011
1012 #define rq_for_each_segment(bvl, _rq, _iter) \
1013 __rq_for_each_bio(_iter.bio, _rq) \
1014 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1015
1016 #define rq_for_each_bvec(bvl, _rq, _iter) \
1017 __rq_for_each_bio(_iter.bio, _rq) \
1018 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1019
1020 #define rq_iter_last(bvec, _iter) \
1021 (_iter.bio->bi_next == NULL && \
1022 bio_iter_last(bvec, _iter.iter))
1023
1024 /*
1025 * blk_rq_pos() : the current sector
1026 * blk_rq_bytes() : bytes left in the entire request
1027 * blk_rq_cur_bytes() : bytes left in the current segment
1028 * blk_rq_sectors() : sectors left in the entire request
1029 * blk_rq_cur_sectors() : sectors left in the current segment
1030 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1031 */
blk_rq_pos(const struct request * rq)1032 static inline sector_t blk_rq_pos(const struct request *rq)
1033 {
1034 return rq->__sector;
1035 }
1036
blk_rq_bytes(const struct request * rq)1037 static inline unsigned int blk_rq_bytes(const struct request *rq)
1038 {
1039 return rq->__data_len;
1040 }
1041
blk_rq_cur_bytes(const struct request * rq)1042 static inline int blk_rq_cur_bytes(const struct request *rq)
1043 {
1044 if (!rq->bio)
1045 return 0;
1046 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
1047 return rq->bio->bi_iter.bi_size;
1048 return bio_iovec(rq->bio).bv_len;
1049 }
1050
blk_rq_sectors(const struct request * rq)1051 static inline unsigned int blk_rq_sectors(const struct request *rq)
1052 {
1053 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1054 }
1055
blk_rq_cur_sectors(const struct request * rq)1056 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1057 {
1058 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1059 }
1060
blk_rq_stats_sectors(const struct request * rq)1061 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1062 {
1063 return rq->stats_sectors;
1064 }
1065
1066 /*
1067 * Some commands like WRITE SAME have a payload or data transfer size which
1068 * is different from the size of the request. Any driver that supports such
1069 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1070 * calculate the data transfer size.
1071 */
blk_rq_payload_bytes(struct request * rq)1072 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1073 {
1074 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1075 return rq->special_vec.bv_len;
1076 return blk_rq_bytes(rq);
1077 }
1078
1079 /*
1080 * Return the first full biovec in the request. The caller needs to check that
1081 * there are any bvecs before calling this helper.
1082 */
req_bvec(struct request * rq)1083 static inline struct bio_vec req_bvec(struct request *rq)
1084 {
1085 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1086 return rq->special_vec;
1087 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1088 }
1089
blk_rq_count_bios(struct request * rq)1090 static inline unsigned int blk_rq_count_bios(struct request *rq)
1091 {
1092 unsigned int nr_bios = 0;
1093 struct bio *bio;
1094
1095 __rq_for_each_bio(bio, rq)
1096 nr_bios++;
1097
1098 return nr_bios;
1099 }
1100
1101 void blk_steal_bios(struct bio_list *list, struct request *rq);
1102
1103 /*
1104 * Request completion related functions.
1105 *
1106 * blk_update_request() completes given number of bytes and updates
1107 * the request without completing it.
1108 */
1109 bool blk_update_request(struct request *rq, blk_status_t error,
1110 unsigned int nr_bytes);
1111 void blk_abort_request(struct request *);
1112
1113 /*
1114 * Number of physical segments as sent to the device.
1115 *
1116 * Normally this is the number of discontiguous data segments sent by the
1117 * submitter. But for data-less command like discard we might have no
1118 * actual data segments submitted, but the driver might have to add it's
1119 * own special payload. In that case we still return 1 here so that this
1120 * special payload will be mapped.
1121 */
blk_rq_nr_phys_segments(struct request * rq)1122 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1123 {
1124 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1125 return 1;
1126 return rq->nr_phys_segments;
1127 }
1128
1129 /*
1130 * Number of discard segments (or ranges) the driver needs to fill in.
1131 * Each discard bio merged into a request is counted as one segment.
1132 */
blk_rq_nr_discard_segments(struct request * rq)1133 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1134 {
1135 return max_t(unsigned short, rq->nr_phys_segments, 1);
1136 }
1137
1138 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1139 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1140 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1141 struct scatterlist *sglist)
1142 {
1143 struct scatterlist *last_sg = NULL;
1144
1145 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1146 }
1147 void blk_dump_rq_flags(struct request *, char *);
1148
1149 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)1150 static inline unsigned int blk_rq_zone_no(struct request *rq)
1151 {
1152 return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1153 }
1154
blk_rq_zone_is_seq(struct request * rq)1155 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1156 {
1157 return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1158 }
1159
1160 /**
1161 * blk_rq_is_seq_zoned_write() - Check if @rq requires write serialization.
1162 * @rq: Request to examine.
1163 *
1164 * Note: REQ_OP_ZONE_APPEND requests do not require serialization.
1165 */
blk_rq_is_seq_zoned_write(struct request * rq)1166 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1167 {
1168 return op_needs_zoned_write_locking(req_op(rq)) &&
1169 blk_rq_zone_is_seq(rq);
1170 }
1171
1172 bool blk_req_needs_zone_write_lock(struct request *rq);
1173 bool blk_req_zone_write_trylock(struct request *rq);
1174 void __blk_req_zone_write_lock(struct request *rq);
1175 void __blk_req_zone_write_unlock(struct request *rq);
1176
blk_req_zone_write_lock(struct request * rq)1177 static inline void blk_req_zone_write_lock(struct request *rq)
1178 {
1179 if (blk_req_needs_zone_write_lock(rq))
1180 __blk_req_zone_write_lock(rq);
1181 }
1182
blk_req_zone_write_unlock(struct request * rq)1183 static inline void blk_req_zone_write_unlock(struct request *rq)
1184 {
1185 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1186 __blk_req_zone_write_unlock(rq);
1187 }
1188
blk_req_zone_is_write_locked(struct request * rq)1189 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1190 {
1191 return rq->q->disk->seq_zones_wlock &&
1192 test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1193 }
1194
blk_req_can_dispatch_to_zone(struct request * rq)1195 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1196 {
1197 if (!blk_req_needs_zone_write_lock(rq))
1198 return true;
1199 return !blk_req_zone_is_write_locked(rq);
1200 }
1201 #else /* CONFIG_BLK_DEV_ZONED */
blk_rq_is_seq_zoned_write(struct request * rq)1202 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1203 {
1204 return false;
1205 }
1206
blk_req_needs_zone_write_lock(struct request * rq)1207 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1208 {
1209 return false;
1210 }
1211
blk_req_zone_write_lock(struct request * rq)1212 static inline void blk_req_zone_write_lock(struct request *rq)
1213 {
1214 }
1215
blk_req_zone_write_unlock(struct request * rq)1216 static inline void blk_req_zone_write_unlock(struct request *rq)
1217 {
1218 }
blk_req_zone_is_write_locked(struct request * rq)1219 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1220 {
1221 return false;
1222 }
1223
blk_req_can_dispatch_to_zone(struct request * rq)1224 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1225 {
1226 return true;
1227 }
1228 #endif /* CONFIG_BLK_DEV_ZONED */
1229
1230 #endif /* BLK_MQ_H */
1231