1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag.h"
26 #include "xfs_ag_resv.h"
27 #include "xfs_quota.h"
28 #include "xfs_qm.h"
29 #include "xfs_defer.h"
30 #include "xfs_errortag.h"
31 #include "xfs_error.h"
32 #include "xfs_reflink.h"
33 #include "scrub/scrub.h"
34 #include "scrub/common.h"
35 #include "scrub/trace.h"
36 #include "scrub/repair.h"
37 #include "scrub/bitmap.h"
38 #include "scrub/stats.h"
39
40 /*
41 * Attempt to repair some metadata, if the metadata is corrupt and userspace
42 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
43 * and will set *fixed to true if it thinks it repaired anything.
44 */
45 int
xrep_attempt(struct xfs_scrub * sc,struct xchk_stats_run * run)46 xrep_attempt(
47 struct xfs_scrub *sc,
48 struct xchk_stats_run *run)
49 {
50 u64 repair_start;
51 int error = 0;
52
53 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
54
55 xchk_ag_btcur_free(&sc->sa);
56
57 /* Repair whatever's broken. */
58 ASSERT(sc->ops->repair);
59 run->repair_attempted = true;
60 repair_start = xchk_stats_now();
61 error = sc->ops->repair(sc);
62 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
63 run->repair_ns += xchk_stats_elapsed_ns(repair_start);
64 switch (error) {
65 case 0:
66 /*
67 * Repair succeeded. Commit the fixes and perform a second
68 * scrub so that we can tell userspace if we fixed the problem.
69 */
70 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
71 sc->flags |= XREP_ALREADY_FIXED;
72 run->repair_succeeded = true;
73 return -EAGAIN;
74 case -ECHRNG:
75 sc->flags |= XCHK_NEED_DRAIN;
76 run->retries++;
77 return -EAGAIN;
78 case -EDEADLOCK:
79 /* Tell the caller to try again having grabbed all the locks. */
80 if (!(sc->flags & XCHK_TRY_HARDER)) {
81 sc->flags |= XCHK_TRY_HARDER;
82 run->retries++;
83 return -EAGAIN;
84 }
85 /*
86 * We tried harder but still couldn't grab all the resources
87 * we needed to fix it. The corruption has not been fixed,
88 * so exit to userspace with the scan's output flags unchanged.
89 */
90 return 0;
91 default:
92 /*
93 * EAGAIN tells the caller to re-scrub, so we cannot return
94 * that here.
95 */
96 ASSERT(error != -EAGAIN);
97 return error;
98 }
99 }
100
101 /*
102 * Complain about unfixable problems in the filesystem. We don't log
103 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
104 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
105 * administrator isn't running xfs_scrub in no-repairs mode.
106 *
107 * Use this helper function because _ratelimited silently declares a static
108 * structure to track rate limiting information.
109 */
110 void
xrep_failure(struct xfs_mount * mp)111 xrep_failure(
112 struct xfs_mount *mp)
113 {
114 xfs_alert_ratelimited(mp,
115 "Corruption not fixed during online repair. Unmount and run xfs_repair.");
116 }
117
118 /*
119 * Repair probe -- userspace uses this to probe if we're willing to repair a
120 * given mountpoint.
121 */
122 int
xrep_probe(struct xfs_scrub * sc)123 xrep_probe(
124 struct xfs_scrub *sc)
125 {
126 int error = 0;
127
128 if (xchk_should_terminate(sc, &error))
129 return error;
130
131 return 0;
132 }
133
134 /*
135 * Roll a transaction, keeping the AG headers locked and reinitializing
136 * the btree cursors.
137 */
138 int
xrep_roll_ag_trans(struct xfs_scrub * sc)139 xrep_roll_ag_trans(
140 struct xfs_scrub *sc)
141 {
142 int error;
143
144 /*
145 * Keep the AG header buffers locked while we roll the transaction.
146 * Ensure that both AG buffers are dirty and held when we roll the
147 * transaction so that they move forward in the log without losing the
148 * bli (and hence the bli type) when the transaction commits.
149 *
150 * Normal code would never hold clean buffers across a roll, but repair
151 * needs both buffers to maintain a total lock on the AG.
152 */
153 if (sc->sa.agi_bp) {
154 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
155 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
156 }
157
158 if (sc->sa.agf_bp) {
159 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
160 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
161 }
162
163 /*
164 * Roll the transaction. We still hold the AG header buffers locked
165 * regardless of whether or not that succeeds. On failure, the buffers
166 * will be released during teardown on our way out of the kernel. If
167 * successful, join the buffers to the new transaction and move on.
168 */
169 error = xfs_trans_roll(&sc->tp);
170 if (error)
171 return error;
172
173 /* Join the AG headers to the new transaction. */
174 if (sc->sa.agi_bp)
175 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
176 if (sc->sa.agf_bp)
177 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
178
179 return 0;
180 }
181
182 /* Roll the scrub transaction, holding the primary metadata locked. */
183 int
xrep_roll_trans(struct xfs_scrub * sc)184 xrep_roll_trans(
185 struct xfs_scrub *sc)
186 {
187 if (!sc->ip)
188 return xrep_roll_ag_trans(sc);
189 return xfs_trans_roll_inode(&sc->tp, sc->ip);
190 }
191
192 /* Finish all deferred work attached to the repair transaction. */
193 int
xrep_defer_finish(struct xfs_scrub * sc)194 xrep_defer_finish(
195 struct xfs_scrub *sc)
196 {
197 int error;
198
199 /*
200 * Keep the AG header buffers locked while we complete deferred work
201 * items. Ensure that both AG buffers are dirty and held when we roll
202 * the transaction so that they move forward in the log without losing
203 * the bli (and hence the bli type) when the transaction commits.
204 *
205 * Normal code would never hold clean buffers across a roll, but repair
206 * needs both buffers to maintain a total lock on the AG.
207 */
208 if (sc->sa.agi_bp) {
209 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
210 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
211 }
212
213 if (sc->sa.agf_bp) {
214 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
215 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
216 }
217
218 /*
219 * Finish all deferred work items. We still hold the AG header buffers
220 * locked regardless of whether or not that succeeds. On failure, the
221 * buffers will be released during teardown on our way out of the
222 * kernel. If successful, join the buffers to the new transaction
223 * and move on.
224 */
225 error = xfs_defer_finish(&sc->tp);
226 if (error)
227 return error;
228
229 /*
230 * Release the hold that we set above because defer_finish won't do
231 * that for us. The defer roll code redirties held buffers after each
232 * roll, so the AG header buffers should be ready for logging.
233 */
234 if (sc->sa.agi_bp)
235 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
236 if (sc->sa.agf_bp)
237 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
238
239 return 0;
240 }
241
242 /*
243 * Does the given AG have enough space to rebuild a btree? Neither AG
244 * reservation can be critical, and we must have enough space (factoring
245 * in AG reservations) to construct a whole btree.
246 */
247 bool
xrep_ag_has_space(struct xfs_perag * pag,xfs_extlen_t nr_blocks,enum xfs_ag_resv_type type)248 xrep_ag_has_space(
249 struct xfs_perag *pag,
250 xfs_extlen_t nr_blocks,
251 enum xfs_ag_resv_type type)
252 {
253 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
254 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
255 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
256 }
257
258 /*
259 * Figure out how many blocks to reserve for an AG repair. We calculate the
260 * worst case estimate for the number of blocks we'd need to rebuild one of
261 * any type of per-AG btree.
262 */
263 xfs_extlen_t
xrep_calc_ag_resblks(struct xfs_scrub * sc)264 xrep_calc_ag_resblks(
265 struct xfs_scrub *sc)
266 {
267 struct xfs_mount *mp = sc->mp;
268 struct xfs_scrub_metadata *sm = sc->sm;
269 struct xfs_perag *pag;
270 struct xfs_buf *bp;
271 xfs_agino_t icount = NULLAGINO;
272 xfs_extlen_t aglen = NULLAGBLOCK;
273 xfs_extlen_t usedlen;
274 xfs_extlen_t freelen;
275 xfs_extlen_t bnobt_sz;
276 xfs_extlen_t inobt_sz;
277 xfs_extlen_t rmapbt_sz;
278 xfs_extlen_t refcbt_sz;
279 int error;
280
281 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
282 return 0;
283
284 pag = xfs_perag_get(mp, sm->sm_agno);
285 if (xfs_perag_initialised_agi(pag)) {
286 /* Use in-core icount if possible. */
287 icount = pag->pagi_count;
288 } else {
289 /* Try to get the actual counters from disk. */
290 error = xfs_ialloc_read_agi(pag, NULL, &bp);
291 if (!error) {
292 icount = pag->pagi_count;
293 xfs_buf_relse(bp);
294 }
295 }
296
297 /* Now grab the block counters from the AGF. */
298 error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
299 if (error) {
300 aglen = pag->block_count;
301 freelen = aglen;
302 usedlen = aglen;
303 } else {
304 struct xfs_agf *agf = bp->b_addr;
305
306 aglen = be32_to_cpu(agf->agf_length);
307 freelen = be32_to_cpu(agf->agf_freeblks);
308 usedlen = aglen - freelen;
309 xfs_buf_relse(bp);
310 }
311
312 /* If the icount is impossible, make some worst-case assumptions. */
313 if (icount == NULLAGINO ||
314 !xfs_verify_agino(pag, icount)) {
315 icount = pag->agino_max - pag->agino_min + 1;
316 }
317
318 /* If the block counts are impossible, make worst-case assumptions. */
319 if (aglen == NULLAGBLOCK ||
320 aglen != pag->block_count ||
321 freelen >= aglen) {
322 aglen = pag->block_count;
323 freelen = aglen;
324 usedlen = aglen;
325 }
326 xfs_perag_put(pag);
327
328 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
329 freelen, usedlen);
330
331 /*
332 * Figure out how many blocks we'd need worst case to rebuild
333 * each type of btree. Note that we can only rebuild the
334 * bnobt/cntbt or inobt/finobt as pairs.
335 */
336 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
337 if (xfs_has_sparseinodes(mp))
338 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
339 XFS_INODES_PER_HOLEMASK_BIT);
340 else
341 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
342 XFS_INODES_PER_CHUNK);
343 if (xfs_has_finobt(mp))
344 inobt_sz *= 2;
345 if (xfs_has_reflink(mp))
346 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
347 else
348 refcbt_sz = 0;
349 if (xfs_has_rmapbt(mp)) {
350 /*
351 * Guess how many blocks we need to rebuild the rmapbt.
352 * For non-reflink filesystems we can't have more records than
353 * used blocks. However, with reflink it's possible to have
354 * more than one rmap record per AG block. We don't know how
355 * many rmaps there could be in the AG, so we start off with
356 * what we hope is an generous over-estimation.
357 */
358 if (xfs_has_reflink(mp))
359 rmapbt_sz = xfs_rmapbt_calc_size(mp,
360 (unsigned long long)aglen * 2);
361 else
362 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
363 } else {
364 rmapbt_sz = 0;
365 }
366
367 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
368 inobt_sz, rmapbt_sz, refcbt_sz);
369
370 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
371 }
372
373 /*
374 * Reconstructing per-AG Btrees
375 *
376 * When a space btree is corrupt, we don't bother trying to fix it. Instead,
377 * we scan secondary space metadata to derive the records that should be in
378 * the damaged btree, initialize a fresh btree root, and insert the records.
379 * Note that for rebuilding the rmapbt we scan all the primary data to
380 * generate the new records.
381 *
382 * However, that leaves the matter of removing all the metadata describing the
383 * old broken structure. For primary metadata we use the rmap data to collect
384 * every extent with a matching rmap owner (bitmap); we then iterate all other
385 * metadata structures with the same rmap owner to collect the extents that
386 * cannot be removed (sublist). We then subtract sublist from bitmap to
387 * derive the blocks that were used by the old btree. These blocks can be
388 * reaped.
389 *
390 * For rmapbt reconstructions we must use different tactics for extent
391 * collection. First we iterate all primary metadata (this excludes the old
392 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
393 * records are collected as bitmap. The bnobt records are collected as
394 * sublist. As with the other btrees we subtract sublist from bitmap, and the
395 * result (since the rmapbt lives in the free space) are the blocks from the
396 * old rmapbt.
397 */
398
399 /* Ensure the freelist is the correct size. */
400 int
xrep_fix_freelist(struct xfs_scrub * sc,bool can_shrink)401 xrep_fix_freelist(
402 struct xfs_scrub *sc,
403 bool can_shrink)
404 {
405 struct xfs_alloc_arg args = {0};
406
407 args.mp = sc->mp;
408 args.tp = sc->tp;
409 args.agno = sc->sa.pag->pag_agno;
410 args.alignment = 1;
411 args.pag = sc->sa.pag;
412
413 return xfs_alloc_fix_freelist(&args,
414 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
415 }
416
417 /*
418 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
419 *
420 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
421 * the AG headers by using the rmap data to rummage through the AG looking for
422 * btree roots. This is not guaranteed to work if the AG is heavily damaged
423 * or the rmap data are corrupt.
424 *
425 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
426 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
427 * AGI is being rebuilt. It must maintain these locks until it's safe for
428 * other threads to change the btrees' shapes. The caller provides
429 * information about the btrees to look for by passing in an array of
430 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
431 * The (root, height) fields will be set on return if anything is found. The
432 * last element of the array should have a NULL buf_ops to mark the end of the
433 * array.
434 *
435 * For every rmapbt record matching any of the rmap owners in btree_info,
436 * read each block referenced by the rmap record. If the block is a btree
437 * block from this filesystem matching any of the magic numbers and has a
438 * level higher than what we've already seen, remember the block and the
439 * height of the tree required to have such a block. When the call completes,
440 * we return the highest block we've found for each btree description; those
441 * should be the roots.
442 */
443
444 struct xrep_findroot {
445 struct xfs_scrub *sc;
446 struct xfs_buf *agfl_bp;
447 struct xfs_agf *agf;
448 struct xrep_find_ag_btree *btree_info;
449 };
450
451 /* See if our block is in the AGFL. */
452 STATIC int
xrep_findroot_agfl_walk(struct xfs_mount * mp,xfs_agblock_t bno,void * priv)453 xrep_findroot_agfl_walk(
454 struct xfs_mount *mp,
455 xfs_agblock_t bno,
456 void *priv)
457 {
458 xfs_agblock_t *agbno = priv;
459
460 return (*agbno == bno) ? -ECANCELED : 0;
461 }
462
463 /* Does this block match the btree information passed in? */
464 STATIC int
xrep_findroot_block(struct xrep_findroot * ri,struct xrep_find_ag_btree * fab,uint64_t owner,xfs_agblock_t agbno,bool * done_with_block)465 xrep_findroot_block(
466 struct xrep_findroot *ri,
467 struct xrep_find_ag_btree *fab,
468 uint64_t owner,
469 xfs_agblock_t agbno,
470 bool *done_with_block)
471 {
472 struct xfs_mount *mp = ri->sc->mp;
473 struct xfs_buf *bp;
474 struct xfs_btree_block *btblock;
475 xfs_daddr_t daddr;
476 int block_level;
477 int error = 0;
478
479 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
480
481 /*
482 * Blocks in the AGFL have stale contents that might just happen to
483 * have a matching magic and uuid. We don't want to pull these blocks
484 * in as part of a tree root, so we have to filter out the AGFL stuff
485 * here. If the AGFL looks insane we'll just refuse to repair.
486 */
487 if (owner == XFS_RMAP_OWN_AG) {
488 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
489 xrep_findroot_agfl_walk, &agbno);
490 if (error == -ECANCELED)
491 return 0;
492 if (error)
493 return error;
494 }
495
496 /*
497 * Read the buffer into memory so that we can see if it's a match for
498 * our btree type. We have no clue if it is beforehand, and we want to
499 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
500 * will cause needless disk reads in subsequent calls to this function)
501 * and logging metadata verifier failures.
502 *
503 * Therefore, pass in NULL buffer ops. If the buffer was already in
504 * memory from some other caller it will already have b_ops assigned.
505 * If it was in memory from a previous unsuccessful findroot_block
506 * call, the buffer won't have b_ops but it should be clean and ready
507 * for us to try to verify if the read call succeeds. The same applies
508 * if the buffer wasn't in memory at all.
509 *
510 * Note: If we never match a btree type with this buffer, it will be
511 * left in memory with NULL b_ops. This shouldn't be a problem unless
512 * the buffer gets written.
513 */
514 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
515 mp->m_bsize, 0, &bp, NULL);
516 if (error)
517 return error;
518
519 /* Ensure the block magic matches the btree type we're looking for. */
520 btblock = XFS_BUF_TO_BLOCK(bp);
521 ASSERT(fab->buf_ops->magic[1] != 0);
522 if (btblock->bb_magic != fab->buf_ops->magic[1])
523 goto out;
524
525 /*
526 * If the buffer already has ops applied and they're not the ones for
527 * this btree type, we know this block doesn't match the btree and we
528 * can bail out.
529 *
530 * If the buffer ops match ours, someone else has already validated
531 * the block for us, so we can move on to checking if this is a root
532 * block candidate.
533 *
534 * If the buffer does not have ops, nobody has successfully validated
535 * the contents and the buffer cannot be dirty. If the magic, uuid,
536 * and structure match this btree type then we'll move on to checking
537 * if it's a root block candidate. If there is no match, bail out.
538 */
539 if (bp->b_ops) {
540 if (bp->b_ops != fab->buf_ops)
541 goto out;
542 } else {
543 ASSERT(!xfs_trans_buf_is_dirty(bp));
544 if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
545 &mp->m_sb.sb_meta_uuid))
546 goto out;
547 /*
548 * Read verifiers can reference b_ops, so we set the pointer
549 * here. If the verifier fails we'll reset the buffer state
550 * to what it was before we touched the buffer.
551 */
552 bp->b_ops = fab->buf_ops;
553 fab->buf_ops->verify_read(bp);
554 if (bp->b_error) {
555 bp->b_ops = NULL;
556 bp->b_error = 0;
557 goto out;
558 }
559
560 /*
561 * Some read verifiers will (re)set b_ops, so we must be
562 * careful not to change b_ops after running the verifier.
563 */
564 }
565
566 /*
567 * This block passes the magic/uuid and verifier tests for this btree
568 * type. We don't need the caller to try the other tree types.
569 */
570 *done_with_block = true;
571
572 /*
573 * Compare this btree block's level to the height of the current
574 * candidate root block.
575 *
576 * If the level matches the root we found previously, throw away both
577 * blocks because there can't be two candidate roots.
578 *
579 * If level is lower in the tree than the root we found previously,
580 * ignore this block.
581 */
582 block_level = xfs_btree_get_level(btblock);
583 if (block_level + 1 == fab->height) {
584 fab->root = NULLAGBLOCK;
585 goto out;
586 } else if (block_level < fab->height) {
587 goto out;
588 }
589
590 /*
591 * This is the highest block in the tree that we've found so far.
592 * Update the btree height to reflect what we've learned from this
593 * block.
594 */
595 fab->height = block_level + 1;
596
597 /*
598 * If this block doesn't have sibling pointers, then it's the new root
599 * block candidate. Otherwise, the root will be found farther up the
600 * tree.
601 */
602 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
603 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
604 fab->root = agbno;
605 else
606 fab->root = NULLAGBLOCK;
607
608 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
609 be32_to_cpu(btblock->bb_magic), fab->height - 1);
610 out:
611 xfs_trans_brelse(ri->sc->tp, bp);
612 return error;
613 }
614
615 /*
616 * Do any of the blocks in this rmap record match one of the btrees we're
617 * looking for?
618 */
619 STATIC int
xrep_findroot_rmap(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)620 xrep_findroot_rmap(
621 struct xfs_btree_cur *cur,
622 const struct xfs_rmap_irec *rec,
623 void *priv)
624 {
625 struct xrep_findroot *ri = priv;
626 struct xrep_find_ag_btree *fab;
627 xfs_agblock_t b;
628 bool done;
629 int error = 0;
630
631 /* Ignore anything that isn't AG metadata. */
632 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
633 return 0;
634
635 /* Otherwise scan each block + btree type. */
636 for (b = 0; b < rec->rm_blockcount; b++) {
637 done = false;
638 for (fab = ri->btree_info; fab->buf_ops; fab++) {
639 if (rec->rm_owner != fab->rmap_owner)
640 continue;
641 error = xrep_findroot_block(ri, fab,
642 rec->rm_owner, rec->rm_startblock + b,
643 &done);
644 if (error)
645 return error;
646 if (done)
647 break;
648 }
649 }
650
651 return 0;
652 }
653
654 /* Find the roots of the per-AG btrees described in btree_info. */
655 int
xrep_find_ag_btree_roots(struct xfs_scrub * sc,struct xfs_buf * agf_bp,struct xrep_find_ag_btree * btree_info,struct xfs_buf * agfl_bp)656 xrep_find_ag_btree_roots(
657 struct xfs_scrub *sc,
658 struct xfs_buf *agf_bp,
659 struct xrep_find_ag_btree *btree_info,
660 struct xfs_buf *agfl_bp)
661 {
662 struct xfs_mount *mp = sc->mp;
663 struct xrep_findroot ri;
664 struct xrep_find_ag_btree *fab;
665 struct xfs_btree_cur *cur;
666 int error;
667
668 ASSERT(xfs_buf_islocked(agf_bp));
669 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
670
671 ri.sc = sc;
672 ri.btree_info = btree_info;
673 ri.agf = agf_bp->b_addr;
674 ri.agfl_bp = agfl_bp;
675 for (fab = btree_info; fab->buf_ops; fab++) {
676 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
677 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
678 fab->root = NULLAGBLOCK;
679 fab->height = 0;
680 }
681
682 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
683 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
684 xfs_btree_del_cursor(cur, error);
685
686 return error;
687 }
688
689 #ifdef CONFIG_XFS_QUOTA
690 /* Force a quotacheck the next time we mount. */
691 void
xrep_force_quotacheck(struct xfs_scrub * sc,xfs_dqtype_t type)692 xrep_force_quotacheck(
693 struct xfs_scrub *sc,
694 xfs_dqtype_t type)
695 {
696 uint flag;
697
698 flag = xfs_quota_chkd_flag(type);
699 if (!(flag & sc->mp->m_qflags))
700 return;
701
702 mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock);
703 sc->mp->m_qflags &= ~flag;
704 spin_lock(&sc->mp->m_sb_lock);
705 sc->mp->m_sb.sb_qflags &= ~flag;
706 spin_unlock(&sc->mp->m_sb_lock);
707 xfs_log_sb(sc->tp);
708 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
709 }
710
711 /*
712 * Attach dquots to this inode, or schedule quotacheck to fix them.
713 *
714 * This function ensures that the appropriate dquots are attached to an inode.
715 * We cannot allow the dquot code to allocate an on-disk dquot block here
716 * because we're already in transaction context. The on-disk dquot should
717 * already exist anyway. If the quota code signals corruption or missing quota
718 * information, schedule quotacheck, which will repair corruptions in the quota
719 * metadata.
720 */
721 int
xrep_ino_dqattach(struct xfs_scrub * sc)722 xrep_ino_dqattach(
723 struct xfs_scrub *sc)
724 {
725 int error;
726
727 ASSERT(sc->tp != NULL);
728 ASSERT(sc->ip != NULL);
729
730 error = xfs_qm_dqattach(sc->ip);
731 switch (error) {
732 case -EFSBADCRC:
733 case -EFSCORRUPTED:
734 case -ENOENT:
735 xfs_err_ratelimited(sc->mp,
736 "inode %llu repair encountered quota error %d, quotacheck forced.",
737 (unsigned long long)sc->ip->i_ino, error);
738 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
739 xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
740 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
741 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
742 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
743 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
744 fallthrough;
745 case -ESRCH:
746 error = 0;
747 break;
748 default:
749 break;
750 }
751
752 return error;
753 }
754 #endif /* CONFIG_XFS_QUOTA */
755
756 /*
757 * Ensure that the inode being repaired is ready to handle a certain number of
758 * extents, or return EFSCORRUPTED. Caller must hold the ILOCK of the inode
759 * being repaired and have joined it to the scrub transaction.
760 */
761 int
xrep_ino_ensure_extent_count(struct xfs_scrub * sc,int whichfork,xfs_extnum_t nextents)762 xrep_ino_ensure_extent_count(
763 struct xfs_scrub *sc,
764 int whichfork,
765 xfs_extnum_t nextents)
766 {
767 xfs_extnum_t max_extents;
768 bool inode_has_nrext64;
769
770 inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip);
771 max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork);
772 if (nextents <= max_extents)
773 return 0;
774 if (inode_has_nrext64)
775 return -EFSCORRUPTED;
776 if (!xfs_has_large_extent_counts(sc->mp))
777 return -EFSCORRUPTED;
778
779 max_extents = xfs_iext_max_nextents(true, whichfork);
780 if (nextents > max_extents)
781 return -EFSCORRUPTED;
782
783 sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
784 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
785 return 0;
786 }
787
788 /*
789 * Initialize all the btree cursors for an AG repair except for the btree that
790 * we're rebuilding.
791 */
792 void
xrep_ag_btcur_init(struct xfs_scrub * sc,struct xchk_ag * sa)793 xrep_ag_btcur_init(
794 struct xfs_scrub *sc,
795 struct xchk_ag *sa)
796 {
797 struct xfs_mount *mp = sc->mp;
798
799 /* Set up a bnobt cursor for cross-referencing. */
800 if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
801 sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
802 sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
803 sc->sa.pag, XFS_BTNUM_BNO);
804 sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
805 sc->sa.pag, XFS_BTNUM_CNT);
806 }
807
808 /* Set up a inobt cursor for cross-referencing. */
809 if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
810 sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
811 sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
812 sa->agi_bp, XFS_BTNUM_INO);
813 if (xfs_has_finobt(mp))
814 sa->fino_cur = xfs_inobt_init_cursor(sc->sa.pag,
815 sc->tp, sa->agi_bp, XFS_BTNUM_FINO);
816 }
817
818 /* Set up a rmapbt cursor for cross-referencing. */
819 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
820 xfs_has_rmapbt(mp))
821 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
822 sc->sa.pag);
823
824 /* Set up a refcountbt cursor for cross-referencing. */
825 if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
826 xfs_has_reflink(mp))
827 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
828 sa->agf_bp, sc->sa.pag);
829 }
830
831 /*
832 * Reinitialize the in-core AG state after a repair by rereading the AGF
833 * buffer. We had better get the same AGF buffer as the one that's attached
834 * to the scrub context.
835 */
836 int
xrep_reinit_pagf(struct xfs_scrub * sc)837 xrep_reinit_pagf(
838 struct xfs_scrub *sc)
839 {
840 struct xfs_perag *pag = sc->sa.pag;
841 struct xfs_buf *bp;
842 int error;
843
844 ASSERT(pag);
845 ASSERT(xfs_perag_initialised_agf(pag));
846
847 clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
848 error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
849 if (error)
850 return error;
851
852 if (bp != sc->sa.agf_bp) {
853 ASSERT(bp == sc->sa.agf_bp);
854 return -EFSCORRUPTED;
855 }
856
857 return 0;
858 }
859
860 /*
861 * Reinitialize the in-core AG state after a repair by rereading the AGI
862 * buffer. We had better get the same AGI buffer as the one that's attached
863 * to the scrub context.
864 */
865 int
xrep_reinit_pagi(struct xfs_scrub * sc)866 xrep_reinit_pagi(
867 struct xfs_scrub *sc)
868 {
869 struct xfs_perag *pag = sc->sa.pag;
870 struct xfs_buf *bp;
871 int error;
872
873 ASSERT(pag);
874 ASSERT(xfs_perag_initialised_agi(pag));
875
876 clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
877 error = xfs_ialloc_read_agi(pag, sc->tp, &bp);
878 if (error)
879 return error;
880
881 if (bp != sc->sa.agi_bp) {
882 ASSERT(bp == sc->sa.agi_bp);
883 return -EFSCORRUPTED;
884 }
885
886 return 0;
887 }
888
889 /*
890 * Given an active reference to a perag structure, load AG headers and cursors.
891 * This should only be called to scan an AG while repairing file-based metadata.
892 */
893 int
xrep_ag_init(struct xfs_scrub * sc,struct xfs_perag * pag,struct xchk_ag * sa)894 xrep_ag_init(
895 struct xfs_scrub *sc,
896 struct xfs_perag *pag,
897 struct xchk_ag *sa)
898 {
899 int error;
900
901 ASSERT(!sa->pag);
902
903 error = xfs_ialloc_read_agi(pag, sc->tp, &sa->agi_bp);
904 if (error)
905 return error;
906
907 error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp);
908 if (error)
909 return error;
910
911 /* Grab our own passive reference from the caller's ref. */
912 sa->pag = xfs_perag_hold(pag);
913 xrep_ag_btcur_init(sc, sa);
914 return 0;
915 }
916
917 /* Reinitialize the per-AG block reservation for the AG we just fixed. */
918 int
xrep_reset_perag_resv(struct xfs_scrub * sc)919 xrep_reset_perag_resv(
920 struct xfs_scrub *sc)
921 {
922 int error;
923
924 if (!(sc->flags & XREP_RESET_PERAG_RESV))
925 return 0;
926
927 ASSERT(sc->sa.pag != NULL);
928 ASSERT(sc->ops->type == ST_PERAG);
929 ASSERT(sc->tp);
930
931 sc->flags &= ~XREP_RESET_PERAG_RESV;
932 error = xfs_ag_resv_free(sc->sa.pag);
933 if (error)
934 goto out;
935 error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
936 if (error == -ENOSPC) {
937 xfs_err(sc->mp,
938 "Insufficient free space to reset per-AG reservation for AG %u after repair.",
939 sc->sa.pag->pag_agno);
940 error = 0;
941 }
942
943 out:
944 return error;
945 }
946
947 /* Decide if we are going to call the repair function for a scrub type. */
948 bool
xrep_will_attempt(struct xfs_scrub * sc)949 xrep_will_attempt(
950 struct xfs_scrub *sc)
951 {
952 /* Userspace asked us to rebuild the structure regardless. */
953 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD)
954 return true;
955
956 /* Let debug users force us into the repair routines. */
957 if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
958 return true;
959
960 /* Metadata is corrupt or failed cross-referencing. */
961 if (xchk_needs_repair(sc->sm))
962 return true;
963
964 return false;
965 }
966
967 /* Try to fix some part of a metadata inode by calling another scrubber. */
968 STATIC int
xrep_metadata_inode_subtype(struct xfs_scrub * sc,unsigned int scrub_type)969 xrep_metadata_inode_subtype(
970 struct xfs_scrub *sc,
971 unsigned int scrub_type)
972 {
973 __u32 smtype = sc->sm->sm_type;
974 __u32 smflags = sc->sm->sm_flags;
975 unsigned int sick_mask = sc->sick_mask;
976 int error;
977
978 /*
979 * Let's see if the inode needs repair. We're going to open-code calls
980 * to the scrub and repair functions so that we can hang on to the
981 * resources that we already acquired instead of using the standard
982 * setup/teardown routines.
983 */
984 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
985 sc->sm->sm_type = scrub_type;
986
987 switch (scrub_type) {
988 case XFS_SCRUB_TYPE_INODE:
989 error = xchk_inode(sc);
990 break;
991 case XFS_SCRUB_TYPE_BMBTD:
992 error = xchk_bmap_data(sc);
993 break;
994 case XFS_SCRUB_TYPE_BMBTA:
995 error = xchk_bmap_attr(sc);
996 break;
997 default:
998 ASSERT(0);
999 error = -EFSCORRUPTED;
1000 }
1001 if (error)
1002 goto out;
1003
1004 if (!xrep_will_attempt(sc))
1005 goto out;
1006
1007 /*
1008 * Repair some part of the inode. This will potentially join the inode
1009 * to the transaction.
1010 */
1011 switch (scrub_type) {
1012 case XFS_SCRUB_TYPE_INODE:
1013 error = xrep_inode(sc);
1014 break;
1015 case XFS_SCRUB_TYPE_BMBTD:
1016 error = xrep_bmap(sc, XFS_DATA_FORK, false);
1017 break;
1018 case XFS_SCRUB_TYPE_BMBTA:
1019 error = xrep_bmap(sc, XFS_ATTR_FORK, false);
1020 break;
1021 }
1022 if (error)
1023 goto out;
1024
1025 /*
1026 * Finish all deferred intent items and then roll the transaction so
1027 * that the inode will not be joined to the transaction when we exit
1028 * the function.
1029 */
1030 error = xfs_defer_finish(&sc->tp);
1031 if (error)
1032 goto out;
1033 error = xfs_trans_roll(&sc->tp);
1034 if (error)
1035 goto out;
1036
1037 /*
1038 * Clear the corruption flags and re-check the metadata that we just
1039 * repaired.
1040 */
1041 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1042
1043 switch (scrub_type) {
1044 case XFS_SCRUB_TYPE_INODE:
1045 error = xchk_inode(sc);
1046 break;
1047 case XFS_SCRUB_TYPE_BMBTD:
1048 error = xchk_bmap_data(sc);
1049 break;
1050 case XFS_SCRUB_TYPE_BMBTA:
1051 error = xchk_bmap_attr(sc);
1052 break;
1053 }
1054 if (error)
1055 goto out;
1056
1057 /* If corruption persists, the repair has failed. */
1058 if (xchk_needs_repair(sc->sm)) {
1059 error = -EFSCORRUPTED;
1060 goto out;
1061 }
1062 out:
1063 sc->sick_mask = sick_mask;
1064 sc->sm->sm_type = smtype;
1065 sc->sm->sm_flags = smflags;
1066 return error;
1067 }
1068
1069 /*
1070 * Repair the ondisk forks of a metadata inode. The caller must ensure that
1071 * sc->ip points to the metadata inode and the ILOCK is held on that inode.
1072 * The inode must not be joined to the transaction before the call, and will
1073 * not be afterwards.
1074 */
1075 int
xrep_metadata_inode_forks(struct xfs_scrub * sc)1076 xrep_metadata_inode_forks(
1077 struct xfs_scrub *sc)
1078 {
1079 bool dirty = false;
1080 int error;
1081
1082 /* Repair the inode record and the data fork. */
1083 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1084 if (error)
1085 return error;
1086
1087 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1088 if (error)
1089 return error;
1090
1091 /* Make sure the attr fork looks ok before we delete it. */
1092 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1093 if (error)
1094 return error;
1095
1096 /* Clear the reflink flag since metadata never shares. */
1097 if (xfs_is_reflink_inode(sc->ip)) {
1098 dirty = true;
1099 xfs_trans_ijoin(sc->tp, sc->ip, 0);
1100 error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
1101 if (error)
1102 return error;
1103 }
1104
1105 /*
1106 * If we modified the inode, roll the transaction but don't rejoin the
1107 * inode to the new transaction because xrep_bmap_data can do that.
1108 */
1109 if (dirty) {
1110 error = xfs_trans_roll(&sc->tp);
1111 if (error)
1112 return error;
1113 dirty = false;
1114 }
1115
1116 return 0;
1117 }
1118