1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/align.h>
8 #include <linux/bitops.h>
9 #include <linux/errno.h>
10 #include <linux/find.h>
11 #include <linux/limits.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/bitmap-str.h>
15 
16 struct device;
17 
18 /*
19  * bitmaps provide bit arrays that consume one or more unsigned
20  * longs.  The bitmap interface and available operations are listed
21  * here, in bitmap.h
22  *
23  * Function implementations generic to all architectures are in
24  * lib/bitmap.c.  Functions implementations that are architecture
25  * specific are in various include/asm-<arch>/bitops.h headers
26  * and other arch/<arch> specific files.
27  *
28  * See lib/bitmap.c for more details.
29  */
30 
31 /**
32  * DOC: bitmap overview
33  *
34  * The available bitmap operations and their rough meaning in the
35  * case that the bitmap is a single unsigned long are thus:
36  *
37  * The generated code is more efficient when nbits is known at
38  * compile-time and at most BITS_PER_LONG.
39  *
40  * ::
41  *
42  *  bitmap_zero(dst, nbits)                     *dst = 0UL
43  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
44  *  bitmap_copy(dst, src, nbits)                *dst = *src
45  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
46  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
47  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
48  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
49  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
50  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
51  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
52  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
53  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
54  *  bitmap_full(src, nbits)                     Are all bits set in *src?
55  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
56  *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
57  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
58  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
59  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
60  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
61  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
62  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
63  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
64  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
65  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
66  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
67  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
68  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
69  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
70  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
71  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
72  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
73  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
74  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
75  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
76  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
77  *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
78  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
79  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
80  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
81  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
82  *
83  * Note, bitmap_zero() and bitmap_fill() operate over the region of
84  * unsigned longs, that is, bits behind bitmap till the unsigned long
85  * boundary will be zeroed or filled as well. Consider to use
86  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
87  * respectively.
88  */
89 
90 /**
91  * DOC: bitmap bitops
92  *
93  * Also the following operations in asm/bitops.h apply to bitmaps.::
94  *
95  *  set_bit(bit, addr)                  *addr |= bit
96  *  clear_bit(bit, addr)                *addr &= ~bit
97  *  change_bit(bit, addr)               *addr ^= bit
98  *  test_bit(bit, addr)                 Is bit set in *addr?
99  *  test_and_set_bit(bit, addr)         Set bit and return old value
100  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
101  *  test_and_change_bit(bit, addr)      Change bit and return old value
102  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
103  *  find_first_bit(addr, nbits)         Position first set bit in *addr
104  *  find_next_zero_bit(addr, nbits, bit)
105  *                                      Position next zero bit in *addr >= bit
106  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
107  *  find_next_and_bit(addr1, addr2, nbits, bit)
108  *                                      Same as find_next_bit, but in
109  *                                      (*addr1 & *addr2)
110  *
111  */
112 
113 /**
114  * DOC: declare bitmap
115  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
116  * to declare an array named 'name' of just enough unsigned longs to
117  * contain all bit positions from 0 to 'bits' - 1.
118  */
119 
120 /*
121  * Allocation and deallocation of bitmap.
122  * Provided in lib/bitmap.c to avoid circular dependency.
123  */
124 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
125 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
126 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
127 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
128 void bitmap_free(const unsigned long *bitmap);
129 
130 /* Managed variants of the above. */
131 unsigned long *devm_bitmap_alloc(struct device *dev,
132 				 unsigned int nbits, gfp_t flags);
133 unsigned long *devm_bitmap_zalloc(struct device *dev,
134 				  unsigned int nbits, gfp_t flags);
135 
136 /*
137  * lib/bitmap.c provides these functions:
138  */
139 
140 bool __bitmap_equal(const unsigned long *bitmap1,
141 		    const unsigned long *bitmap2, unsigned int nbits);
142 bool __pure __bitmap_or_equal(const unsigned long *src1,
143 			      const unsigned long *src2,
144 			      const unsigned long *src3,
145 			      unsigned int nbits);
146 void __bitmap_complement(unsigned long *dst, const unsigned long *src,
147 			 unsigned int nbits);
148 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
149 			  unsigned int shift, unsigned int nbits);
150 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
151 			 unsigned int shift, unsigned int nbits);
152 void bitmap_cut(unsigned long *dst, const unsigned long *src,
153 		unsigned int first, unsigned int cut, unsigned int nbits);
154 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
155 		 const unsigned long *bitmap2, unsigned int nbits);
156 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
157 		 const unsigned long *bitmap2, unsigned int nbits);
158 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
159 		  const unsigned long *bitmap2, unsigned int nbits);
160 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
161 		    const unsigned long *bitmap2, unsigned int nbits);
162 void __bitmap_replace(unsigned long *dst,
163 		      const unsigned long *old, const unsigned long *new,
164 		      const unsigned long *mask, unsigned int nbits);
165 bool __bitmap_intersects(const unsigned long *bitmap1,
166 			 const unsigned long *bitmap2, unsigned int nbits);
167 bool __bitmap_subset(const unsigned long *bitmap1,
168 		     const unsigned long *bitmap2, unsigned int nbits);
169 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
170 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
171 				 const unsigned long *bitmap2, unsigned int nbits);
172 void __bitmap_set(unsigned long *map, unsigned int start, int len);
173 void __bitmap_clear(unsigned long *map, unsigned int start, int len);
174 
175 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
176 					     unsigned long size,
177 					     unsigned long start,
178 					     unsigned int nr,
179 					     unsigned long align_mask,
180 					     unsigned long align_offset);
181 
182 /**
183  * bitmap_find_next_zero_area - find a contiguous aligned zero area
184  * @map: The address to base the search on
185  * @size: The bitmap size in bits
186  * @start: The bitnumber to start searching at
187  * @nr: The number of zeroed bits we're looking for
188  * @align_mask: Alignment mask for zero area
189  *
190  * The @align_mask should be one less than a power of 2; the effect is that
191  * the bit offset of all zero areas this function finds is multiples of that
192  * power of 2. A @align_mask of 0 means no alignment is required.
193  */
194 static inline unsigned long
bitmap_find_next_zero_area(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask)195 bitmap_find_next_zero_area(unsigned long *map,
196 			   unsigned long size,
197 			   unsigned long start,
198 			   unsigned int nr,
199 			   unsigned long align_mask)
200 {
201 	return bitmap_find_next_zero_area_off(map, size, start, nr,
202 					      align_mask, 0);
203 }
204 
205 void bitmap_remap(unsigned long *dst, const unsigned long *src,
206 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
207 int bitmap_bitremap(int oldbit,
208 		const unsigned long *old, const unsigned long *new, int bits);
209 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
210 		const unsigned long *relmap, unsigned int bits);
211 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
212 		unsigned int sz, unsigned int nbits);
213 
214 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
215 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
216 
bitmap_zero(unsigned long * dst,unsigned int nbits)217 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
218 {
219 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
220 
221 	if (small_const_nbits(nbits))
222 		*dst = 0;
223 	else
224 		memset(dst, 0, len);
225 }
226 
bitmap_fill(unsigned long * dst,unsigned int nbits)227 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
228 {
229 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
230 
231 	if (small_const_nbits(nbits))
232 		*dst = ~0UL;
233 	else
234 		memset(dst, 0xff, len);
235 }
236 
bitmap_copy(unsigned long * dst,const unsigned long * src,unsigned int nbits)237 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
238 			unsigned int nbits)
239 {
240 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
241 
242 	if (small_const_nbits(nbits))
243 		*dst = *src;
244 	else
245 		memcpy(dst, src, len);
246 }
247 
248 /*
249  * Copy bitmap and clear tail bits in last word.
250  */
bitmap_copy_clear_tail(unsigned long * dst,const unsigned long * src,unsigned int nbits)251 static inline void bitmap_copy_clear_tail(unsigned long *dst,
252 		const unsigned long *src, unsigned int nbits)
253 {
254 	bitmap_copy(dst, src, nbits);
255 	if (nbits % BITS_PER_LONG)
256 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
257 }
258 
259 /*
260  * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
261  * machines the order of hi and lo parts of numbers match the bitmap structure.
262  * In both cases conversion is not needed when copying data from/to arrays of
263  * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
264  * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
265  * architectures are not using bitmap_copy_clear_tail().
266  */
267 #if BITS_PER_LONG == 64
268 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
269 							unsigned int nbits);
270 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
271 							unsigned int nbits);
272 #else
273 #define bitmap_from_arr32(bitmap, buf, nbits)			\
274 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
275 			(const unsigned long *) (buf), (nbits))
276 #define bitmap_to_arr32(buf, bitmap, nbits)			\
277 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
278 			(const unsigned long *) (bitmap), (nbits))
279 #endif
280 
281 /*
282  * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
283  * the conversion is not needed when copying data from/to arrays of u64.
284  */
285 #if BITS_PER_LONG == 32
286 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
287 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
288 #else
289 #define bitmap_from_arr64(bitmap, buf, nbits)			\
290 	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
291 #define bitmap_to_arr64(buf, bitmap, nbits)			\
292 	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
293 #endif
294 
bitmap_and(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)295 static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1,
296 			const unsigned long *src2, unsigned int nbits)
297 {
298 	if (small_const_nbits(nbits))
299 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
300 	return __bitmap_and(dst, src1, src2, nbits);
301 }
302 
bitmap_or(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)303 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
304 			const unsigned long *src2, unsigned int nbits)
305 {
306 	if (small_const_nbits(nbits))
307 		*dst = *src1 | *src2;
308 	else
309 		__bitmap_or(dst, src1, src2, nbits);
310 }
311 
bitmap_xor(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)312 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
313 			const unsigned long *src2, unsigned int nbits)
314 {
315 	if (small_const_nbits(nbits))
316 		*dst = *src1 ^ *src2;
317 	else
318 		__bitmap_xor(dst, src1, src2, nbits);
319 }
320 
bitmap_andnot(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)321 static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
322 			const unsigned long *src2, unsigned int nbits)
323 {
324 	if (small_const_nbits(nbits))
325 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
326 	return __bitmap_andnot(dst, src1, src2, nbits);
327 }
328 
bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int nbits)329 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
330 			unsigned int nbits)
331 {
332 	if (small_const_nbits(nbits))
333 		*dst = ~(*src);
334 	else
335 		__bitmap_complement(dst, src, nbits);
336 }
337 
338 #ifdef __LITTLE_ENDIAN
339 #define BITMAP_MEM_ALIGNMENT 8
340 #else
341 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
342 #endif
343 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
344 
bitmap_equal(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)345 static inline bool bitmap_equal(const unsigned long *src1,
346 				const unsigned long *src2, unsigned int nbits)
347 {
348 	if (small_const_nbits(nbits))
349 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
350 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
351 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
352 		return !memcmp(src1, src2, nbits / 8);
353 	return __bitmap_equal(src1, src2, nbits);
354 }
355 
356 /**
357  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
358  * @src1:	Pointer to bitmap 1
359  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
360  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
361  * @nbits:	number of bits in each of these bitmaps
362  *
363  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
364  */
bitmap_or_equal(const unsigned long * src1,const unsigned long * src2,const unsigned long * src3,unsigned int nbits)365 static inline bool bitmap_or_equal(const unsigned long *src1,
366 				   const unsigned long *src2,
367 				   const unsigned long *src3,
368 				   unsigned int nbits)
369 {
370 	if (!small_const_nbits(nbits))
371 		return __bitmap_or_equal(src1, src2, src3, nbits);
372 
373 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
374 }
375 
bitmap_intersects(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)376 static inline bool bitmap_intersects(const unsigned long *src1,
377 				     const unsigned long *src2,
378 				     unsigned int nbits)
379 {
380 	if (small_const_nbits(nbits))
381 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
382 	else
383 		return __bitmap_intersects(src1, src2, nbits);
384 }
385 
bitmap_subset(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)386 static inline bool bitmap_subset(const unsigned long *src1,
387 				 const unsigned long *src2, unsigned int nbits)
388 {
389 	if (small_const_nbits(nbits))
390 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
391 	else
392 		return __bitmap_subset(src1, src2, nbits);
393 }
394 
bitmap_empty(const unsigned long * src,unsigned nbits)395 static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
396 {
397 	if (small_const_nbits(nbits))
398 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
399 
400 	return find_first_bit(src, nbits) == nbits;
401 }
402 
bitmap_full(const unsigned long * src,unsigned int nbits)403 static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
404 {
405 	if (small_const_nbits(nbits))
406 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
407 
408 	return find_first_zero_bit(src, nbits) == nbits;
409 }
410 
411 static __always_inline
bitmap_weight(const unsigned long * src,unsigned int nbits)412 unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
413 {
414 	if (small_const_nbits(nbits))
415 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
416 	return __bitmap_weight(src, nbits);
417 }
418 
419 static __always_inline
bitmap_weight_and(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)420 unsigned long bitmap_weight_and(const unsigned long *src1,
421 				const unsigned long *src2, unsigned int nbits)
422 {
423 	if (small_const_nbits(nbits))
424 		return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
425 	return __bitmap_weight_and(src1, src2, nbits);
426 }
427 
bitmap_set(unsigned long * map,unsigned int start,unsigned int nbits)428 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
429 		unsigned int nbits)
430 {
431 	if (__builtin_constant_p(nbits) && nbits == 1)
432 		__set_bit(start, map);
433 	else if (small_const_nbits(start + nbits))
434 		*map |= GENMASK(start + nbits - 1, start);
435 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
436 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
437 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
438 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
439 		memset((char *)map + start / 8, 0xff, nbits / 8);
440 	else
441 		__bitmap_set(map, start, nbits);
442 }
443 
bitmap_clear(unsigned long * map,unsigned int start,unsigned int nbits)444 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
445 		unsigned int nbits)
446 {
447 	if (__builtin_constant_p(nbits) && nbits == 1)
448 		__clear_bit(start, map);
449 	else if (small_const_nbits(start + nbits))
450 		*map &= ~GENMASK(start + nbits - 1, start);
451 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
452 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
453 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
454 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
455 		memset((char *)map + start / 8, 0, nbits / 8);
456 	else
457 		__bitmap_clear(map, start, nbits);
458 }
459 
bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)460 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
461 				unsigned int shift, unsigned int nbits)
462 {
463 	if (small_const_nbits(nbits))
464 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
465 	else
466 		__bitmap_shift_right(dst, src, shift, nbits);
467 }
468 
bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)469 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
470 				unsigned int shift, unsigned int nbits)
471 {
472 	if (small_const_nbits(nbits))
473 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
474 	else
475 		__bitmap_shift_left(dst, src, shift, nbits);
476 }
477 
bitmap_replace(unsigned long * dst,const unsigned long * old,const unsigned long * new,const unsigned long * mask,unsigned int nbits)478 static inline void bitmap_replace(unsigned long *dst,
479 				  const unsigned long *old,
480 				  const unsigned long *new,
481 				  const unsigned long *mask,
482 				  unsigned int nbits)
483 {
484 	if (small_const_nbits(nbits))
485 		*dst = (*old & ~(*mask)) | (*new & *mask);
486 	else
487 		__bitmap_replace(dst, old, new, mask, nbits);
488 }
489 
bitmap_next_set_region(unsigned long * bitmap,unsigned int * rs,unsigned int * re,unsigned int end)490 static inline void bitmap_next_set_region(unsigned long *bitmap,
491 					  unsigned int *rs, unsigned int *re,
492 					  unsigned int end)
493 {
494 	*rs = find_next_bit(bitmap, end, *rs);
495 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
496 }
497 
498 /**
499  * bitmap_release_region - release allocated bitmap region
500  *	@bitmap: array of unsigned longs corresponding to the bitmap
501  *	@pos: beginning of bit region to release
502  *	@order: region size (log base 2 of number of bits) to release
503  *
504  * This is the complement to __bitmap_find_free_region() and releases
505  * the found region (by clearing it in the bitmap).
506  */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)507 static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
508 {
509 	bitmap_clear(bitmap, pos, BIT(order));
510 }
511 
512 /**
513  * bitmap_allocate_region - allocate bitmap region
514  *	@bitmap: array of unsigned longs corresponding to the bitmap
515  *	@pos: beginning of bit region to allocate
516  *	@order: region size (log base 2 of number of bits) to allocate
517  *
518  * Allocate (set bits in) a specified region of a bitmap.
519  *
520  * Returns: 0 on success, or %-EBUSY if specified region wasn't
521  * free (not all bits were zero).
522  */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)523 static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
524 {
525 	unsigned int len = BIT(order);
526 
527 	if (find_next_bit(bitmap, pos + len, pos) < pos + len)
528 		return -EBUSY;
529 	bitmap_set(bitmap, pos, len);
530 	return 0;
531 }
532 
533 /**
534  * bitmap_find_free_region - find a contiguous aligned mem region
535  *	@bitmap: array of unsigned longs corresponding to the bitmap
536  *	@bits: number of bits in the bitmap
537  *	@order: region size (log base 2 of number of bits) to find
538  *
539  * Find a region of free (zero) bits in a @bitmap of @bits bits and
540  * allocate them (set them to one).  Only consider regions of length
541  * a power (@order) of two, aligned to that power of two, which
542  * makes the search algorithm much faster.
543  *
544  * Returns: the bit offset in bitmap of the allocated region,
545  * or -errno on failure.
546  */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)547 static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
548 {
549 	unsigned int pos, end;		/* scans bitmap by regions of size order */
550 
551 	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
552 		if (!bitmap_allocate_region(bitmap, pos, order))
553 			return pos;
554 	}
555 	return -ENOMEM;
556 }
557 
558 /**
559  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
560  * @n: u64 value
561  *
562  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
563  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
564  *
565  * There are four combinations of endianness and length of the word in linux
566  * ABIs: LE64, BE64, LE32 and BE32.
567  *
568  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
569  * bitmaps and therefore don't require any special handling.
570  *
571  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
572  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
573  * other hand is represented as an array of 32-bit words and the position of
574  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
575  * word.  For example, bit #42 is located at 10th position of 2nd word.
576  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
577  * values in memory as it usually does. But for BE we need to swap hi and lo
578  * words manually.
579  *
580  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
581  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
582  * hi and lo words, as is expected by bitmap.
583  */
584 #if __BITS_PER_LONG == 64
585 #define BITMAP_FROM_U64(n) (n)
586 #else
587 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
588 				((unsigned long) ((u64)(n) >> 32))
589 #endif
590 
591 /**
592  * bitmap_from_u64 - Check and swap words within u64.
593  *  @mask: source bitmap
594  *  @dst:  destination bitmap
595  *
596  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
597  * to read u64 mask, we will get the wrong word.
598  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
599  * but we expect the lower 32-bits of u64.
600  */
bitmap_from_u64(unsigned long * dst,u64 mask)601 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
602 {
603 	bitmap_from_arr64(dst, &mask, 64);
604 }
605 
606 /**
607  * bitmap_get_value8 - get an 8-bit value within a memory region
608  * @map: address to the bitmap memory region
609  * @start: bit offset of the 8-bit value; must be a multiple of 8
610  *
611  * Returns the 8-bit value located at the @start bit offset within the @src
612  * memory region.
613  */
bitmap_get_value8(const unsigned long * map,unsigned long start)614 static inline unsigned long bitmap_get_value8(const unsigned long *map,
615 					      unsigned long start)
616 {
617 	const size_t index = BIT_WORD(start);
618 	const unsigned long offset = start % BITS_PER_LONG;
619 
620 	return (map[index] >> offset) & 0xFF;
621 }
622 
623 /**
624  * bitmap_set_value8 - set an 8-bit value within a memory region
625  * @map: address to the bitmap memory region
626  * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
627  * @start: bit offset of the 8-bit value; must be a multiple of 8
628  */
bitmap_set_value8(unsigned long * map,unsigned long value,unsigned long start)629 static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
630 				     unsigned long start)
631 {
632 	const size_t index = BIT_WORD(start);
633 	const unsigned long offset = start % BITS_PER_LONG;
634 
635 	map[index] &= ~(0xFFUL << offset);
636 	map[index] |= value << offset;
637 }
638 
639 #endif /* __ASSEMBLY__ */
640 
641 #endif /* __LINUX_BITMAP_H */
642