1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 #include <linux/buffer_head.h>
11 #include <linux/gfp.h>
12 #include <linux/pagemap.h>
13 #include <linux/pagevec.h>
14 #include <linux/sched/signal.h>
15 #include <linux/swap.h>
16 #include <linux/uio.h>
17 #include <linux/writeback.h>
18 
19 #include <asm/page.h>
20 #include <linux/uaccess.h>
21 
22 #include "attrib.h"
23 #include "bitmap.h"
24 #include "inode.h"
25 #include "debug.h"
26 #include "lcnalloc.h"
27 #include "malloc.h"
28 #include "mft.h"
29 #include "ntfs.h"
30 
31 /**
32  * ntfs_file_open - called when an inode is about to be opened
33  * @vi:		inode to be opened
34  * @filp:	file structure describing the inode
35  *
36  * Limit file size to the page cache limit on architectures where unsigned long
37  * is 32-bits. This is the most we can do for now without overflowing the page
38  * cache page index. Doing it this way means we don't run into problems because
39  * of existing too large files. It would be better to allow the user to read
40  * the beginning of the file but I doubt very much anyone is going to hit this
41  * check on a 32-bit architecture, so there is no point in adding the extra
42  * complexity required to support this.
43  *
44  * On 64-bit architectures, the check is hopefully optimized away by the
45  * compiler.
46  *
47  * After the check passes, just call generic_file_open() to do its work.
48  */
ntfs_file_open(struct inode * vi,struct file * filp)49 static int ntfs_file_open(struct inode *vi, struct file *filp)
50 {
51 	if (sizeof(unsigned long) < 8) {
52 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
53 			return -EOVERFLOW;
54 	}
55 	return generic_file_open(vi, filp);
56 }
57 
58 #ifdef NTFS_RW
59 
60 /**
61  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
62  * @ni:			ntfs inode of the attribute to extend
63  * @new_init_size:	requested new initialized size in bytes
64  *
65  * Extend the initialized size of an attribute described by the ntfs inode @ni
66  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
67  * the old initialized size and @new_init_size both in the page cache and on
68  * disk (if relevant complete pages are already uptodate in the page cache then
69  * these are simply marked dirty).
70  *
71  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
72  * in the resident attribute case, it is tied to the initialized size and, in
73  * the non-resident attribute case, it may not fall below the initialized size.
74  *
75  * Note that if the attribute is resident, we do not need to touch the page
76  * cache at all.  This is because if the page cache page is not uptodate we
77  * bring it uptodate later, when doing the write to the mft record since we
78  * then already have the page mapped.  And if the page is uptodate, the
79  * non-initialized region will already have been zeroed when the page was
80  * brought uptodate and the region may in fact already have been overwritten
81  * with new data via mmap() based writes, so we cannot just zero it.  And since
82  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
83  * is unspecified, we choose not to do zeroing and thus we do not need to touch
84  * the page at all.  For a more detailed explanation see ntfs_truncate() in
85  * fs/ntfs/inode.c.
86  *
87  * Return 0 on success and -errno on error.  In the case that an error is
88  * encountered it is possible that the initialized size will already have been
89  * incremented some way towards @new_init_size but it is guaranteed that if
90  * this is the case, the necessary zeroing will also have happened and that all
91  * metadata is self-consistent.
92  *
93  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
94  *	    held by the caller.
95  */
ntfs_attr_extend_initialized(ntfs_inode * ni,const s64 new_init_size)96 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
97 {
98 	s64 old_init_size;
99 	loff_t old_i_size;
100 	pgoff_t index, end_index;
101 	unsigned long flags;
102 	struct inode *vi = VFS_I(ni);
103 	ntfs_inode *base_ni;
104 	MFT_RECORD *m = NULL;
105 	ATTR_RECORD *a;
106 	ntfs_attr_search_ctx *ctx = NULL;
107 	struct address_space *mapping;
108 	struct page *page = NULL;
109 	u8 *kattr;
110 	int err;
111 	u32 attr_len;
112 
113 	read_lock_irqsave(&ni->size_lock, flags);
114 	old_init_size = ni->initialized_size;
115 	old_i_size = i_size_read(vi);
116 	BUG_ON(new_init_size > ni->allocated_size);
117 	read_unlock_irqrestore(&ni->size_lock, flags);
118 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
119 			"old_initialized_size 0x%llx, "
120 			"new_initialized_size 0x%llx, i_size 0x%llx.",
121 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
122 			(unsigned long long)old_init_size,
123 			(unsigned long long)new_init_size, old_i_size);
124 	if (!NInoAttr(ni))
125 		base_ni = ni;
126 	else
127 		base_ni = ni->ext.base_ntfs_ino;
128 	/* Use goto to reduce indentation and we need the label below anyway. */
129 	if (NInoNonResident(ni))
130 		goto do_non_resident_extend;
131 	BUG_ON(old_init_size != old_i_size);
132 	m = map_mft_record(base_ni);
133 	if (IS_ERR(m)) {
134 		err = PTR_ERR(m);
135 		m = NULL;
136 		goto err_out;
137 	}
138 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
139 	if (unlikely(!ctx)) {
140 		err = -ENOMEM;
141 		goto err_out;
142 	}
143 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
144 			CASE_SENSITIVE, 0, NULL, 0, ctx);
145 	if (unlikely(err)) {
146 		if (err == -ENOENT)
147 			err = -EIO;
148 		goto err_out;
149 	}
150 	m = ctx->mrec;
151 	a = ctx->attr;
152 	BUG_ON(a->non_resident);
153 	/* The total length of the attribute value. */
154 	attr_len = le32_to_cpu(a->data.resident.value_length);
155 	BUG_ON(old_i_size != (loff_t)attr_len);
156 	/*
157 	 * Do the zeroing in the mft record and update the attribute size in
158 	 * the mft record.
159 	 */
160 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
161 	memset(kattr + attr_len, 0, new_init_size - attr_len);
162 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
163 	/* Finally, update the sizes in the vfs and ntfs inodes. */
164 	write_lock_irqsave(&ni->size_lock, flags);
165 	i_size_write(vi, new_init_size);
166 	ni->initialized_size = new_init_size;
167 	write_unlock_irqrestore(&ni->size_lock, flags);
168 	goto done;
169 do_non_resident_extend:
170 	/*
171 	 * If the new initialized size @new_init_size exceeds the current file
172 	 * size (vfs inode->i_size), we need to extend the file size to the
173 	 * new initialized size.
174 	 */
175 	if (new_init_size > old_i_size) {
176 		m = map_mft_record(base_ni);
177 		if (IS_ERR(m)) {
178 			err = PTR_ERR(m);
179 			m = NULL;
180 			goto err_out;
181 		}
182 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
183 		if (unlikely(!ctx)) {
184 			err = -ENOMEM;
185 			goto err_out;
186 		}
187 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
188 				CASE_SENSITIVE, 0, NULL, 0, ctx);
189 		if (unlikely(err)) {
190 			if (err == -ENOENT)
191 				err = -EIO;
192 			goto err_out;
193 		}
194 		m = ctx->mrec;
195 		a = ctx->attr;
196 		BUG_ON(!a->non_resident);
197 		BUG_ON(old_i_size != (loff_t)
198 				sle64_to_cpu(a->data.non_resident.data_size));
199 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
200 		flush_dcache_mft_record_page(ctx->ntfs_ino);
201 		mark_mft_record_dirty(ctx->ntfs_ino);
202 		/* Update the file size in the vfs inode. */
203 		i_size_write(vi, new_init_size);
204 		ntfs_attr_put_search_ctx(ctx);
205 		ctx = NULL;
206 		unmap_mft_record(base_ni);
207 		m = NULL;
208 	}
209 	mapping = vi->i_mapping;
210 	index = old_init_size >> PAGE_SHIFT;
211 	end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
212 	do {
213 		/*
214 		 * Read the page.  If the page is not present, this will zero
215 		 * the uninitialized regions for us.
216 		 */
217 		page = read_mapping_page(mapping, index, NULL);
218 		if (IS_ERR(page)) {
219 			err = PTR_ERR(page);
220 			goto init_err_out;
221 		}
222 		/*
223 		 * Update the initialized size in the ntfs inode.  This is
224 		 * enough to make ntfs_writepage() work.
225 		 */
226 		write_lock_irqsave(&ni->size_lock, flags);
227 		ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
228 		if (ni->initialized_size > new_init_size)
229 			ni->initialized_size = new_init_size;
230 		write_unlock_irqrestore(&ni->size_lock, flags);
231 		/* Set the page dirty so it gets written out. */
232 		set_page_dirty(page);
233 		put_page(page);
234 		/*
235 		 * Play nice with the vm and the rest of the system.  This is
236 		 * very much needed as we can potentially be modifying the
237 		 * initialised size from a very small value to a really huge
238 		 * value, e.g.
239 		 *	f = open(somefile, O_TRUNC);
240 		 *	truncate(f, 10GiB);
241 		 *	seek(f, 10GiB);
242 		 *	write(f, 1);
243 		 * And this would mean we would be marking dirty hundreds of
244 		 * thousands of pages or as in the above example more than
245 		 * two and a half million pages!
246 		 *
247 		 * TODO: For sparse pages could optimize this workload by using
248 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
249 		 * would be set in read_folio for sparse pages and here we would
250 		 * not need to mark dirty any pages which have this bit set.
251 		 * The only caveat is that we have to clear the bit everywhere
252 		 * where we allocate any clusters that lie in the page or that
253 		 * contain the page.
254 		 *
255 		 * TODO: An even greater optimization would be for us to only
256 		 * call read_folio() on pages which are not in sparse regions as
257 		 * determined from the runlist.  This would greatly reduce the
258 		 * number of pages we read and make dirty in the case of sparse
259 		 * files.
260 		 */
261 		balance_dirty_pages_ratelimited(mapping);
262 		cond_resched();
263 	} while (++index < end_index);
264 	read_lock_irqsave(&ni->size_lock, flags);
265 	BUG_ON(ni->initialized_size != new_init_size);
266 	read_unlock_irqrestore(&ni->size_lock, flags);
267 	/* Now bring in sync the initialized_size in the mft record. */
268 	m = map_mft_record(base_ni);
269 	if (IS_ERR(m)) {
270 		err = PTR_ERR(m);
271 		m = NULL;
272 		goto init_err_out;
273 	}
274 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
275 	if (unlikely(!ctx)) {
276 		err = -ENOMEM;
277 		goto init_err_out;
278 	}
279 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
280 			CASE_SENSITIVE, 0, NULL, 0, ctx);
281 	if (unlikely(err)) {
282 		if (err == -ENOENT)
283 			err = -EIO;
284 		goto init_err_out;
285 	}
286 	m = ctx->mrec;
287 	a = ctx->attr;
288 	BUG_ON(!a->non_resident);
289 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
290 done:
291 	flush_dcache_mft_record_page(ctx->ntfs_ino);
292 	mark_mft_record_dirty(ctx->ntfs_ino);
293 	if (ctx)
294 		ntfs_attr_put_search_ctx(ctx);
295 	if (m)
296 		unmap_mft_record(base_ni);
297 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
298 			(unsigned long long)new_init_size, i_size_read(vi));
299 	return 0;
300 init_err_out:
301 	write_lock_irqsave(&ni->size_lock, flags);
302 	ni->initialized_size = old_init_size;
303 	write_unlock_irqrestore(&ni->size_lock, flags);
304 err_out:
305 	if (ctx)
306 		ntfs_attr_put_search_ctx(ctx);
307 	if (m)
308 		unmap_mft_record(base_ni);
309 	ntfs_debug("Failed.  Returning error code %i.", err);
310 	return err;
311 }
312 
ntfs_prepare_file_for_write(struct kiocb * iocb,struct iov_iter * from)313 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
314 		struct iov_iter *from)
315 {
316 	loff_t pos;
317 	s64 end, ll;
318 	ssize_t err;
319 	unsigned long flags;
320 	struct file *file = iocb->ki_filp;
321 	struct inode *vi = file_inode(file);
322 	ntfs_inode *ni = NTFS_I(vi);
323 	ntfs_volume *vol = ni->vol;
324 
325 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
326 			"0x%llx, count 0x%zx.", vi->i_ino,
327 			(unsigned)le32_to_cpu(ni->type),
328 			(unsigned long long)iocb->ki_pos,
329 			iov_iter_count(from));
330 	err = generic_write_checks(iocb, from);
331 	if (unlikely(err <= 0))
332 		goto out;
333 	/*
334 	 * All checks have passed.  Before we start doing any writing we want
335 	 * to abort any totally illegal writes.
336 	 */
337 	BUG_ON(NInoMstProtected(ni));
338 	BUG_ON(ni->type != AT_DATA);
339 	/* If file is encrypted, deny access, just like NT4. */
340 	if (NInoEncrypted(ni)) {
341 		/* Only $DATA attributes can be encrypted. */
342 		/*
343 		 * Reminder for later: Encrypted files are _always_
344 		 * non-resident so that the content can always be encrypted.
345 		 */
346 		ntfs_debug("Denying write access to encrypted file.");
347 		err = -EACCES;
348 		goto out;
349 	}
350 	if (NInoCompressed(ni)) {
351 		/* Only unnamed $DATA attribute can be compressed. */
352 		BUG_ON(ni->name_len);
353 		/*
354 		 * Reminder for later: If resident, the data is not actually
355 		 * compressed.  Only on the switch to non-resident does
356 		 * compression kick in.  This is in contrast to encrypted files
357 		 * (see above).
358 		 */
359 		ntfs_error(vi->i_sb, "Writing to compressed files is not "
360 				"implemented yet.  Sorry.");
361 		err = -EOPNOTSUPP;
362 		goto out;
363 	}
364 	err = file_remove_privs(file);
365 	if (unlikely(err))
366 		goto out;
367 	/*
368 	 * Our ->update_time method always succeeds thus file_update_time()
369 	 * cannot fail either so there is no need to check the return code.
370 	 */
371 	file_update_time(file);
372 	pos = iocb->ki_pos;
373 	/* The first byte after the last cluster being written to. */
374 	end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
375 			~(u64)vol->cluster_size_mask;
376 	/*
377 	 * If the write goes beyond the allocated size, extend the allocation
378 	 * to cover the whole of the write, rounded up to the nearest cluster.
379 	 */
380 	read_lock_irqsave(&ni->size_lock, flags);
381 	ll = ni->allocated_size;
382 	read_unlock_irqrestore(&ni->size_lock, flags);
383 	if (end > ll) {
384 		/*
385 		 * Extend the allocation without changing the data size.
386 		 *
387 		 * Note we ensure the allocation is big enough to at least
388 		 * write some data but we do not require the allocation to be
389 		 * complete, i.e. it may be partial.
390 		 */
391 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
392 		if (likely(ll >= 0)) {
393 			BUG_ON(pos >= ll);
394 			/* If the extension was partial truncate the write. */
395 			if (end > ll) {
396 				ntfs_debug("Truncating write to inode 0x%lx, "
397 						"attribute type 0x%x, because "
398 						"the allocation was only "
399 						"partially extended.",
400 						vi->i_ino, (unsigned)
401 						le32_to_cpu(ni->type));
402 				iov_iter_truncate(from, ll - pos);
403 			}
404 		} else {
405 			err = ll;
406 			read_lock_irqsave(&ni->size_lock, flags);
407 			ll = ni->allocated_size;
408 			read_unlock_irqrestore(&ni->size_lock, flags);
409 			/* Perform a partial write if possible or fail. */
410 			if (pos < ll) {
411 				ntfs_debug("Truncating write to inode 0x%lx "
412 						"attribute type 0x%x, because "
413 						"extending the allocation "
414 						"failed (error %d).",
415 						vi->i_ino, (unsigned)
416 						le32_to_cpu(ni->type),
417 						(int)-err);
418 				iov_iter_truncate(from, ll - pos);
419 			} else {
420 				if (err != -ENOSPC)
421 					ntfs_error(vi->i_sb, "Cannot perform "
422 							"write to inode "
423 							"0x%lx, attribute "
424 							"type 0x%x, because "
425 							"extending the "
426 							"allocation failed "
427 							"(error %ld).",
428 							vi->i_ino, (unsigned)
429 							le32_to_cpu(ni->type),
430 							(long)-err);
431 				else
432 					ntfs_debug("Cannot perform write to "
433 							"inode 0x%lx, "
434 							"attribute type 0x%x, "
435 							"because there is not "
436 							"space left.",
437 							vi->i_ino, (unsigned)
438 							le32_to_cpu(ni->type));
439 				goto out;
440 			}
441 		}
442 	}
443 	/*
444 	 * If the write starts beyond the initialized size, extend it up to the
445 	 * beginning of the write and initialize all non-sparse space between
446 	 * the old initialized size and the new one.  This automatically also
447 	 * increments the vfs inode->i_size to keep it above or equal to the
448 	 * initialized_size.
449 	 */
450 	read_lock_irqsave(&ni->size_lock, flags);
451 	ll = ni->initialized_size;
452 	read_unlock_irqrestore(&ni->size_lock, flags);
453 	if (pos > ll) {
454 		/*
455 		 * Wait for ongoing direct i/o to complete before proceeding.
456 		 * New direct i/o cannot start as we hold i_mutex.
457 		 */
458 		inode_dio_wait(vi);
459 		err = ntfs_attr_extend_initialized(ni, pos);
460 		if (unlikely(err < 0))
461 			ntfs_error(vi->i_sb, "Cannot perform write to inode "
462 					"0x%lx, attribute type 0x%x, because "
463 					"extending the initialized size "
464 					"failed (error %d).", vi->i_ino,
465 					(unsigned)le32_to_cpu(ni->type),
466 					(int)-err);
467 	}
468 out:
469 	return err;
470 }
471 
472 /**
473  * __ntfs_grab_cache_pages - obtain a number of locked pages
474  * @mapping:	address space mapping from which to obtain page cache pages
475  * @index:	starting index in @mapping at which to begin obtaining pages
476  * @nr_pages:	number of page cache pages to obtain
477  * @pages:	array of pages in which to return the obtained page cache pages
478  * @cached_page: allocated but as yet unused page
479  *
480  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
481  * starting at index @index.
482  *
483  * If a page is newly created, add it to lru list
484  *
485  * Note, the page locks are obtained in ascending page index order.
486  */
__ntfs_grab_cache_pages(struct address_space * mapping,pgoff_t index,const unsigned nr_pages,struct page ** pages,struct page ** cached_page)487 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
488 		pgoff_t index, const unsigned nr_pages, struct page **pages,
489 		struct page **cached_page)
490 {
491 	int err, nr;
492 
493 	BUG_ON(!nr_pages);
494 	err = nr = 0;
495 	do {
496 		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
497 				FGP_ACCESSED);
498 		if (!pages[nr]) {
499 			if (!*cached_page) {
500 				*cached_page = page_cache_alloc(mapping);
501 				if (unlikely(!*cached_page)) {
502 					err = -ENOMEM;
503 					goto err_out;
504 				}
505 			}
506 			err = add_to_page_cache_lru(*cached_page, mapping,
507 				   index,
508 				   mapping_gfp_constraint(mapping, GFP_KERNEL));
509 			if (unlikely(err)) {
510 				if (err == -EEXIST)
511 					continue;
512 				goto err_out;
513 			}
514 			pages[nr] = *cached_page;
515 			*cached_page = NULL;
516 		}
517 		index++;
518 		nr++;
519 	} while (nr < nr_pages);
520 out:
521 	return err;
522 err_out:
523 	while (nr > 0) {
524 		unlock_page(pages[--nr]);
525 		put_page(pages[nr]);
526 	}
527 	goto out;
528 }
529 
ntfs_submit_bh_for_read(struct buffer_head * bh)530 static inline void ntfs_submit_bh_for_read(struct buffer_head *bh)
531 {
532 	lock_buffer(bh);
533 	get_bh(bh);
534 	bh->b_end_io = end_buffer_read_sync;
535 	submit_bh(REQ_OP_READ, bh);
536 }
537 
538 /**
539  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
540  * @pages:	array of destination pages
541  * @nr_pages:	number of pages in @pages
542  * @pos:	byte position in file at which the write begins
543  * @bytes:	number of bytes to be written
544  *
545  * This is called for non-resident attributes from ntfs_file_buffered_write()
546  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
547  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
548  * data has not yet been copied into the @pages.
549  *
550  * Need to fill any holes with actual clusters, allocate buffers if necessary,
551  * ensure all the buffers are mapped, and bring uptodate any buffers that are
552  * only partially being written to.
553  *
554  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
555  * greater than PAGE_SIZE, that all pages in @pages are entirely inside
556  * the same cluster and that they are the entirety of that cluster, and that
557  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
558  *
559  * i_size is not to be modified yet.
560  *
561  * Return 0 on success or -errno on error.
562  */
ntfs_prepare_pages_for_non_resident_write(struct page ** pages,unsigned nr_pages,s64 pos,size_t bytes)563 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
564 		unsigned nr_pages, s64 pos, size_t bytes)
565 {
566 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
567 	LCN lcn;
568 	s64 bh_pos, vcn_len, end, initialized_size;
569 	sector_t lcn_block;
570 	struct folio *folio;
571 	struct inode *vi;
572 	ntfs_inode *ni, *base_ni = NULL;
573 	ntfs_volume *vol;
574 	runlist_element *rl, *rl2;
575 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
576 	ntfs_attr_search_ctx *ctx = NULL;
577 	MFT_RECORD *m = NULL;
578 	ATTR_RECORD *a = NULL;
579 	unsigned long flags;
580 	u32 attr_rec_len = 0;
581 	unsigned blocksize, u;
582 	int err, mp_size;
583 	bool rl_write_locked, was_hole, is_retry;
584 	unsigned char blocksize_bits;
585 	struct {
586 		u8 runlist_merged:1;
587 		u8 mft_attr_mapped:1;
588 		u8 mp_rebuilt:1;
589 		u8 attr_switched:1;
590 	} status = { 0, 0, 0, 0 };
591 
592 	BUG_ON(!nr_pages);
593 	BUG_ON(!pages);
594 	BUG_ON(!*pages);
595 	vi = pages[0]->mapping->host;
596 	ni = NTFS_I(vi);
597 	vol = ni->vol;
598 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
599 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
600 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
601 			(long long)pos, bytes);
602 	blocksize = vol->sb->s_blocksize;
603 	blocksize_bits = vol->sb->s_blocksize_bits;
604 	rl_write_locked = false;
605 	rl = NULL;
606 	err = 0;
607 	vcn = lcn = -1;
608 	vcn_len = 0;
609 	lcn_block = -1;
610 	was_hole = false;
611 	cpos = pos >> vol->cluster_size_bits;
612 	end = pos + bytes;
613 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
614 	/*
615 	 * Loop over each buffer in each folio.  Use goto to
616 	 * reduce indentation.
617 	 */
618 	u = 0;
619 do_next_folio:
620 	folio = page_folio(pages[u]);
621 	bh_pos = folio_pos(folio);
622 	head = folio_buffers(folio);
623 	if (!head)
624 		/*
625 		 * create_empty_buffers() will create uptodate/dirty
626 		 * buffers if the folio is uptodate/dirty.
627 		 */
628 		head = create_empty_buffers(folio, blocksize, 0);
629 	bh = head;
630 	do {
631 		VCN cdelta;
632 		s64 bh_end;
633 		unsigned bh_cofs;
634 
635 		/* Clear buffer_new on all buffers to reinitialise state. */
636 		if (buffer_new(bh))
637 			clear_buffer_new(bh);
638 		bh_end = bh_pos + blocksize;
639 		bh_cpos = bh_pos >> vol->cluster_size_bits;
640 		bh_cofs = bh_pos & vol->cluster_size_mask;
641 		if (buffer_mapped(bh)) {
642 			/*
643 			 * The buffer is already mapped.  If it is uptodate,
644 			 * ignore it.
645 			 */
646 			if (buffer_uptodate(bh))
647 				continue;
648 			/*
649 			 * The buffer is not uptodate.  If the folio is uptodate
650 			 * set the buffer uptodate and otherwise ignore it.
651 			 */
652 			if (folio_test_uptodate(folio)) {
653 				set_buffer_uptodate(bh);
654 				continue;
655 			}
656 			/*
657 			 * Neither the folio nor the buffer are uptodate.  If
658 			 * the buffer is only partially being written to, we
659 			 * need to read it in before the write, i.e. now.
660 			 */
661 			if ((bh_pos < pos && bh_end > pos) ||
662 					(bh_pos < end && bh_end > end)) {
663 				/*
664 				 * If the buffer is fully or partially within
665 				 * the initialized size, do an actual read.
666 				 * Otherwise, simply zero the buffer.
667 				 */
668 				read_lock_irqsave(&ni->size_lock, flags);
669 				initialized_size = ni->initialized_size;
670 				read_unlock_irqrestore(&ni->size_lock, flags);
671 				if (bh_pos < initialized_size) {
672 					ntfs_submit_bh_for_read(bh);
673 					*wait_bh++ = bh;
674 				} else {
675 					folio_zero_range(folio, bh_offset(bh),
676 							blocksize);
677 					set_buffer_uptodate(bh);
678 				}
679 			}
680 			continue;
681 		}
682 		/* Unmapped buffer.  Need to map it. */
683 		bh->b_bdev = vol->sb->s_bdev;
684 		/*
685 		 * If the current buffer is in the same clusters as the map
686 		 * cache, there is no need to check the runlist again.  The
687 		 * map cache is made up of @vcn, which is the first cached file
688 		 * cluster, @vcn_len which is the number of cached file
689 		 * clusters, @lcn is the device cluster corresponding to @vcn,
690 		 * and @lcn_block is the block number corresponding to @lcn.
691 		 */
692 		cdelta = bh_cpos - vcn;
693 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
694 map_buffer_cached:
695 			BUG_ON(lcn < 0);
696 			bh->b_blocknr = lcn_block +
697 					(cdelta << (vol->cluster_size_bits -
698 					blocksize_bits)) +
699 					(bh_cofs >> blocksize_bits);
700 			set_buffer_mapped(bh);
701 			/*
702 			 * If the folio is uptodate so is the buffer.  If the
703 			 * buffer is fully outside the write, we ignore it if
704 			 * it was already allocated and we mark it dirty so it
705 			 * gets written out if we allocated it.  On the other
706 			 * hand, if we allocated the buffer but we are not
707 			 * marking it dirty we set buffer_new so we can do
708 			 * error recovery.
709 			 */
710 			if (folio_test_uptodate(folio)) {
711 				if (!buffer_uptodate(bh))
712 					set_buffer_uptodate(bh);
713 				if (unlikely(was_hole)) {
714 					/* We allocated the buffer. */
715 					clean_bdev_bh_alias(bh);
716 					if (bh_end <= pos || bh_pos >= end)
717 						mark_buffer_dirty(bh);
718 					else
719 						set_buffer_new(bh);
720 				}
721 				continue;
722 			}
723 			/* Page is _not_ uptodate. */
724 			if (likely(!was_hole)) {
725 				/*
726 				 * Buffer was already allocated.  If it is not
727 				 * uptodate and is only partially being written
728 				 * to, we need to read it in before the write,
729 				 * i.e. now.
730 				 */
731 				if (!buffer_uptodate(bh) && bh_pos < end &&
732 						bh_end > pos &&
733 						(bh_pos < pos ||
734 						bh_end > end)) {
735 					/*
736 					 * If the buffer is fully or partially
737 					 * within the initialized size, do an
738 					 * actual read.  Otherwise, simply zero
739 					 * the buffer.
740 					 */
741 					read_lock_irqsave(&ni->size_lock,
742 							flags);
743 					initialized_size = ni->initialized_size;
744 					read_unlock_irqrestore(&ni->size_lock,
745 							flags);
746 					if (bh_pos < initialized_size) {
747 						ntfs_submit_bh_for_read(bh);
748 						*wait_bh++ = bh;
749 					} else {
750 						folio_zero_range(folio,
751 								bh_offset(bh),
752 								blocksize);
753 						set_buffer_uptodate(bh);
754 					}
755 				}
756 				continue;
757 			}
758 			/* We allocated the buffer. */
759 			clean_bdev_bh_alias(bh);
760 			/*
761 			 * If the buffer is fully outside the write, zero it,
762 			 * set it uptodate, and mark it dirty so it gets
763 			 * written out.  If it is partially being written to,
764 			 * zero region surrounding the write but leave it to
765 			 * commit write to do anything else.  Finally, if the
766 			 * buffer is fully being overwritten, do nothing.
767 			 */
768 			if (bh_end <= pos || bh_pos >= end) {
769 				if (!buffer_uptodate(bh)) {
770 					folio_zero_range(folio, bh_offset(bh),
771 							blocksize);
772 					set_buffer_uptodate(bh);
773 				}
774 				mark_buffer_dirty(bh);
775 				continue;
776 			}
777 			set_buffer_new(bh);
778 			if (!buffer_uptodate(bh) &&
779 					(bh_pos < pos || bh_end > end)) {
780 				u8 *kaddr;
781 				unsigned pofs;
782 
783 				kaddr = kmap_local_folio(folio, 0);
784 				if (bh_pos < pos) {
785 					pofs = bh_pos & ~PAGE_MASK;
786 					memset(kaddr + pofs, 0, pos - bh_pos);
787 				}
788 				if (bh_end > end) {
789 					pofs = end & ~PAGE_MASK;
790 					memset(kaddr + pofs, 0, bh_end - end);
791 				}
792 				kunmap_local(kaddr);
793 				flush_dcache_folio(folio);
794 			}
795 			continue;
796 		}
797 		/*
798 		 * Slow path: this is the first buffer in the cluster.  If it
799 		 * is outside allocated size and is not uptodate, zero it and
800 		 * set it uptodate.
801 		 */
802 		read_lock_irqsave(&ni->size_lock, flags);
803 		initialized_size = ni->allocated_size;
804 		read_unlock_irqrestore(&ni->size_lock, flags);
805 		if (bh_pos > initialized_size) {
806 			if (folio_test_uptodate(folio)) {
807 				if (!buffer_uptodate(bh))
808 					set_buffer_uptodate(bh);
809 			} else if (!buffer_uptodate(bh)) {
810 				folio_zero_range(folio, bh_offset(bh),
811 						blocksize);
812 				set_buffer_uptodate(bh);
813 			}
814 			continue;
815 		}
816 		is_retry = false;
817 		if (!rl) {
818 			down_read(&ni->runlist.lock);
819 retry_remap:
820 			rl = ni->runlist.rl;
821 		}
822 		if (likely(rl != NULL)) {
823 			/* Seek to element containing target cluster. */
824 			while (rl->length && rl[1].vcn <= bh_cpos)
825 				rl++;
826 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
827 			if (likely(lcn >= 0)) {
828 				/*
829 				 * Successful remap, setup the map cache and
830 				 * use that to deal with the buffer.
831 				 */
832 				was_hole = false;
833 				vcn = bh_cpos;
834 				vcn_len = rl[1].vcn - vcn;
835 				lcn_block = lcn << (vol->cluster_size_bits -
836 						blocksize_bits);
837 				cdelta = 0;
838 				/*
839 				 * If the number of remaining clusters touched
840 				 * by the write is smaller or equal to the
841 				 * number of cached clusters, unlock the
842 				 * runlist as the map cache will be used from
843 				 * now on.
844 				 */
845 				if (likely(vcn + vcn_len >= cend)) {
846 					if (rl_write_locked) {
847 						up_write(&ni->runlist.lock);
848 						rl_write_locked = false;
849 					} else
850 						up_read(&ni->runlist.lock);
851 					rl = NULL;
852 				}
853 				goto map_buffer_cached;
854 			}
855 		} else
856 			lcn = LCN_RL_NOT_MAPPED;
857 		/*
858 		 * If it is not a hole and not out of bounds, the runlist is
859 		 * probably unmapped so try to map it now.
860 		 */
861 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
862 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
863 				/* Attempt to map runlist. */
864 				if (!rl_write_locked) {
865 					/*
866 					 * We need the runlist locked for
867 					 * writing, so if it is locked for
868 					 * reading relock it now and retry in
869 					 * case it changed whilst we dropped
870 					 * the lock.
871 					 */
872 					up_read(&ni->runlist.lock);
873 					down_write(&ni->runlist.lock);
874 					rl_write_locked = true;
875 					goto retry_remap;
876 				}
877 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
878 						NULL);
879 				if (likely(!err)) {
880 					is_retry = true;
881 					goto retry_remap;
882 				}
883 				/*
884 				 * If @vcn is out of bounds, pretend @lcn is
885 				 * LCN_ENOENT.  As long as the buffer is out
886 				 * of bounds this will work fine.
887 				 */
888 				if (err == -ENOENT) {
889 					lcn = LCN_ENOENT;
890 					err = 0;
891 					goto rl_not_mapped_enoent;
892 				}
893 			} else
894 				err = -EIO;
895 			/* Failed to map the buffer, even after retrying. */
896 			bh->b_blocknr = -1;
897 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
898 					"attribute type 0x%x, vcn 0x%llx, "
899 					"vcn offset 0x%x, because its "
900 					"location on disk could not be "
901 					"determined%s (error code %i).",
902 					ni->mft_no, ni->type,
903 					(unsigned long long)bh_cpos,
904 					(unsigned)bh_pos &
905 					vol->cluster_size_mask,
906 					is_retry ? " even after retrying" : "",
907 					err);
908 			break;
909 		}
910 rl_not_mapped_enoent:
911 		/*
912 		 * The buffer is in a hole or out of bounds.  We need to fill
913 		 * the hole, unless the buffer is in a cluster which is not
914 		 * touched by the write, in which case we just leave the buffer
915 		 * unmapped.  This can only happen when the cluster size is
916 		 * less than the page cache size.
917 		 */
918 		if (unlikely(vol->cluster_size < PAGE_SIZE)) {
919 			bh_cend = (bh_end + vol->cluster_size - 1) >>
920 					vol->cluster_size_bits;
921 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
922 				bh->b_blocknr = -1;
923 				/*
924 				 * If the buffer is uptodate we skip it.  If it
925 				 * is not but the folio is uptodate, we can set
926 				 * the buffer uptodate.  If the folio is not
927 				 * uptodate, we can clear the buffer and set it
928 				 * uptodate.  Whether this is worthwhile is
929 				 * debatable and this could be removed.
930 				 */
931 				if (folio_test_uptodate(folio)) {
932 					if (!buffer_uptodate(bh))
933 						set_buffer_uptodate(bh);
934 				} else if (!buffer_uptodate(bh)) {
935 					folio_zero_range(folio, bh_offset(bh),
936 						blocksize);
937 					set_buffer_uptodate(bh);
938 				}
939 				continue;
940 			}
941 		}
942 		/*
943 		 * Out of bounds buffer is invalid if it was not really out of
944 		 * bounds.
945 		 */
946 		BUG_ON(lcn != LCN_HOLE);
947 		/*
948 		 * We need the runlist locked for writing, so if it is locked
949 		 * for reading relock it now and retry in case it changed
950 		 * whilst we dropped the lock.
951 		 */
952 		BUG_ON(!rl);
953 		if (!rl_write_locked) {
954 			up_read(&ni->runlist.lock);
955 			down_write(&ni->runlist.lock);
956 			rl_write_locked = true;
957 			goto retry_remap;
958 		}
959 		/* Find the previous last allocated cluster. */
960 		BUG_ON(rl->lcn != LCN_HOLE);
961 		lcn = -1;
962 		rl2 = rl;
963 		while (--rl2 >= ni->runlist.rl) {
964 			if (rl2->lcn >= 0) {
965 				lcn = rl2->lcn + rl2->length;
966 				break;
967 			}
968 		}
969 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
970 				false);
971 		if (IS_ERR(rl2)) {
972 			err = PTR_ERR(rl2);
973 			ntfs_debug("Failed to allocate cluster, error code %i.",
974 					err);
975 			break;
976 		}
977 		lcn = rl2->lcn;
978 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
979 		if (IS_ERR(rl)) {
980 			err = PTR_ERR(rl);
981 			if (err != -ENOMEM)
982 				err = -EIO;
983 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
984 				ntfs_error(vol->sb, "Failed to release "
985 						"allocated cluster in error "
986 						"code path.  Run chkdsk to "
987 						"recover the lost cluster.");
988 				NVolSetErrors(vol);
989 			}
990 			ntfs_free(rl2);
991 			break;
992 		}
993 		ni->runlist.rl = rl;
994 		status.runlist_merged = 1;
995 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
996 				(unsigned long long)lcn);
997 		/* Map and lock the mft record and get the attribute record. */
998 		if (!NInoAttr(ni))
999 			base_ni = ni;
1000 		else
1001 			base_ni = ni->ext.base_ntfs_ino;
1002 		m = map_mft_record(base_ni);
1003 		if (IS_ERR(m)) {
1004 			err = PTR_ERR(m);
1005 			break;
1006 		}
1007 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
1008 		if (unlikely(!ctx)) {
1009 			err = -ENOMEM;
1010 			unmap_mft_record(base_ni);
1011 			break;
1012 		}
1013 		status.mft_attr_mapped = 1;
1014 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1015 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1016 		if (unlikely(err)) {
1017 			if (err == -ENOENT)
1018 				err = -EIO;
1019 			break;
1020 		}
1021 		m = ctx->mrec;
1022 		a = ctx->attr;
1023 		/*
1024 		 * Find the runlist element with which the attribute extent
1025 		 * starts.  Note, we cannot use the _attr_ version because we
1026 		 * have mapped the mft record.  That is ok because we know the
1027 		 * runlist fragment must be mapped already to have ever gotten
1028 		 * here, so we can just use the _rl_ version.
1029 		 */
1030 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1031 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1032 		BUG_ON(!rl2);
1033 		BUG_ON(!rl2->length);
1034 		BUG_ON(rl2->lcn < LCN_HOLE);
1035 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1036 		/*
1037 		 * If @highest_vcn is zero, calculate the real highest_vcn
1038 		 * (which can really be zero).
1039 		 */
1040 		if (!highest_vcn)
1041 			highest_vcn = (sle64_to_cpu(
1042 					a->data.non_resident.allocated_size) >>
1043 					vol->cluster_size_bits) - 1;
1044 		/*
1045 		 * Determine the size of the mapping pairs array for the new
1046 		 * extent, i.e. the old extent with the hole filled.
1047 		 */
1048 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1049 				highest_vcn);
1050 		if (unlikely(mp_size <= 0)) {
1051 			if (!(err = mp_size))
1052 				err = -EIO;
1053 			ntfs_debug("Failed to get size for mapping pairs "
1054 					"array, error code %i.", err);
1055 			break;
1056 		}
1057 		/*
1058 		 * Resize the attribute record to fit the new mapping pairs
1059 		 * array.
1060 		 */
1061 		attr_rec_len = le32_to_cpu(a->length);
1062 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1063 				a->data.non_resident.mapping_pairs_offset));
1064 		if (unlikely(err)) {
1065 			BUG_ON(err != -ENOSPC);
1066 			// TODO: Deal with this by using the current attribute
1067 			// and fill it with as much of the mapping pairs
1068 			// array as possible.  Then loop over each attribute
1069 			// extent rewriting the mapping pairs arrays as we go
1070 			// along and if when we reach the end we have not
1071 			// enough space, try to resize the last attribute
1072 			// extent and if even that fails, add a new attribute
1073 			// extent.
1074 			// We could also try to resize at each step in the hope
1075 			// that we will not need to rewrite every single extent.
1076 			// Note, we may need to decompress some extents to fill
1077 			// the runlist as we are walking the extents...
1078 			ntfs_error(vol->sb, "Not enough space in the mft "
1079 					"record for the extended attribute "
1080 					"record.  This case is not "
1081 					"implemented yet.");
1082 			err = -EOPNOTSUPP;
1083 			break ;
1084 		}
1085 		status.mp_rebuilt = 1;
1086 		/*
1087 		 * Generate the mapping pairs array directly into the attribute
1088 		 * record.
1089 		 */
1090 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1091 				a->data.non_resident.mapping_pairs_offset),
1092 				mp_size, rl2, vcn, highest_vcn, NULL);
1093 		if (unlikely(err)) {
1094 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1095 					"attribute type 0x%x, because building "
1096 					"the mapping pairs failed with error "
1097 					"code %i.", vi->i_ino,
1098 					(unsigned)le32_to_cpu(ni->type), err);
1099 			err = -EIO;
1100 			break;
1101 		}
1102 		/* Update the highest_vcn but only if it was not set. */
1103 		if (unlikely(!a->data.non_resident.highest_vcn))
1104 			a->data.non_resident.highest_vcn =
1105 					cpu_to_sle64(highest_vcn);
1106 		/*
1107 		 * If the attribute is sparse/compressed, update the compressed
1108 		 * size in the ntfs_inode structure and the attribute record.
1109 		 */
1110 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1111 			/*
1112 			 * If we are not in the first attribute extent, switch
1113 			 * to it, but first ensure the changes will make it to
1114 			 * disk later.
1115 			 */
1116 			if (a->data.non_resident.lowest_vcn) {
1117 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1118 				mark_mft_record_dirty(ctx->ntfs_ino);
1119 				ntfs_attr_reinit_search_ctx(ctx);
1120 				err = ntfs_attr_lookup(ni->type, ni->name,
1121 						ni->name_len, CASE_SENSITIVE,
1122 						0, NULL, 0, ctx);
1123 				if (unlikely(err)) {
1124 					status.attr_switched = 1;
1125 					break;
1126 				}
1127 				/* @m is not used any more so do not set it. */
1128 				a = ctx->attr;
1129 			}
1130 			write_lock_irqsave(&ni->size_lock, flags);
1131 			ni->itype.compressed.size += vol->cluster_size;
1132 			a->data.non_resident.compressed_size =
1133 					cpu_to_sle64(ni->itype.compressed.size);
1134 			write_unlock_irqrestore(&ni->size_lock, flags);
1135 		}
1136 		/* Ensure the changes make it to disk. */
1137 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1138 		mark_mft_record_dirty(ctx->ntfs_ino);
1139 		ntfs_attr_put_search_ctx(ctx);
1140 		unmap_mft_record(base_ni);
1141 		/* Successfully filled the hole. */
1142 		status.runlist_merged = 0;
1143 		status.mft_attr_mapped = 0;
1144 		status.mp_rebuilt = 0;
1145 		/* Setup the map cache and use that to deal with the buffer. */
1146 		was_hole = true;
1147 		vcn = bh_cpos;
1148 		vcn_len = 1;
1149 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1150 		cdelta = 0;
1151 		/*
1152 		 * If the number of remaining clusters in the @pages is smaller
1153 		 * or equal to the number of cached clusters, unlock the
1154 		 * runlist as the map cache will be used from now on.
1155 		 */
1156 		if (likely(vcn + vcn_len >= cend)) {
1157 			up_write(&ni->runlist.lock);
1158 			rl_write_locked = false;
1159 			rl = NULL;
1160 		}
1161 		goto map_buffer_cached;
1162 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1163 	/* If there are no errors, do the next page. */
1164 	if (likely(!err && ++u < nr_pages))
1165 		goto do_next_folio;
1166 	/* If there are no errors, release the runlist lock if we took it. */
1167 	if (likely(!err)) {
1168 		if (unlikely(rl_write_locked)) {
1169 			up_write(&ni->runlist.lock);
1170 			rl_write_locked = false;
1171 		} else if (unlikely(rl))
1172 			up_read(&ni->runlist.lock);
1173 		rl = NULL;
1174 	}
1175 	/* If we issued read requests, let them complete. */
1176 	read_lock_irqsave(&ni->size_lock, flags);
1177 	initialized_size = ni->initialized_size;
1178 	read_unlock_irqrestore(&ni->size_lock, flags);
1179 	while (wait_bh > wait) {
1180 		bh = *--wait_bh;
1181 		wait_on_buffer(bh);
1182 		if (likely(buffer_uptodate(bh))) {
1183 			folio = bh->b_folio;
1184 			bh_pos = folio_pos(folio) + bh_offset(bh);
1185 			/*
1186 			 * If the buffer overflows the initialized size, need
1187 			 * to zero the overflowing region.
1188 			 */
1189 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1190 				int ofs = 0;
1191 
1192 				if (likely(bh_pos < initialized_size))
1193 					ofs = initialized_size - bh_pos;
1194 				folio_zero_segment(folio, bh_offset(bh) + ofs,
1195 						blocksize);
1196 			}
1197 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1198 			err = -EIO;
1199 	}
1200 	if (likely(!err)) {
1201 		/* Clear buffer_new on all buffers. */
1202 		u = 0;
1203 		do {
1204 			bh = head = page_buffers(pages[u]);
1205 			do {
1206 				if (buffer_new(bh))
1207 					clear_buffer_new(bh);
1208 			} while ((bh = bh->b_this_page) != head);
1209 		} while (++u < nr_pages);
1210 		ntfs_debug("Done.");
1211 		return err;
1212 	}
1213 	if (status.attr_switched) {
1214 		/* Get back to the attribute extent we modified. */
1215 		ntfs_attr_reinit_search_ctx(ctx);
1216 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1217 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1218 			ntfs_error(vol->sb, "Failed to find required "
1219 					"attribute extent of attribute in "
1220 					"error code path.  Run chkdsk to "
1221 					"recover.");
1222 			write_lock_irqsave(&ni->size_lock, flags);
1223 			ni->itype.compressed.size += vol->cluster_size;
1224 			write_unlock_irqrestore(&ni->size_lock, flags);
1225 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1226 			mark_mft_record_dirty(ctx->ntfs_ino);
1227 			/*
1228 			 * The only thing that is now wrong is the compressed
1229 			 * size of the base attribute extent which chkdsk
1230 			 * should be able to fix.
1231 			 */
1232 			NVolSetErrors(vol);
1233 		} else {
1234 			m = ctx->mrec;
1235 			a = ctx->attr;
1236 			status.attr_switched = 0;
1237 		}
1238 	}
1239 	/*
1240 	 * If the runlist has been modified, need to restore it by punching a
1241 	 * hole into it and we then need to deallocate the on-disk cluster as
1242 	 * well.  Note, we only modify the runlist if we are able to generate a
1243 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1244 	 * is not switched.
1245 	 */
1246 	if (status.runlist_merged && !status.attr_switched) {
1247 		BUG_ON(!rl_write_locked);
1248 		/* Make the file cluster we allocated sparse in the runlist. */
1249 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1250 			ntfs_error(vol->sb, "Failed to punch hole into "
1251 					"attribute runlist in error code "
1252 					"path.  Run chkdsk to recover the "
1253 					"lost cluster.");
1254 			NVolSetErrors(vol);
1255 		} else /* if (success) */ {
1256 			status.runlist_merged = 0;
1257 			/*
1258 			 * Deallocate the on-disk cluster we allocated but only
1259 			 * if we succeeded in punching its vcn out of the
1260 			 * runlist.
1261 			 */
1262 			down_write(&vol->lcnbmp_lock);
1263 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1264 				ntfs_error(vol->sb, "Failed to release "
1265 						"allocated cluster in error "
1266 						"code path.  Run chkdsk to "
1267 						"recover the lost cluster.");
1268 				NVolSetErrors(vol);
1269 			}
1270 			up_write(&vol->lcnbmp_lock);
1271 		}
1272 	}
1273 	/*
1274 	 * Resize the attribute record to its old size and rebuild the mapping
1275 	 * pairs array.  Note, we only can do this if the runlist has been
1276 	 * restored to its old state which also implies that the mapped
1277 	 * attribute extent is not switched.
1278 	 */
1279 	if (status.mp_rebuilt && !status.runlist_merged) {
1280 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1281 			ntfs_error(vol->sb, "Failed to restore attribute "
1282 					"record in error code path.  Run "
1283 					"chkdsk to recover.");
1284 			NVolSetErrors(vol);
1285 		} else /* if (success) */ {
1286 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1287 					le16_to_cpu(a->data.non_resident.
1288 					mapping_pairs_offset), attr_rec_len -
1289 					le16_to_cpu(a->data.non_resident.
1290 					mapping_pairs_offset), ni->runlist.rl,
1291 					vcn, highest_vcn, NULL)) {
1292 				ntfs_error(vol->sb, "Failed to restore "
1293 						"mapping pairs array in error "
1294 						"code path.  Run chkdsk to "
1295 						"recover.");
1296 				NVolSetErrors(vol);
1297 			}
1298 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1299 			mark_mft_record_dirty(ctx->ntfs_ino);
1300 		}
1301 	}
1302 	/* Release the mft record and the attribute. */
1303 	if (status.mft_attr_mapped) {
1304 		ntfs_attr_put_search_ctx(ctx);
1305 		unmap_mft_record(base_ni);
1306 	}
1307 	/* Release the runlist lock. */
1308 	if (rl_write_locked)
1309 		up_write(&ni->runlist.lock);
1310 	else if (rl)
1311 		up_read(&ni->runlist.lock);
1312 	/*
1313 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1314 	 * If BH_New is set, we know that the block was newly allocated above
1315 	 * and that it has not been fully zeroed and marked dirty yet.
1316 	 */
1317 	nr_pages = u;
1318 	u = 0;
1319 	end = bh_cpos << vol->cluster_size_bits;
1320 	do {
1321 		folio = page_folio(pages[u]);
1322 		bh = head = folio_buffers(folio);
1323 		do {
1324 			if (u == nr_pages &&
1325 			    folio_pos(folio) + bh_offset(bh) >= end)
1326 				break;
1327 			if (!buffer_new(bh))
1328 				continue;
1329 			clear_buffer_new(bh);
1330 			if (!buffer_uptodate(bh)) {
1331 				if (folio_test_uptodate(folio))
1332 					set_buffer_uptodate(bh);
1333 				else {
1334 					folio_zero_range(folio, bh_offset(bh),
1335 							blocksize);
1336 					set_buffer_uptodate(bh);
1337 				}
1338 			}
1339 			mark_buffer_dirty(bh);
1340 		} while ((bh = bh->b_this_page) != head);
1341 	} while (++u <= nr_pages);
1342 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1343 	return err;
1344 }
1345 
ntfs_flush_dcache_pages(struct page ** pages,unsigned nr_pages)1346 static inline void ntfs_flush_dcache_pages(struct page **pages,
1347 		unsigned nr_pages)
1348 {
1349 	BUG_ON(!nr_pages);
1350 	/*
1351 	 * Warning: Do not do the decrement at the same time as the call to
1352 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1353 	 * decrement never happens so the loop never terminates.
1354 	 */
1355 	do {
1356 		--nr_pages;
1357 		flush_dcache_page(pages[nr_pages]);
1358 	} while (nr_pages > 0);
1359 }
1360 
1361 /**
1362  * ntfs_commit_pages_after_non_resident_write - commit the received data
1363  * @pages:	array of destination pages
1364  * @nr_pages:	number of pages in @pages
1365  * @pos:	byte position in file at which the write begins
1366  * @bytes:	number of bytes to be written
1367  *
1368  * See description of ntfs_commit_pages_after_write(), below.
1369  */
ntfs_commit_pages_after_non_resident_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1370 static inline int ntfs_commit_pages_after_non_resident_write(
1371 		struct page **pages, const unsigned nr_pages,
1372 		s64 pos, size_t bytes)
1373 {
1374 	s64 end, initialized_size;
1375 	struct inode *vi;
1376 	ntfs_inode *ni, *base_ni;
1377 	struct buffer_head *bh, *head;
1378 	ntfs_attr_search_ctx *ctx;
1379 	MFT_RECORD *m;
1380 	ATTR_RECORD *a;
1381 	unsigned long flags;
1382 	unsigned blocksize, u;
1383 	int err;
1384 
1385 	vi = pages[0]->mapping->host;
1386 	ni = NTFS_I(vi);
1387 	blocksize = vi->i_sb->s_blocksize;
1388 	end = pos + bytes;
1389 	u = 0;
1390 	do {
1391 		s64 bh_pos;
1392 		struct page *page;
1393 		bool partial;
1394 
1395 		page = pages[u];
1396 		bh_pos = (s64)page->index << PAGE_SHIFT;
1397 		bh = head = page_buffers(page);
1398 		partial = false;
1399 		do {
1400 			s64 bh_end;
1401 
1402 			bh_end = bh_pos + blocksize;
1403 			if (bh_end <= pos || bh_pos >= end) {
1404 				if (!buffer_uptodate(bh))
1405 					partial = true;
1406 			} else {
1407 				set_buffer_uptodate(bh);
1408 				mark_buffer_dirty(bh);
1409 			}
1410 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1411 		/*
1412 		 * If all buffers are now uptodate but the page is not, set the
1413 		 * page uptodate.
1414 		 */
1415 		if (!partial && !PageUptodate(page))
1416 			SetPageUptodate(page);
1417 	} while (++u < nr_pages);
1418 	/*
1419 	 * Finally, if we do not need to update initialized_size or i_size we
1420 	 * are finished.
1421 	 */
1422 	read_lock_irqsave(&ni->size_lock, flags);
1423 	initialized_size = ni->initialized_size;
1424 	read_unlock_irqrestore(&ni->size_lock, flags);
1425 	if (end <= initialized_size) {
1426 		ntfs_debug("Done.");
1427 		return 0;
1428 	}
1429 	/*
1430 	 * Update initialized_size/i_size as appropriate, both in the inode and
1431 	 * the mft record.
1432 	 */
1433 	if (!NInoAttr(ni))
1434 		base_ni = ni;
1435 	else
1436 		base_ni = ni->ext.base_ntfs_ino;
1437 	/* Map, pin, and lock the mft record. */
1438 	m = map_mft_record(base_ni);
1439 	if (IS_ERR(m)) {
1440 		err = PTR_ERR(m);
1441 		m = NULL;
1442 		ctx = NULL;
1443 		goto err_out;
1444 	}
1445 	BUG_ON(!NInoNonResident(ni));
1446 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1447 	if (unlikely(!ctx)) {
1448 		err = -ENOMEM;
1449 		goto err_out;
1450 	}
1451 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1452 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1453 	if (unlikely(err)) {
1454 		if (err == -ENOENT)
1455 			err = -EIO;
1456 		goto err_out;
1457 	}
1458 	a = ctx->attr;
1459 	BUG_ON(!a->non_resident);
1460 	write_lock_irqsave(&ni->size_lock, flags);
1461 	BUG_ON(end > ni->allocated_size);
1462 	ni->initialized_size = end;
1463 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1464 	if (end > i_size_read(vi)) {
1465 		i_size_write(vi, end);
1466 		a->data.non_resident.data_size =
1467 				a->data.non_resident.initialized_size;
1468 	}
1469 	write_unlock_irqrestore(&ni->size_lock, flags);
1470 	/* Mark the mft record dirty, so it gets written back. */
1471 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1472 	mark_mft_record_dirty(ctx->ntfs_ino);
1473 	ntfs_attr_put_search_ctx(ctx);
1474 	unmap_mft_record(base_ni);
1475 	ntfs_debug("Done.");
1476 	return 0;
1477 err_out:
1478 	if (ctx)
1479 		ntfs_attr_put_search_ctx(ctx);
1480 	if (m)
1481 		unmap_mft_record(base_ni);
1482 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1483 			"code %i).", err);
1484 	if (err != -ENOMEM)
1485 		NVolSetErrors(ni->vol);
1486 	return err;
1487 }
1488 
1489 /**
1490  * ntfs_commit_pages_after_write - commit the received data
1491  * @pages:	array of destination pages
1492  * @nr_pages:	number of pages in @pages
1493  * @pos:	byte position in file at which the write begins
1494  * @bytes:	number of bytes to be written
1495  *
1496  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1497  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1498  * locked but not kmap()ped.  The source data has already been copied into the
1499  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1500  * the data was copied (for non-resident attributes only) and it returned
1501  * success.
1502  *
1503  * Need to set uptodate and mark dirty all buffers within the boundary of the
1504  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1505  *
1506  * Setting the buffers dirty ensures that they get written out later when
1507  * ntfs_writepage() is invoked by the VM.
1508  *
1509  * Finally, we need to update i_size and initialized_size as appropriate both
1510  * in the inode and the mft record.
1511  *
1512  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1513  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1514  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1515  * that case, it also marks the inode dirty.
1516  *
1517  * If things have gone as outlined in
1518  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1519  * content modifications here for non-resident attributes.  For resident
1520  * attributes we need to do the uptodate bringing here which we combine with
1521  * the copying into the mft record which means we save one atomic kmap.
1522  *
1523  * Return 0 on success or -errno on error.
1524  */
ntfs_commit_pages_after_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1525 static int ntfs_commit_pages_after_write(struct page **pages,
1526 		const unsigned nr_pages, s64 pos, size_t bytes)
1527 {
1528 	s64 end, initialized_size;
1529 	loff_t i_size;
1530 	struct inode *vi;
1531 	ntfs_inode *ni, *base_ni;
1532 	struct page *page;
1533 	ntfs_attr_search_ctx *ctx;
1534 	MFT_RECORD *m;
1535 	ATTR_RECORD *a;
1536 	char *kattr, *kaddr;
1537 	unsigned long flags;
1538 	u32 attr_len;
1539 	int err;
1540 
1541 	BUG_ON(!nr_pages);
1542 	BUG_ON(!pages);
1543 	page = pages[0];
1544 	BUG_ON(!page);
1545 	vi = page->mapping->host;
1546 	ni = NTFS_I(vi);
1547 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1548 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1549 			vi->i_ino, ni->type, page->index, nr_pages,
1550 			(long long)pos, bytes);
1551 	if (NInoNonResident(ni))
1552 		return ntfs_commit_pages_after_non_resident_write(pages,
1553 				nr_pages, pos, bytes);
1554 	BUG_ON(nr_pages > 1);
1555 	/*
1556 	 * Attribute is resident, implying it is not compressed, encrypted, or
1557 	 * sparse.
1558 	 */
1559 	if (!NInoAttr(ni))
1560 		base_ni = ni;
1561 	else
1562 		base_ni = ni->ext.base_ntfs_ino;
1563 	BUG_ON(NInoNonResident(ni));
1564 	/* Map, pin, and lock the mft record. */
1565 	m = map_mft_record(base_ni);
1566 	if (IS_ERR(m)) {
1567 		err = PTR_ERR(m);
1568 		m = NULL;
1569 		ctx = NULL;
1570 		goto err_out;
1571 	}
1572 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1573 	if (unlikely(!ctx)) {
1574 		err = -ENOMEM;
1575 		goto err_out;
1576 	}
1577 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1578 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1579 	if (unlikely(err)) {
1580 		if (err == -ENOENT)
1581 			err = -EIO;
1582 		goto err_out;
1583 	}
1584 	a = ctx->attr;
1585 	BUG_ON(a->non_resident);
1586 	/* The total length of the attribute value. */
1587 	attr_len = le32_to_cpu(a->data.resident.value_length);
1588 	i_size = i_size_read(vi);
1589 	BUG_ON(attr_len != i_size);
1590 	BUG_ON(pos > attr_len);
1591 	end = pos + bytes;
1592 	BUG_ON(end > le32_to_cpu(a->length) -
1593 			le16_to_cpu(a->data.resident.value_offset));
1594 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1595 	kaddr = kmap_atomic(page);
1596 	/* Copy the received data from the page to the mft record. */
1597 	memcpy(kattr + pos, kaddr + pos, bytes);
1598 	/* Update the attribute length if necessary. */
1599 	if (end > attr_len) {
1600 		attr_len = end;
1601 		a->data.resident.value_length = cpu_to_le32(attr_len);
1602 	}
1603 	/*
1604 	 * If the page is not uptodate, bring the out of bounds area(s)
1605 	 * uptodate by copying data from the mft record to the page.
1606 	 */
1607 	if (!PageUptodate(page)) {
1608 		if (pos > 0)
1609 			memcpy(kaddr, kattr, pos);
1610 		if (end < attr_len)
1611 			memcpy(kaddr + end, kattr + end, attr_len - end);
1612 		/* Zero the region outside the end of the attribute value. */
1613 		memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1614 		flush_dcache_page(page);
1615 		SetPageUptodate(page);
1616 	}
1617 	kunmap_atomic(kaddr);
1618 	/* Update initialized_size/i_size if necessary. */
1619 	read_lock_irqsave(&ni->size_lock, flags);
1620 	initialized_size = ni->initialized_size;
1621 	BUG_ON(end > ni->allocated_size);
1622 	read_unlock_irqrestore(&ni->size_lock, flags);
1623 	BUG_ON(initialized_size != i_size);
1624 	if (end > initialized_size) {
1625 		write_lock_irqsave(&ni->size_lock, flags);
1626 		ni->initialized_size = end;
1627 		i_size_write(vi, end);
1628 		write_unlock_irqrestore(&ni->size_lock, flags);
1629 	}
1630 	/* Mark the mft record dirty, so it gets written back. */
1631 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1632 	mark_mft_record_dirty(ctx->ntfs_ino);
1633 	ntfs_attr_put_search_ctx(ctx);
1634 	unmap_mft_record(base_ni);
1635 	ntfs_debug("Done.");
1636 	return 0;
1637 err_out:
1638 	if (err == -ENOMEM) {
1639 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1640 				"commit the write.");
1641 		if (PageUptodate(page)) {
1642 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1643 					"dirty so the write will be retried "
1644 					"later on by the VM.");
1645 			/*
1646 			 * Put the page on mapping->dirty_pages, but leave its
1647 			 * buffers' dirty state as-is.
1648 			 */
1649 			__set_page_dirty_nobuffers(page);
1650 			err = 0;
1651 		} else
1652 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1653 					"data has been lost.");
1654 	} else {
1655 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1656 				"with error %i.", err);
1657 		NVolSetErrors(ni->vol);
1658 	}
1659 	if (ctx)
1660 		ntfs_attr_put_search_ctx(ctx);
1661 	if (m)
1662 		unmap_mft_record(base_ni);
1663 	return err;
1664 }
1665 
1666 /*
1667  * Copy as much as we can into the pages and return the number of bytes which
1668  * were successfully copied.  If a fault is encountered then clear the pages
1669  * out to (ofs + bytes) and return the number of bytes which were copied.
1670  */
ntfs_copy_from_user_iter(struct page ** pages,unsigned nr_pages,unsigned ofs,struct iov_iter * i,size_t bytes)1671 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1672 		unsigned ofs, struct iov_iter *i, size_t bytes)
1673 {
1674 	struct page **last_page = pages + nr_pages;
1675 	size_t total = 0;
1676 	unsigned len, copied;
1677 
1678 	do {
1679 		len = PAGE_SIZE - ofs;
1680 		if (len > bytes)
1681 			len = bytes;
1682 		copied = copy_page_from_iter_atomic(*pages, ofs, len, i);
1683 		total += copied;
1684 		bytes -= copied;
1685 		if (!bytes)
1686 			break;
1687 		if (copied < len)
1688 			goto err;
1689 		ofs = 0;
1690 	} while (++pages < last_page);
1691 out:
1692 	return total;
1693 err:
1694 	/* Zero the rest of the target like __copy_from_user(). */
1695 	len = PAGE_SIZE - copied;
1696 	do {
1697 		if (len > bytes)
1698 			len = bytes;
1699 		zero_user(*pages, copied, len);
1700 		bytes -= len;
1701 		copied = 0;
1702 		len = PAGE_SIZE;
1703 	} while (++pages < last_page);
1704 	goto out;
1705 }
1706 
1707 /**
1708  * ntfs_perform_write - perform buffered write to a file
1709  * @file:	file to write to
1710  * @i:		iov_iter with data to write
1711  * @pos:	byte offset in file at which to begin writing to
1712  */
ntfs_perform_write(struct file * file,struct iov_iter * i,loff_t pos)1713 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1714 		loff_t pos)
1715 {
1716 	struct address_space *mapping = file->f_mapping;
1717 	struct inode *vi = mapping->host;
1718 	ntfs_inode *ni = NTFS_I(vi);
1719 	ntfs_volume *vol = ni->vol;
1720 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1721 	struct page *cached_page = NULL;
1722 	VCN last_vcn;
1723 	LCN lcn;
1724 	size_t bytes;
1725 	ssize_t status, written = 0;
1726 	unsigned nr_pages;
1727 
1728 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1729 			"0x%llx, count 0x%lx.", vi->i_ino,
1730 			(unsigned)le32_to_cpu(ni->type),
1731 			(unsigned long long)pos,
1732 			(unsigned long)iov_iter_count(i));
1733 	/*
1734 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1735 	 * fails again.
1736 	 */
1737 	if (unlikely(NInoTruncateFailed(ni))) {
1738 		int err;
1739 
1740 		inode_dio_wait(vi);
1741 		err = ntfs_truncate(vi);
1742 		if (err || NInoTruncateFailed(ni)) {
1743 			if (!err)
1744 				err = -EIO;
1745 			ntfs_error(vol->sb, "Cannot perform write to inode "
1746 					"0x%lx, attribute type 0x%x, because "
1747 					"ntfs_truncate() failed (error code "
1748 					"%i).", vi->i_ino,
1749 					(unsigned)le32_to_cpu(ni->type), err);
1750 			return err;
1751 		}
1752 	}
1753 	/*
1754 	 * Determine the number of pages per cluster for non-resident
1755 	 * attributes.
1756 	 */
1757 	nr_pages = 1;
1758 	if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1759 		nr_pages = vol->cluster_size >> PAGE_SHIFT;
1760 	last_vcn = -1;
1761 	do {
1762 		VCN vcn;
1763 		pgoff_t start_idx;
1764 		unsigned ofs, do_pages, u;
1765 		size_t copied;
1766 
1767 		start_idx = pos >> PAGE_SHIFT;
1768 		ofs = pos & ~PAGE_MASK;
1769 		bytes = PAGE_SIZE - ofs;
1770 		do_pages = 1;
1771 		if (nr_pages > 1) {
1772 			vcn = pos >> vol->cluster_size_bits;
1773 			if (vcn != last_vcn) {
1774 				last_vcn = vcn;
1775 				/*
1776 				 * Get the lcn of the vcn the write is in.  If
1777 				 * it is a hole, need to lock down all pages in
1778 				 * the cluster.
1779 				 */
1780 				down_read(&ni->runlist.lock);
1781 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1782 						vol->cluster_size_bits, false);
1783 				up_read(&ni->runlist.lock);
1784 				if (unlikely(lcn < LCN_HOLE)) {
1785 					if (lcn == LCN_ENOMEM)
1786 						status = -ENOMEM;
1787 					else {
1788 						status = -EIO;
1789 						ntfs_error(vol->sb, "Cannot "
1790 							"perform write to "
1791 							"inode 0x%lx, "
1792 							"attribute type 0x%x, "
1793 							"because the attribute "
1794 							"is corrupt.",
1795 							vi->i_ino, (unsigned)
1796 							le32_to_cpu(ni->type));
1797 					}
1798 					break;
1799 				}
1800 				if (lcn == LCN_HOLE) {
1801 					start_idx = (pos & ~(s64)
1802 							vol->cluster_size_mask)
1803 							>> PAGE_SHIFT;
1804 					bytes = vol->cluster_size - (pos &
1805 							vol->cluster_size_mask);
1806 					do_pages = nr_pages;
1807 				}
1808 			}
1809 		}
1810 		if (bytes > iov_iter_count(i))
1811 			bytes = iov_iter_count(i);
1812 again:
1813 		/*
1814 		 * Bring in the user page(s) that we will copy from _first_.
1815 		 * Otherwise there is a nasty deadlock on copying from the same
1816 		 * page(s) as we are writing to, without it/them being marked
1817 		 * up-to-date.  Note, at present there is nothing to stop the
1818 		 * pages being swapped out between us bringing them into memory
1819 		 * and doing the actual copying.
1820 		 */
1821 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
1822 			status = -EFAULT;
1823 			break;
1824 		}
1825 		/* Get and lock @do_pages starting at index @start_idx. */
1826 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1827 				pages, &cached_page);
1828 		if (unlikely(status))
1829 			break;
1830 		/*
1831 		 * For non-resident attributes, we need to fill any holes with
1832 		 * actual clusters and ensure all bufferes are mapped.  We also
1833 		 * need to bring uptodate any buffers that are only partially
1834 		 * being written to.
1835 		 */
1836 		if (NInoNonResident(ni)) {
1837 			status = ntfs_prepare_pages_for_non_resident_write(
1838 					pages, do_pages, pos, bytes);
1839 			if (unlikely(status)) {
1840 				do {
1841 					unlock_page(pages[--do_pages]);
1842 					put_page(pages[do_pages]);
1843 				} while (do_pages);
1844 				break;
1845 			}
1846 		}
1847 		u = (pos >> PAGE_SHIFT) - pages[0]->index;
1848 		copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1849 					i, bytes);
1850 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
1851 		status = 0;
1852 		if (likely(copied == bytes)) {
1853 			status = ntfs_commit_pages_after_write(pages, do_pages,
1854 					pos, bytes);
1855 		}
1856 		do {
1857 			unlock_page(pages[--do_pages]);
1858 			put_page(pages[do_pages]);
1859 		} while (do_pages);
1860 		if (unlikely(status < 0)) {
1861 			iov_iter_revert(i, copied);
1862 			break;
1863 		}
1864 		cond_resched();
1865 		if (unlikely(copied < bytes)) {
1866 			iov_iter_revert(i, copied);
1867 			if (copied)
1868 				bytes = copied;
1869 			else if (bytes > PAGE_SIZE - ofs)
1870 				bytes = PAGE_SIZE - ofs;
1871 			goto again;
1872 		}
1873 		pos += copied;
1874 		written += copied;
1875 		balance_dirty_pages_ratelimited(mapping);
1876 		if (fatal_signal_pending(current)) {
1877 			status = -EINTR;
1878 			break;
1879 		}
1880 	} while (iov_iter_count(i));
1881 	if (cached_page)
1882 		put_page(cached_page);
1883 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
1884 			written ? "written" : "status", (unsigned long)written,
1885 			(long)status);
1886 	return written ? written : status;
1887 }
1888 
1889 /**
1890  * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1891  * @iocb:	IO state structure
1892  * @from:	iov_iter with data to write
1893  *
1894  * Basically the same as generic_file_write_iter() except that it ends up
1895  * up calling ntfs_perform_write() instead of generic_perform_write() and that
1896  * O_DIRECT is not implemented.
1897  */
ntfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1898 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1899 {
1900 	struct file *file = iocb->ki_filp;
1901 	struct inode *vi = file_inode(file);
1902 	ssize_t written = 0;
1903 	ssize_t err;
1904 
1905 	inode_lock(vi);
1906 	/* We can write back this queue in page reclaim. */
1907 	err = ntfs_prepare_file_for_write(iocb, from);
1908 	if (iov_iter_count(from) && !err)
1909 		written = ntfs_perform_write(file, from, iocb->ki_pos);
1910 	inode_unlock(vi);
1911 	iocb->ki_pos += written;
1912 	if (likely(written > 0))
1913 		written = generic_write_sync(iocb, written);
1914 	return written ? written : err;
1915 }
1916 
1917 /**
1918  * ntfs_file_fsync - sync a file to disk
1919  * @filp:	file to be synced
1920  * @datasync:	if non-zero only flush user data and not metadata
1921  *
1922  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
1923  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
1924  *
1925  * If @datasync is false, write the mft record and all associated extent mft
1926  * records as well as the $DATA attribute and then sync the block device.
1927  *
1928  * If @datasync is true and the attribute is non-resident, we skip the writing
1929  * of the mft record and all associated extent mft records (this might still
1930  * happen due to the write_inode_now() call).
1931  *
1932  * Also, if @datasync is true, we do not wait on the inode to be written out
1933  * but we always wait on the page cache pages to be written out.
1934  *
1935  * Locking: Caller must hold i_mutex on the inode.
1936  *
1937  * TODO: We should probably also write all attribute/index inodes associated
1938  * with this inode but since we have no simple way of getting to them we ignore
1939  * this problem for now.
1940  */
ntfs_file_fsync(struct file * filp,loff_t start,loff_t end,int datasync)1941 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1942 			   int datasync)
1943 {
1944 	struct inode *vi = filp->f_mapping->host;
1945 	int err, ret = 0;
1946 
1947 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1948 
1949 	err = file_write_and_wait_range(filp, start, end);
1950 	if (err)
1951 		return err;
1952 	inode_lock(vi);
1953 
1954 	BUG_ON(S_ISDIR(vi->i_mode));
1955 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
1956 		ret = __ntfs_write_inode(vi, 1);
1957 	write_inode_now(vi, !datasync);
1958 	/*
1959 	 * NOTE: If we were to use mapping->private_list (see ext2 and
1960 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1961 	 * sync_mapping_buffers(vi->i_mapping).
1962 	 */
1963 	err = sync_blockdev(vi->i_sb->s_bdev);
1964 	if (unlikely(err && !ret))
1965 		ret = err;
1966 	if (likely(!ret))
1967 		ntfs_debug("Done.");
1968 	else
1969 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
1970 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
1971 	inode_unlock(vi);
1972 	return ret;
1973 }
1974 
1975 #endif /* NTFS_RW */
1976 
1977 const struct file_operations ntfs_file_ops = {
1978 	.llseek		= generic_file_llseek,
1979 	.read_iter	= generic_file_read_iter,
1980 #ifdef NTFS_RW
1981 	.write_iter	= ntfs_file_write_iter,
1982 	.fsync		= ntfs_file_fsync,
1983 #endif /* NTFS_RW */
1984 	.mmap		= generic_file_mmap,
1985 	.open		= ntfs_file_open,
1986 	.splice_read	= filemap_splice_read,
1987 };
1988 
1989 const struct inode_operations ntfs_file_inode_ops = {
1990 #ifdef NTFS_RW
1991 	.setattr	= ntfs_setattr,
1992 #endif /* NTFS_RW */
1993 };
1994 
1995 const struct file_operations ntfs_empty_file_ops = {};
1996 
1997 const struct inode_operations ntfs_empty_inode_ops = {};
1998