1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 #include "raid-stripe-tree.h"
75
76 struct btrfs_iget_args {
77 u64 ino;
78 struct btrfs_root *root;
79 };
80
81 struct btrfs_dio_data {
82 ssize_t submitted;
83 struct extent_changeset *data_reserved;
84 struct btrfs_ordered_extent *ordered;
85 bool data_space_reserved;
86 bool nocow_done;
87 };
88
89 struct btrfs_dio_private {
90 /* Range of I/O */
91 u64 file_offset;
92 u32 bytes;
93
94 /* This must be last */
95 struct btrfs_bio bbio;
96 };
97
98 static struct bio_set btrfs_dio_bioset;
99
100 struct btrfs_rename_ctx {
101 /* Output field. Stores the index number of the old directory entry. */
102 u64 index;
103 };
104
105 /*
106 * Used by data_reloc_print_warning_inode() to pass needed info for filename
107 * resolution and output of error message.
108 */
109 struct data_reloc_warn {
110 struct btrfs_path path;
111 struct btrfs_fs_info *fs_info;
112 u64 extent_item_size;
113 u64 logical;
114 int mirror_num;
115 };
116
117 /*
118 * For the file_extent_tree, we want to hold the inode lock when we lookup and
119 * update the disk_i_size, but lockdep will complain because our io_tree we hold
120 * the tree lock and get the inode lock when setting delalloc. These two things
121 * are unrelated, so make a class for the file_extent_tree so we don't get the
122 * two locking patterns mixed up.
123 */
124 static struct lock_class_key file_extent_tree_class;
125
126 static const struct inode_operations btrfs_dir_inode_operations;
127 static const struct inode_operations btrfs_symlink_inode_operations;
128 static const struct inode_operations btrfs_special_inode_operations;
129 static const struct inode_operations btrfs_file_inode_operations;
130 static const struct address_space_operations btrfs_aops;
131 static const struct file_operations btrfs_dir_file_operations;
132
133 static struct kmem_cache *btrfs_inode_cachep;
134
135 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
136 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
137
138 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
139 struct page *locked_page, u64 start,
140 u64 end, struct writeback_control *wbc,
141 bool pages_dirty);
142 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
143 u64 len, u64 orig_start, u64 block_start,
144 u64 block_len, u64 orig_block_len,
145 u64 ram_bytes, int compress_type,
146 int type);
147
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)148 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
149 u64 root, void *warn_ctx)
150 {
151 struct data_reloc_warn *warn = warn_ctx;
152 struct btrfs_fs_info *fs_info = warn->fs_info;
153 struct extent_buffer *eb;
154 struct btrfs_inode_item *inode_item;
155 struct inode_fs_paths *ipath = NULL;
156 struct btrfs_root *local_root;
157 struct btrfs_key key;
158 unsigned int nofs_flag;
159 u32 nlink;
160 int ret;
161
162 local_root = btrfs_get_fs_root(fs_info, root, true);
163 if (IS_ERR(local_root)) {
164 ret = PTR_ERR(local_root);
165 goto err;
166 }
167
168 /* This makes the path point to (inum INODE_ITEM ioff). */
169 key.objectid = inum;
170 key.type = BTRFS_INODE_ITEM_KEY;
171 key.offset = 0;
172
173 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
174 if (ret) {
175 btrfs_put_root(local_root);
176 btrfs_release_path(&warn->path);
177 goto err;
178 }
179
180 eb = warn->path.nodes[0];
181 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
182 nlink = btrfs_inode_nlink(eb, inode_item);
183 btrfs_release_path(&warn->path);
184
185 nofs_flag = memalloc_nofs_save();
186 ipath = init_ipath(4096, local_root, &warn->path);
187 memalloc_nofs_restore(nofs_flag);
188 if (IS_ERR(ipath)) {
189 btrfs_put_root(local_root);
190 ret = PTR_ERR(ipath);
191 ipath = NULL;
192 /*
193 * -ENOMEM, not a critical error, just output an generic error
194 * without filename.
195 */
196 btrfs_warn(fs_info,
197 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
198 warn->logical, warn->mirror_num, root, inum, offset);
199 return ret;
200 }
201 ret = paths_from_inode(inum, ipath);
202 if (ret < 0)
203 goto err;
204
205 /*
206 * We deliberately ignore the bit ipath might have been too small to
207 * hold all of the paths here
208 */
209 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
210 btrfs_warn(fs_info,
211 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
212 warn->logical, warn->mirror_num, root, inum, offset,
213 fs_info->sectorsize, nlink,
214 (char *)(unsigned long)ipath->fspath->val[i]);
215 }
216
217 btrfs_put_root(local_root);
218 free_ipath(ipath);
219 return 0;
220
221 err:
222 btrfs_warn(fs_info,
223 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
224 warn->logical, warn->mirror_num, root, inum, offset, ret);
225
226 free_ipath(ipath);
227 return ret;
228 }
229
230 /*
231 * Do extra user-friendly error output (e.g. lookup all the affected files).
232 *
233 * Return true if we succeeded doing the backref lookup.
234 * Return false if such lookup failed, and has to fallback to the old error message.
235 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)236 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
237 const u8 *csum, const u8 *csum_expected,
238 int mirror_num)
239 {
240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
241 struct btrfs_path path = { 0 };
242 struct btrfs_key found_key = { 0 };
243 struct extent_buffer *eb;
244 struct btrfs_extent_item *ei;
245 const u32 csum_size = fs_info->csum_size;
246 u64 logical;
247 u64 flags;
248 u32 item_size;
249 int ret;
250
251 mutex_lock(&fs_info->reloc_mutex);
252 logical = btrfs_get_reloc_bg_bytenr(fs_info);
253 mutex_unlock(&fs_info->reloc_mutex);
254
255 if (logical == U64_MAX) {
256 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
257 btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
260 CSUM_FMT_VALUE(csum_size, csum),
261 CSUM_FMT_VALUE(csum_size, csum_expected),
262 mirror_num);
263 return;
264 }
265
266 logical += file_off;
267 btrfs_warn_rl(fs_info,
268 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
269 inode->root->root_key.objectid,
270 btrfs_ino(inode), file_off, logical,
271 CSUM_FMT_VALUE(csum_size, csum),
272 CSUM_FMT_VALUE(csum_size, csum_expected),
273 mirror_num);
274
275 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
276 if (ret < 0) {
277 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
278 logical, ret);
279 return;
280 }
281 eb = path.nodes[0];
282 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
283 item_size = btrfs_item_size(eb, path.slots[0]);
284 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
285 unsigned long ptr = 0;
286 u64 ref_root;
287 u8 ref_level;
288
289 while (true) {
290 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
291 item_size, &ref_root,
292 &ref_level);
293 if (ret < 0) {
294 btrfs_warn_rl(fs_info,
295 "failed to resolve tree backref for logical %llu: %d",
296 logical, ret);
297 break;
298 }
299 if (ret > 0)
300 break;
301
302 btrfs_warn_rl(fs_info,
303 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
304 logical, mirror_num,
305 (ref_level ? "node" : "leaf"),
306 ref_level, ref_root);
307 }
308 btrfs_release_path(&path);
309 } else {
310 struct btrfs_backref_walk_ctx ctx = { 0 };
311 struct data_reloc_warn reloc_warn = { 0 };
312
313 btrfs_release_path(&path);
314
315 ctx.bytenr = found_key.objectid;
316 ctx.extent_item_pos = logical - found_key.objectid;
317 ctx.fs_info = fs_info;
318
319 reloc_warn.logical = logical;
320 reloc_warn.extent_item_size = found_key.offset;
321 reloc_warn.mirror_num = mirror_num;
322 reloc_warn.fs_info = fs_info;
323
324 iterate_extent_inodes(&ctx, true,
325 data_reloc_print_warning_inode, &reloc_warn);
326 }
327 }
328
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)329 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
330 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
331 {
332 struct btrfs_root *root = inode->root;
333 const u32 csum_size = root->fs_info->csum_size;
334
335 /* For data reloc tree, it's better to do a backref lookup instead. */
336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
337 return print_data_reloc_error(inode, logical_start, csum,
338 csum_expected, mirror_num);
339
340 /* Output without objectid, which is more meaningful */
341 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
342 btrfs_warn_rl(root->fs_info,
343 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
344 root->root_key.objectid, btrfs_ino(inode),
345 logical_start,
346 CSUM_FMT_VALUE(csum_size, csum),
347 CSUM_FMT_VALUE(csum_size, csum_expected),
348 mirror_num);
349 } else {
350 btrfs_warn_rl(root->fs_info,
351 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
352 root->root_key.objectid, btrfs_ino(inode),
353 logical_start,
354 CSUM_FMT_VALUE(csum_size, csum),
355 CSUM_FMT_VALUE(csum_size, csum_expected),
356 mirror_num);
357 }
358 }
359
360 /*
361 * Lock inode i_rwsem based on arguments passed.
362 *
363 * ilock_flags can have the following bit set:
364 *
365 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
366 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
367 * return -EAGAIN
368 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
369 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)370 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
371 {
372 if (ilock_flags & BTRFS_ILOCK_SHARED) {
373 if (ilock_flags & BTRFS_ILOCK_TRY) {
374 if (!inode_trylock_shared(&inode->vfs_inode))
375 return -EAGAIN;
376 else
377 return 0;
378 }
379 inode_lock_shared(&inode->vfs_inode);
380 } else {
381 if (ilock_flags & BTRFS_ILOCK_TRY) {
382 if (!inode_trylock(&inode->vfs_inode))
383 return -EAGAIN;
384 else
385 return 0;
386 }
387 inode_lock(&inode->vfs_inode);
388 }
389 if (ilock_flags & BTRFS_ILOCK_MMAP)
390 down_write(&inode->i_mmap_lock);
391 return 0;
392 }
393
394 /*
395 * Unock inode i_rwsem.
396 *
397 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
398 * to decide whether the lock acquired is shared or exclusive.
399 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)400 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
401 {
402 if (ilock_flags & BTRFS_ILOCK_MMAP)
403 up_write(&inode->i_mmap_lock);
404 if (ilock_flags & BTRFS_ILOCK_SHARED)
405 inode_unlock_shared(&inode->vfs_inode);
406 else
407 inode_unlock(&inode->vfs_inode);
408 }
409
410 /*
411 * Cleanup all submitted ordered extents in specified range to handle errors
412 * from the btrfs_run_delalloc_range() callback.
413 *
414 * NOTE: caller must ensure that when an error happens, it can not call
415 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
416 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
417 * to be released, which we want to happen only when finishing the ordered
418 * extent (btrfs_finish_ordered_io()).
419 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)420 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
421 struct page *locked_page,
422 u64 offset, u64 bytes)
423 {
424 unsigned long index = offset >> PAGE_SHIFT;
425 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
426 u64 page_start = 0, page_end = 0;
427 struct page *page;
428
429 if (locked_page) {
430 page_start = page_offset(locked_page);
431 page_end = page_start + PAGE_SIZE - 1;
432 }
433
434 while (index <= end_index) {
435 /*
436 * For locked page, we will call btrfs_mark_ordered_io_finished
437 * through btrfs_mark_ordered_io_finished() on it
438 * in run_delalloc_range() for the error handling, which will
439 * clear page Ordered and run the ordered extent accounting.
440 *
441 * Here we can't just clear the Ordered bit, or
442 * btrfs_mark_ordered_io_finished() would skip the accounting
443 * for the page range, and the ordered extent will never finish.
444 */
445 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
446 index++;
447 continue;
448 }
449 page = find_get_page(inode->vfs_inode.i_mapping, index);
450 index++;
451 if (!page)
452 continue;
453
454 /*
455 * Here we just clear all Ordered bits for every page in the
456 * range, then btrfs_mark_ordered_io_finished() will handle
457 * the ordered extent accounting for the range.
458 */
459 btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
460 page_folio(page), offset, bytes);
461 put_page(page);
462 }
463
464 if (locked_page) {
465 /* The locked page covers the full range, nothing needs to be done */
466 if (bytes + offset <= page_start + PAGE_SIZE)
467 return;
468 /*
469 * In case this page belongs to the delalloc range being
470 * instantiated then skip it, since the first page of a range is
471 * going to be properly cleaned up by the caller of
472 * run_delalloc_range
473 */
474 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
475 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
476 offset = page_offset(locked_page) + PAGE_SIZE;
477 }
478 }
479
480 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
481 }
482
483 static int btrfs_dirty_inode(struct btrfs_inode *inode);
484
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)485 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
486 struct btrfs_new_inode_args *args)
487 {
488 int err;
489
490 if (args->default_acl) {
491 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
492 ACL_TYPE_DEFAULT);
493 if (err)
494 return err;
495 }
496 if (args->acl) {
497 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
498 if (err)
499 return err;
500 }
501 if (!args->default_acl && !args->acl)
502 cache_no_acl(args->inode);
503 return btrfs_xattr_security_init(trans, args->inode, args->dir,
504 &args->dentry->d_name);
505 }
506
507 /*
508 * this does all the hard work for inserting an inline extent into
509 * the btree. The caller should have done a btrfs_drop_extents so that
510 * no overlapping inline items exist in the btree
511 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)512 static int insert_inline_extent(struct btrfs_trans_handle *trans,
513 struct btrfs_path *path,
514 struct btrfs_inode *inode, bool extent_inserted,
515 size_t size, size_t compressed_size,
516 int compress_type,
517 struct page **compressed_pages,
518 bool update_i_size)
519 {
520 struct btrfs_root *root = inode->root;
521 struct extent_buffer *leaf;
522 struct page *page = NULL;
523 char *kaddr;
524 unsigned long ptr;
525 struct btrfs_file_extent_item *ei;
526 int ret;
527 size_t cur_size = size;
528 u64 i_size;
529
530 ASSERT((compressed_size > 0 && compressed_pages) ||
531 (compressed_size == 0 && !compressed_pages));
532
533 if (compressed_size && compressed_pages)
534 cur_size = compressed_size;
535
536 if (!extent_inserted) {
537 struct btrfs_key key;
538 size_t datasize;
539
540 key.objectid = btrfs_ino(inode);
541 key.offset = 0;
542 key.type = BTRFS_EXTENT_DATA_KEY;
543
544 datasize = btrfs_file_extent_calc_inline_size(cur_size);
545 ret = btrfs_insert_empty_item(trans, root, path, &key,
546 datasize);
547 if (ret)
548 goto fail;
549 }
550 leaf = path->nodes[0];
551 ei = btrfs_item_ptr(leaf, path->slots[0],
552 struct btrfs_file_extent_item);
553 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
554 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
555 btrfs_set_file_extent_encryption(leaf, ei, 0);
556 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
557 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
558 ptr = btrfs_file_extent_inline_start(ei);
559
560 if (compress_type != BTRFS_COMPRESS_NONE) {
561 struct page *cpage;
562 int i = 0;
563 while (compressed_size > 0) {
564 cpage = compressed_pages[i];
565 cur_size = min_t(unsigned long, compressed_size,
566 PAGE_SIZE);
567
568 kaddr = kmap_local_page(cpage);
569 write_extent_buffer(leaf, kaddr, ptr, cur_size);
570 kunmap_local(kaddr);
571
572 i++;
573 ptr += cur_size;
574 compressed_size -= cur_size;
575 }
576 btrfs_set_file_extent_compression(leaf, ei,
577 compress_type);
578 } else {
579 page = find_get_page(inode->vfs_inode.i_mapping, 0);
580 btrfs_set_file_extent_compression(leaf, ei, 0);
581 kaddr = kmap_local_page(page);
582 write_extent_buffer(leaf, kaddr, ptr, size);
583 kunmap_local(kaddr);
584 put_page(page);
585 }
586 btrfs_mark_buffer_dirty(trans, leaf);
587 btrfs_release_path(path);
588
589 /*
590 * We align size to sectorsize for inline extents just for simplicity
591 * sake.
592 */
593 ret = btrfs_inode_set_file_extent_range(inode, 0,
594 ALIGN(size, root->fs_info->sectorsize));
595 if (ret)
596 goto fail;
597
598 /*
599 * We're an inline extent, so nobody can extend the file past i_size
600 * without locking a page we already have locked.
601 *
602 * We must do any i_size and inode updates before we unlock the pages.
603 * Otherwise we could end up racing with unlink.
604 */
605 i_size = i_size_read(&inode->vfs_inode);
606 if (update_i_size && size > i_size) {
607 i_size_write(&inode->vfs_inode, size);
608 i_size = size;
609 }
610 inode->disk_i_size = i_size;
611
612 fail:
613 return ret;
614 }
615
616
617 /*
618 * conditionally insert an inline extent into the file. This
619 * does the checks required to make sure the data is small enough
620 * to fit as an inline extent.
621 */
cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)622 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
623 size_t compressed_size,
624 int compress_type,
625 struct page **compressed_pages,
626 bool update_i_size)
627 {
628 struct btrfs_drop_extents_args drop_args = { 0 };
629 struct btrfs_root *root = inode->root;
630 struct btrfs_fs_info *fs_info = root->fs_info;
631 struct btrfs_trans_handle *trans;
632 u64 data_len = (compressed_size ?: size);
633 int ret;
634 struct btrfs_path *path;
635
636 /*
637 * We can create an inline extent if it ends at or beyond the current
638 * i_size, is no larger than a sector (decompressed), and the (possibly
639 * compressed) data fits in a leaf and the configured maximum inline
640 * size.
641 */
642 if (size < i_size_read(&inode->vfs_inode) ||
643 size > fs_info->sectorsize ||
644 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
645 data_len > fs_info->max_inline)
646 return 1;
647
648 path = btrfs_alloc_path();
649 if (!path)
650 return -ENOMEM;
651
652 trans = btrfs_join_transaction(root);
653 if (IS_ERR(trans)) {
654 btrfs_free_path(path);
655 return PTR_ERR(trans);
656 }
657 trans->block_rsv = &inode->block_rsv;
658
659 drop_args.path = path;
660 drop_args.start = 0;
661 drop_args.end = fs_info->sectorsize;
662 drop_args.drop_cache = true;
663 drop_args.replace_extent = true;
664 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
665 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
666 if (ret) {
667 btrfs_abort_transaction(trans, ret);
668 goto out;
669 }
670
671 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
672 size, compressed_size, compress_type,
673 compressed_pages, update_i_size);
674 if (ret && ret != -ENOSPC) {
675 btrfs_abort_transaction(trans, ret);
676 goto out;
677 } else if (ret == -ENOSPC) {
678 ret = 1;
679 goto out;
680 }
681
682 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
683 ret = btrfs_update_inode(trans, inode);
684 if (ret && ret != -ENOSPC) {
685 btrfs_abort_transaction(trans, ret);
686 goto out;
687 } else if (ret == -ENOSPC) {
688 ret = 1;
689 goto out;
690 }
691
692 btrfs_set_inode_full_sync(inode);
693 out:
694 /*
695 * Don't forget to free the reserved space, as for inlined extent
696 * it won't count as data extent, free them directly here.
697 * And at reserve time, it's always aligned to page size, so
698 * just free one page here.
699 */
700 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
701 btrfs_free_path(path);
702 btrfs_end_transaction(trans);
703 return ret;
704 }
705
706 struct async_extent {
707 u64 start;
708 u64 ram_size;
709 u64 compressed_size;
710 struct page **pages;
711 unsigned long nr_pages;
712 int compress_type;
713 struct list_head list;
714 };
715
716 struct async_chunk {
717 struct btrfs_inode *inode;
718 struct page *locked_page;
719 u64 start;
720 u64 end;
721 blk_opf_t write_flags;
722 struct list_head extents;
723 struct cgroup_subsys_state *blkcg_css;
724 struct btrfs_work work;
725 struct async_cow *async_cow;
726 };
727
728 struct async_cow {
729 atomic_t num_chunks;
730 struct async_chunk chunks[];
731 };
732
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)733 static noinline int add_async_extent(struct async_chunk *cow,
734 u64 start, u64 ram_size,
735 u64 compressed_size,
736 struct page **pages,
737 unsigned long nr_pages,
738 int compress_type)
739 {
740 struct async_extent *async_extent;
741
742 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
743 BUG_ON(!async_extent); /* -ENOMEM */
744 async_extent->start = start;
745 async_extent->ram_size = ram_size;
746 async_extent->compressed_size = compressed_size;
747 async_extent->pages = pages;
748 async_extent->nr_pages = nr_pages;
749 async_extent->compress_type = compress_type;
750 list_add_tail(&async_extent->list, &cow->extents);
751 return 0;
752 }
753
754 /*
755 * Check if the inode needs to be submitted to compression, based on mount
756 * options, defragmentation, properties or heuristics.
757 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)758 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
759 u64 end)
760 {
761 struct btrfs_fs_info *fs_info = inode->root->fs_info;
762
763 if (!btrfs_inode_can_compress(inode)) {
764 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
765 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
766 btrfs_ino(inode));
767 return 0;
768 }
769 /*
770 * Special check for subpage.
771 *
772 * We lock the full page then run each delalloc range in the page, thus
773 * for the following case, we will hit some subpage specific corner case:
774 *
775 * 0 32K 64K
776 * | |///////| |///////|
777 * \- A \- B
778 *
779 * In above case, both range A and range B will try to unlock the full
780 * page [0, 64K), causing the one finished later will have page
781 * unlocked already, triggering various page lock requirement BUG_ON()s.
782 *
783 * So here we add an artificial limit that subpage compression can only
784 * if the range is fully page aligned.
785 *
786 * In theory we only need to ensure the first page is fully covered, but
787 * the tailing partial page will be locked until the full compression
788 * finishes, delaying the write of other range.
789 *
790 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
791 * first to prevent any submitted async extent to unlock the full page.
792 * By this, we can ensure for subpage case that only the last async_cow
793 * will unlock the full page.
794 */
795 if (fs_info->sectorsize < PAGE_SIZE) {
796 if (!PAGE_ALIGNED(start) ||
797 !PAGE_ALIGNED(end + 1))
798 return 0;
799 }
800
801 /* force compress */
802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
803 return 1;
804 /* defrag ioctl */
805 if (inode->defrag_compress)
806 return 1;
807 /* bad compression ratios */
808 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
809 return 0;
810 if (btrfs_test_opt(fs_info, COMPRESS) ||
811 inode->flags & BTRFS_INODE_COMPRESS ||
812 inode->prop_compress)
813 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
814 return 0;
815 }
816
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)817 static inline void inode_should_defrag(struct btrfs_inode *inode,
818 u64 start, u64 end, u64 num_bytes, u32 small_write)
819 {
820 /* If this is a small write inside eof, kick off a defrag */
821 if (num_bytes < small_write &&
822 (start > 0 || end + 1 < inode->disk_i_size))
823 btrfs_add_inode_defrag(NULL, inode, small_write);
824 }
825
826 /*
827 * Work queue call back to started compression on a file and pages.
828 *
829 * This is done inside an ordered work queue, and the compression is spread
830 * across many cpus. The actual IO submission is step two, and the ordered work
831 * queue takes care of making sure that happens in the same order things were
832 * put onto the queue by writepages and friends.
833 *
834 * If this code finds it can't get good compression, it puts an entry onto the
835 * work queue to write the uncompressed bytes. This makes sure that both
836 * compressed inodes and uncompressed inodes are written in the same order that
837 * the flusher thread sent them down.
838 */
compress_file_range(struct btrfs_work * work)839 static void compress_file_range(struct btrfs_work *work)
840 {
841 struct async_chunk *async_chunk =
842 container_of(work, struct async_chunk, work);
843 struct btrfs_inode *inode = async_chunk->inode;
844 struct btrfs_fs_info *fs_info = inode->root->fs_info;
845 struct address_space *mapping = inode->vfs_inode.i_mapping;
846 u64 blocksize = fs_info->sectorsize;
847 u64 start = async_chunk->start;
848 u64 end = async_chunk->end;
849 u64 actual_end;
850 u64 i_size;
851 int ret = 0;
852 struct page **pages;
853 unsigned long nr_pages;
854 unsigned long total_compressed = 0;
855 unsigned long total_in = 0;
856 unsigned int poff;
857 int i;
858 int compress_type = fs_info->compress_type;
859
860 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
861
862 /*
863 * We need to call clear_page_dirty_for_io on each page in the range.
864 * Otherwise applications with the file mmap'd can wander in and change
865 * the page contents while we are compressing them.
866 */
867 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
868
869 /*
870 * We need to save i_size before now because it could change in between
871 * us evaluating the size and assigning it. This is because we lock and
872 * unlock the page in truncate and fallocate, and then modify the i_size
873 * later on.
874 *
875 * The barriers are to emulate READ_ONCE, remove that once i_size_read
876 * does that for us.
877 */
878 barrier();
879 i_size = i_size_read(&inode->vfs_inode);
880 barrier();
881 actual_end = min_t(u64, i_size, end + 1);
882 again:
883 pages = NULL;
884 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
885 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
886
887 /*
888 * we don't want to send crud past the end of i_size through
889 * compression, that's just a waste of CPU time. So, if the
890 * end of the file is before the start of our current
891 * requested range of bytes, we bail out to the uncompressed
892 * cleanup code that can deal with all of this.
893 *
894 * It isn't really the fastest way to fix things, but this is a
895 * very uncommon corner.
896 */
897 if (actual_end <= start)
898 goto cleanup_and_bail_uncompressed;
899
900 total_compressed = actual_end - start;
901
902 /*
903 * Skip compression for a small file range(<=blocksize) that
904 * isn't an inline extent, since it doesn't save disk space at all.
905 */
906 if (total_compressed <= blocksize &&
907 (start > 0 || end + 1 < inode->disk_i_size))
908 goto cleanup_and_bail_uncompressed;
909
910 /*
911 * For subpage case, we require full page alignment for the sector
912 * aligned range.
913 * Thus we must also check against @actual_end, not just @end.
914 */
915 if (blocksize < PAGE_SIZE) {
916 if (!PAGE_ALIGNED(start) ||
917 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
918 goto cleanup_and_bail_uncompressed;
919 }
920
921 total_compressed = min_t(unsigned long, total_compressed,
922 BTRFS_MAX_UNCOMPRESSED);
923 total_in = 0;
924 ret = 0;
925
926 /*
927 * We do compression for mount -o compress and when the inode has not
928 * been flagged as NOCOMPRESS. This flag can change at any time if we
929 * discover bad compression ratios.
930 */
931 if (!inode_need_compress(inode, start, end))
932 goto cleanup_and_bail_uncompressed;
933
934 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
935 if (!pages) {
936 /*
937 * Memory allocation failure is not a fatal error, we can fall
938 * back to uncompressed code.
939 */
940 goto cleanup_and_bail_uncompressed;
941 }
942
943 if (inode->defrag_compress)
944 compress_type = inode->defrag_compress;
945 else if (inode->prop_compress)
946 compress_type = inode->prop_compress;
947
948 /* Compression level is applied here. */
949 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
950 mapping, start, pages, &nr_pages, &total_in,
951 &total_compressed);
952 if (ret)
953 goto mark_incompressible;
954
955 /*
956 * Zero the tail end of the last page, as we might be sending it down
957 * to disk.
958 */
959 poff = offset_in_page(total_compressed);
960 if (poff)
961 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
962
963 /*
964 * Try to create an inline extent.
965 *
966 * If we didn't compress the entire range, try to create an uncompressed
967 * inline extent, else a compressed one.
968 *
969 * Check cow_file_range() for why we don't even try to create inline
970 * extent for the subpage case.
971 */
972 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
973 if (total_in < actual_end) {
974 ret = cow_file_range_inline(inode, actual_end, 0,
975 BTRFS_COMPRESS_NONE, NULL,
976 false);
977 } else {
978 ret = cow_file_range_inline(inode, actual_end,
979 total_compressed,
980 compress_type, pages,
981 false);
982 }
983 if (ret <= 0) {
984 unsigned long clear_flags = EXTENT_DELALLOC |
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING;
987
988 if (ret < 0)
989 mapping_set_error(mapping, -EIO);
990
991 /*
992 * inline extent creation worked or returned error,
993 * we don't need to create any more async work items.
994 * Unlock and free up our temp pages.
995 *
996 * We use DO_ACCOUNTING here because we need the
997 * delalloc_release_metadata to be done _after_ we drop
998 * our outstanding extent for clearing delalloc for this
999 * range.
1000 */
1001 extent_clear_unlock_delalloc(inode, start, end,
1002 NULL,
1003 clear_flags,
1004 PAGE_UNLOCK |
1005 PAGE_START_WRITEBACK |
1006 PAGE_END_WRITEBACK);
1007 goto free_pages;
1008 }
1009 }
1010
1011 /*
1012 * We aren't doing an inline extent. Round the compressed size up to a
1013 * block size boundary so the allocator does sane things.
1014 */
1015 total_compressed = ALIGN(total_compressed, blocksize);
1016
1017 /*
1018 * One last check to make sure the compression is really a win, compare
1019 * the page count read with the blocks on disk, compression must free at
1020 * least one sector.
1021 */
1022 total_in = round_up(total_in, fs_info->sectorsize);
1023 if (total_compressed + blocksize > total_in)
1024 goto mark_incompressible;
1025
1026 /*
1027 * The async work queues will take care of doing actual allocation on
1028 * disk for these compressed pages, and will submit the bios.
1029 */
1030 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1031 nr_pages, compress_type);
1032 if (start + total_in < end) {
1033 start += total_in;
1034 cond_resched();
1035 goto again;
1036 }
1037 return;
1038
1039 mark_incompressible:
1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1042 cleanup_and_bail_uncompressed:
1043 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1044 BTRFS_COMPRESS_NONE);
1045 free_pages:
1046 if (pages) {
1047 for (i = 0; i < nr_pages; i++) {
1048 WARN_ON(pages[i]->mapping);
1049 btrfs_free_compr_page(pages[i]);
1050 }
1051 kfree(pages);
1052 }
1053 }
1054
free_async_extent_pages(struct async_extent * async_extent)1055 static void free_async_extent_pages(struct async_extent *async_extent)
1056 {
1057 int i;
1058
1059 if (!async_extent->pages)
1060 return;
1061
1062 for (i = 0; i < async_extent->nr_pages; i++) {
1063 WARN_ON(async_extent->pages[i]->mapping);
1064 btrfs_free_compr_page(async_extent->pages[i]);
1065 }
1066 kfree(async_extent->pages);
1067 async_extent->nr_pages = 0;
1068 async_extent->pages = NULL;
1069 }
1070
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct page * locked_page)1071 static void submit_uncompressed_range(struct btrfs_inode *inode,
1072 struct async_extent *async_extent,
1073 struct page *locked_page)
1074 {
1075 u64 start = async_extent->start;
1076 u64 end = async_extent->start + async_extent->ram_size - 1;
1077 int ret;
1078 struct writeback_control wbc = {
1079 .sync_mode = WB_SYNC_ALL,
1080 .range_start = start,
1081 .range_end = end,
1082 .no_cgroup_owner = 1,
1083 };
1084
1085 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1086 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1087 wbc_detach_inode(&wbc);
1088 if (ret < 0) {
1089 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1090 if (locked_page) {
1091 const u64 page_start = page_offset(locked_page);
1092
1093 set_page_writeback(locked_page);
1094 end_page_writeback(locked_page);
1095 btrfs_mark_ordered_io_finished(inode, locked_page,
1096 page_start, PAGE_SIZE,
1097 !ret);
1098 mapping_set_error(locked_page->mapping, ret);
1099 unlock_page(locked_page);
1100 }
1101 }
1102 }
1103
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1104 static void submit_one_async_extent(struct async_chunk *async_chunk,
1105 struct async_extent *async_extent,
1106 u64 *alloc_hint)
1107 {
1108 struct btrfs_inode *inode = async_chunk->inode;
1109 struct extent_io_tree *io_tree = &inode->io_tree;
1110 struct btrfs_root *root = inode->root;
1111 struct btrfs_fs_info *fs_info = root->fs_info;
1112 struct btrfs_ordered_extent *ordered;
1113 struct btrfs_key ins;
1114 struct page *locked_page = NULL;
1115 struct extent_map *em;
1116 int ret = 0;
1117 u64 start = async_extent->start;
1118 u64 end = async_extent->start + async_extent->ram_size - 1;
1119
1120 if (async_chunk->blkcg_css)
1121 kthread_associate_blkcg(async_chunk->blkcg_css);
1122
1123 /*
1124 * If async_chunk->locked_page is in the async_extent range, we need to
1125 * handle it.
1126 */
1127 if (async_chunk->locked_page) {
1128 u64 locked_page_start = page_offset(async_chunk->locked_page);
1129 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1130
1131 if (!(start >= locked_page_end || end <= locked_page_start))
1132 locked_page = async_chunk->locked_page;
1133 }
1134 lock_extent(io_tree, start, end, NULL);
1135
1136 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1137 submit_uncompressed_range(inode, async_extent, locked_page);
1138 goto done;
1139 }
1140
1141 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1142 async_extent->compressed_size,
1143 async_extent->compressed_size,
1144 0, *alloc_hint, &ins, 1, 1);
1145 if (ret) {
1146 /*
1147 * Here we used to try again by going back to non-compressed
1148 * path for ENOSPC. But we can't reserve space even for
1149 * compressed size, how could it work for uncompressed size
1150 * which requires larger size? So here we directly go error
1151 * path.
1152 */
1153 goto out_free;
1154 }
1155
1156 /* Here we're doing allocation and writeback of the compressed pages */
1157 em = create_io_em(inode, start,
1158 async_extent->ram_size, /* len */
1159 start, /* orig_start */
1160 ins.objectid, /* block_start */
1161 ins.offset, /* block_len */
1162 ins.offset, /* orig_block_len */
1163 async_extent->ram_size, /* ram_bytes */
1164 async_extent->compress_type,
1165 BTRFS_ORDERED_COMPRESSED);
1166 if (IS_ERR(em)) {
1167 ret = PTR_ERR(em);
1168 goto out_free_reserve;
1169 }
1170 free_extent_map(em);
1171
1172 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1173 async_extent->ram_size, /* num_bytes */
1174 async_extent->ram_size, /* ram_bytes */
1175 ins.objectid, /* disk_bytenr */
1176 ins.offset, /* disk_num_bytes */
1177 0, /* offset */
1178 1 << BTRFS_ORDERED_COMPRESSED,
1179 async_extent->compress_type);
1180 if (IS_ERR(ordered)) {
1181 btrfs_drop_extent_map_range(inode, start, end, false);
1182 ret = PTR_ERR(ordered);
1183 goto out_free_reserve;
1184 }
1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1186
1187 /* Clear dirty, set writeback and unlock the pages. */
1188 extent_clear_unlock_delalloc(inode, start, end,
1189 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1190 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1191 btrfs_submit_compressed_write(ordered,
1192 async_extent->pages, /* compressed_pages */
1193 async_extent->nr_pages,
1194 async_chunk->write_flags, true);
1195 *alloc_hint = ins.objectid + ins.offset;
1196 done:
1197 if (async_chunk->blkcg_css)
1198 kthread_associate_blkcg(NULL);
1199 kfree(async_extent);
1200 return;
1201
1202 out_free_reserve:
1203 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1204 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1205 out_free:
1206 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1207 extent_clear_unlock_delalloc(inode, start, end,
1208 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1209 EXTENT_DELALLOC_NEW |
1210 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1211 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1212 PAGE_END_WRITEBACK);
1213 free_async_extent_pages(async_extent);
1214 if (async_chunk->blkcg_css)
1215 kthread_associate_blkcg(NULL);
1216 btrfs_debug(fs_info,
1217 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1218 root->root_key.objectid, btrfs_ino(inode), start,
1219 async_extent->ram_size, ret);
1220 kfree(async_extent);
1221 }
1222
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1223 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1224 u64 num_bytes)
1225 {
1226 struct extent_map_tree *em_tree = &inode->extent_tree;
1227 struct extent_map *em;
1228 u64 alloc_hint = 0;
1229
1230 read_lock(&em_tree->lock);
1231 em = search_extent_mapping(em_tree, start, num_bytes);
1232 if (em) {
1233 /*
1234 * if block start isn't an actual block number then find the
1235 * first block in this inode and use that as a hint. If that
1236 * block is also bogus then just don't worry about it.
1237 */
1238 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1239 free_extent_map(em);
1240 em = search_extent_mapping(em_tree, 0, 0);
1241 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1242 alloc_hint = em->block_start;
1243 if (em)
1244 free_extent_map(em);
1245 } else {
1246 alloc_hint = em->block_start;
1247 free_extent_map(em);
1248 }
1249 }
1250 read_unlock(&em_tree->lock);
1251
1252 return alloc_hint;
1253 }
1254
1255 /*
1256 * when extent_io.c finds a delayed allocation range in the file,
1257 * the call backs end up in this code. The basic idea is to
1258 * allocate extents on disk for the range, and create ordered data structs
1259 * in ram to track those extents.
1260 *
1261 * locked_page is the page that writepage had locked already. We use
1262 * it to make sure we don't do extra locks or unlocks.
1263 *
1264 * When this function fails, it unlocks all pages except @locked_page.
1265 *
1266 * When this function successfully creates an inline extent, it returns 1 and
1267 * unlocks all pages including locked_page and starts I/O on them.
1268 * (In reality inline extents are limited to a single page, so locked_page is
1269 * the only page handled anyway).
1270 *
1271 * When this function succeed and creates a normal extent, the page locking
1272 * status depends on the passed in flags:
1273 *
1274 * - If @keep_locked is set, all pages are kept locked.
1275 * - Else all pages except for @locked_page are unlocked.
1276 *
1277 * When a failure happens in the second or later iteration of the
1278 * while-loop, the ordered extents created in previous iterations are kept
1279 * intact. So, the caller must clean them up by calling
1280 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1281 * example.
1282 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1283 static noinline int cow_file_range(struct btrfs_inode *inode,
1284 struct page *locked_page, u64 start, u64 end,
1285 u64 *done_offset,
1286 bool keep_locked, bool no_inline)
1287 {
1288 struct btrfs_root *root = inode->root;
1289 struct btrfs_fs_info *fs_info = root->fs_info;
1290 u64 alloc_hint = 0;
1291 u64 orig_start = start;
1292 u64 num_bytes;
1293 unsigned long ram_size;
1294 u64 cur_alloc_size = 0;
1295 u64 min_alloc_size;
1296 u64 blocksize = fs_info->sectorsize;
1297 struct btrfs_key ins;
1298 struct extent_map *em;
1299 unsigned clear_bits;
1300 unsigned long page_ops;
1301 bool extent_reserved = false;
1302 int ret = 0;
1303
1304 if (btrfs_is_free_space_inode(inode)) {
1305 ret = -EINVAL;
1306 goto out_unlock;
1307 }
1308
1309 num_bytes = ALIGN(end - start + 1, blocksize);
1310 num_bytes = max(blocksize, num_bytes);
1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1312
1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1314
1315 /*
1316 * Due to the page size limit, for subpage we can only trigger the
1317 * writeback for the dirty sectors of page, that means data writeback
1318 * is doing more writeback than what we want.
1319 *
1320 * This is especially unexpected for some call sites like fallocate,
1321 * where we only increase i_size after everything is done.
1322 * This means we can trigger inline extent even if we didn't want to.
1323 * So here we skip inline extent creation completely.
1324 */
1325 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1326 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1327 end + 1);
1328
1329 /* lets try to make an inline extent */
1330 ret = cow_file_range_inline(inode, actual_end, 0,
1331 BTRFS_COMPRESS_NONE, NULL, false);
1332 if (ret == 0) {
1333 /*
1334 * We use DO_ACCOUNTING here because we need the
1335 * delalloc_release_metadata to be run _after_ we drop
1336 * our outstanding extent for clearing delalloc for this
1337 * range.
1338 */
1339 extent_clear_unlock_delalloc(inode, start, end,
1340 locked_page,
1341 EXTENT_LOCKED | EXTENT_DELALLOC |
1342 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1343 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1344 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1345 /*
1346 * locked_page is locked by the caller of
1347 * writepage_delalloc(), not locked by
1348 * __process_pages_contig().
1349 *
1350 * We can't let __process_pages_contig() to unlock it,
1351 * as it doesn't have any subpage::writers recorded.
1352 *
1353 * Here we manually unlock the page, since the caller
1354 * can't determine if it's an inline extent or a
1355 * compressed extent.
1356 */
1357 unlock_page(locked_page);
1358 ret = 1;
1359 goto done;
1360 } else if (ret < 0) {
1361 goto out_unlock;
1362 }
1363 }
1364
1365 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1366
1367 /*
1368 * Relocation relies on the relocated extents to have exactly the same
1369 * size as the original extents. Normally writeback for relocation data
1370 * extents follows a NOCOW path because relocation preallocates the
1371 * extents. However, due to an operation such as scrub turning a block
1372 * group to RO mode, it may fallback to COW mode, so we must make sure
1373 * an extent allocated during COW has exactly the requested size and can
1374 * not be split into smaller extents, otherwise relocation breaks and
1375 * fails during the stage where it updates the bytenr of file extent
1376 * items.
1377 */
1378 if (btrfs_is_data_reloc_root(root))
1379 min_alloc_size = num_bytes;
1380 else
1381 min_alloc_size = fs_info->sectorsize;
1382
1383 while (num_bytes > 0) {
1384 struct btrfs_ordered_extent *ordered;
1385
1386 cur_alloc_size = num_bytes;
1387 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1388 min_alloc_size, 0, alloc_hint,
1389 &ins, 1, 1);
1390 if (ret == -EAGAIN) {
1391 /*
1392 * btrfs_reserve_extent only returns -EAGAIN for zoned
1393 * file systems, which is an indication that there are
1394 * no active zones to allocate from at the moment.
1395 *
1396 * If this is the first loop iteration, wait for at
1397 * least one zone to finish before retrying the
1398 * allocation. Otherwise ask the caller to write out
1399 * the already allocated blocks before coming back to
1400 * us, or return -ENOSPC if it can't handle retries.
1401 */
1402 ASSERT(btrfs_is_zoned(fs_info));
1403 if (start == orig_start) {
1404 wait_on_bit_io(&inode->root->fs_info->flags,
1405 BTRFS_FS_NEED_ZONE_FINISH,
1406 TASK_UNINTERRUPTIBLE);
1407 continue;
1408 }
1409 if (done_offset) {
1410 *done_offset = start - 1;
1411 return 0;
1412 }
1413 ret = -ENOSPC;
1414 }
1415 if (ret < 0)
1416 goto out_unlock;
1417 cur_alloc_size = ins.offset;
1418 extent_reserved = true;
1419
1420 ram_size = ins.offset;
1421 em = create_io_em(inode, start, ins.offset, /* len */
1422 start, /* orig_start */
1423 ins.objectid, /* block_start */
1424 ins.offset, /* block_len */
1425 ins.offset, /* orig_block_len */
1426 ram_size, /* ram_bytes */
1427 BTRFS_COMPRESS_NONE, /* compress_type */
1428 BTRFS_ORDERED_REGULAR /* type */);
1429 if (IS_ERR(em)) {
1430 ret = PTR_ERR(em);
1431 goto out_reserve;
1432 }
1433 free_extent_map(em);
1434
1435 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1436 ram_size, ins.objectid, cur_alloc_size,
1437 0, 1 << BTRFS_ORDERED_REGULAR,
1438 BTRFS_COMPRESS_NONE);
1439 if (IS_ERR(ordered)) {
1440 ret = PTR_ERR(ordered);
1441 goto out_drop_extent_cache;
1442 }
1443
1444 if (btrfs_is_data_reloc_root(root)) {
1445 ret = btrfs_reloc_clone_csums(ordered);
1446
1447 /*
1448 * Only drop cache here, and process as normal.
1449 *
1450 * We must not allow extent_clear_unlock_delalloc()
1451 * at out_unlock label to free meta of this ordered
1452 * extent, as its meta should be freed by
1453 * btrfs_finish_ordered_io().
1454 *
1455 * So we must continue until @start is increased to
1456 * skip current ordered extent.
1457 */
1458 if (ret)
1459 btrfs_drop_extent_map_range(inode, start,
1460 start + ram_size - 1,
1461 false);
1462 }
1463 btrfs_put_ordered_extent(ordered);
1464
1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1466
1467 /*
1468 * We're not doing compressed IO, don't unlock the first page
1469 * (which the caller expects to stay locked), don't clear any
1470 * dirty bits and don't set any writeback bits
1471 *
1472 * Do set the Ordered (Private2) bit so we know this page was
1473 * properly setup for writepage.
1474 */
1475 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1476 page_ops |= PAGE_SET_ORDERED;
1477
1478 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1479 locked_page,
1480 EXTENT_LOCKED | EXTENT_DELALLOC,
1481 page_ops);
1482 if (num_bytes < cur_alloc_size)
1483 num_bytes = 0;
1484 else
1485 num_bytes -= cur_alloc_size;
1486 alloc_hint = ins.objectid + ins.offset;
1487 start += cur_alloc_size;
1488 extent_reserved = false;
1489
1490 /*
1491 * btrfs_reloc_clone_csums() error, since start is increased
1492 * extent_clear_unlock_delalloc() at out_unlock label won't
1493 * free metadata of current ordered extent, we're OK to exit.
1494 */
1495 if (ret)
1496 goto out_unlock;
1497 }
1498 done:
1499 if (done_offset)
1500 *done_offset = end;
1501 return ret;
1502
1503 out_drop_extent_cache:
1504 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1505 out_reserve:
1506 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1508 out_unlock:
1509 /*
1510 * Now, we have three regions to clean up:
1511 *
1512 * |-------(1)----|---(2)---|-------------(3)----------|
1513 * `- orig_start `- start `- start + cur_alloc_size `- end
1514 *
1515 * We process each region below.
1516 */
1517
1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1521
1522 /*
1523 * For the range (1). We have already instantiated the ordered extents
1524 * for this region. They are cleaned up by
1525 * btrfs_cleanup_ordered_extents() in e.g,
1526 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1527 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1528 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1529 * function.
1530 *
1531 * However, in case of @keep_locked, we still need to unlock the pages
1532 * (except @locked_page) to ensure all the pages are unlocked.
1533 */
1534 if (keep_locked && orig_start < start) {
1535 if (!locked_page)
1536 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1537 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1538 locked_page, 0, page_ops);
1539 }
1540
1541 /*
1542 * For the range (2). If we reserved an extent for our delalloc range
1543 * (or a subrange) and failed to create the respective ordered extent,
1544 * then it means that when we reserved the extent we decremented the
1545 * extent's size from the data space_info's bytes_may_use counter and
1546 * incremented the space_info's bytes_reserved counter by the same
1547 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1548 * to decrement again the data space_info's bytes_may_use counter,
1549 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1550 */
1551 if (extent_reserved) {
1552 extent_clear_unlock_delalloc(inode, start,
1553 start + cur_alloc_size - 1,
1554 locked_page,
1555 clear_bits,
1556 page_ops);
1557 start += cur_alloc_size;
1558 }
1559
1560 /*
1561 * For the range (3). We never touched the region. In addition to the
1562 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1563 * space_info's bytes_may_use counter, reserved in
1564 * btrfs_check_data_free_space().
1565 */
1566 if (start < end) {
1567 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1568 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1569 clear_bits, page_ops);
1570 }
1571 return ret;
1572 }
1573
1574 /*
1575 * Phase two of compressed writeback. This is the ordered portion of the code,
1576 * which only gets called in the order the work was queued. We walk all the
1577 * async extents created by compress_file_range and send them down to the disk.
1578 *
1579 * If called with @do_free == true then it'll try to finish the work and free
1580 * the work struct eventually.
1581 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1582 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1583 {
1584 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1585 work);
1586 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1587 struct async_extent *async_extent;
1588 unsigned long nr_pages;
1589 u64 alloc_hint = 0;
1590
1591 if (do_free) {
1592 struct async_chunk *async_chunk;
1593 struct async_cow *async_cow;
1594
1595 async_chunk = container_of(work, struct async_chunk, work);
1596 btrfs_add_delayed_iput(async_chunk->inode);
1597 if (async_chunk->blkcg_css)
1598 css_put(async_chunk->blkcg_css);
1599
1600 async_cow = async_chunk->async_cow;
1601 if (atomic_dec_and_test(&async_cow->num_chunks))
1602 kvfree(async_cow);
1603 return;
1604 }
1605
1606 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1607 PAGE_SHIFT;
1608
1609 while (!list_empty(&async_chunk->extents)) {
1610 async_extent = list_entry(async_chunk->extents.next,
1611 struct async_extent, list);
1612 list_del(&async_extent->list);
1613 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1614 }
1615
1616 /* atomic_sub_return implies a barrier */
1617 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1618 5 * SZ_1M)
1619 cond_wake_up_nomb(&fs_info->async_submit_wait);
1620 }
1621
run_delalloc_compressed(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc)1622 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1623 struct page *locked_page, u64 start,
1624 u64 end, struct writeback_control *wbc)
1625 {
1626 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1627 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1628 struct async_cow *ctx;
1629 struct async_chunk *async_chunk;
1630 unsigned long nr_pages;
1631 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1632 int i;
1633 unsigned nofs_flag;
1634 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1635
1636 nofs_flag = memalloc_nofs_save();
1637 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1638 memalloc_nofs_restore(nofs_flag);
1639 if (!ctx)
1640 return false;
1641
1642 unlock_extent(&inode->io_tree, start, end, NULL);
1643 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1644
1645 async_chunk = ctx->chunks;
1646 atomic_set(&ctx->num_chunks, num_chunks);
1647
1648 for (i = 0; i < num_chunks; i++) {
1649 u64 cur_end = min(end, start + SZ_512K - 1);
1650
1651 /*
1652 * igrab is called higher up in the call chain, take only the
1653 * lightweight reference for the callback lifetime
1654 */
1655 ihold(&inode->vfs_inode);
1656 async_chunk[i].async_cow = ctx;
1657 async_chunk[i].inode = inode;
1658 async_chunk[i].start = start;
1659 async_chunk[i].end = cur_end;
1660 async_chunk[i].write_flags = write_flags;
1661 INIT_LIST_HEAD(&async_chunk[i].extents);
1662
1663 /*
1664 * The locked_page comes all the way from writepage and its
1665 * the original page we were actually given. As we spread
1666 * this large delalloc region across multiple async_chunk
1667 * structs, only the first struct needs a pointer to locked_page
1668 *
1669 * This way we don't need racey decisions about who is supposed
1670 * to unlock it.
1671 */
1672 if (locked_page) {
1673 /*
1674 * Depending on the compressibility, the pages might or
1675 * might not go through async. We want all of them to
1676 * be accounted against wbc once. Let's do it here
1677 * before the paths diverge. wbc accounting is used
1678 * only for foreign writeback detection and doesn't
1679 * need full accuracy. Just account the whole thing
1680 * against the first page.
1681 */
1682 wbc_account_cgroup_owner(wbc, locked_page,
1683 cur_end - start);
1684 async_chunk[i].locked_page = locked_page;
1685 locked_page = NULL;
1686 } else {
1687 async_chunk[i].locked_page = NULL;
1688 }
1689
1690 if (blkcg_css != blkcg_root_css) {
1691 css_get(blkcg_css);
1692 async_chunk[i].blkcg_css = blkcg_css;
1693 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1694 } else {
1695 async_chunk[i].blkcg_css = NULL;
1696 }
1697
1698 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1699 submit_compressed_extents);
1700
1701 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1702 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1703
1704 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1705
1706 start = cur_end + 1;
1707 }
1708 return true;
1709 }
1710
1711 /*
1712 * Run the delalloc range from start to end, and write back any dirty pages
1713 * covered by the range.
1714 */
run_delalloc_cow(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1715 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1716 struct page *locked_page, u64 start,
1717 u64 end, struct writeback_control *wbc,
1718 bool pages_dirty)
1719 {
1720 u64 done_offset = end;
1721 int ret;
1722
1723 while (start <= end) {
1724 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1725 true, false);
1726 if (ret)
1727 return ret;
1728 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1729 done_offset, wbc, pages_dirty);
1730 start = done_offset + 1;
1731 }
1732
1733 return 1;
1734 }
1735
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,bool nowait)1736 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1737 u64 bytenr, u64 num_bytes, bool nowait)
1738 {
1739 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1740 struct btrfs_ordered_sum *sums;
1741 int ret;
1742 LIST_HEAD(list);
1743
1744 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1745 &list, 0, nowait);
1746 if (ret == 0 && list_empty(&list))
1747 return 0;
1748
1749 while (!list_empty(&list)) {
1750 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1751 list_del(&sums->list);
1752 kfree(sums);
1753 }
1754 if (ret < 0)
1755 return ret;
1756 return 1;
1757 }
1758
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end)1759 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1760 const u64 start, const u64 end)
1761 {
1762 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1763 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1764 const u64 range_bytes = end + 1 - start;
1765 struct extent_io_tree *io_tree = &inode->io_tree;
1766 u64 range_start = start;
1767 u64 count;
1768 int ret;
1769
1770 /*
1771 * If EXTENT_NORESERVE is set it means that when the buffered write was
1772 * made we had not enough available data space and therefore we did not
1773 * reserve data space for it, since we though we could do NOCOW for the
1774 * respective file range (either there is prealloc extent or the inode
1775 * has the NOCOW bit set).
1776 *
1777 * However when we need to fallback to COW mode (because for example the
1778 * block group for the corresponding extent was turned to RO mode by a
1779 * scrub or relocation) we need to do the following:
1780 *
1781 * 1) We increment the bytes_may_use counter of the data space info.
1782 * If COW succeeds, it allocates a new data extent and after doing
1783 * that it decrements the space info's bytes_may_use counter and
1784 * increments its bytes_reserved counter by the same amount (we do
1785 * this at btrfs_add_reserved_bytes()). So we need to increment the
1786 * bytes_may_use counter to compensate (when space is reserved at
1787 * buffered write time, the bytes_may_use counter is incremented);
1788 *
1789 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1790 * that if the COW path fails for any reason, it decrements (through
1791 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1792 * data space info, which we incremented in the step above.
1793 *
1794 * If we need to fallback to cow and the inode corresponds to a free
1795 * space cache inode or an inode of the data relocation tree, we must
1796 * also increment bytes_may_use of the data space_info for the same
1797 * reason. Space caches and relocated data extents always get a prealloc
1798 * extent for them, however scrub or balance may have set the block
1799 * group that contains that extent to RO mode and therefore force COW
1800 * when starting writeback.
1801 */
1802 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1803 EXTENT_NORESERVE, 0, NULL);
1804 if (count > 0 || is_space_ino || is_reloc_ino) {
1805 u64 bytes = count;
1806 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1807 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1808
1809 if (is_space_ino || is_reloc_ino)
1810 bytes = range_bytes;
1811
1812 spin_lock(&sinfo->lock);
1813 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1814 spin_unlock(&sinfo->lock);
1815
1816 if (count > 0)
1817 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1818 NULL);
1819 }
1820
1821 /*
1822 * Don't try to create inline extents, as a mix of inline extent that
1823 * is written out and unlocked directly and a normal NOCOW extent
1824 * doesn't work.
1825 */
1826 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1827 ASSERT(ret != 1);
1828 return ret;
1829 }
1830
1831 struct can_nocow_file_extent_args {
1832 /* Input fields. */
1833
1834 /* Start file offset of the range we want to NOCOW. */
1835 u64 start;
1836 /* End file offset (inclusive) of the range we want to NOCOW. */
1837 u64 end;
1838 bool writeback_path;
1839 bool strict;
1840 /*
1841 * Free the path passed to can_nocow_file_extent() once it's not needed
1842 * anymore.
1843 */
1844 bool free_path;
1845
1846 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1847
1848 u64 disk_bytenr;
1849 u64 disk_num_bytes;
1850 u64 extent_offset;
1851 /* Number of bytes that can be written to in NOCOW mode. */
1852 u64 num_bytes;
1853 };
1854
1855 /*
1856 * Check if we can NOCOW the file extent that the path points to.
1857 * This function may return with the path released, so the caller should check
1858 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1859 *
1860 * Returns: < 0 on error
1861 * 0 if we can not NOCOW
1862 * 1 if we can NOCOW
1863 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1864 static int can_nocow_file_extent(struct btrfs_path *path,
1865 struct btrfs_key *key,
1866 struct btrfs_inode *inode,
1867 struct can_nocow_file_extent_args *args)
1868 {
1869 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1870 struct extent_buffer *leaf = path->nodes[0];
1871 struct btrfs_root *root = inode->root;
1872 struct btrfs_file_extent_item *fi;
1873 u64 extent_end;
1874 u8 extent_type;
1875 int can_nocow = 0;
1876 int ret = 0;
1877 bool nowait = path->nowait;
1878
1879 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1880 extent_type = btrfs_file_extent_type(leaf, fi);
1881
1882 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1883 goto out;
1884
1885 /* Can't access these fields unless we know it's not an inline extent. */
1886 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1887 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1888 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1889
1890 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1891 extent_type == BTRFS_FILE_EXTENT_REG)
1892 goto out;
1893
1894 /*
1895 * If the extent was created before the generation where the last snapshot
1896 * for its subvolume was created, then this implies the extent is shared,
1897 * hence we must COW.
1898 */
1899 if (!args->strict &&
1900 btrfs_file_extent_generation(leaf, fi) <=
1901 btrfs_root_last_snapshot(&root->root_item))
1902 goto out;
1903
1904 /* An explicit hole, must COW. */
1905 if (args->disk_bytenr == 0)
1906 goto out;
1907
1908 /* Compressed/encrypted/encoded extents must be COWed. */
1909 if (btrfs_file_extent_compression(leaf, fi) ||
1910 btrfs_file_extent_encryption(leaf, fi) ||
1911 btrfs_file_extent_other_encoding(leaf, fi))
1912 goto out;
1913
1914 extent_end = btrfs_file_extent_end(path);
1915
1916 /*
1917 * The following checks can be expensive, as they need to take other
1918 * locks and do btree or rbtree searches, so release the path to avoid
1919 * blocking other tasks for too long.
1920 */
1921 btrfs_release_path(path);
1922
1923 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1924 key->offset - args->extent_offset,
1925 args->disk_bytenr, args->strict, path);
1926 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1927 if (ret != 0)
1928 goto out;
1929
1930 if (args->free_path) {
1931 /*
1932 * We don't need the path anymore, plus through the
1933 * csum_exist_in_range() call below we will end up allocating
1934 * another path. So free the path to avoid unnecessary extra
1935 * memory usage.
1936 */
1937 btrfs_free_path(path);
1938 path = NULL;
1939 }
1940
1941 /* If there are pending snapshots for this root, we must COW. */
1942 if (args->writeback_path && !is_freespace_inode &&
1943 atomic_read(&root->snapshot_force_cow))
1944 goto out;
1945
1946 args->disk_bytenr += args->extent_offset;
1947 args->disk_bytenr += args->start - key->offset;
1948 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1949
1950 /*
1951 * Force COW if csums exist in the range. This ensures that csums for a
1952 * given extent are either valid or do not exist.
1953 */
1954 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1955 nowait);
1956 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1957 if (ret != 0)
1958 goto out;
1959
1960 can_nocow = 1;
1961 out:
1962 if (args->free_path && path)
1963 btrfs_free_path(path);
1964
1965 return ret < 0 ? ret : can_nocow;
1966 }
1967
1968 /*
1969 * when nowcow writeback call back. This checks for snapshots or COW copies
1970 * of the extents that exist in the file, and COWs the file as required.
1971 *
1972 * If no cow copies or snapshots exist, we write directly to the existing
1973 * blocks on disk
1974 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end)1975 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1976 struct page *locked_page,
1977 const u64 start, const u64 end)
1978 {
1979 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1980 struct btrfs_root *root = inode->root;
1981 struct btrfs_path *path;
1982 u64 cow_start = (u64)-1;
1983 u64 cur_offset = start;
1984 int ret;
1985 bool check_prev = true;
1986 u64 ino = btrfs_ino(inode);
1987 struct can_nocow_file_extent_args nocow_args = { 0 };
1988
1989 /*
1990 * Normally on a zoned device we're only doing COW writes, but in case
1991 * of relocation on a zoned filesystem serializes I/O so that we're only
1992 * writing sequentially and can end up here as well.
1993 */
1994 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1995
1996 path = btrfs_alloc_path();
1997 if (!path) {
1998 ret = -ENOMEM;
1999 goto error;
2000 }
2001
2002 nocow_args.end = end;
2003 nocow_args.writeback_path = true;
2004
2005 while (1) {
2006 struct btrfs_block_group *nocow_bg = NULL;
2007 struct btrfs_ordered_extent *ordered;
2008 struct btrfs_key found_key;
2009 struct btrfs_file_extent_item *fi;
2010 struct extent_buffer *leaf;
2011 u64 extent_end;
2012 u64 ram_bytes;
2013 u64 nocow_end;
2014 int extent_type;
2015 bool is_prealloc;
2016
2017 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2018 cur_offset, 0);
2019 if (ret < 0)
2020 goto error;
2021
2022 /*
2023 * If there is no extent for our range when doing the initial
2024 * search, then go back to the previous slot as it will be the
2025 * one containing the search offset
2026 */
2027 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2028 leaf = path->nodes[0];
2029 btrfs_item_key_to_cpu(leaf, &found_key,
2030 path->slots[0] - 1);
2031 if (found_key.objectid == ino &&
2032 found_key.type == BTRFS_EXTENT_DATA_KEY)
2033 path->slots[0]--;
2034 }
2035 check_prev = false;
2036 next_slot:
2037 /* Go to next leaf if we have exhausted the current one */
2038 leaf = path->nodes[0];
2039 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2040 ret = btrfs_next_leaf(root, path);
2041 if (ret < 0)
2042 goto error;
2043 if (ret > 0)
2044 break;
2045 leaf = path->nodes[0];
2046 }
2047
2048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2049
2050 /* Didn't find anything for our INO */
2051 if (found_key.objectid > ino)
2052 break;
2053 /*
2054 * Keep searching until we find an EXTENT_ITEM or there are no
2055 * more extents for this inode
2056 */
2057 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2058 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2059 path->slots[0]++;
2060 goto next_slot;
2061 }
2062
2063 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2064 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2065 found_key.offset > end)
2066 break;
2067
2068 /*
2069 * If the found extent starts after requested offset, then
2070 * adjust extent_end to be right before this extent begins
2071 */
2072 if (found_key.offset > cur_offset) {
2073 extent_end = found_key.offset;
2074 extent_type = 0;
2075 goto must_cow;
2076 }
2077
2078 /*
2079 * Found extent which begins before our range and potentially
2080 * intersect it
2081 */
2082 fi = btrfs_item_ptr(leaf, path->slots[0],
2083 struct btrfs_file_extent_item);
2084 extent_type = btrfs_file_extent_type(leaf, fi);
2085 /* If this is triggered then we have a memory corruption. */
2086 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2087 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2088 ret = -EUCLEAN;
2089 goto error;
2090 }
2091 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2092 extent_end = btrfs_file_extent_end(path);
2093
2094 /*
2095 * If the extent we got ends before our current offset, skip to
2096 * the next extent.
2097 */
2098 if (extent_end <= cur_offset) {
2099 path->slots[0]++;
2100 goto next_slot;
2101 }
2102
2103 nocow_args.start = cur_offset;
2104 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2105 if (ret < 0)
2106 goto error;
2107 if (ret == 0)
2108 goto must_cow;
2109
2110 ret = 0;
2111 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2112 if (!nocow_bg) {
2113 must_cow:
2114 /*
2115 * If we can't perform NOCOW writeback for the range,
2116 * then record the beginning of the range that needs to
2117 * be COWed. It will be written out before the next
2118 * NOCOW range if we find one, or when exiting this
2119 * loop.
2120 */
2121 if (cow_start == (u64)-1)
2122 cow_start = cur_offset;
2123 cur_offset = extent_end;
2124 if (cur_offset > end)
2125 break;
2126 if (!path->nodes[0])
2127 continue;
2128 path->slots[0]++;
2129 goto next_slot;
2130 }
2131
2132 /*
2133 * COW range from cow_start to found_key.offset - 1. As the key
2134 * will contain the beginning of the first extent that can be
2135 * NOCOW, following one which needs to be COW'ed
2136 */
2137 if (cow_start != (u64)-1) {
2138 ret = fallback_to_cow(inode, locked_page,
2139 cow_start, found_key.offset - 1);
2140 cow_start = (u64)-1;
2141 if (ret) {
2142 btrfs_dec_nocow_writers(nocow_bg);
2143 goto error;
2144 }
2145 }
2146
2147 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2148 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2149 if (is_prealloc) {
2150 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2151 struct extent_map *em;
2152
2153 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2154 orig_start,
2155 nocow_args.disk_bytenr, /* block_start */
2156 nocow_args.num_bytes, /* block_len */
2157 nocow_args.disk_num_bytes, /* orig_block_len */
2158 ram_bytes, BTRFS_COMPRESS_NONE,
2159 BTRFS_ORDERED_PREALLOC);
2160 if (IS_ERR(em)) {
2161 btrfs_dec_nocow_writers(nocow_bg);
2162 ret = PTR_ERR(em);
2163 goto error;
2164 }
2165 free_extent_map(em);
2166 }
2167
2168 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2169 nocow_args.num_bytes, nocow_args.num_bytes,
2170 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2171 is_prealloc
2172 ? (1 << BTRFS_ORDERED_PREALLOC)
2173 : (1 << BTRFS_ORDERED_NOCOW),
2174 BTRFS_COMPRESS_NONE);
2175 btrfs_dec_nocow_writers(nocow_bg);
2176 if (IS_ERR(ordered)) {
2177 if (is_prealloc) {
2178 btrfs_drop_extent_map_range(inode, cur_offset,
2179 nocow_end, false);
2180 }
2181 ret = PTR_ERR(ordered);
2182 goto error;
2183 }
2184
2185 if (btrfs_is_data_reloc_root(root))
2186 /*
2187 * Error handled later, as we must prevent
2188 * extent_clear_unlock_delalloc() in error handler
2189 * from freeing metadata of created ordered extent.
2190 */
2191 ret = btrfs_reloc_clone_csums(ordered);
2192 btrfs_put_ordered_extent(ordered);
2193
2194 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2195 locked_page, EXTENT_LOCKED |
2196 EXTENT_DELALLOC |
2197 EXTENT_CLEAR_DATA_RESV,
2198 PAGE_UNLOCK | PAGE_SET_ORDERED);
2199
2200 cur_offset = extent_end;
2201
2202 /*
2203 * btrfs_reloc_clone_csums() error, now we're OK to call error
2204 * handler, as metadata for created ordered extent will only
2205 * be freed by btrfs_finish_ordered_io().
2206 */
2207 if (ret)
2208 goto error;
2209 if (cur_offset > end)
2210 break;
2211 }
2212 btrfs_release_path(path);
2213
2214 if (cur_offset <= end && cow_start == (u64)-1)
2215 cow_start = cur_offset;
2216
2217 if (cow_start != (u64)-1) {
2218 cur_offset = end;
2219 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2220 cow_start = (u64)-1;
2221 if (ret)
2222 goto error;
2223 }
2224
2225 btrfs_free_path(path);
2226 return 0;
2227
2228 error:
2229 /*
2230 * If an error happened while a COW region is outstanding, cur_offset
2231 * needs to be reset to cow_start to ensure the COW region is unlocked
2232 * as well.
2233 */
2234 if (cow_start != (u64)-1)
2235 cur_offset = cow_start;
2236 if (cur_offset < end)
2237 extent_clear_unlock_delalloc(inode, cur_offset, end,
2238 locked_page, EXTENT_LOCKED |
2239 EXTENT_DELALLOC | EXTENT_DEFRAG |
2240 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2241 PAGE_START_WRITEBACK |
2242 PAGE_END_WRITEBACK);
2243 btrfs_free_path(path);
2244 return ret;
2245 }
2246
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2247 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2248 {
2249 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2250 if (inode->defrag_bytes &&
2251 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2252 return false;
2253 return true;
2254 }
2255 return false;
2256 }
2257
2258 /*
2259 * Function to process delayed allocation (create CoW) for ranges which are
2260 * being touched for the first time.
2261 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc)2262 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2263 u64 start, u64 end, struct writeback_control *wbc)
2264 {
2265 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2266 int ret;
2267
2268 /*
2269 * The range must cover part of the @locked_page, or a return of 1
2270 * can confuse the caller.
2271 */
2272 ASSERT(!(end <= page_offset(locked_page) ||
2273 start >= page_offset(locked_page) + PAGE_SIZE));
2274
2275 if (should_nocow(inode, start, end)) {
2276 ret = run_delalloc_nocow(inode, locked_page, start, end);
2277 goto out;
2278 }
2279
2280 if (btrfs_inode_can_compress(inode) &&
2281 inode_need_compress(inode, start, end) &&
2282 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2283 return 1;
2284
2285 if (zoned)
2286 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2287 true);
2288 else
2289 ret = cow_file_range(inode, locked_page, start, end, NULL,
2290 false, false);
2291
2292 out:
2293 if (ret < 0)
2294 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2295 end - start + 1);
2296 return ret;
2297 }
2298
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2299 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2300 struct extent_state *orig, u64 split)
2301 {
2302 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2303 u64 size;
2304
2305 /* not delalloc, ignore it */
2306 if (!(orig->state & EXTENT_DELALLOC))
2307 return;
2308
2309 size = orig->end - orig->start + 1;
2310 if (size > fs_info->max_extent_size) {
2311 u32 num_extents;
2312 u64 new_size;
2313
2314 /*
2315 * See the explanation in btrfs_merge_delalloc_extent, the same
2316 * applies here, just in reverse.
2317 */
2318 new_size = orig->end - split + 1;
2319 num_extents = count_max_extents(fs_info, new_size);
2320 new_size = split - orig->start;
2321 num_extents += count_max_extents(fs_info, new_size);
2322 if (count_max_extents(fs_info, size) >= num_extents)
2323 return;
2324 }
2325
2326 spin_lock(&inode->lock);
2327 btrfs_mod_outstanding_extents(inode, 1);
2328 spin_unlock(&inode->lock);
2329 }
2330
2331 /*
2332 * Handle merged delayed allocation extents so we can keep track of new extents
2333 * that are just merged onto old extents, such as when we are doing sequential
2334 * writes, so we can properly account for the metadata space we'll need.
2335 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2336 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2337 struct extent_state *other)
2338 {
2339 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2340 u64 new_size, old_size;
2341 u32 num_extents;
2342
2343 /* not delalloc, ignore it */
2344 if (!(other->state & EXTENT_DELALLOC))
2345 return;
2346
2347 if (new->start > other->start)
2348 new_size = new->end - other->start + 1;
2349 else
2350 new_size = other->end - new->start + 1;
2351
2352 /* we're not bigger than the max, unreserve the space and go */
2353 if (new_size <= fs_info->max_extent_size) {
2354 spin_lock(&inode->lock);
2355 btrfs_mod_outstanding_extents(inode, -1);
2356 spin_unlock(&inode->lock);
2357 return;
2358 }
2359
2360 /*
2361 * We have to add up either side to figure out how many extents were
2362 * accounted for before we merged into one big extent. If the number of
2363 * extents we accounted for is <= the amount we need for the new range
2364 * then we can return, otherwise drop. Think of it like this
2365 *
2366 * [ 4k][MAX_SIZE]
2367 *
2368 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2369 * need 2 outstanding extents, on one side we have 1 and the other side
2370 * we have 1 so they are == and we can return. But in this case
2371 *
2372 * [MAX_SIZE+4k][MAX_SIZE+4k]
2373 *
2374 * Each range on their own accounts for 2 extents, but merged together
2375 * they are only 3 extents worth of accounting, so we need to drop in
2376 * this case.
2377 */
2378 old_size = other->end - other->start + 1;
2379 num_extents = count_max_extents(fs_info, old_size);
2380 old_size = new->end - new->start + 1;
2381 num_extents += count_max_extents(fs_info, old_size);
2382 if (count_max_extents(fs_info, new_size) >= num_extents)
2383 return;
2384
2385 spin_lock(&inode->lock);
2386 btrfs_mod_outstanding_extents(inode, -1);
2387 spin_unlock(&inode->lock);
2388 }
2389
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct btrfs_inode * inode)2390 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2391 struct btrfs_inode *inode)
2392 {
2393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2394
2395 spin_lock(&root->delalloc_lock);
2396 if (list_empty(&inode->delalloc_inodes)) {
2397 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2398 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2399 root->nr_delalloc_inodes++;
2400 if (root->nr_delalloc_inodes == 1) {
2401 spin_lock(&fs_info->delalloc_root_lock);
2402 BUG_ON(!list_empty(&root->delalloc_root));
2403 list_add_tail(&root->delalloc_root,
2404 &fs_info->delalloc_roots);
2405 spin_unlock(&fs_info->delalloc_root_lock);
2406 }
2407 }
2408 spin_unlock(&root->delalloc_lock);
2409 }
2410
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2411 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2412 struct btrfs_inode *inode)
2413 {
2414 struct btrfs_fs_info *fs_info = root->fs_info;
2415
2416 if (!list_empty(&inode->delalloc_inodes)) {
2417 list_del_init(&inode->delalloc_inodes);
2418 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2419 &inode->runtime_flags);
2420 root->nr_delalloc_inodes--;
2421 if (!root->nr_delalloc_inodes) {
2422 ASSERT(list_empty(&root->delalloc_inodes));
2423 spin_lock(&fs_info->delalloc_root_lock);
2424 BUG_ON(list_empty(&root->delalloc_root));
2425 list_del_init(&root->delalloc_root);
2426 spin_unlock(&fs_info->delalloc_root_lock);
2427 }
2428 }
2429 }
2430
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2431 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2432 struct btrfs_inode *inode)
2433 {
2434 spin_lock(&root->delalloc_lock);
2435 __btrfs_del_delalloc_inode(root, inode);
2436 spin_unlock(&root->delalloc_lock);
2437 }
2438
2439 /*
2440 * Properly track delayed allocation bytes in the inode and to maintain the
2441 * list of inodes that have pending delalloc work to be done.
2442 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2444 u32 bits)
2445 {
2446 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2447
2448 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2449 WARN_ON(1);
2450 /*
2451 * set_bit and clear bit hooks normally require _irqsave/restore
2452 * but in this case, we are only testing for the DELALLOC
2453 * bit, which is only set or cleared with irqs on
2454 */
2455 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2456 struct btrfs_root *root = inode->root;
2457 u64 len = state->end + 1 - state->start;
2458 u32 num_extents = count_max_extents(fs_info, len);
2459 bool do_list = !btrfs_is_free_space_inode(inode);
2460
2461 spin_lock(&inode->lock);
2462 btrfs_mod_outstanding_extents(inode, num_extents);
2463 spin_unlock(&inode->lock);
2464
2465 /* For sanity tests */
2466 if (btrfs_is_testing(fs_info))
2467 return;
2468
2469 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2470 fs_info->delalloc_batch);
2471 spin_lock(&inode->lock);
2472 inode->delalloc_bytes += len;
2473 if (bits & EXTENT_DEFRAG)
2474 inode->defrag_bytes += len;
2475 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2476 &inode->runtime_flags))
2477 btrfs_add_delalloc_inodes(root, inode);
2478 spin_unlock(&inode->lock);
2479 }
2480
2481 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2482 (bits & EXTENT_DELALLOC_NEW)) {
2483 spin_lock(&inode->lock);
2484 inode->new_delalloc_bytes += state->end + 1 - state->start;
2485 spin_unlock(&inode->lock);
2486 }
2487 }
2488
2489 /*
2490 * Once a range is no longer delalloc this function ensures that proper
2491 * accounting happens.
2492 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2493 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2494 struct extent_state *state, u32 bits)
2495 {
2496 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2497 u64 len = state->end + 1 - state->start;
2498 u32 num_extents = count_max_extents(fs_info, len);
2499
2500 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2501 spin_lock(&inode->lock);
2502 inode->defrag_bytes -= len;
2503 spin_unlock(&inode->lock);
2504 }
2505
2506 /*
2507 * set_bit and clear bit hooks normally require _irqsave/restore
2508 * but in this case, we are only testing for the DELALLOC
2509 * bit, which is only set or cleared with irqs on
2510 */
2511 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2512 struct btrfs_root *root = inode->root;
2513 bool do_list = !btrfs_is_free_space_inode(inode);
2514
2515 spin_lock(&inode->lock);
2516 btrfs_mod_outstanding_extents(inode, -num_extents);
2517 spin_unlock(&inode->lock);
2518
2519 /*
2520 * We don't reserve metadata space for space cache inodes so we
2521 * don't need to call delalloc_release_metadata if there is an
2522 * error.
2523 */
2524 if (bits & EXTENT_CLEAR_META_RESV &&
2525 root != fs_info->tree_root)
2526 btrfs_delalloc_release_metadata(inode, len, false);
2527
2528 /* For sanity tests. */
2529 if (btrfs_is_testing(fs_info))
2530 return;
2531
2532 if (!btrfs_is_data_reloc_root(root) &&
2533 do_list && !(state->state & EXTENT_NORESERVE) &&
2534 (bits & EXTENT_CLEAR_DATA_RESV))
2535 btrfs_free_reserved_data_space_noquota(fs_info, len);
2536
2537 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2538 fs_info->delalloc_batch);
2539 spin_lock(&inode->lock);
2540 inode->delalloc_bytes -= len;
2541 if (do_list && inode->delalloc_bytes == 0 &&
2542 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2543 &inode->runtime_flags))
2544 btrfs_del_delalloc_inode(root, inode);
2545 spin_unlock(&inode->lock);
2546 }
2547
2548 if ((state->state & EXTENT_DELALLOC_NEW) &&
2549 (bits & EXTENT_DELALLOC_NEW)) {
2550 spin_lock(&inode->lock);
2551 ASSERT(inode->new_delalloc_bytes >= len);
2552 inode->new_delalloc_bytes -= len;
2553 if (bits & EXTENT_ADD_INODE_BYTES)
2554 inode_add_bytes(&inode->vfs_inode, len);
2555 spin_unlock(&inode->lock);
2556 }
2557 }
2558
btrfs_extract_ordered_extent(struct btrfs_bio * bbio,struct btrfs_ordered_extent * ordered)2559 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2560 struct btrfs_ordered_extent *ordered)
2561 {
2562 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2563 u64 len = bbio->bio.bi_iter.bi_size;
2564 struct btrfs_ordered_extent *new;
2565 int ret;
2566
2567 /* Must always be called for the beginning of an ordered extent. */
2568 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2569 return -EINVAL;
2570
2571 /* No need to split if the ordered extent covers the entire bio. */
2572 if (ordered->disk_num_bytes == len) {
2573 refcount_inc(&ordered->refs);
2574 bbio->ordered = ordered;
2575 return 0;
2576 }
2577
2578 /*
2579 * Don't split the extent_map for NOCOW extents, as we're writing into
2580 * a pre-existing one.
2581 */
2582 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2583 ret = split_extent_map(bbio->inode, bbio->file_offset,
2584 ordered->num_bytes, len,
2585 ordered->disk_bytenr);
2586 if (ret)
2587 return ret;
2588 }
2589
2590 new = btrfs_split_ordered_extent(ordered, len);
2591 if (IS_ERR(new))
2592 return PTR_ERR(new);
2593 bbio->ordered = new;
2594 return 0;
2595 }
2596
2597 /*
2598 * given a list of ordered sums record them in the inode. This happens
2599 * at IO completion time based on sums calculated at bio submission time.
2600 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2601 static int add_pending_csums(struct btrfs_trans_handle *trans,
2602 struct list_head *list)
2603 {
2604 struct btrfs_ordered_sum *sum;
2605 struct btrfs_root *csum_root = NULL;
2606 int ret;
2607
2608 list_for_each_entry(sum, list, list) {
2609 trans->adding_csums = true;
2610 if (!csum_root)
2611 csum_root = btrfs_csum_root(trans->fs_info,
2612 sum->logical);
2613 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2614 trans->adding_csums = false;
2615 if (ret)
2616 return ret;
2617 }
2618 return 0;
2619 }
2620
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2621 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2622 const u64 start,
2623 const u64 len,
2624 struct extent_state **cached_state)
2625 {
2626 u64 search_start = start;
2627 const u64 end = start + len - 1;
2628
2629 while (search_start < end) {
2630 const u64 search_len = end - search_start + 1;
2631 struct extent_map *em;
2632 u64 em_len;
2633 int ret = 0;
2634
2635 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2636 if (IS_ERR(em))
2637 return PTR_ERR(em);
2638
2639 if (em->block_start != EXTENT_MAP_HOLE)
2640 goto next;
2641
2642 em_len = em->len;
2643 if (em->start < search_start)
2644 em_len -= search_start - em->start;
2645 if (em_len > search_len)
2646 em_len = search_len;
2647
2648 ret = set_extent_bit(&inode->io_tree, search_start,
2649 search_start + em_len - 1,
2650 EXTENT_DELALLOC_NEW, cached_state);
2651 next:
2652 search_start = extent_map_end(em);
2653 free_extent_map(em);
2654 if (ret)
2655 return ret;
2656 }
2657 return 0;
2658 }
2659
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2660 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2661 unsigned int extra_bits,
2662 struct extent_state **cached_state)
2663 {
2664 WARN_ON(PAGE_ALIGNED(end));
2665
2666 if (start >= i_size_read(&inode->vfs_inode) &&
2667 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2668 /*
2669 * There can't be any extents following eof in this case so just
2670 * set the delalloc new bit for the range directly.
2671 */
2672 extra_bits |= EXTENT_DELALLOC_NEW;
2673 } else {
2674 int ret;
2675
2676 ret = btrfs_find_new_delalloc_bytes(inode, start,
2677 end + 1 - start,
2678 cached_state);
2679 if (ret)
2680 return ret;
2681 }
2682
2683 return set_extent_bit(&inode->io_tree, start, end,
2684 EXTENT_DELALLOC | extra_bits, cached_state);
2685 }
2686
2687 /* see btrfs_writepage_start_hook for details on why this is required */
2688 struct btrfs_writepage_fixup {
2689 struct page *page;
2690 struct btrfs_inode *inode;
2691 struct btrfs_work work;
2692 };
2693
btrfs_writepage_fixup_worker(struct btrfs_work * work)2694 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2695 {
2696 struct btrfs_writepage_fixup *fixup =
2697 container_of(work, struct btrfs_writepage_fixup, work);
2698 struct btrfs_ordered_extent *ordered;
2699 struct extent_state *cached_state = NULL;
2700 struct extent_changeset *data_reserved = NULL;
2701 struct page *page = fixup->page;
2702 struct btrfs_inode *inode = fixup->inode;
2703 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2704 u64 page_start = page_offset(page);
2705 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2706 int ret = 0;
2707 bool free_delalloc_space = true;
2708
2709 /*
2710 * This is similar to page_mkwrite, we need to reserve the space before
2711 * we take the page lock.
2712 */
2713 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2714 PAGE_SIZE);
2715 again:
2716 lock_page(page);
2717
2718 /*
2719 * Before we queued this fixup, we took a reference on the page.
2720 * page->mapping may go NULL, but it shouldn't be moved to a different
2721 * address space.
2722 */
2723 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2724 /*
2725 * Unfortunately this is a little tricky, either
2726 *
2727 * 1) We got here and our page had already been dealt with and
2728 * we reserved our space, thus ret == 0, so we need to just
2729 * drop our space reservation and bail. This can happen the
2730 * first time we come into the fixup worker, or could happen
2731 * while waiting for the ordered extent.
2732 * 2) Our page was already dealt with, but we happened to get an
2733 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2734 * this case we obviously don't have anything to release, but
2735 * because the page was already dealt with we don't want to
2736 * mark the page with an error, so make sure we're resetting
2737 * ret to 0. This is why we have this check _before_ the ret
2738 * check, because we do not want to have a surprise ENOSPC
2739 * when the page was already properly dealt with.
2740 */
2741 if (!ret) {
2742 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2743 btrfs_delalloc_release_space(inode, data_reserved,
2744 page_start, PAGE_SIZE,
2745 true);
2746 }
2747 ret = 0;
2748 goto out_page;
2749 }
2750
2751 /*
2752 * We can't mess with the page state unless it is locked, so now that
2753 * it is locked bail if we failed to make our space reservation.
2754 */
2755 if (ret)
2756 goto out_page;
2757
2758 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2759
2760 /* already ordered? We're done */
2761 if (PageOrdered(page))
2762 goto out_reserved;
2763
2764 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2765 if (ordered) {
2766 unlock_extent(&inode->io_tree, page_start, page_end,
2767 &cached_state);
2768 unlock_page(page);
2769 btrfs_start_ordered_extent(ordered);
2770 btrfs_put_ordered_extent(ordered);
2771 goto again;
2772 }
2773
2774 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2775 &cached_state);
2776 if (ret)
2777 goto out_reserved;
2778
2779 /*
2780 * Everything went as planned, we're now the owner of a dirty page with
2781 * delayed allocation bits set and space reserved for our COW
2782 * destination.
2783 *
2784 * The page was dirty when we started, nothing should have cleaned it.
2785 */
2786 BUG_ON(!PageDirty(page));
2787 free_delalloc_space = false;
2788 out_reserved:
2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2790 if (free_delalloc_space)
2791 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2792 PAGE_SIZE, true);
2793 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2794 out_page:
2795 if (ret) {
2796 /*
2797 * We hit ENOSPC or other errors. Update the mapping and page
2798 * to reflect the errors and clean the page.
2799 */
2800 mapping_set_error(page->mapping, ret);
2801 btrfs_mark_ordered_io_finished(inode, page, page_start,
2802 PAGE_SIZE, !ret);
2803 clear_page_dirty_for_io(page);
2804 }
2805 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2806 unlock_page(page);
2807 put_page(page);
2808 kfree(fixup);
2809 extent_changeset_free(data_reserved);
2810 /*
2811 * As a precaution, do a delayed iput in case it would be the last iput
2812 * that could need flushing space. Recursing back to fixup worker would
2813 * deadlock.
2814 */
2815 btrfs_add_delayed_iput(inode);
2816 }
2817
2818 /*
2819 * There are a few paths in the higher layers of the kernel that directly
2820 * set the page dirty bit without asking the filesystem if it is a
2821 * good idea. This causes problems because we want to make sure COW
2822 * properly happens and the data=ordered rules are followed.
2823 *
2824 * In our case any range that doesn't have the ORDERED bit set
2825 * hasn't been properly setup for IO. We kick off an async process
2826 * to fix it up. The async helper will wait for ordered extents, set
2827 * the delalloc bit and make it safe to write the page.
2828 */
btrfs_writepage_cow_fixup(struct page * page)2829 int btrfs_writepage_cow_fixup(struct page *page)
2830 {
2831 struct inode *inode = page->mapping->host;
2832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2833 struct btrfs_writepage_fixup *fixup;
2834
2835 /* This page has ordered extent covering it already */
2836 if (PageOrdered(page))
2837 return 0;
2838
2839 /*
2840 * PageChecked is set below when we create a fixup worker for this page,
2841 * don't try to create another one if we're already PageChecked()
2842 *
2843 * The extent_io writepage code will redirty the page if we send back
2844 * EAGAIN.
2845 */
2846 if (PageChecked(page))
2847 return -EAGAIN;
2848
2849 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2850 if (!fixup)
2851 return -EAGAIN;
2852
2853 /*
2854 * We are already holding a reference to this inode from
2855 * write_cache_pages. We need to hold it because the space reservation
2856 * takes place outside of the page lock, and we can't trust
2857 * page->mapping outside of the page lock.
2858 */
2859 ihold(inode);
2860 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2861 get_page(page);
2862 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2863 fixup->page = page;
2864 fixup->inode = BTRFS_I(inode);
2865 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2866
2867 return -EAGAIN;
2868 }
2869
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2870 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2871 struct btrfs_inode *inode, u64 file_pos,
2872 struct btrfs_file_extent_item *stack_fi,
2873 const bool update_inode_bytes,
2874 u64 qgroup_reserved)
2875 {
2876 struct btrfs_root *root = inode->root;
2877 const u64 sectorsize = root->fs_info->sectorsize;
2878 struct btrfs_path *path;
2879 struct extent_buffer *leaf;
2880 struct btrfs_key ins;
2881 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2882 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2883 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2884 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2885 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2886 struct btrfs_drop_extents_args drop_args = { 0 };
2887 int ret;
2888
2889 path = btrfs_alloc_path();
2890 if (!path)
2891 return -ENOMEM;
2892
2893 /*
2894 * we may be replacing one extent in the tree with another.
2895 * The new extent is pinned in the extent map, and we don't want
2896 * to drop it from the cache until it is completely in the btree.
2897 *
2898 * So, tell btrfs_drop_extents to leave this extent in the cache.
2899 * the caller is expected to unpin it and allow it to be merged
2900 * with the others.
2901 */
2902 drop_args.path = path;
2903 drop_args.start = file_pos;
2904 drop_args.end = file_pos + num_bytes;
2905 drop_args.replace_extent = true;
2906 drop_args.extent_item_size = sizeof(*stack_fi);
2907 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2908 if (ret)
2909 goto out;
2910
2911 if (!drop_args.extent_inserted) {
2912 ins.objectid = btrfs_ino(inode);
2913 ins.offset = file_pos;
2914 ins.type = BTRFS_EXTENT_DATA_KEY;
2915
2916 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2917 sizeof(*stack_fi));
2918 if (ret)
2919 goto out;
2920 }
2921 leaf = path->nodes[0];
2922 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2923 write_extent_buffer(leaf, stack_fi,
2924 btrfs_item_ptr_offset(leaf, path->slots[0]),
2925 sizeof(struct btrfs_file_extent_item));
2926
2927 btrfs_mark_buffer_dirty(trans, leaf);
2928 btrfs_release_path(path);
2929
2930 /*
2931 * If we dropped an inline extent here, we know the range where it is
2932 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2933 * number of bytes only for that range containing the inline extent.
2934 * The remaining of the range will be processed when clearning the
2935 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2936 */
2937 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2938 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2939
2940 inline_size = drop_args.bytes_found - inline_size;
2941 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2942 drop_args.bytes_found -= inline_size;
2943 num_bytes -= sectorsize;
2944 }
2945
2946 if (update_inode_bytes)
2947 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2948
2949 ins.objectid = disk_bytenr;
2950 ins.offset = disk_num_bytes;
2951 ins.type = BTRFS_EXTENT_ITEM_KEY;
2952
2953 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2954 if (ret)
2955 goto out;
2956
2957 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2958 file_pos - offset,
2959 qgroup_reserved, &ins);
2960 out:
2961 btrfs_free_path(path);
2962
2963 return ret;
2964 }
2965
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2966 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2967 u64 start, u64 len)
2968 {
2969 struct btrfs_block_group *cache;
2970
2971 cache = btrfs_lookup_block_group(fs_info, start);
2972 ASSERT(cache);
2973
2974 spin_lock(&cache->lock);
2975 cache->delalloc_bytes -= len;
2976 spin_unlock(&cache->lock);
2977
2978 btrfs_put_block_group(cache);
2979 }
2980
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)2981 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2982 struct btrfs_ordered_extent *oe)
2983 {
2984 struct btrfs_file_extent_item stack_fi;
2985 bool update_inode_bytes;
2986 u64 num_bytes = oe->num_bytes;
2987 u64 ram_bytes = oe->ram_bytes;
2988
2989 memset(&stack_fi, 0, sizeof(stack_fi));
2990 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2991 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2992 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2993 oe->disk_num_bytes);
2994 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2995 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2996 num_bytes = oe->truncated_len;
2997 ram_bytes = num_bytes;
2998 }
2999 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3000 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3001 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3002 /* Encryption and other encoding is reserved and all 0 */
3003
3004 /*
3005 * For delalloc, when completing an ordered extent we update the inode's
3006 * bytes when clearing the range in the inode's io tree, so pass false
3007 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3008 * except if the ordered extent was truncated.
3009 */
3010 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3011 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3012 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3013
3014 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3015 oe->file_offset, &stack_fi,
3016 update_inode_bytes, oe->qgroup_rsv);
3017 }
3018
3019 /*
3020 * As ordered data IO finishes, this gets called so we can finish
3021 * an ordered extent if the range of bytes in the file it covers are
3022 * fully written.
3023 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3024 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3025 {
3026 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3027 struct btrfs_root *root = inode->root;
3028 struct btrfs_fs_info *fs_info = root->fs_info;
3029 struct btrfs_trans_handle *trans = NULL;
3030 struct extent_io_tree *io_tree = &inode->io_tree;
3031 struct extent_state *cached_state = NULL;
3032 u64 start, end;
3033 int compress_type = 0;
3034 int ret = 0;
3035 u64 logical_len = ordered_extent->num_bytes;
3036 bool freespace_inode;
3037 bool truncated = false;
3038 bool clear_reserved_extent = true;
3039 unsigned int clear_bits = EXTENT_DEFRAG;
3040
3041 start = ordered_extent->file_offset;
3042 end = start + ordered_extent->num_bytes - 1;
3043
3044 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3045 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3046 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3047 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3048 clear_bits |= EXTENT_DELALLOC_NEW;
3049
3050 freespace_inode = btrfs_is_free_space_inode(inode);
3051 if (!freespace_inode)
3052 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3053
3054 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3055 ret = -EIO;
3056 goto out;
3057 }
3058
3059 if (btrfs_is_zoned(fs_info))
3060 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3061 ordered_extent->disk_num_bytes);
3062
3063 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3064 truncated = true;
3065 logical_len = ordered_extent->truncated_len;
3066 /* Truncated the entire extent, don't bother adding */
3067 if (!logical_len)
3068 goto out;
3069 }
3070
3071 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3072 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3073
3074 btrfs_inode_safe_disk_i_size_write(inode, 0);
3075 if (freespace_inode)
3076 trans = btrfs_join_transaction_spacecache(root);
3077 else
3078 trans = btrfs_join_transaction(root);
3079 if (IS_ERR(trans)) {
3080 ret = PTR_ERR(trans);
3081 trans = NULL;
3082 goto out;
3083 }
3084 trans->block_rsv = &inode->block_rsv;
3085 ret = btrfs_update_inode_fallback(trans, inode);
3086 if (ret) /* -ENOMEM or corruption */
3087 btrfs_abort_transaction(trans, ret);
3088 goto out;
3089 }
3090
3091 clear_bits |= EXTENT_LOCKED;
3092 lock_extent(io_tree, start, end, &cached_state);
3093
3094 if (freespace_inode)
3095 trans = btrfs_join_transaction_spacecache(root);
3096 else
3097 trans = btrfs_join_transaction(root);
3098 if (IS_ERR(trans)) {
3099 ret = PTR_ERR(trans);
3100 trans = NULL;
3101 goto out;
3102 }
3103
3104 trans->block_rsv = &inode->block_rsv;
3105
3106 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3107 if (ret)
3108 goto out;
3109
3110 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3111 compress_type = ordered_extent->compress_type;
3112 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3113 BUG_ON(compress_type);
3114 ret = btrfs_mark_extent_written(trans, inode,
3115 ordered_extent->file_offset,
3116 ordered_extent->file_offset +
3117 logical_len);
3118 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3119 ordered_extent->disk_num_bytes);
3120 } else {
3121 BUG_ON(root == fs_info->tree_root);
3122 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3123 if (!ret) {
3124 clear_reserved_extent = false;
3125 btrfs_release_delalloc_bytes(fs_info,
3126 ordered_extent->disk_bytenr,
3127 ordered_extent->disk_num_bytes);
3128 }
3129 }
3130 unpin_extent_cache(inode, ordered_extent->file_offset,
3131 ordered_extent->num_bytes, trans->transid);
3132 if (ret < 0) {
3133 btrfs_abort_transaction(trans, ret);
3134 goto out;
3135 }
3136
3137 ret = add_pending_csums(trans, &ordered_extent->list);
3138 if (ret) {
3139 btrfs_abort_transaction(trans, ret);
3140 goto out;
3141 }
3142
3143 /*
3144 * If this is a new delalloc range, clear its new delalloc flag to
3145 * update the inode's number of bytes. This needs to be done first
3146 * before updating the inode item.
3147 */
3148 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3149 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3150 clear_extent_bit(&inode->io_tree, start, end,
3151 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3152 &cached_state);
3153
3154 btrfs_inode_safe_disk_i_size_write(inode, 0);
3155 ret = btrfs_update_inode_fallback(trans, inode);
3156 if (ret) { /* -ENOMEM or corruption */
3157 btrfs_abort_transaction(trans, ret);
3158 goto out;
3159 }
3160 ret = 0;
3161 out:
3162 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3163 &cached_state);
3164
3165 if (trans)
3166 btrfs_end_transaction(trans);
3167
3168 if (ret || truncated) {
3169 u64 unwritten_start = start;
3170
3171 /*
3172 * If we failed to finish this ordered extent for any reason we
3173 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3174 * extent, and mark the inode with the error if it wasn't
3175 * already set. Any error during writeback would have already
3176 * set the mapping error, so we need to set it if we're the ones
3177 * marking this ordered extent as failed.
3178 */
3179 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3180 &ordered_extent->flags))
3181 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3182
3183 if (truncated)
3184 unwritten_start += logical_len;
3185 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3186
3187 /*
3188 * Drop extent maps for the part of the extent we didn't write.
3189 *
3190 * We have an exception here for the free_space_inode, this is
3191 * because when we do btrfs_get_extent() on the free space inode
3192 * we will search the commit root. If this is a new block group
3193 * we won't find anything, and we will trip over the assert in
3194 * writepage where we do ASSERT(em->block_start !=
3195 * EXTENT_MAP_HOLE).
3196 *
3197 * Theoretically we could also skip this for any NOCOW extent as
3198 * we don't mess with the extent map tree in the NOCOW case, but
3199 * for now simply skip this if we are the free space inode.
3200 */
3201 if (!btrfs_is_free_space_inode(inode))
3202 btrfs_drop_extent_map_range(inode, unwritten_start,
3203 end, false);
3204
3205 /*
3206 * If the ordered extent had an IOERR or something else went
3207 * wrong we need to return the space for this ordered extent
3208 * back to the allocator. We only free the extent in the
3209 * truncated case if we didn't write out the extent at all.
3210 *
3211 * If we made it past insert_reserved_file_extent before we
3212 * errored out then we don't need to do this as the accounting
3213 * has already been done.
3214 */
3215 if ((ret || !logical_len) &&
3216 clear_reserved_extent &&
3217 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3218 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3219 /*
3220 * Discard the range before returning it back to the
3221 * free space pool
3222 */
3223 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3224 btrfs_discard_extent(fs_info,
3225 ordered_extent->disk_bytenr,
3226 ordered_extent->disk_num_bytes,
3227 NULL);
3228 btrfs_free_reserved_extent(fs_info,
3229 ordered_extent->disk_bytenr,
3230 ordered_extent->disk_num_bytes, 1);
3231 /*
3232 * Actually free the qgroup rsv which was released when
3233 * the ordered extent was created.
3234 */
3235 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3236 ordered_extent->qgroup_rsv,
3237 BTRFS_QGROUP_RSV_DATA);
3238 }
3239 }
3240
3241 /*
3242 * This needs to be done to make sure anybody waiting knows we are done
3243 * updating everything for this ordered extent.
3244 */
3245 btrfs_remove_ordered_extent(inode, ordered_extent);
3246
3247 /* once for us */
3248 btrfs_put_ordered_extent(ordered_extent);
3249 /* once for the tree */
3250 btrfs_put_ordered_extent(ordered_extent);
3251
3252 return ret;
3253 }
3254
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3255 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3256 {
3257 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3258 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3259 list_empty(&ordered->bioc_list))
3260 btrfs_finish_ordered_zoned(ordered);
3261 return btrfs_finish_one_ordered(ordered);
3262 }
3263
3264 /*
3265 * Verify the checksum for a single sector without any extra action that depend
3266 * on the type of I/O.
3267 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,struct page * page,u32 pgoff,u8 * csum,const u8 * const csum_expected)3268 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3269 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3270 {
3271 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3272 char *kaddr;
3273
3274 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3275
3276 shash->tfm = fs_info->csum_shash;
3277
3278 kaddr = kmap_local_page(page) + pgoff;
3279 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3280 kunmap_local(kaddr);
3281
3282 if (memcmp(csum, csum_expected, fs_info->csum_size))
3283 return -EIO;
3284 return 0;
3285 }
3286
3287 /*
3288 * Verify the checksum of a single data sector.
3289 *
3290 * @bbio: btrfs_io_bio which contains the csum
3291 * @dev: device the sector is on
3292 * @bio_offset: offset to the beginning of the bio (in bytes)
3293 * @bv: bio_vec to check
3294 *
3295 * Check if the checksum on a data block is valid. When a checksum mismatch is
3296 * detected, report the error and fill the corrupted range with zero.
3297 *
3298 * Return %true if the sector is ok or had no checksum to start with, else %false.
3299 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3300 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3301 u32 bio_offset, struct bio_vec *bv)
3302 {
3303 struct btrfs_inode *inode = bbio->inode;
3304 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3305 u64 file_offset = bbio->file_offset + bio_offset;
3306 u64 end = file_offset + bv->bv_len - 1;
3307 u8 *csum_expected;
3308 u8 csum[BTRFS_CSUM_SIZE];
3309
3310 ASSERT(bv->bv_len == fs_info->sectorsize);
3311
3312 if (!bbio->csum)
3313 return true;
3314
3315 if (btrfs_is_data_reloc_root(inode->root) &&
3316 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3317 NULL)) {
3318 /* Skip the range without csum for data reloc inode */
3319 clear_extent_bits(&inode->io_tree, file_offset, end,
3320 EXTENT_NODATASUM);
3321 return true;
3322 }
3323
3324 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3325 fs_info->csum_size;
3326 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3327 csum_expected))
3328 goto zeroit;
3329 return true;
3330
3331 zeroit:
3332 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3333 bbio->mirror_num);
3334 if (dev)
3335 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3336 memzero_bvec(bv);
3337 return false;
3338 }
3339
3340 /*
3341 * Perform a delayed iput on @inode.
3342 *
3343 * @inode: The inode we want to perform iput on
3344 *
3345 * This function uses the generic vfs_inode::i_count to track whether we should
3346 * just decrement it (in case it's > 1) or if this is the last iput then link
3347 * the inode to the delayed iput machinery. Delayed iputs are processed at
3348 * transaction commit time/superblock commit/cleaner kthread.
3349 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3350 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3351 {
3352 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3353 unsigned long flags;
3354
3355 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3356 return;
3357
3358 atomic_inc(&fs_info->nr_delayed_iputs);
3359 /*
3360 * Need to be irq safe here because we can be called from either an irq
3361 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3362 * context.
3363 */
3364 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3365 ASSERT(list_empty(&inode->delayed_iput));
3366 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3367 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3368 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3369 wake_up_process(fs_info->cleaner_kthread);
3370 }
3371
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3372 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3373 struct btrfs_inode *inode)
3374 {
3375 list_del_init(&inode->delayed_iput);
3376 spin_unlock_irq(&fs_info->delayed_iput_lock);
3377 iput(&inode->vfs_inode);
3378 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3379 wake_up(&fs_info->delayed_iputs_wait);
3380 spin_lock_irq(&fs_info->delayed_iput_lock);
3381 }
3382
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3383 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3384 struct btrfs_inode *inode)
3385 {
3386 if (!list_empty(&inode->delayed_iput)) {
3387 spin_lock_irq(&fs_info->delayed_iput_lock);
3388 if (!list_empty(&inode->delayed_iput))
3389 run_delayed_iput_locked(fs_info, inode);
3390 spin_unlock_irq(&fs_info->delayed_iput_lock);
3391 }
3392 }
3393
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3394 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3395 {
3396 /*
3397 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3398 * calls btrfs_add_delayed_iput() and that needs to lock
3399 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3400 * prevent a deadlock.
3401 */
3402 spin_lock_irq(&fs_info->delayed_iput_lock);
3403 while (!list_empty(&fs_info->delayed_iputs)) {
3404 struct btrfs_inode *inode;
3405
3406 inode = list_first_entry(&fs_info->delayed_iputs,
3407 struct btrfs_inode, delayed_iput);
3408 run_delayed_iput_locked(fs_info, inode);
3409 if (need_resched()) {
3410 spin_unlock_irq(&fs_info->delayed_iput_lock);
3411 cond_resched();
3412 spin_lock_irq(&fs_info->delayed_iput_lock);
3413 }
3414 }
3415 spin_unlock_irq(&fs_info->delayed_iput_lock);
3416 }
3417
3418 /*
3419 * Wait for flushing all delayed iputs
3420 *
3421 * @fs_info: the filesystem
3422 *
3423 * This will wait on any delayed iputs that are currently running with KILLABLE
3424 * set. Once they are all done running we will return, unless we are killed in
3425 * which case we return EINTR. This helps in user operations like fallocate etc
3426 * that might get blocked on the iputs.
3427 *
3428 * Return EINTR if we were killed, 0 if nothing's pending
3429 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3430 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3431 {
3432 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3433 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3434 if (ret)
3435 return -EINTR;
3436 return 0;
3437 }
3438
3439 /*
3440 * This creates an orphan entry for the given inode in case something goes wrong
3441 * in the middle of an unlink.
3442 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3443 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3444 struct btrfs_inode *inode)
3445 {
3446 int ret;
3447
3448 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3449 if (ret && ret != -EEXIST) {
3450 btrfs_abort_transaction(trans, ret);
3451 return ret;
3452 }
3453
3454 return 0;
3455 }
3456
3457 /*
3458 * We have done the delete so we can go ahead and remove the orphan item for
3459 * this particular inode.
3460 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3461 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3462 struct btrfs_inode *inode)
3463 {
3464 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3465 }
3466
3467 /*
3468 * this cleans up any orphans that may be left on the list from the last use
3469 * of this root.
3470 */
btrfs_orphan_cleanup(struct btrfs_root * root)3471 int btrfs_orphan_cleanup(struct btrfs_root *root)
3472 {
3473 struct btrfs_fs_info *fs_info = root->fs_info;
3474 struct btrfs_path *path;
3475 struct extent_buffer *leaf;
3476 struct btrfs_key key, found_key;
3477 struct btrfs_trans_handle *trans;
3478 struct inode *inode;
3479 u64 last_objectid = 0;
3480 int ret = 0, nr_unlink = 0;
3481
3482 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3483 return 0;
3484
3485 path = btrfs_alloc_path();
3486 if (!path) {
3487 ret = -ENOMEM;
3488 goto out;
3489 }
3490 path->reada = READA_BACK;
3491
3492 key.objectid = BTRFS_ORPHAN_OBJECTID;
3493 key.type = BTRFS_ORPHAN_ITEM_KEY;
3494 key.offset = (u64)-1;
3495
3496 while (1) {
3497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3498 if (ret < 0)
3499 goto out;
3500
3501 /*
3502 * if ret == 0 means we found what we were searching for, which
3503 * is weird, but possible, so only screw with path if we didn't
3504 * find the key and see if we have stuff that matches
3505 */
3506 if (ret > 0) {
3507 ret = 0;
3508 if (path->slots[0] == 0)
3509 break;
3510 path->slots[0]--;
3511 }
3512
3513 /* pull out the item */
3514 leaf = path->nodes[0];
3515 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3516
3517 /* make sure the item matches what we want */
3518 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3519 break;
3520 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3521 break;
3522
3523 /* release the path since we're done with it */
3524 btrfs_release_path(path);
3525
3526 /*
3527 * this is where we are basically btrfs_lookup, without the
3528 * crossing root thing. we store the inode number in the
3529 * offset of the orphan item.
3530 */
3531
3532 if (found_key.offset == last_objectid) {
3533 /*
3534 * We found the same inode as before. This means we were
3535 * not able to remove its items via eviction triggered
3536 * by an iput(). A transaction abort may have happened,
3537 * due to -ENOSPC for example, so try to grab the error
3538 * that lead to a transaction abort, if any.
3539 */
3540 btrfs_err(fs_info,
3541 "Error removing orphan entry, stopping orphan cleanup");
3542 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3543 goto out;
3544 }
3545
3546 last_objectid = found_key.offset;
3547
3548 found_key.objectid = found_key.offset;
3549 found_key.type = BTRFS_INODE_ITEM_KEY;
3550 found_key.offset = 0;
3551 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3552 if (IS_ERR(inode)) {
3553 ret = PTR_ERR(inode);
3554 inode = NULL;
3555 if (ret != -ENOENT)
3556 goto out;
3557 }
3558
3559 if (!inode && root == fs_info->tree_root) {
3560 struct btrfs_root *dead_root;
3561 int is_dead_root = 0;
3562
3563 /*
3564 * This is an orphan in the tree root. Currently these
3565 * could come from 2 sources:
3566 * a) a root (snapshot/subvolume) deletion in progress
3567 * b) a free space cache inode
3568 * We need to distinguish those two, as the orphan item
3569 * for a root must not get deleted before the deletion
3570 * of the snapshot/subvolume's tree completes.
3571 *
3572 * btrfs_find_orphan_roots() ran before us, which has
3573 * found all deleted roots and loaded them into
3574 * fs_info->fs_roots_radix. So here we can find if an
3575 * orphan item corresponds to a deleted root by looking
3576 * up the root from that radix tree.
3577 */
3578
3579 spin_lock(&fs_info->fs_roots_radix_lock);
3580 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3581 (unsigned long)found_key.objectid);
3582 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3583 is_dead_root = 1;
3584 spin_unlock(&fs_info->fs_roots_radix_lock);
3585
3586 if (is_dead_root) {
3587 /* prevent this orphan from being found again */
3588 key.offset = found_key.objectid - 1;
3589 continue;
3590 }
3591
3592 }
3593
3594 /*
3595 * If we have an inode with links, there are a couple of
3596 * possibilities:
3597 *
3598 * 1. We were halfway through creating fsverity metadata for the
3599 * file. In that case, the orphan item represents incomplete
3600 * fsverity metadata which must be cleaned up with
3601 * btrfs_drop_verity_items and deleting the orphan item.
3602
3603 * 2. Old kernels (before v3.12) used to create an
3604 * orphan item for truncate indicating that there were possibly
3605 * extent items past i_size that needed to be deleted. In v3.12,
3606 * truncate was changed to update i_size in sync with the extent
3607 * items, but the (useless) orphan item was still created. Since
3608 * v4.18, we don't create the orphan item for truncate at all.
3609 *
3610 * So, this item could mean that we need to do a truncate, but
3611 * only if this filesystem was last used on a pre-v3.12 kernel
3612 * and was not cleanly unmounted. The odds of that are quite
3613 * slim, and it's a pain to do the truncate now, so just delete
3614 * the orphan item.
3615 *
3616 * It's also possible that this orphan item was supposed to be
3617 * deleted but wasn't. The inode number may have been reused,
3618 * but either way, we can delete the orphan item.
3619 */
3620 if (!inode || inode->i_nlink) {
3621 if (inode) {
3622 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3623 iput(inode);
3624 inode = NULL;
3625 if (ret)
3626 goto out;
3627 }
3628 trans = btrfs_start_transaction(root, 1);
3629 if (IS_ERR(trans)) {
3630 ret = PTR_ERR(trans);
3631 goto out;
3632 }
3633 btrfs_debug(fs_info, "auto deleting %Lu",
3634 found_key.objectid);
3635 ret = btrfs_del_orphan_item(trans, root,
3636 found_key.objectid);
3637 btrfs_end_transaction(trans);
3638 if (ret)
3639 goto out;
3640 continue;
3641 }
3642
3643 nr_unlink++;
3644
3645 /* this will do delete_inode and everything for us */
3646 iput(inode);
3647 }
3648 /* release the path since we're done with it */
3649 btrfs_release_path(path);
3650
3651 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3652 trans = btrfs_join_transaction(root);
3653 if (!IS_ERR(trans))
3654 btrfs_end_transaction(trans);
3655 }
3656
3657 if (nr_unlink)
3658 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3659
3660 out:
3661 if (ret)
3662 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3663 btrfs_free_path(path);
3664 return ret;
3665 }
3666
3667 /*
3668 * very simple check to peek ahead in the leaf looking for xattrs. If we
3669 * don't find any xattrs, we know there can't be any acls.
3670 *
3671 * slot is the slot the inode is in, objectid is the objectid of the inode
3672 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3673 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3674 int slot, u64 objectid,
3675 int *first_xattr_slot)
3676 {
3677 u32 nritems = btrfs_header_nritems(leaf);
3678 struct btrfs_key found_key;
3679 static u64 xattr_access = 0;
3680 static u64 xattr_default = 0;
3681 int scanned = 0;
3682
3683 if (!xattr_access) {
3684 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3685 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3686 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3687 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3688 }
3689
3690 slot++;
3691 *first_xattr_slot = -1;
3692 while (slot < nritems) {
3693 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3694
3695 /* we found a different objectid, there must not be acls */
3696 if (found_key.objectid != objectid)
3697 return 0;
3698
3699 /* we found an xattr, assume we've got an acl */
3700 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3701 if (*first_xattr_slot == -1)
3702 *first_xattr_slot = slot;
3703 if (found_key.offset == xattr_access ||
3704 found_key.offset == xattr_default)
3705 return 1;
3706 }
3707
3708 /*
3709 * we found a key greater than an xattr key, there can't
3710 * be any acls later on
3711 */
3712 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3713 return 0;
3714
3715 slot++;
3716 scanned++;
3717
3718 /*
3719 * it goes inode, inode backrefs, xattrs, extents,
3720 * so if there are a ton of hard links to an inode there can
3721 * be a lot of backrefs. Don't waste time searching too hard,
3722 * this is just an optimization
3723 */
3724 if (scanned >= 8)
3725 break;
3726 }
3727 /* we hit the end of the leaf before we found an xattr or
3728 * something larger than an xattr. We have to assume the inode
3729 * has acls
3730 */
3731 if (*first_xattr_slot == -1)
3732 *first_xattr_slot = slot;
3733 return 1;
3734 }
3735
3736 /*
3737 * read an inode from the btree into the in-memory inode
3738 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3739 static int btrfs_read_locked_inode(struct inode *inode,
3740 struct btrfs_path *in_path)
3741 {
3742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3743 struct btrfs_path *path = in_path;
3744 struct extent_buffer *leaf;
3745 struct btrfs_inode_item *inode_item;
3746 struct btrfs_root *root = BTRFS_I(inode)->root;
3747 struct btrfs_key location;
3748 unsigned long ptr;
3749 int maybe_acls;
3750 u32 rdev;
3751 int ret;
3752 bool filled = false;
3753 int first_xattr_slot;
3754
3755 ret = btrfs_fill_inode(inode, &rdev);
3756 if (!ret)
3757 filled = true;
3758
3759 if (!path) {
3760 path = btrfs_alloc_path();
3761 if (!path)
3762 return -ENOMEM;
3763 }
3764
3765 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3766
3767 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3768 if (ret) {
3769 if (path != in_path)
3770 btrfs_free_path(path);
3771 return ret;
3772 }
3773
3774 leaf = path->nodes[0];
3775
3776 if (filled)
3777 goto cache_index;
3778
3779 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3780 struct btrfs_inode_item);
3781 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3782 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3783 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3784 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3785 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3786 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3787 round_up(i_size_read(inode), fs_info->sectorsize));
3788
3789 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3790 btrfs_timespec_nsec(leaf, &inode_item->atime));
3791
3792 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3793 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3794
3795 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3796 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3797
3798 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3799 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3800
3801 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3802 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3803 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3804
3805 inode_set_iversion_queried(inode,
3806 btrfs_inode_sequence(leaf, inode_item));
3807 inode->i_generation = BTRFS_I(inode)->generation;
3808 inode->i_rdev = 0;
3809 rdev = btrfs_inode_rdev(leaf, inode_item);
3810
3811 BTRFS_I(inode)->index_cnt = (u64)-1;
3812 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3813 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3814
3815 cache_index:
3816 /*
3817 * If we were modified in the current generation and evicted from memory
3818 * and then re-read we need to do a full sync since we don't have any
3819 * idea about which extents were modified before we were evicted from
3820 * cache.
3821 *
3822 * This is required for both inode re-read from disk and delayed inode
3823 * in the delayed_nodes xarray.
3824 */
3825 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3826 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3827 &BTRFS_I(inode)->runtime_flags);
3828
3829 /*
3830 * We don't persist the id of the transaction where an unlink operation
3831 * against the inode was last made. So here we assume the inode might
3832 * have been evicted, and therefore the exact value of last_unlink_trans
3833 * lost, and set it to last_trans to avoid metadata inconsistencies
3834 * between the inode and its parent if the inode is fsync'ed and the log
3835 * replayed. For example, in the scenario:
3836 *
3837 * touch mydir/foo
3838 * ln mydir/foo mydir/bar
3839 * sync
3840 * unlink mydir/bar
3841 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3842 * xfs_io -c fsync mydir/foo
3843 * <power failure>
3844 * mount fs, triggers fsync log replay
3845 *
3846 * We must make sure that when we fsync our inode foo we also log its
3847 * parent inode, otherwise after log replay the parent still has the
3848 * dentry with the "bar" name but our inode foo has a link count of 1
3849 * and doesn't have an inode ref with the name "bar" anymore.
3850 *
3851 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3852 * but it guarantees correctness at the expense of occasional full
3853 * transaction commits on fsync if our inode is a directory, or if our
3854 * inode is not a directory, logging its parent unnecessarily.
3855 */
3856 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3857
3858 /*
3859 * Same logic as for last_unlink_trans. We don't persist the generation
3860 * of the last transaction where this inode was used for a reflink
3861 * operation, so after eviction and reloading the inode we must be
3862 * pessimistic and assume the last transaction that modified the inode.
3863 */
3864 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3865
3866 path->slots[0]++;
3867 if (inode->i_nlink != 1 ||
3868 path->slots[0] >= btrfs_header_nritems(leaf))
3869 goto cache_acl;
3870
3871 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3872 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3873 goto cache_acl;
3874
3875 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3876 if (location.type == BTRFS_INODE_REF_KEY) {
3877 struct btrfs_inode_ref *ref;
3878
3879 ref = (struct btrfs_inode_ref *)ptr;
3880 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3881 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3882 struct btrfs_inode_extref *extref;
3883
3884 extref = (struct btrfs_inode_extref *)ptr;
3885 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3886 extref);
3887 }
3888 cache_acl:
3889 /*
3890 * try to precache a NULL acl entry for files that don't have
3891 * any xattrs or acls
3892 */
3893 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3894 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3895 if (first_xattr_slot != -1) {
3896 path->slots[0] = first_xattr_slot;
3897 ret = btrfs_load_inode_props(inode, path);
3898 if (ret)
3899 btrfs_err(fs_info,
3900 "error loading props for ino %llu (root %llu): %d",
3901 btrfs_ino(BTRFS_I(inode)),
3902 root->root_key.objectid, ret);
3903 }
3904 if (path != in_path)
3905 btrfs_free_path(path);
3906
3907 if (!maybe_acls)
3908 cache_no_acl(inode);
3909
3910 switch (inode->i_mode & S_IFMT) {
3911 case S_IFREG:
3912 inode->i_mapping->a_ops = &btrfs_aops;
3913 inode->i_fop = &btrfs_file_operations;
3914 inode->i_op = &btrfs_file_inode_operations;
3915 break;
3916 case S_IFDIR:
3917 inode->i_fop = &btrfs_dir_file_operations;
3918 inode->i_op = &btrfs_dir_inode_operations;
3919 break;
3920 case S_IFLNK:
3921 inode->i_op = &btrfs_symlink_inode_operations;
3922 inode_nohighmem(inode);
3923 inode->i_mapping->a_ops = &btrfs_aops;
3924 break;
3925 default:
3926 inode->i_op = &btrfs_special_inode_operations;
3927 init_special_inode(inode, inode->i_mode, rdev);
3928 break;
3929 }
3930
3931 btrfs_sync_inode_flags_to_i_flags(inode);
3932 return 0;
3933 }
3934
3935 /*
3936 * given a leaf and an inode, copy the inode fields into the leaf
3937 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3938 static void fill_inode_item(struct btrfs_trans_handle *trans,
3939 struct extent_buffer *leaf,
3940 struct btrfs_inode_item *item,
3941 struct inode *inode)
3942 {
3943 struct btrfs_map_token token;
3944 u64 flags;
3945
3946 btrfs_init_map_token(&token, leaf);
3947
3948 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3949 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3950 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3951 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3952 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3953
3954 btrfs_set_token_timespec_sec(&token, &item->atime,
3955 inode_get_atime_sec(inode));
3956 btrfs_set_token_timespec_nsec(&token, &item->atime,
3957 inode_get_atime_nsec(inode));
3958
3959 btrfs_set_token_timespec_sec(&token, &item->mtime,
3960 inode_get_mtime_sec(inode));
3961 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3962 inode_get_mtime_nsec(inode));
3963
3964 btrfs_set_token_timespec_sec(&token, &item->ctime,
3965 inode_get_ctime_sec(inode));
3966 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3967 inode_get_ctime_nsec(inode));
3968
3969 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3970 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
3971
3972 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3973 btrfs_set_token_inode_generation(&token, item,
3974 BTRFS_I(inode)->generation);
3975 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3976 btrfs_set_token_inode_transid(&token, item, trans->transid);
3977 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3978 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3979 BTRFS_I(inode)->ro_flags);
3980 btrfs_set_token_inode_flags(&token, item, flags);
3981 btrfs_set_token_inode_block_group(&token, item, 0);
3982 }
3983
3984 /*
3985 * copy everything in the in-memory inode into the btree.
3986 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3987 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3988 struct btrfs_inode *inode)
3989 {
3990 struct btrfs_inode_item *inode_item;
3991 struct btrfs_path *path;
3992 struct extent_buffer *leaf;
3993 int ret;
3994
3995 path = btrfs_alloc_path();
3996 if (!path)
3997 return -ENOMEM;
3998
3999 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
4000 if (ret) {
4001 if (ret > 0)
4002 ret = -ENOENT;
4003 goto failed;
4004 }
4005
4006 leaf = path->nodes[0];
4007 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4008 struct btrfs_inode_item);
4009
4010 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4011 btrfs_mark_buffer_dirty(trans, leaf);
4012 btrfs_set_inode_last_trans(trans, inode);
4013 ret = 0;
4014 failed:
4015 btrfs_free_path(path);
4016 return ret;
4017 }
4018
4019 /*
4020 * copy everything in the in-memory inode into the btree.
4021 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4022 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4023 struct btrfs_inode *inode)
4024 {
4025 struct btrfs_root *root = inode->root;
4026 struct btrfs_fs_info *fs_info = root->fs_info;
4027 int ret;
4028
4029 /*
4030 * If the inode is a free space inode, we can deadlock during commit
4031 * if we put it into the delayed code.
4032 *
4033 * The data relocation inode should also be directly updated
4034 * without delay
4035 */
4036 if (!btrfs_is_free_space_inode(inode)
4037 && !btrfs_is_data_reloc_root(root)
4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4039 btrfs_update_root_times(trans, root);
4040
4041 ret = btrfs_delayed_update_inode(trans, inode);
4042 if (!ret)
4043 btrfs_set_inode_last_trans(trans, inode);
4044 return ret;
4045 }
4046
4047 return btrfs_update_inode_item(trans, inode);
4048 }
4049
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4050 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4051 struct btrfs_inode *inode)
4052 {
4053 int ret;
4054
4055 ret = btrfs_update_inode(trans, inode);
4056 if (ret == -ENOSPC)
4057 return btrfs_update_inode_item(trans, inode);
4058 return ret;
4059 }
4060
4061 /*
4062 * unlink helper that gets used here in inode.c and in the tree logging
4063 * recovery code. It remove a link in a directory with a given name, and
4064 * also drops the back refs in the inode to the directory
4065 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4066 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4067 struct btrfs_inode *dir,
4068 struct btrfs_inode *inode,
4069 const struct fscrypt_str *name,
4070 struct btrfs_rename_ctx *rename_ctx)
4071 {
4072 struct btrfs_root *root = dir->root;
4073 struct btrfs_fs_info *fs_info = root->fs_info;
4074 struct btrfs_path *path;
4075 int ret = 0;
4076 struct btrfs_dir_item *di;
4077 u64 index;
4078 u64 ino = btrfs_ino(inode);
4079 u64 dir_ino = btrfs_ino(dir);
4080
4081 path = btrfs_alloc_path();
4082 if (!path) {
4083 ret = -ENOMEM;
4084 goto out;
4085 }
4086
4087 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4088 if (IS_ERR_OR_NULL(di)) {
4089 ret = di ? PTR_ERR(di) : -ENOENT;
4090 goto err;
4091 }
4092 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4093 if (ret)
4094 goto err;
4095 btrfs_release_path(path);
4096
4097 /*
4098 * If we don't have dir index, we have to get it by looking up
4099 * the inode ref, since we get the inode ref, remove it directly,
4100 * it is unnecessary to do delayed deletion.
4101 *
4102 * But if we have dir index, needn't search inode ref to get it.
4103 * Since the inode ref is close to the inode item, it is better
4104 * that we delay to delete it, and just do this deletion when
4105 * we update the inode item.
4106 */
4107 if (inode->dir_index) {
4108 ret = btrfs_delayed_delete_inode_ref(inode);
4109 if (!ret) {
4110 index = inode->dir_index;
4111 goto skip_backref;
4112 }
4113 }
4114
4115 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4116 if (ret) {
4117 btrfs_info(fs_info,
4118 "failed to delete reference to %.*s, inode %llu parent %llu",
4119 name->len, name->name, ino, dir_ino);
4120 btrfs_abort_transaction(trans, ret);
4121 goto err;
4122 }
4123 skip_backref:
4124 if (rename_ctx)
4125 rename_ctx->index = index;
4126
4127 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4128 if (ret) {
4129 btrfs_abort_transaction(trans, ret);
4130 goto err;
4131 }
4132
4133 /*
4134 * If we are in a rename context, we don't need to update anything in the
4135 * log. That will be done later during the rename by btrfs_log_new_name().
4136 * Besides that, doing it here would only cause extra unnecessary btree
4137 * operations on the log tree, increasing latency for applications.
4138 */
4139 if (!rename_ctx) {
4140 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4141 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4142 }
4143
4144 /*
4145 * If we have a pending delayed iput we could end up with the final iput
4146 * being run in btrfs-cleaner context. If we have enough of these built
4147 * up we can end up burning a lot of time in btrfs-cleaner without any
4148 * way to throttle the unlinks. Since we're currently holding a ref on
4149 * the inode we can run the delayed iput here without any issues as the
4150 * final iput won't be done until after we drop the ref we're currently
4151 * holding.
4152 */
4153 btrfs_run_delayed_iput(fs_info, inode);
4154 err:
4155 btrfs_free_path(path);
4156 if (ret)
4157 goto out;
4158
4159 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4160 inode_inc_iversion(&inode->vfs_inode);
4161 inode_inc_iversion(&dir->vfs_inode);
4162 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4163 ret = btrfs_update_inode(trans, dir);
4164 out:
4165 return ret;
4166 }
4167
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4168 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4169 struct btrfs_inode *dir, struct btrfs_inode *inode,
4170 const struct fscrypt_str *name)
4171 {
4172 int ret;
4173
4174 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4175 if (!ret) {
4176 drop_nlink(&inode->vfs_inode);
4177 ret = btrfs_update_inode(trans, inode);
4178 }
4179 return ret;
4180 }
4181
4182 /*
4183 * helper to start transaction for unlink and rmdir.
4184 *
4185 * unlink and rmdir are special in btrfs, they do not always free space, so
4186 * if we cannot make our reservations the normal way try and see if there is
4187 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4188 * allow the unlink to occur.
4189 */
__unlink_start_trans(struct btrfs_inode * dir)4190 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4191 {
4192 struct btrfs_root *root = dir->root;
4193
4194 return btrfs_start_transaction_fallback_global_rsv(root,
4195 BTRFS_UNLINK_METADATA_UNITS);
4196 }
4197
btrfs_unlink(struct inode * dir,struct dentry * dentry)4198 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4199 {
4200 struct btrfs_trans_handle *trans;
4201 struct inode *inode = d_inode(dentry);
4202 int ret;
4203 struct fscrypt_name fname;
4204
4205 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4206 if (ret)
4207 return ret;
4208
4209 /* This needs to handle no-key deletions later on */
4210
4211 trans = __unlink_start_trans(BTRFS_I(dir));
4212 if (IS_ERR(trans)) {
4213 ret = PTR_ERR(trans);
4214 goto fscrypt_free;
4215 }
4216
4217 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4218 false);
4219
4220 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4221 &fname.disk_name);
4222 if (ret)
4223 goto end_trans;
4224
4225 if (inode->i_nlink == 0) {
4226 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4227 if (ret)
4228 goto end_trans;
4229 }
4230
4231 end_trans:
4232 btrfs_end_transaction(trans);
4233 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4234 fscrypt_free:
4235 fscrypt_free_filename(&fname);
4236 return ret;
4237 }
4238
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4239 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4240 struct btrfs_inode *dir, struct dentry *dentry)
4241 {
4242 struct btrfs_root *root = dir->root;
4243 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4244 struct btrfs_path *path;
4245 struct extent_buffer *leaf;
4246 struct btrfs_dir_item *di;
4247 struct btrfs_key key;
4248 u64 index;
4249 int ret;
4250 u64 objectid;
4251 u64 dir_ino = btrfs_ino(dir);
4252 struct fscrypt_name fname;
4253
4254 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4255 if (ret)
4256 return ret;
4257
4258 /* This needs to handle no-key deletions later on */
4259
4260 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4261 objectid = inode->root->root_key.objectid;
4262 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4263 objectid = inode->location.objectid;
4264 } else {
4265 WARN_ON(1);
4266 fscrypt_free_filename(&fname);
4267 return -EINVAL;
4268 }
4269
4270 path = btrfs_alloc_path();
4271 if (!path) {
4272 ret = -ENOMEM;
4273 goto out;
4274 }
4275
4276 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4277 &fname.disk_name, -1);
4278 if (IS_ERR_OR_NULL(di)) {
4279 ret = di ? PTR_ERR(di) : -ENOENT;
4280 goto out;
4281 }
4282
4283 leaf = path->nodes[0];
4284 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4285 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4286 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4287 if (ret) {
4288 btrfs_abort_transaction(trans, ret);
4289 goto out;
4290 }
4291 btrfs_release_path(path);
4292
4293 /*
4294 * This is a placeholder inode for a subvolume we didn't have a
4295 * reference to at the time of the snapshot creation. In the meantime
4296 * we could have renamed the real subvol link into our snapshot, so
4297 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4298 * Instead simply lookup the dir_index_item for this entry so we can
4299 * remove it. Otherwise we know we have a ref to the root and we can
4300 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4301 */
4302 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4303 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4304 if (IS_ERR_OR_NULL(di)) {
4305 if (!di)
4306 ret = -ENOENT;
4307 else
4308 ret = PTR_ERR(di);
4309 btrfs_abort_transaction(trans, ret);
4310 goto out;
4311 }
4312
4313 leaf = path->nodes[0];
4314 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4315 index = key.offset;
4316 btrfs_release_path(path);
4317 } else {
4318 ret = btrfs_del_root_ref(trans, objectid,
4319 root->root_key.objectid, dir_ino,
4320 &index, &fname.disk_name);
4321 if (ret) {
4322 btrfs_abort_transaction(trans, ret);
4323 goto out;
4324 }
4325 }
4326
4327 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4328 if (ret) {
4329 btrfs_abort_transaction(trans, ret);
4330 goto out;
4331 }
4332
4333 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4334 inode_inc_iversion(&dir->vfs_inode);
4335 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4336 ret = btrfs_update_inode_fallback(trans, dir);
4337 if (ret)
4338 btrfs_abort_transaction(trans, ret);
4339 out:
4340 btrfs_free_path(path);
4341 fscrypt_free_filename(&fname);
4342 return ret;
4343 }
4344
4345 /*
4346 * Helper to check if the subvolume references other subvolumes or if it's
4347 * default.
4348 */
may_destroy_subvol(struct btrfs_root * root)4349 static noinline int may_destroy_subvol(struct btrfs_root *root)
4350 {
4351 struct btrfs_fs_info *fs_info = root->fs_info;
4352 struct btrfs_path *path;
4353 struct btrfs_dir_item *di;
4354 struct btrfs_key key;
4355 struct fscrypt_str name = FSTR_INIT("default", 7);
4356 u64 dir_id;
4357 int ret;
4358
4359 path = btrfs_alloc_path();
4360 if (!path)
4361 return -ENOMEM;
4362
4363 /* Make sure this root isn't set as the default subvol */
4364 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4365 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4366 dir_id, &name, 0);
4367 if (di && !IS_ERR(di)) {
4368 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4369 if (key.objectid == root->root_key.objectid) {
4370 ret = -EPERM;
4371 btrfs_err(fs_info,
4372 "deleting default subvolume %llu is not allowed",
4373 key.objectid);
4374 goto out;
4375 }
4376 btrfs_release_path(path);
4377 }
4378
4379 key.objectid = root->root_key.objectid;
4380 key.type = BTRFS_ROOT_REF_KEY;
4381 key.offset = (u64)-1;
4382
4383 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4384 if (ret < 0)
4385 goto out;
4386 BUG_ON(ret == 0);
4387
4388 ret = 0;
4389 if (path->slots[0] > 0) {
4390 path->slots[0]--;
4391 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4392 if (key.objectid == root->root_key.objectid &&
4393 key.type == BTRFS_ROOT_REF_KEY)
4394 ret = -ENOTEMPTY;
4395 }
4396 out:
4397 btrfs_free_path(path);
4398 return ret;
4399 }
4400
4401 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4402 static void btrfs_prune_dentries(struct btrfs_root *root)
4403 {
4404 struct btrfs_fs_info *fs_info = root->fs_info;
4405 struct rb_node *node;
4406 struct rb_node *prev;
4407 struct btrfs_inode *entry;
4408 struct inode *inode;
4409 u64 objectid = 0;
4410
4411 if (!BTRFS_FS_ERROR(fs_info))
4412 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4413
4414 spin_lock(&root->inode_lock);
4415 again:
4416 node = root->inode_tree.rb_node;
4417 prev = NULL;
4418 while (node) {
4419 prev = node;
4420 entry = rb_entry(node, struct btrfs_inode, rb_node);
4421
4422 if (objectid < btrfs_ino(entry))
4423 node = node->rb_left;
4424 else if (objectid > btrfs_ino(entry))
4425 node = node->rb_right;
4426 else
4427 break;
4428 }
4429 if (!node) {
4430 while (prev) {
4431 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4432 if (objectid <= btrfs_ino(entry)) {
4433 node = prev;
4434 break;
4435 }
4436 prev = rb_next(prev);
4437 }
4438 }
4439 while (node) {
4440 entry = rb_entry(node, struct btrfs_inode, rb_node);
4441 objectid = btrfs_ino(entry) + 1;
4442 inode = igrab(&entry->vfs_inode);
4443 if (inode) {
4444 spin_unlock(&root->inode_lock);
4445 if (atomic_read(&inode->i_count) > 1)
4446 d_prune_aliases(inode);
4447 /*
4448 * btrfs_drop_inode will have it removed from the inode
4449 * cache when its usage count hits zero.
4450 */
4451 iput(inode);
4452 cond_resched();
4453 spin_lock(&root->inode_lock);
4454 goto again;
4455 }
4456
4457 if (cond_resched_lock(&root->inode_lock))
4458 goto again;
4459
4460 node = rb_next(node);
4461 }
4462 spin_unlock(&root->inode_lock);
4463 }
4464
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4465 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4466 {
4467 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4468 struct btrfs_root *root = dir->root;
4469 struct inode *inode = d_inode(dentry);
4470 struct btrfs_root *dest = BTRFS_I(inode)->root;
4471 struct btrfs_trans_handle *trans;
4472 struct btrfs_block_rsv block_rsv;
4473 u64 root_flags;
4474 int ret;
4475
4476 down_write(&fs_info->subvol_sem);
4477
4478 /*
4479 * Don't allow to delete a subvolume with send in progress. This is
4480 * inside the inode lock so the error handling that has to drop the bit
4481 * again is not run concurrently.
4482 */
4483 spin_lock(&dest->root_item_lock);
4484 if (dest->send_in_progress) {
4485 spin_unlock(&dest->root_item_lock);
4486 btrfs_warn(fs_info,
4487 "attempt to delete subvolume %llu during send",
4488 dest->root_key.objectid);
4489 ret = -EPERM;
4490 goto out_up_write;
4491 }
4492 if (atomic_read(&dest->nr_swapfiles)) {
4493 spin_unlock(&dest->root_item_lock);
4494 btrfs_warn(fs_info,
4495 "attempt to delete subvolume %llu with active swapfile",
4496 root->root_key.objectid);
4497 ret = -EPERM;
4498 goto out_up_write;
4499 }
4500 root_flags = btrfs_root_flags(&dest->root_item);
4501 btrfs_set_root_flags(&dest->root_item,
4502 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4503 spin_unlock(&dest->root_item_lock);
4504
4505 ret = may_destroy_subvol(dest);
4506 if (ret)
4507 goto out_undead;
4508
4509 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4510 /*
4511 * One for dir inode,
4512 * two for dir entries,
4513 * two for root ref/backref.
4514 */
4515 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4516 if (ret)
4517 goto out_undead;
4518
4519 trans = btrfs_start_transaction(root, 0);
4520 if (IS_ERR(trans)) {
4521 ret = PTR_ERR(trans);
4522 goto out_release;
4523 }
4524 trans->block_rsv = &block_rsv;
4525 trans->bytes_reserved = block_rsv.size;
4526
4527 btrfs_record_snapshot_destroy(trans, dir);
4528
4529 ret = btrfs_unlink_subvol(trans, dir, dentry);
4530 if (ret) {
4531 btrfs_abort_transaction(trans, ret);
4532 goto out_end_trans;
4533 }
4534
4535 ret = btrfs_record_root_in_trans(trans, dest);
4536 if (ret) {
4537 btrfs_abort_transaction(trans, ret);
4538 goto out_end_trans;
4539 }
4540
4541 memset(&dest->root_item.drop_progress, 0,
4542 sizeof(dest->root_item.drop_progress));
4543 btrfs_set_root_drop_level(&dest->root_item, 0);
4544 btrfs_set_root_refs(&dest->root_item, 0);
4545
4546 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4547 ret = btrfs_insert_orphan_item(trans,
4548 fs_info->tree_root,
4549 dest->root_key.objectid);
4550 if (ret) {
4551 btrfs_abort_transaction(trans, ret);
4552 goto out_end_trans;
4553 }
4554 }
4555
4556 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4557 BTRFS_UUID_KEY_SUBVOL,
4558 dest->root_key.objectid);
4559 if (ret && ret != -ENOENT) {
4560 btrfs_abort_transaction(trans, ret);
4561 goto out_end_trans;
4562 }
4563 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4564 ret = btrfs_uuid_tree_remove(trans,
4565 dest->root_item.received_uuid,
4566 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4567 dest->root_key.objectid);
4568 if (ret && ret != -ENOENT) {
4569 btrfs_abort_transaction(trans, ret);
4570 goto out_end_trans;
4571 }
4572 }
4573
4574 free_anon_bdev(dest->anon_dev);
4575 dest->anon_dev = 0;
4576 out_end_trans:
4577 trans->block_rsv = NULL;
4578 trans->bytes_reserved = 0;
4579 ret = btrfs_end_transaction(trans);
4580 inode->i_flags |= S_DEAD;
4581 out_release:
4582 btrfs_subvolume_release_metadata(root, &block_rsv);
4583 out_undead:
4584 if (ret) {
4585 spin_lock(&dest->root_item_lock);
4586 root_flags = btrfs_root_flags(&dest->root_item);
4587 btrfs_set_root_flags(&dest->root_item,
4588 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4589 spin_unlock(&dest->root_item_lock);
4590 }
4591 out_up_write:
4592 up_write(&fs_info->subvol_sem);
4593 if (!ret) {
4594 d_invalidate(dentry);
4595 btrfs_prune_dentries(dest);
4596 ASSERT(dest->send_in_progress == 0);
4597 }
4598
4599 return ret;
4600 }
4601
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4602 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4603 {
4604 struct inode *inode = d_inode(dentry);
4605 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4606 int err = 0;
4607 struct btrfs_trans_handle *trans;
4608 u64 last_unlink_trans;
4609 struct fscrypt_name fname;
4610
4611 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4612 return -ENOTEMPTY;
4613 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4614 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4615 btrfs_err(fs_info,
4616 "extent tree v2 doesn't support snapshot deletion yet");
4617 return -EOPNOTSUPP;
4618 }
4619 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4620 }
4621
4622 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4623 if (err)
4624 return err;
4625
4626 /* This needs to handle no-key deletions later on */
4627
4628 trans = __unlink_start_trans(BTRFS_I(dir));
4629 if (IS_ERR(trans)) {
4630 err = PTR_ERR(trans);
4631 goto out_notrans;
4632 }
4633
4634 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4635 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4636 goto out;
4637 }
4638
4639 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4640 if (err)
4641 goto out;
4642
4643 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4644
4645 /* now the directory is empty */
4646 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4647 &fname.disk_name);
4648 if (!err) {
4649 btrfs_i_size_write(BTRFS_I(inode), 0);
4650 /*
4651 * Propagate the last_unlink_trans value of the deleted dir to
4652 * its parent directory. This is to prevent an unrecoverable
4653 * log tree in the case we do something like this:
4654 * 1) create dir foo
4655 * 2) create snapshot under dir foo
4656 * 3) delete the snapshot
4657 * 4) rmdir foo
4658 * 5) mkdir foo
4659 * 6) fsync foo or some file inside foo
4660 */
4661 if (last_unlink_trans >= trans->transid)
4662 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4663 }
4664 out:
4665 btrfs_end_transaction(trans);
4666 out_notrans:
4667 btrfs_btree_balance_dirty(fs_info);
4668 fscrypt_free_filename(&fname);
4669
4670 return err;
4671 }
4672
4673 /*
4674 * Read, zero a chunk and write a block.
4675 *
4676 * @inode - inode that we're zeroing
4677 * @from - the offset to start zeroing
4678 * @len - the length to zero, 0 to zero the entire range respective to the
4679 * offset
4680 * @front - zero up to the offset instead of from the offset on
4681 *
4682 * This will find the block for the "from" offset and cow the block and zero the
4683 * part we want to zero. This is used with truncate and hole punching.
4684 */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)4685 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4686 int front)
4687 {
4688 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4689 struct address_space *mapping = inode->vfs_inode.i_mapping;
4690 struct extent_io_tree *io_tree = &inode->io_tree;
4691 struct btrfs_ordered_extent *ordered;
4692 struct extent_state *cached_state = NULL;
4693 struct extent_changeset *data_reserved = NULL;
4694 bool only_release_metadata = false;
4695 u32 blocksize = fs_info->sectorsize;
4696 pgoff_t index = from >> PAGE_SHIFT;
4697 unsigned offset = from & (blocksize - 1);
4698 struct page *page;
4699 gfp_t mask = btrfs_alloc_write_mask(mapping);
4700 size_t write_bytes = blocksize;
4701 int ret = 0;
4702 u64 block_start;
4703 u64 block_end;
4704
4705 if (IS_ALIGNED(offset, blocksize) &&
4706 (!len || IS_ALIGNED(len, blocksize)))
4707 goto out;
4708
4709 block_start = round_down(from, blocksize);
4710 block_end = block_start + blocksize - 1;
4711
4712 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4713 blocksize, false);
4714 if (ret < 0) {
4715 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4716 /* For nocow case, no need to reserve data space */
4717 only_release_metadata = true;
4718 } else {
4719 goto out;
4720 }
4721 }
4722 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4723 if (ret < 0) {
4724 if (!only_release_metadata)
4725 btrfs_free_reserved_data_space(inode, data_reserved,
4726 block_start, blocksize);
4727 goto out;
4728 }
4729 again:
4730 page = find_or_create_page(mapping, index, mask);
4731 if (!page) {
4732 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4733 blocksize, true);
4734 btrfs_delalloc_release_extents(inode, blocksize);
4735 ret = -ENOMEM;
4736 goto out;
4737 }
4738
4739 if (!PageUptodate(page)) {
4740 ret = btrfs_read_folio(NULL, page_folio(page));
4741 lock_page(page);
4742 if (page->mapping != mapping) {
4743 unlock_page(page);
4744 put_page(page);
4745 goto again;
4746 }
4747 if (!PageUptodate(page)) {
4748 ret = -EIO;
4749 goto out_unlock;
4750 }
4751 }
4752
4753 /*
4754 * We unlock the page after the io is completed and then re-lock it
4755 * above. release_folio() could have come in between that and cleared
4756 * folio private, but left the page in the mapping. Set the page mapped
4757 * here to make sure it's properly set for the subpage stuff.
4758 */
4759 ret = set_page_extent_mapped(page);
4760 if (ret < 0)
4761 goto out_unlock;
4762
4763 wait_on_page_writeback(page);
4764
4765 lock_extent(io_tree, block_start, block_end, &cached_state);
4766
4767 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4768 if (ordered) {
4769 unlock_extent(io_tree, block_start, block_end, &cached_state);
4770 unlock_page(page);
4771 put_page(page);
4772 btrfs_start_ordered_extent(ordered);
4773 btrfs_put_ordered_extent(ordered);
4774 goto again;
4775 }
4776
4777 clear_extent_bit(&inode->io_tree, block_start, block_end,
4778 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4779 &cached_state);
4780
4781 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4782 &cached_state);
4783 if (ret) {
4784 unlock_extent(io_tree, block_start, block_end, &cached_state);
4785 goto out_unlock;
4786 }
4787
4788 if (offset != blocksize) {
4789 if (!len)
4790 len = blocksize - offset;
4791 if (front)
4792 memzero_page(page, (block_start - page_offset(page)),
4793 offset);
4794 else
4795 memzero_page(page, (block_start - page_offset(page)) + offset,
4796 len);
4797 }
4798 btrfs_folio_clear_checked(fs_info, page_folio(page), block_start,
4799 block_end + 1 - block_start);
4800 btrfs_folio_set_dirty(fs_info, page_folio(page), block_start,
4801 block_end + 1 - block_start);
4802 unlock_extent(io_tree, block_start, block_end, &cached_state);
4803
4804 if (only_release_metadata)
4805 set_extent_bit(&inode->io_tree, block_start, block_end,
4806 EXTENT_NORESERVE, NULL);
4807
4808 out_unlock:
4809 if (ret) {
4810 if (only_release_metadata)
4811 btrfs_delalloc_release_metadata(inode, blocksize, true);
4812 else
4813 btrfs_delalloc_release_space(inode, data_reserved,
4814 block_start, blocksize, true);
4815 }
4816 btrfs_delalloc_release_extents(inode, blocksize);
4817 unlock_page(page);
4818 put_page(page);
4819 out:
4820 if (only_release_metadata)
4821 btrfs_check_nocow_unlock(inode);
4822 extent_changeset_free(data_reserved);
4823 return ret;
4824 }
4825
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)4826 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4827 {
4828 struct btrfs_root *root = inode->root;
4829 struct btrfs_fs_info *fs_info = root->fs_info;
4830 struct btrfs_trans_handle *trans;
4831 struct btrfs_drop_extents_args drop_args = { 0 };
4832 int ret;
4833
4834 /*
4835 * If NO_HOLES is enabled, we don't need to do anything.
4836 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4837 * or btrfs_update_inode() will be called, which guarantee that the next
4838 * fsync will know this inode was changed and needs to be logged.
4839 */
4840 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4841 return 0;
4842
4843 /*
4844 * 1 - for the one we're dropping
4845 * 1 - for the one we're adding
4846 * 1 - for updating the inode.
4847 */
4848 trans = btrfs_start_transaction(root, 3);
4849 if (IS_ERR(trans))
4850 return PTR_ERR(trans);
4851
4852 drop_args.start = offset;
4853 drop_args.end = offset + len;
4854 drop_args.drop_cache = true;
4855
4856 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4857 if (ret) {
4858 btrfs_abort_transaction(trans, ret);
4859 btrfs_end_transaction(trans);
4860 return ret;
4861 }
4862
4863 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4864 if (ret) {
4865 btrfs_abort_transaction(trans, ret);
4866 } else {
4867 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4868 btrfs_update_inode(trans, inode);
4869 }
4870 btrfs_end_transaction(trans);
4871 return ret;
4872 }
4873
4874 /*
4875 * This function puts in dummy file extents for the area we're creating a hole
4876 * for. So if we are truncating this file to a larger size we need to insert
4877 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4878 * the range between oldsize and size
4879 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)4880 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4881 {
4882 struct btrfs_root *root = inode->root;
4883 struct btrfs_fs_info *fs_info = root->fs_info;
4884 struct extent_io_tree *io_tree = &inode->io_tree;
4885 struct extent_map *em = NULL;
4886 struct extent_state *cached_state = NULL;
4887 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4888 u64 block_end = ALIGN(size, fs_info->sectorsize);
4889 u64 last_byte;
4890 u64 cur_offset;
4891 u64 hole_size;
4892 int err = 0;
4893
4894 /*
4895 * If our size started in the middle of a block we need to zero out the
4896 * rest of the block before we expand the i_size, otherwise we could
4897 * expose stale data.
4898 */
4899 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4900 if (err)
4901 return err;
4902
4903 if (size <= hole_start)
4904 return 0;
4905
4906 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4907 &cached_state);
4908 cur_offset = hole_start;
4909 while (1) {
4910 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4911 block_end - cur_offset);
4912 if (IS_ERR(em)) {
4913 err = PTR_ERR(em);
4914 em = NULL;
4915 break;
4916 }
4917 last_byte = min(extent_map_end(em), block_end);
4918 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4919 hole_size = last_byte - cur_offset;
4920
4921 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4922 struct extent_map *hole_em;
4923
4924 err = maybe_insert_hole(inode, cur_offset, hole_size);
4925 if (err)
4926 break;
4927
4928 err = btrfs_inode_set_file_extent_range(inode,
4929 cur_offset, hole_size);
4930 if (err)
4931 break;
4932
4933 hole_em = alloc_extent_map();
4934 if (!hole_em) {
4935 btrfs_drop_extent_map_range(inode, cur_offset,
4936 cur_offset + hole_size - 1,
4937 false);
4938 btrfs_set_inode_full_sync(inode);
4939 goto next;
4940 }
4941 hole_em->start = cur_offset;
4942 hole_em->len = hole_size;
4943 hole_em->orig_start = cur_offset;
4944
4945 hole_em->block_start = EXTENT_MAP_HOLE;
4946 hole_em->block_len = 0;
4947 hole_em->orig_block_len = 0;
4948 hole_em->ram_bytes = hole_size;
4949 hole_em->generation = btrfs_get_fs_generation(fs_info);
4950
4951 err = btrfs_replace_extent_map_range(inode, hole_em, true);
4952 free_extent_map(hole_em);
4953 } else {
4954 err = btrfs_inode_set_file_extent_range(inode,
4955 cur_offset, hole_size);
4956 if (err)
4957 break;
4958 }
4959 next:
4960 free_extent_map(em);
4961 em = NULL;
4962 cur_offset = last_byte;
4963 if (cur_offset >= block_end)
4964 break;
4965 }
4966 free_extent_map(em);
4967 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4968 return err;
4969 }
4970
btrfs_setsize(struct inode * inode,struct iattr * attr)4971 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4972 {
4973 struct btrfs_root *root = BTRFS_I(inode)->root;
4974 struct btrfs_trans_handle *trans;
4975 loff_t oldsize = i_size_read(inode);
4976 loff_t newsize = attr->ia_size;
4977 int mask = attr->ia_valid;
4978 int ret;
4979
4980 /*
4981 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4982 * special case where we need to update the times despite not having
4983 * these flags set. For all other operations the VFS set these flags
4984 * explicitly if it wants a timestamp update.
4985 */
4986 if (newsize != oldsize) {
4987 inode_inc_iversion(inode);
4988 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4989 inode_set_mtime_to_ts(inode,
4990 inode_set_ctime_current(inode));
4991 }
4992 }
4993
4994 if (newsize > oldsize) {
4995 /*
4996 * Don't do an expanding truncate while snapshotting is ongoing.
4997 * This is to ensure the snapshot captures a fully consistent
4998 * state of this file - if the snapshot captures this expanding
4999 * truncation, it must capture all writes that happened before
5000 * this truncation.
5001 */
5002 btrfs_drew_write_lock(&root->snapshot_lock);
5003 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5004 if (ret) {
5005 btrfs_drew_write_unlock(&root->snapshot_lock);
5006 return ret;
5007 }
5008
5009 trans = btrfs_start_transaction(root, 1);
5010 if (IS_ERR(trans)) {
5011 btrfs_drew_write_unlock(&root->snapshot_lock);
5012 return PTR_ERR(trans);
5013 }
5014
5015 i_size_write(inode, newsize);
5016 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5017 pagecache_isize_extended(inode, oldsize, newsize);
5018 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5019 btrfs_drew_write_unlock(&root->snapshot_lock);
5020 btrfs_end_transaction(trans);
5021 } else {
5022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5023
5024 if (btrfs_is_zoned(fs_info)) {
5025 ret = btrfs_wait_ordered_range(inode,
5026 ALIGN(newsize, fs_info->sectorsize),
5027 (u64)-1);
5028 if (ret)
5029 return ret;
5030 }
5031
5032 /*
5033 * We're truncating a file that used to have good data down to
5034 * zero. Make sure any new writes to the file get on disk
5035 * on close.
5036 */
5037 if (newsize == 0)
5038 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5039 &BTRFS_I(inode)->runtime_flags);
5040
5041 truncate_setsize(inode, newsize);
5042
5043 inode_dio_wait(inode);
5044
5045 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5046 if (ret && inode->i_nlink) {
5047 int err;
5048
5049 /*
5050 * Truncate failed, so fix up the in-memory size. We
5051 * adjusted disk_i_size down as we removed extents, so
5052 * wait for disk_i_size to be stable and then update the
5053 * in-memory size to match.
5054 */
5055 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5056 if (err)
5057 return err;
5058 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5059 }
5060 }
5061
5062 return ret;
5063 }
5064
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5065 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5066 struct iattr *attr)
5067 {
5068 struct inode *inode = d_inode(dentry);
5069 struct btrfs_root *root = BTRFS_I(inode)->root;
5070 int err;
5071
5072 if (btrfs_root_readonly(root))
5073 return -EROFS;
5074
5075 err = setattr_prepare(idmap, dentry, attr);
5076 if (err)
5077 return err;
5078
5079 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5080 err = btrfs_setsize(inode, attr);
5081 if (err)
5082 return err;
5083 }
5084
5085 if (attr->ia_valid) {
5086 setattr_copy(idmap, inode, attr);
5087 inode_inc_iversion(inode);
5088 err = btrfs_dirty_inode(BTRFS_I(inode));
5089
5090 if (!err && attr->ia_valid & ATTR_MODE)
5091 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5092 }
5093
5094 return err;
5095 }
5096
5097 /*
5098 * While truncating the inode pages during eviction, we get the VFS
5099 * calling btrfs_invalidate_folio() against each folio of the inode. This
5100 * is slow because the calls to btrfs_invalidate_folio() result in a
5101 * huge amount of calls to lock_extent() and clear_extent_bit(),
5102 * which keep merging and splitting extent_state structures over and over,
5103 * wasting lots of time.
5104 *
5105 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5106 * skip all those expensive operations on a per folio basis and do only
5107 * the ordered io finishing, while we release here the extent_map and
5108 * extent_state structures, without the excessive merging and splitting.
5109 */
evict_inode_truncate_pages(struct inode * inode)5110 static void evict_inode_truncate_pages(struct inode *inode)
5111 {
5112 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5113 struct rb_node *node;
5114
5115 ASSERT(inode->i_state & I_FREEING);
5116 truncate_inode_pages_final(&inode->i_data);
5117
5118 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5119
5120 /*
5121 * Keep looping until we have no more ranges in the io tree.
5122 * We can have ongoing bios started by readahead that have
5123 * their endio callback (extent_io.c:end_bio_extent_readpage)
5124 * still in progress (unlocked the pages in the bio but did not yet
5125 * unlocked the ranges in the io tree). Therefore this means some
5126 * ranges can still be locked and eviction started because before
5127 * submitting those bios, which are executed by a separate task (work
5128 * queue kthread), inode references (inode->i_count) were not taken
5129 * (which would be dropped in the end io callback of each bio).
5130 * Therefore here we effectively end up waiting for those bios and
5131 * anyone else holding locked ranges without having bumped the inode's
5132 * reference count - if we don't do it, when they access the inode's
5133 * io_tree to unlock a range it may be too late, leading to an
5134 * use-after-free issue.
5135 */
5136 spin_lock(&io_tree->lock);
5137 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5138 struct extent_state *state;
5139 struct extent_state *cached_state = NULL;
5140 u64 start;
5141 u64 end;
5142 unsigned state_flags;
5143
5144 node = rb_first(&io_tree->state);
5145 state = rb_entry(node, struct extent_state, rb_node);
5146 start = state->start;
5147 end = state->end;
5148 state_flags = state->state;
5149 spin_unlock(&io_tree->lock);
5150
5151 lock_extent(io_tree, start, end, &cached_state);
5152
5153 /*
5154 * If still has DELALLOC flag, the extent didn't reach disk,
5155 * and its reserved space won't be freed by delayed_ref.
5156 * So we need to free its reserved space here.
5157 * (Refer to comment in btrfs_invalidate_folio, case 2)
5158 *
5159 * Note, end is the bytenr of last byte, so we need + 1 here.
5160 */
5161 if (state_flags & EXTENT_DELALLOC)
5162 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5163 end - start + 1, NULL);
5164
5165 clear_extent_bit(io_tree, start, end,
5166 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5167 &cached_state);
5168
5169 cond_resched();
5170 spin_lock(&io_tree->lock);
5171 }
5172 spin_unlock(&io_tree->lock);
5173 }
5174
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5175 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5176 struct btrfs_block_rsv *rsv)
5177 {
5178 struct btrfs_fs_info *fs_info = root->fs_info;
5179 struct btrfs_trans_handle *trans;
5180 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5181 int ret;
5182
5183 /*
5184 * Eviction should be taking place at some place safe because of our
5185 * delayed iputs. However the normal flushing code will run delayed
5186 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5187 *
5188 * We reserve the delayed_refs_extra here again because we can't use
5189 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5190 * above. We reserve our extra bit here because we generate a ton of
5191 * delayed refs activity by truncating.
5192 *
5193 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5194 * if we fail to make this reservation we can re-try without the
5195 * delayed_refs_extra so we can make some forward progress.
5196 */
5197 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5198 BTRFS_RESERVE_FLUSH_EVICT);
5199 if (ret) {
5200 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5201 BTRFS_RESERVE_FLUSH_EVICT);
5202 if (ret) {
5203 btrfs_warn(fs_info,
5204 "could not allocate space for delete; will truncate on mount");
5205 return ERR_PTR(-ENOSPC);
5206 }
5207 delayed_refs_extra = 0;
5208 }
5209
5210 trans = btrfs_join_transaction(root);
5211 if (IS_ERR(trans))
5212 return trans;
5213
5214 if (delayed_refs_extra) {
5215 trans->block_rsv = &fs_info->trans_block_rsv;
5216 trans->bytes_reserved = delayed_refs_extra;
5217 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5218 delayed_refs_extra, true);
5219 }
5220 return trans;
5221 }
5222
btrfs_evict_inode(struct inode * inode)5223 void btrfs_evict_inode(struct inode *inode)
5224 {
5225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5226 struct btrfs_trans_handle *trans;
5227 struct btrfs_root *root = BTRFS_I(inode)->root;
5228 struct btrfs_block_rsv *rsv = NULL;
5229 int ret;
5230
5231 trace_btrfs_inode_evict(inode);
5232
5233 if (!root) {
5234 fsverity_cleanup_inode(inode);
5235 clear_inode(inode);
5236 return;
5237 }
5238
5239 evict_inode_truncate_pages(inode);
5240
5241 if (inode->i_nlink &&
5242 ((btrfs_root_refs(&root->root_item) != 0 &&
5243 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5244 btrfs_is_free_space_inode(BTRFS_I(inode))))
5245 goto out;
5246
5247 if (is_bad_inode(inode))
5248 goto out;
5249
5250 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5251 goto out;
5252
5253 if (inode->i_nlink > 0) {
5254 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5255 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5256 goto out;
5257 }
5258
5259 /*
5260 * This makes sure the inode item in tree is uptodate and the space for
5261 * the inode update is released.
5262 */
5263 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5264 if (ret)
5265 goto out;
5266
5267 /*
5268 * This drops any pending insert or delete operations we have for this
5269 * inode. We could have a delayed dir index deletion queued up, but
5270 * we're removing the inode completely so that'll be taken care of in
5271 * the truncate.
5272 */
5273 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5274
5275 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5276 if (!rsv)
5277 goto out;
5278 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5279 rsv->failfast = true;
5280
5281 btrfs_i_size_write(BTRFS_I(inode), 0);
5282
5283 while (1) {
5284 struct btrfs_truncate_control control = {
5285 .inode = BTRFS_I(inode),
5286 .ino = btrfs_ino(BTRFS_I(inode)),
5287 .new_size = 0,
5288 .min_type = 0,
5289 };
5290
5291 trans = evict_refill_and_join(root, rsv);
5292 if (IS_ERR(trans))
5293 goto out;
5294
5295 trans->block_rsv = rsv;
5296
5297 ret = btrfs_truncate_inode_items(trans, root, &control);
5298 trans->block_rsv = &fs_info->trans_block_rsv;
5299 btrfs_end_transaction(trans);
5300 /*
5301 * We have not added new delayed items for our inode after we
5302 * have flushed its delayed items, so no need to throttle on
5303 * delayed items. However we have modified extent buffers.
5304 */
5305 btrfs_btree_balance_dirty_nodelay(fs_info);
5306 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5307 goto out;
5308 else if (!ret)
5309 break;
5310 }
5311
5312 /*
5313 * Errors here aren't a big deal, it just means we leave orphan items in
5314 * the tree. They will be cleaned up on the next mount. If the inode
5315 * number gets reused, cleanup deletes the orphan item without doing
5316 * anything, and unlink reuses the existing orphan item.
5317 *
5318 * If it turns out that we are dropping too many of these, we might want
5319 * to add a mechanism for retrying these after a commit.
5320 */
5321 trans = evict_refill_and_join(root, rsv);
5322 if (!IS_ERR(trans)) {
5323 trans->block_rsv = rsv;
5324 btrfs_orphan_del(trans, BTRFS_I(inode));
5325 trans->block_rsv = &fs_info->trans_block_rsv;
5326 btrfs_end_transaction(trans);
5327 }
5328
5329 out:
5330 btrfs_free_block_rsv(fs_info, rsv);
5331 /*
5332 * If we didn't successfully delete, the orphan item will still be in
5333 * the tree and we'll retry on the next mount. Again, we might also want
5334 * to retry these periodically in the future.
5335 */
5336 btrfs_remove_delayed_node(BTRFS_I(inode));
5337 fsverity_cleanup_inode(inode);
5338 clear_inode(inode);
5339 }
5340
5341 /*
5342 * Return the key found in the dir entry in the location pointer, fill @type
5343 * with BTRFS_FT_*, and return 0.
5344 *
5345 * If no dir entries were found, returns -ENOENT.
5346 * If found a corrupted location in dir entry, returns -EUCLEAN.
5347 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5348 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5349 struct btrfs_key *location, u8 *type)
5350 {
5351 struct btrfs_dir_item *di;
5352 struct btrfs_path *path;
5353 struct btrfs_root *root = dir->root;
5354 int ret = 0;
5355 struct fscrypt_name fname;
5356
5357 path = btrfs_alloc_path();
5358 if (!path)
5359 return -ENOMEM;
5360
5361 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5362 if (ret < 0)
5363 goto out;
5364 /*
5365 * fscrypt_setup_filename() should never return a positive value, but
5366 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5367 */
5368 ASSERT(ret == 0);
5369
5370 /* This needs to handle no-key deletions later on */
5371
5372 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5373 &fname.disk_name, 0);
5374 if (IS_ERR_OR_NULL(di)) {
5375 ret = di ? PTR_ERR(di) : -ENOENT;
5376 goto out;
5377 }
5378
5379 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5380 if (location->type != BTRFS_INODE_ITEM_KEY &&
5381 location->type != BTRFS_ROOT_ITEM_KEY) {
5382 ret = -EUCLEAN;
5383 btrfs_warn(root->fs_info,
5384 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5385 __func__, fname.disk_name.name, btrfs_ino(dir),
5386 location->objectid, location->type, location->offset);
5387 }
5388 if (!ret)
5389 *type = btrfs_dir_ftype(path->nodes[0], di);
5390 out:
5391 fscrypt_free_filename(&fname);
5392 btrfs_free_path(path);
5393 return ret;
5394 }
5395
5396 /*
5397 * when we hit a tree root in a directory, the btrfs part of the inode
5398 * needs to be changed to reflect the root directory of the tree root. This
5399 * is kind of like crossing a mount point.
5400 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5401 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5402 struct btrfs_inode *dir,
5403 struct dentry *dentry,
5404 struct btrfs_key *location,
5405 struct btrfs_root **sub_root)
5406 {
5407 struct btrfs_path *path;
5408 struct btrfs_root *new_root;
5409 struct btrfs_root_ref *ref;
5410 struct extent_buffer *leaf;
5411 struct btrfs_key key;
5412 int ret;
5413 int err = 0;
5414 struct fscrypt_name fname;
5415
5416 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5417 if (ret)
5418 return ret;
5419
5420 path = btrfs_alloc_path();
5421 if (!path) {
5422 err = -ENOMEM;
5423 goto out;
5424 }
5425
5426 err = -ENOENT;
5427 key.objectid = dir->root->root_key.objectid;
5428 key.type = BTRFS_ROOT_REF_KEY;
5429 key.offset = location->objectid;
5430
5431 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5432 if (ret) {
5433 if (ret < 0)
5434 err = ret;
5435 goto out;
5436 }
5437
5438 leaf = path->nodes[0];
5439 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5440 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5441 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5442 goto out;
5443
5444 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5445 (unsigned long)(ref + 1), fname.disk_name.len);
5446 if (ret)
5447 goto out;
5448
5449 btrfs_release_path(path);
5450
5451 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5452 if (IS_ERR(new_root)) {
5453 err = PTR_ERR(new_root);
5454 goto out;
5455 }
5456
5457 *sub_root = new_root;
5458 location->objectid = btrfs_root_dirid(&new_root->root_item);
5459 location->type = BTRFS_INODE_ITEM_KEY;
5460 location->offset = 0;
5461 err = 0;
5462 out:
5463 btrfs_free_path(path);
5464 fscrypt_free_filename(&fname);
5465 return err;
5466 }
5467
inode_tree_add(struct btrfs_inode * inode)5468 static void inode_tree_add(struct btrfs_inode *inode)
5469 {
5470 struct btrfs_root *root = inode->root;
5471 struct btrfs_inode *entry;
5472 struct rb_node **p;
5473 struct rb_node *parent;
5474 struct rb_node *new = &inode->rb_node;
5475 u64 ino = btrfs_ino(inode);
5476
5477 if (inode_unhashed(&inode->vfs_inode))
5478 return;
5479 parent = NULL;
5480 spin_lock(&root->inode_lock);
5481 p = &root->inode_tree.rb_node;
5482 while (*p) {
5483 parent = *p;
5484 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5485
5486 if (ino < btrfs_ino(entry))
5487 p = &parent->rb_left;
5488 else if (ino > btrfs_ino(entry))
5489 p = &parent->rb_right;
5490 else {
5491 WARN_ON(!(entry->vfs_inode.i_state &
5492 (I_WILL_FREE | I_FREEING)));
5493 rb_replace_node(parent, new, &root->inode_tree);
5494 RB_CLEAR_NODE(parent);
5495 spin_unlock(&root->inode_lock);
5496 return;
5497 }
5498 }
5499 rb_link_node(new, parent, p);
5500 rb_insert_color(new, &root->inode_tree);
5501 spin_unlock(&root->inode_lock);
5502 }
5503
inode_tree_del(struct btrfs_inode * inode)5504 static void inode_tree_del(struct btrfs_inode *inode)
5505 {
5506 struct btrfs_root *root = inode->root;
5507 int empty = 0;
5508
5509 spin_lock(&root->inode_lock);
5510 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5511 rb_erase(&inode->rb_node, &root->inode_tree);
5512 RB_CLEAR_NODE(&inode->rb_node);
5513 empty = RB_EMPTY_ROOT(&root->inode_tree);
5514 }
5515 spin_unlock(&root->inode_lock);
5516
5517 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5518 spin_lock(&root->inode_lock);
5519 empty = RB_EMPTY_ROOT(&root->inode_tree);
5520 spin_unlock(&root->inode_lock);
5521 if (empty)
5522 btrfs_add_dead_root(root);
5523 }
5524 }
5525
5526
btrfs_init_locked_inode(struct inode * inode,void * p)5527 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5528 {
5529 struct btrfs_iget_args *args = p;
5530
5531 inode->i_ino = args->ino;
5532 BTRFS_I(inode)->location.objectid = args->ino;
5533 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5534 BTRFS_I(inode)->location.offset = 0;
5535 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5536 BUG_ON(args->root && !BTRFS_I(inode)->root);
5537
5538 if (args->root && args->root == args->root->fs_info->tree_root &&
5539 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5540 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5541 &BTRFS_I(inode)->runtime_flags);
5542 return 0;
5543 }
5544
btrfs_find_actor(struct inode * inode,void * opaque)5545 static int btrfs_find_actor(struct inode *inode, void *opaque)
5546 {
5547 struct btrfs_iget_args *args = opaque;
5548
5549 return args->ino == BTRFS_I(inode)->location.objectid &&
5550 args->root == BTRFS_I(inode)->root;
5551 }
5552
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5553 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5554 struct btrfs_root *root)
5555 {
5556 struct inode *inode;
5557 struct btrfs_iget_args args;
5558 unsigned long hashval = btrfs_inode_hash(ino, root);
5559
5560 args.ino = ino;
5561 args.root = root;
5562
5563 inode = iget5_locked(s, hashval, btrfs_find_actor,
5564 btrfs_init_locked_inode,
5565 (void *)&args);
5566 return inode;
5567 }
5568
5569 /*
5570 * Get an inode object given its inode number and corresponding root.
5571 * Path can be preallocated to prevent recursing back to iget through
5572 * allocator. NULL is also valid but may require an additional allocation
5573 * later.
5574 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5575 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5576 struct btrfs_root *root, struct btrfs_path *path)
5577 {
5578 struct inode *inode;
5579
5580 inode = btrfs_iget_locked(s, ino, root);
5581 if (!inode)
5582 return ERR_PTR(-ENOMEM);
5583
5584 if (inode->i_state & I_NEW) {
5585 int ret;
5586
5587 ret = btrfs_read_locked_inode(inode, path);
5588 if (!ret) {
5589 inode_tree_add(BTRFS_I(inode));
5590 unlock_new_inode(inode);
5591 } else {
5592 iget_failed(inode);
5593 /*
5594 * ret > 0 can come from btrfs_search_slot called by
5595 * btrfs_read_locked_inode, this means the inode item
5596 * was not found.
5597 */
5598 if (ret > 0)
5599 ret = -ENOENT;
5600 inode = ERR_PTR(ret);
5601 }
5602 }
5603
5604 return inode;
5605 }
5606
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5607 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5608 {
5609 return btrfs_iget_path(s, ino, root, NULL);
5610 }
5611
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5612 static struct inode *new_simple_dir(struct inode *dir,
5613 struct btrfs_key *key,
5614 struct btrfs_root *root)
5615 {
5616 struct timespec64 ts;
5617 struct inode *inode = new_inode(dir->i_sb);
5618
5619 if (!inode)
5620 return ERR_PTR(-ENOMEM);
5621
5622 BTRFS_I(inode)->root = btrfs_grab_root(root);
5623 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5624 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5625
5626 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5627 /*
5628 * We only need lookup, the rest is read-only and there's no inode
5629 * associated with the dentry
5630 */
5631 inode->i_op = &simple_dir_inode_operations;
5632 inode->i_opflags &= ~IOP_XATTR;
5633 inode->i_fop = &simple_dir_operations;
5634 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5635
5636 ts = inode_set_ctime_current(inode);
5637 inode_set_mtime_to_ts(inode, ts);
5638 inode_set_atime_to_ts(inode, inode_get_atime(dir));
5639 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5640 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5641
5642 inode->i_uid = dir->i_uid;
5643 inode->i_gid = dir->i_gid;
5644
5645 return inode;
5646 }
5647
5648 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5649 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5650 static_assert(BTRFS_FT_DIR == FT_DIR);
5651 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5652 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5653 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5654 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5655 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5656
btrfs_inode_type(struct inode * inode)5657 static inline u8 btrfs_inode_type(struct inode *inode)
5658 {
5659 return fs_umode_to_ftype(inode->i_mode);
5660 }
5661
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5662 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5663 {
5664 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5665 struct inode *inode;
5666 struct btrfs_root *root = BTRFS_I(dir)->root;
5667 struct btrfs_root *sub_root = root;
5668 struct btrfs_key location;
5669 u8 di_type = 0;
5670 int ret = 0;
5671
5672 if (dentry->d_name.len > BTRFS_NAME_LEN)
5673 return ERR_PTR(-ENAMETOOLONG);
5674
5675 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5676 if (ret < 0)
5677 return ERR_PTR(ret);
5678
5679 if (location.type == BTRFS_INODE_ITEM_KEY) {
5680 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5681 if (IS_ERR(inode))
5682 return inode;
5683
5684 /* Do extra check against inode mode with di_type */
5685 if (btrfs_inode_type(inode) != di_type) {
5686 btrfs_crit(fs_info,
5687 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5688 inode->i_mode, btrfs_inode_type(inode),
5689 di_type);
5690 iput(inode);
5691 return ERR_PTR(-EUCLEAN);
5692 }
5693 return inode;
5694 }
5695
5696 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5697 &location, &sub_root);
5698 if (ret < 0) {
5699 if (ret != -ENOENT)
5700 inode = ERR_PTR(ret);
5701 else
5702 inode = new_simple_dir(dir, &location, root);
5703 } else {
5704 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5705 btrfs_put_root(sub_root);
5706
5707 if (IS_ERR(inode))
5708 return inode;
5709
5710 down_read(&fs_info->cleanup_work_sem);
5711 if (!sb_rdonly(inode->i_sb))
5712 ret = btrfs_orphan_cleanup(sub_root);
5713 up_read(&fs_info->cleanup_work_sem);
5714 if (ret) {
5715 iput(inode);
5716 inode = ERR_PTR(ret);
5717 }
5718 }
5719
5720 return inode;
5721 }
5722
btrfs_dentry_delete(const struct dentry * dentry)5723 static int btrfs_dentry_delete(const struct dentry *dentry)
5724 {
5725 struct btrfs_root *root;
5726 struct inode *inode = d_inode(dentry);
5727
5728 if (!inode && !IS_ROOT(dentry))
5729 inode = d_inode(dentry->d_parent);
5730
5731 if (inode) {
5732 root = BTRFS_I(inode)->root;
5733 if (btrfs_root_refs(&root->root_item) == 0)
5734 return 1;
5735
5736 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5737 return 1;
5738 }
5739 return 0;
5740 }
5741
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5742 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5743 unsigned int flags)
5744 {
5745 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5746
5747 if (inode == ERR_PTR(-ENOENT))
5748 inode = NULL;
5749 return d_splice_alias(inode, dentry);
5750 }
5751
5752 /*
5753 * Find the highest existing sequence number in a directory and then set the
5754 * in-memory index_cnt variable to the first free sequence number.
5755 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5756 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5757 {
5758 struct btrfs_root *root = inode->root;
5759 struct btrfs_key key, found_key;
5760 struct btrfs_path *path;
5761 struct extent_buffer *leaf;
5762 int ret;
5763
5764 key.objectid = btrfs_ino(inode);
5765 key.type = BTRFS_DIR_INDEX_KEY;
5766 key.offset = (u64)-1;
5767
5768 path = btrfs_alloc_path();
5769 if (!path)
5770 return -ENOMEM;
5771
5772 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5773 if (ret < 0)
5774 goto out;
5775 /* FIXME: we should be able to handle this */
5776 if (ret == 0)
5777 goto out;
5778 ret = 0;
5779
5780 if (path->slots[0] == 0) {
5781 inode->index_cnt = BTRFS_DIR_START_INDEX;
5782 goto out;
5783 }
5784
5785 path->slots[0]--;
5786
5787 leaf = path->nodes[0];
5788 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5789
5790 if (found_key.objectid != btrfs_ino(inode) ||
5791 found_key.type != BTRFS_DIR_INDEX_KEY) {
5792 inode->index_cnt = BTRFS_DIR_START_INDEX;
5793 goto out;
5794 }
5795
5796 inode->index_cnt = found_key.offset + 1;
5797 out:
5798 btrfs_free_path(path);
5799 return ret;
5800 }
5801
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)5802 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5803 {
5804 int ret = 0;
5805
5806 btrfs_inode_lock(dir, 0);
5807 if (dir->index_cnt == (u64)-1) {
5808 ret = btrfs_inode_delayed_dir_index_count(dir);
5809 if (ret) {
5810 ret = btrfs_set_inode_index_count(dir);
5811 if (ret)
5812 goto out;
5813 }
5814 }
5815
5816 /* index_cnt is the index number of next new entry, so decrement it. */
5817 *index = dir->index_cnt - 1;
5818 out:
5819 btrfs_inode_unlock(dir, 0);
5820
5821 return ret;
5822 }
5823
5824 /*
5825 * All this infrastructure exists because dir_emit can fault, and we are holding
5826 * the tree lock when doing readdir. For now just allocate a buffer and copy
5827 * our information into that, and then dir_emit from the buffer. This is
5828 * similar to what NFS does, only we don't keep the buffer around in pagecache
5829 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5830 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5831 * tree lock.
5832 */
btrfs_opendir(struct inode * inode,struct file * file)5833 static int btrfs_opendir(struct inode *inode, struct file *file)
5834 {
5835 struct btrfs_file_private *private;
5836 u64 last_index;
5837 int ret;
5838
5839 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5840 if (ret)
5841 return ret;
5842
5843 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5844 if (!private)
5845 return -ENOMEM;
5846 private->last_index = last_index;
5847 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5848 if (!private->filldir_buf) {
5849 kfree(private);
5850 return -ENOMEM;
5851 }
5852 file->private_data = private;
5853 return 0;
5854 }
5855
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)5856 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5857 {
5858 struct btrfs_file_private *private = file->private_data;
5859 int ret;
5860
5861 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5862 &private->last_index);
5863 if (ret)
5864 return ret;
5865
5866 return generic_file_llseek(file, offset, whence);
5867 }
5868
5869 struct dir_entry {
5870 u64 ino;
5871 u64 offset;
5872 unsigned type;
5873 int name_len;
5874 };
5875
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5876 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5877 {
5878 while (entries--) {
5879 struct dir_entry *entry = addr;
5880 char *name = (char *)(entry + 1);
5881
5882 ctx->pos = get_unaligned(&entry->offset);
5883 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5884 get_unaligned(&entry->ino),
5885 get_unaligned(&entry->type)))
5886 return 1;
5887 addr += sizeof(struct dir_entry) +
5888 get_unaligned(&entry->name_len);
5889 ctx->pos++;
5890 }
5891 return 0;
5892 }
5893
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5894 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5895 {
5896 struct inode *inode = file_inode(file);
5897 struct btrfs_root *root = BTRFS_I(inode)->root;
5898 struct btrfs_file_private *private = file->private_data;
5899 struct btrfs_dir_item *di;
5900 struct btrfs_key key;
5901 struct btrfs_key found_key;
5902 struct btrfs_path *path;
5903 void *addr;
5904 LIST_HEAD(ins_list);
5905 LIST_HEAD(del_list);
5906 int ret;
5907 char *name_ptr;
5908 int name_len;
5909 int entries = 0;
5910 int total_len = 0;
5911 bool put = false;
5912 struct btrfs_key location;
5913
5914 if (!dir_emit_dots(file, ctx))
5915 return 0;
5916
5917 path = btrfs_alloc_path();
5918 if (!path)
5919 return -ENOMEM;
5920
5921 addr = private->filldir_buf;
5922 path->reada = READA_FORWARD;
5923
5924 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5925 &ins_list, &del_list);
5926
5927 again:
5928 key.type = BTRFS_DIR_INDEX_KEY;
5929 key.offset = ctx->pos;
5930 key.objectid = btrfs_ino(BTRFS_I(inode));
5931
5932 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5933 struct dir_entry *entry;
5934 struct extent_buffer *leaf = path->nodes[0];
5935 u8 ftype;
5936
5937 if (found_key.objectid != key.objectid)
5938 break;
5939 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5940 break;
5941 if (found_key.offset < ctx->pos)
5942 continue;
5943 if (found_key.offset > private->last_index)
5944 break;
5945 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5946 continue;
5947 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5948 name_len = btrfs_dir_name_len(leaf, di);
5949 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5950 PAGE_SIZE) {
5951 btrfs_release_path(path);
5952 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5953 if (ret)
5954 goto nopos;
5955 addr = private->filldir_buf;
5956 entries = 0;
5957 total_len = 0;
5958 goto again;
5959 }
5960
5961 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5962 entry = addr;
5963 name_ptr = (char *)(entry + 1);
5964 read_extent_buffer(leaf, name_ptr,
5965 (unsigned long)(di + 1), name_len);
5966 put_unaligned(name_len, &entry->name_len);
5967 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5968 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5969 put_unaligned(location.objectid, &entry->ino);
5970 put_unaligned(found_key.offset, &entry->offset);
5971 entries++;
5972 addr += sizeof(struct dir_entry) + name_len;
5973 total_len += sizeof(struct dir_entry) + name_len;
5974 }
5975 /* Catch error encountered during iteration */
5976 if (ret < 0)
5977 goto err;
5978
5979 btrfs_release_path(path);
5980
5981 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5982 if (ret)
5983 goto nopos;
5984
5985 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5986 if (ret)
5987 goto nopos;
5988
5989 /*
5990 * Stop new entries from being returned after we return the last
5991 * entry.
5992 *
5993 * New directory entries are assigned a strictly increasing
5994 * offset. This means that new entries created during readdir
5995 * are *guaranteed* to be seen in the future by that readdir.
5996 * This has broken buggy programs which operate on names as
5997 * they're returned by readdir. Until we re-use freed offsets
5998 * we have this hack to stop new entries from being returned
5999 * under the assumption that they'll never reach this huge
6000 * offset.
6001 *
6002 * This is being careful not to overflow 32bit loff_t unless the
6003 * last entry requires it because doing so has broken 32bit apps
6004 * in the past.
6005 */
6006 if (ctx->pos >= INT_MAX)
6007 ctx->pos = LLONG_MAX;
6008 else
6009 ctx->pos = INT_MAX;
6010 nopos:
6011 ret = 0;
6012 err:
6013 if (put)
6014 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6015 btrfs_free_path(path);
6016 return ret;
6017 }
6018
6019 /*
6020 * This is somewhat expensive, updating the tree every time the
6021 * inode changes. But, it is most likely to find the inode in cache.
6022 * FIXME, needs more benchmarking...there are no reasons other than performance
6023 * to keep or drop this code.
6024 */
btrfs_dirty_inode(struct btrfs_inode * inode)6025 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6026 {
6027 struct btrfs_root *root = inode->root;
6028 struct btrfs_fs_info *fs_info = root->fs_info;
6029 struct btrfs_trans_handle *trans;
6030 int ret;
6031
6032 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6033 return 0;
6034
6035 trans = btrfs_join_transaction(root);
6036 if (IS_ERR(trans))
6037 return PTR_ERR(trans);
6038
6039 ret = btrfs_update_inode(trans, inode);
6040 if (ret == -ENOSPC || ret == -EDQUOT) {
6041 /* whoops, lets try again with the full transaction */
6042 btrfs_end_transaction(trans);
6043 trans = btrfs_start_transaction(root, 1);
6044 if (IS_ERR(trans))
6045 return PTR_ERR(trans);
6046
6047 ret = btrfs_update_inode(trans, inode);
6048 }
6049 btrfs_end_transaction(trans);
6050 if (inode->delayed_node)
6051 btrfs_balance_delayed_items(fs_info);
6052
6053 return ret;
6054 }
6055
6056 /*
6057 * This is a copy of file_update_time. We need this so we can return error on
6058 * ENOSPC for updating the inode in the case of file write and mmap writes.
6059 */
btrfs_update_time(struct inode * inode,int flags)6060 static int btrfs_update_time(struct inode *inode, int flags)
6061 {
6062 struct btrfs_root *root = BTRFS_I(inode)->root;
6063 bool dirty;
6064
6065 if (btrfs_root_readonly(root))
6066 return -EROFS;
6067
6068 dirty = inode_update_timestamps(inode, flags);
6069 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6070 }
6071
6072 /*
6073 * helper to find a free sequence number in a given directory. This current
6074 * code is very simple, later versions will do smarter things in the btree
6075 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6076 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6077 {
6078 int ret = 0;
6079
6080 if (dir->index_cnt == (u64)-1) {
6081 ret = btrfs_inode_delayed_dir_index_count(dir);
6082 if (ret) {
6083 ret = btrfs_set_inode_index_count(dir);
6084 if (ret)
6085 return ret;
6086 }
6087 }
6088
6089 *index = dir->index_cnt;
6090 dir->index_cnt++;
6091
6092 return ret;
6093 }
6094
btrfs_insert_inode_locked(struct inode * inode)6095 static int btrfs_insert_inode_locked(struct inode *inode)
6096 {
6097 struct btrfs_iget_args args;
6098
6099 args.ino = BTRFS_I(inode)->location.objectid;
6100 args.root = BTRFS_I(inode)->root;
6101
6102 return insert_inode_locked4(inode,
6103 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6104 btrfs_find_actor, &args);
6105 }
6106
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6107 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6108 unsigned int *trans_num_items)
6109 {
6110 struct inode *dir = args->dir;
6111 struct inode *inode = args->inode;
6112 int ret;
6113
6114 if (!args->orphan) {
6115 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6116 &args->fname);
6117 if (ret)
6118 return ret;
6119 }
6120
6121 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6122 if (ret) {
6123 fscrypt_free_filename(&args->fname);
6124 return ret;
6125 }
6126
6127 /* 1 to add inode item */
6128 *trans_num_items = 1;
6129 /* 1 to add compression property */
6130 if (BTRFS_I(dir)->prop_compress)
6131 (*trans_num_items)++;
6132 /* 1 to add default ACL xattr */
6133 if (args->default_acl)
6134 (*trans_num_items)++;
6135 /* 1 to add access ACL xattr */
6136 if (args->acl)
6137 (*trans_num_items)++;
6138 #ifdef CONFIG_SECURITY
6139 /* 1 to add LSM xattr */
6140 if (dir->i_security)
6141 (*trans_num_items)++;
6142 #endif
6143 if (args->orphan) {
6144 /* 1 to add orphan item */
6145 (*trans_num_items)++;
6146 } else {
6147 /*
6148 * 1 to add dir item
6149 * 1 to add dir index
6150 * 1 to update parent inode item
6151 *
6152 * No need for 1 unit for the inode ref item because it is
6153 * inserted in a batch together with the inode item at
6154 * btrfs_create_new_inode().
6155 */
6156 *trans_num_items += 3;
6157 }
6158 return 0;
6159 }
6160
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6161 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6162 {
6163 posix_acl_release(args->acl);
6164 posix_acl_release(args->default_acl);
6165 fscrypt_free_filename(&args->fname);
6166 }
6167
6168 /*
6169 * Inherit flags from the parent inode.
6170 *
6171 * Currently only the compression flags and the cow flags are inherited.
6172 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6173 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6174 {
6175 unsigned int flags;
6176
6177 flags = dir->flags;
6178
6179 if (flags & BTRFS_INODE_NOCOMPRESS) {
6180 inode->flags &= ~BTRFS_INODE_COMPRESS;
6181 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6182 } else if (flags & BTRFS_INODE_COMPRESS) {
6183 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6184 inode->flags |= BTRFS_INODE_COMPRESS;
6185 }
6186
6187 if (flags & BTRFS_INODE_NODATACOW) {
6188 inode->flags |= BTRFS_INODE_NODATACOW;
6189 if (S_ISREG(inode->vfs_inode.i_mode))
6190 inode->flags |= BTRFS_INODE_NODATASUM;
6191 }
6192
6193 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6194 }
6195
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6196 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6197 struct btrfs_new_inode_args *args)
6198 {
6199 struct timespec64 ts;
6200 struct inode *dir = args->dir;
6201 struct inode *inode = args->inode;
6202 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6203 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6204 struct btrfs_root *root;
6205 struct btrfs_inode_item *inode_item;
6206 struct btrfs_key *location;
6207 struct btrfs_path *path;
6208 u64 objectid;
6209 struct btrfs_inode_ref *ref;
6210 struct btrfs_key key[2];
6211 u32 sizes[2];
6212 struct btrfs_item_batch batch;
6213 unsigned long ptr;
6214 int ret;
6215
6216 path = btrfs_alloc_path();
6217 if (!path)
6218 return -ENOMEM;
6219
6220 if (!args->subvol)
6221 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6222 root = BTRFS_I(inode)->root;
6223
6224 ret = btrfs_get_free_objectid(root, &objectid);
6225 if (ret)
6226 goto out;
6227 inode->i_ino = objectid;
6228
6229 if (args->orphan) {
6230 /*
6231 * O_TMPFILE, set link count to 0, so that after this point, we
6232 * fill in an inode item with the correct link count.
6233 */
6234 set_nlink(inode, 0);
6235 } else {
6236 trace_btrfs_inode_request(dir);
6237
6238 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6239 if (ret)
6240 goto out;
6241 }
6242 /* index_cnt is ignored for everything but a dir. */
6243 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6244 BTRFS_I(inode)->generation = trans->transid;
6245 inode->i_generation = BTRFS_I(inode)->generation;
6246
6247 /*
6248 * We don't have any capability xattrs set here yet, shortcut any
6249 * queries for the xattrs here. If we add them later via the inode
6250 * security init path or any other path this flag will be cleared.
6251 */
6252 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6253
6254 /*
6255 * Subvolumes don't inherit flags from their parent directory.
6256 * Originally this was probably by accident, but we probably can't
6257 * change it now without compatibility issues.
6258 */
6259 if (!args->subvol)
6260 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6261
6262 if (S_ISREG(inode->i_mode)) {
6263 if (btrfs_test_opt(fs_info, NODATASUM))
6264 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6265 if (btrfs_test_opt(fs_info, NODATACOW))
6266 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6267 BTRFS_INODE_NODATASUM;
6268 }
6269
6270 location = &BTRFS_I(inode)->location;
6271 location->objectid = objectid;
6272 location->offset = 0;
6273 location->type = BTRFS_INODE_ITEM_KEY;
6274
6275 ret = btrfs_insert_inode_locked(inode);
6276 if (ret < 0) {
6277 if (!args->orphan)
6278 BTRFS_I(dir)->index_cnt--;
6279 goto out;
6280 }
6281
6282 /*
6283 * We could have gotten an inode number from somebody who was fsynced
6284 * and then removed in this same transaction, so let's just set full
6285 * sync since it will be a full sync anyway and this will blow away the
6286 * old info in the log.
6287 */
6288 btrfs_set_inode_full_sync(BTRFS_I(inode));
6289
6290 key[0].objectid = objectid;
6291 key[0].type = BTRFS_INODE_ITEM_KEY;
6292 key[0].offset = 0;
6293
6294 sizes[0] = sizeof(struct btrfs_inode_item);
6295
6296 if (!args->orphan) {
6297 /*
6298 * Start new inodes with an inode_ref. This is slightly more
6299 * efficient for small numbers of hard links since they will
6300 * be packed into one item. Extended refs will kick in if we
6301 * add more hard links than can fit in the ref item.
6302 */
6303 key[1].objectid = objectid;
6304 key[1].type = BTRFS_INODE_REF_KEY;
6305 if (args->subvol) {
6306 key[1].offset = objectid;
6307 sizes[1] = 2 + sizeof(*ref);
6308 } else {
6309 key[1].offset = btrfs_ino(BTRFS_I(dir));
6310 sizes[1] = name->len + sizeof(*ref);
6311 }
6312 }
6313
6314 batch.keys = &key[0];
6315 batch.data_sizes = &sizes[0];
6316 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6317 batch.nr = args->orphan ? 1 : 2;
6318 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6319 if (ret != 0) {
6320 btrfs_abort_transaction(trans, ret);
6321 goto discard;
6322 }
6323
6324 ts = simple_inode_init_ts(inode);
6325 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6326 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6327
6328 /*
6329 * We're going to fill the inode item now, so at this point the inode
6330 * must be fully initialized.
6331 */
6332
6333 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6334 struct btrfs_inode_item);
6335 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6336 sizeof(*inode_item));
6337 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6338
6339 if (!args->orphan) {
6340 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6341 struct btrfs_inode_ref);
6342 ptr = (unsigned long)(ref + 1);
6343 if (args->subvol) {
6344 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6345 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6346 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6347 } else {
6348 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6349 name->len);
6350 btrfs_set_inode_ref_index(path->nodes[0], ref,
6351 BTRFS_I(inode)->dir_index);
6352 write_extent_buffer(path->nodes[0], name->name, ptr,
6353 name->len);
6354 }
6355 }
6356
6357 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6358 /*
6359 * We don't need the path anymore, plus inheriting properties, adding
6360 * ACLs, security xattrs, orphan item or adding the link, will result in
6361 * allocating yet another path. So just free our path.
6362 */
6363 btrfs_free_path(path);
6364 path = NULL;
6365
6366 if (args->subvol) {
6367 struct inode *parent;
6368
6369 /*
6370 * Subvolumes inherit properties from their parent subvolume,
6371 * not the directory they were created in.
6372 */
6373 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6374 BTRFS_I(dir)->root);
6375 if (IS_ERR(parent)) {
6376 ret = PTR_ERR(parent);
6377 } else {
6378 ret = btrfs_inode_inherit_props(trans, inode, parent);
6379 iput(parent);
6380 }
6381 } else {
6382 ret = btrfs_inode_inherit_props(trans, inode, dir);
6383 }
6384 if (ret) {
6385 btrfs_err(fs_info,
6386 "error inheriting props for ino %llu (root %llu): %d",
6387 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6388 ret);
6389 }
6390
6391 /*
6392 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6393 * probably a bug.
6394 */
6395 if (!args->subvol) {
6396 ret = btrfs_init_inode_security(trans, args);
6397 if (ret) {
6398 btrfs_abort_transaction(trans, ret);
6399 goto discard;
6400 }
6401 }
6402
6403 inode_tree_add(BTRFS_I(inode));
6404
6405 trace_btrfs_inode_new(inode);
6406 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6407
6408 btrfs_update_root_times(trans, root);
6409
6410 if (args->orphan) {
6411 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6412 } else {
6413 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6414 0, BTRFS_I(inode)->dir_index);
6415 }
6416 if (ret) {
6417 btrfs_abort_transaction(trans, ret);
6418 goto discard;
6419 }
6420
6421 return 0;
6422
6423 discard:
6424 /*
6425 * discard_new_inode() calls iput(), but the caller owns the reference
6426 * to the inode.
6427 */
6428 ihold(inode);
6429 discard_new_inode(inode);
6430 out:
6431 btrfs_free_path(path);
6432 return ret;
6433 }
6434
6435 /*
6436 * utility function to add 'inode' into 'parent_inode' with
6437 * a give name and a given sequence number.
6438 * if 'add_backref' is true, also insert a backref from the
6439 * inode to the parent directory.
6440 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6441 int btrfs_add_link(struct btrfs_trans_handle *trans,
6442 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6443 const struct fscrypt_str *name, int add_backref, u64 index)
6444 {
6445 int ret = 0;
6446 struct btrfs_key key;
6447 struct btrfs_root *root = parent_inode->root;
6448 u64 ino = btrfs_ino(inode);
6449 u64 parent_ino = btrfs_ino(parent_inode);
6450
6451 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6452 memcpy(&key, &inode->root->root_key, sizeof(key));
6453 } else {
6454 key.objectid = ino;
6455 key.type = BTRFS_INODE_ITEM_KEY;
6456 key.offset = 0;
6457 }
6458
6459 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6460 ret = btrfs_add_root_ref(trans, key.objectid,
6461 root->root_key.objectid, parent_ino,
6462 index, name);
6463 } else if (add_backref) {
6464 ret = btrfs_insert_inode_ref(trans, root, name,
6465 ino, parent_ino, index);
6466 }
6467
6468 /* Nothing to clean up yet */
6469 if (ret)
6470 return ret;
6471
6472 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6473 btrfs_inode_type(&inode->vfs_inode), index);
6474 if (ret == -EEXIST || ret == -EOVERFLOW)
6475 goto fail_dir_item;
6476 else if (ret) {
6477 btrfs_abort_transaction(trans, ret);
6478 return ret;
6479 }
6480
6481 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6482 name->len * 2);
6483 inode_inc_iversion(&parent_inode->vfs_inode);
6484 /*
6485 * If we are replaying a log tree, we do not want to update the mtime
6486 * and ctime of the parent directory with the current time, since the
6487 * log replay procedure is responsible for setting them to their correct
6488 * values (the ones it had when the fsync was done).
6489 */
6490 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6491 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6492 inode_set_ctime_current(&parent_inode->vfs_inode));
6493
6494 ret = btrfs_update_inode(trans, parent_inode);
6495 if (ret)
6496 btrfs_abort_transaction(trans, ret);
6497 return ret;
6498
6499 fail_dir_item:
6500 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6501 u64 local_index;
6502 int err;
6503 err = btrfs_del_root_ref(trans, key.objectid,
6504 root->root_key.objectid, parent_ino,
6505 &local_index, name);
6506 if (err)
6507 btrfs_abort_transaction(trans, err);
6508 } else if (add_backref) {
6509 u64 local_index;
6510 int err;
6511
6512 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6513 &local_index);
6514 if (err)
6515 btrfs_abort_transaction(trans, err);
6516 }
6517
6518 /* Return the original error code */
6519 return ret;
6520 }
6521
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6522 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6523 struct inode *inode)
6524 {
6525 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6526 struct btrfs_root *root = BTRFS_I(dir)->root;
6527 struct btrfs_new_inode_args new_inode_args = {
6528 .dir = dir,
6529 .dentry = dentry,
6530 .inode = inode,
6531 };
6532 unsigned int trans_num_items;
6533 struct btrfs_trans_handle *trans;
6534 int err;
6535
6536 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6537 if (err)
6538 goto out_inode;
6539
6540 trans = btrfs_start_transaction(root, trans_num_items);
6541 if (IS_ERR(trans)) {
6542 err = PTR_ERR(trans);
6543 goto out_new_inode_args;
6544 }
6545
6546 err = btrfs_create_new_inode(trans, &new_inode_args);
6547 if (!err)
6548 d_instantiate_new(dentry, inode);
6549
6550 btrfs_end_transaction(trans);
6551 btrfs_btree_balance_dirty(fs_info);
6552 out_new_inode_args:
6553 btrfs_new_inode_args_destroy(&new_inode_args);
6554 out_inode:
6555 if (err)
6556 iput(inode);
6557 return err;
6558 }
6559
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6560 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6561 struct dentry *dentry, umode_t mode, dev_t rdev)
6562 {
6563 struct inode *inode;
6564
6565 inode = new_inode(dir->i_sb);
6566 if (!inode)
6567 return -ENOMEM;
6568 inode_init_owner(idmap, inode, dir, mode);
6569 inode->i_op = &btrfs_special_inode_operations;
6570 init_special_inode(inode, inode->i_mode, rdev);
6571 return btrfs_create_common(dir, dentry, inode);
6572 }
6573
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6574 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6575 struct dentry *dentry, umode_t mode, bool excl)
6576 {
6577 struct inode *inode;
6578
6579 inode = new_inode(dir->i_sb);
6580 if (!inode)
6581 return -ENOMEM;
6582 inode_init_owner(idmap, inode, dir, mode);
6583 inode->i_fop = &btrfs_file_operations;
6584 inode->i_op = &btrfs_file_inode_operations;
6585 inode->i_mapping->a_ops = &btrfs_aops;
6586 return btrfs_create_common(dir, dentry, inode);
6587 }
6588
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6590 struct dentry *dentry)
6591 {
6592 struct btrfs_trans_handle *trans = NULL;
6593 struct btrfs_root *root = BTRFS_I(dir)->root;
6594 struct inode *inode = d_inode(old_dentry);
6595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6596 struct fscrypt_name fname;
6597 u64 index;
6598 int err;
6599 int drop_inode = 0;
6600
6601 /* do not allow sys_link's with other subvols of the same device */
6602 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6603 return -EXDEV;
6604
6605 if (inode->i_nlink >= BTRFS_LINK_MAX)
6606 return -EMLINK;
6607
6608 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6609 if (err)
6610 goto fail;
6611
6612 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6613 if (err)
6614 goto fail;
6615
6616 /*
6617 * 2 items for inode and inode ref
6618 * 2 items for dir items
6619 * 1 item for parent inode
6620 * 1 item for orphan item deletion if O_TMPFILE
6621 */
6622 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6623 if (IS_ERR(trans)) {
6624 err = PTR_ERR(trans);
6625 trans = NULL;
6626 goto fail;
6627 }
6628
6629 /* There are several dir indexes for this inode, clear the cache. */
6630 BTRFS_I(inode)->dir_index = 0ULL;
6631 inc_nlink(inode);
6632 inode_inc_iversion(inode);
6633 inode_set_ctime_current(inode);
6634 ihold(inode);
6635 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6636
6637 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6638 &fname.disk_name, 1, index);
6639
6640 if (err) {
6641 drop_inode = 1;
6642 } else {
6643 struct dentry *parent = dentry->d_parent;
6644
6645 err = btrfs_update_inode(trans, BTRFS_I(inode));
6646 if (err)
6647 goto fail;
6648 if (inode->i_nlink == 1) {
6649 /*
6650 * If new hard link count is 1, it's a file created
6651 * with open(2) O_TMPFILE flag.
6652 */
6653 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6654 if (err)
6655 goto fail;
6656 }
6657 d_instantiate(dentry, inode);
6658 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6659 }
6660
6661 fail:
6662 fscrypt_free_filename(&fname);
6663 if (trans)
6664 btrfs_end_transaction(trans);
6665 if (drop_inode) {
6666 inode_dec_link_count(inode);
6667 iput(inode);
6668 }
6669 btrfs_btree_balance_dirty(fs_info);
6670 return err;
6671 }
6672
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6673 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6674 struct dentry *dentry, umode_t mode)
6675 {
6676 struct inode *inode;
6677
6678 inode = new_inode(dir->i_sb);
6679 if (!inode)
6680 return -ENOMEM;
6681 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6682 inode->i_op = &btrfs_dir_inode_operations;
6683 inode->i_fop = &btrfs_dir_file_operations;
6684 return btrfs_create_common(dir, dentry, inode);
6685 }
6686
uncompress_inline(struct btrfs_path * path,struct page * page,struct btrfs_file_extent_item * item)6687 static noinline int uncompress_inline(struct btrfs_path *path,
6688 struct page *page,
6689 struct btrfs_file_extent_item *item)
6690 {
6691 int ret;
6692 struct extent_buffer *leaf = path->nodes[0];
6693 char *tmp;
6694 size_t max_size;
6695 unsigned long inline_size;
6696 unsigned long ptr;
6697 int compress_type;
6698
6699 compress_type = btrfs_file_extent_compression(leaf, item);
6700 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6701 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6702 tmp = kmalloc(inline_size, GFP_NOFS);
6703 if (!tmp)
6704 return -ENOMEM;
6705 ptr = btrfs_file_extent_inline_start(item);
6706
6707 read_extent_buffer(leaf, tmp, ptr, inline_size);
6708
6709 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6710 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6711
6712 /*
6713 * decompression code contains a memset to fill in any space between the end
6714 * of the uncompressed data and the end of max_size in case the decompressed
6715 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6716 * the end of an inline extent and the beginning of the next block, so we
6717 * cover that region here.
6718 */
6719
6720 if (max_size < PAGE_SIZE)
6721 memzero_page(page, max_size, PAGE_SIZE - max_size);
6722 kfree(tmp);
6723 return ret;
6724 }
6725
read_inline_extent(struct btrfs_inode * inode,struct btrfs_path * path,struct page * page)6726 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6727 struct page *page)
6728 {
6729 struct btrfs_file_extent_item *fi;
6730 void *kaddr;
6731 size_t copy_size;
6732
6733 if (!page || PageUptodate(page))
6734 return 0;
6735
6736 ASSERT(page_offset(page) == 0);
6737
6738 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6739 struct btrfs_file_extent_item);
6740 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6741 return uncompress_inline(path, page, fi);
6742
6743 copy_size = min_t(u64, PAGE_SIZE,
6744 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6745 kaddr = kmap_local_page(page);
6746 read_extent_buffer(path->nodes[0], kaddr,
6747 btrfs_file_extent_inline_start(fi), copy_size);
6748 kunmap_local(kaddr);
6749 if (copy_size < PAGE_SIZE)
6750 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6751 return 0;
6752 }
6753
6754 /*
6755 * Lookup the first extent overlapping a range in a file.
6756 *
6757 * @inode: file to search in
6758 * @page: page to read extent data into if the extent is inline
6759 * @pg_offset: offset into @page to copy to
6760 * @start: file offset
6761 * @len: length of range starting at @start
6762 *
6763 * Return the first &struct extent_map which overlaps the given range, reading
6764 * it from the B-tree and caching it if necessary. Note that there may be more
6765 * extents which overlap the given range after the returned extent_map.
6766 *
6767 * If @page is not NULL and the extent is inline, this also reads the extent
6768 * data directly into the page and marks the extent up to date in the io_tree.
6769 *
6770 * Return: ERR_PTR on error, non-NULL extent_map on success.
6771 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6772 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6773 struct page *page, size_t pg_offset,
6774 u64 start, u64 len)
6775 {
6776 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6777 int ret = 0;
6778 u64 extent_start = 0;
6779 u64 extent_end = 0;
6780 u64 objectid = btrfs_ino(inode);
6781 int extent_type = -1;
6782 struct btrfs_path *path = NULL;
6783 struct btrfs_root *root = inode->root;
6784 struct btrfs_file_extent_item *item;
6785 struct extent_buffer *leaf;
6786 struct btrfs_key found_key;
6787 struct extent_map *em = NULL;
6788 struct extent_map_tree *em_tree = &inode->extent_tree;
6789
6790 read_lock(&em_tree->lock);
6791 em = lookup_extent_mapping(em_tree, start, len);
6792 read_unlock(&em_tree->lock);
6793
6794 if (em) {
6795 if (em->start > start || em->start + em->len <= start)
6796 free_extent_map(em);
6797 else if (em->block_start == EXTENT_MAP_INLINE && page)
6798 free_extent_map(em);
6799 else
6800 goto out;
6801 }
6802 em = alloc_extent_map();
6803 if (!em) {
6804 ret = -ENOMEM;
6805 goto out;
6806 }
6807 em->start = EXTENT_MAP_HOLE;
6808 em->orig_start = EXTENT_MAP_HOLE;
6809 em->len = (u64)-1;
6810 em->block_len = (u64)-1;
6811
6812 path = btrfs_alloc_path();
6813 if (!path) {
6814 ret = -ENOMEM;
6815 goto out;
6816 }
6817
6818 /* Chances are we'll be called again, so go ahead and do readahead */
6819 path->reada = READA_FORWARD;
6820
6821 /*
6822 * The same explanation in load_free_space_cache applies here as well,
6823 * we only read when we're loading the free space cache, and at that
6824 * point the commit_root has everything we need.
6825 */
6826 if (btrfs_is_free_space_inode(inode)) {
6827 path->search_commit_root = 1;
6828 path->skip_locking = 1;
6829 }
6830
6831 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6832 if (ret < 0) {
6833 goto out;
6834 } else if (ret > 0) {
6835 if (path->slots[0] == 0)
6836 goto not_found;
6837 path->slots[0]--;
6838 ret = 0;
6839 }
6840
6841 leaf = path->nodes[0];
6842 item = btrfs_item_ptr(leaf, path->slots[0],
6843 struct btrfs_file_extent_item);
6844 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6845 if (found_key.objectid != objectid ||
6846 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6847 /*
6848 * If we backup past the first extent we want to move forward
6849 * and see if there is an extent in front of us, otherwise we'll
6850 * say there is a hole for our whole search range which can
6851 * cause problems.
6852 */
6853 extent_end = start;
6854 goto next;
6855 }
6856
6857 extent_type = btrfs_file_extent_type(leaf, item);
6858 extent_start = found_key.offset;
6859 extent_end = btrfs_file_extent_end(path);
6860 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6861 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6862 /* Only regular file could have regular/prealloc extent */
6863 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6864 ret = -EUCLEAN;
6865 btrfs_crit(fs_info,
6866 "regular/prealloc extent found for non-regular inode %llu",
6867 btrfs_ino(inode));
6868 goto out;
6869 }
6870 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6871 extent_start);
6872 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6873 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6874 path->slots[0],
6875 extent_start);
6876 }
6877 next:
6878 if (start >= extent_end) {
6879 path->slots[0]++;
6880 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6881 ret = btrfs_next_leaf(root, path);
6882 if (ret < 0)
6883 goto out;
6884 else if (ret > 0)
6885 goto not_found;
6886
6887 leaf = path->nodes[0];
6888 }
6889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6890 if (found_key.objectid != objectid ||
6891 found_key.type != BTRFS_EXTENT_DATA_KEY)
6892 goto not_found;
6893 if (start + len <= found_key.offset)
6894 goto not_found;
6895 if (start > found_key.offset)
6896 goto next;
6897
6898 /* New extent overlaps with existing one */
6899 em->start = start;
6900 em->orig_start = start;
6901 em->len = found_key.offset - start;
6902 em->block_start = EXTENT_MAP_HOLE;
6903 goto insert;
6904 }
6905
6906 btrfs_extent_item_to_extent_map(inode, path, item, em);
6907
6908 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6909 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6910 goto insert;
6911 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6912 /*
6913 * Inline extent can only exist at file offset 0. This is
6914 * ensured by tree-checker and inline extent creation path.
6915 * Thus all members representing file offsets should be zero.
6916 */
6917 ASSERT(pg_offset == 0);
6918 ASSERT(extent_start == 0);
6919 ASSERT(em->start == 0);
6920
6921 /*
6922 * btrfs_extent_item_to_extent_map() should have properly
6923 * initialized em members already.
6924 *
6925 * Other members are not utilized for inline extents.
6926 */
6927 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6928 ASSERT(em->len == fs_info->sectorsize);
6929
6930 ret = read_inline_extent(inode, path, page);
6931 if (ret < 0)
6932 goto out;
6933 goto insert;
6934 }
6935 not_found:
6936 em->start = start;
6937 em->orig_start = start;
6938 em->len = len;
6939 em->block_start = EXTENT_MAP_HOLE;
6940 insert:
6941 ret = 0;
6942 btrfs_release_path(path);
6943 if (em->start > start || extent_map_end(em) <= start) {
6944 btrfs_err(fs_info,
6945 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6946 em->start, em->len, start, len);
6947 ret = -EIO;
6948 goto out;
6949 }
6950
6951 write_lock(&em_tree->lock);
6952 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6953 write_unlock(&em_tree->lock);
6954 out:
6955 btrfs_free_path(path);
6956
6957 trace_btrfs_get_extent(root, inode, em);
6958
6959 if (ret) {
6960 free_extent_map(em);
6961 return ERR_PTR(ret);
6962 }
6963 return em;
6964 }
6965
btrfs_create_dio_extent(struct btrfs_inode * inode,struct btrfs_dio_data * dio_data,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)6966 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6967 struct btrfs_dio_data *dio_data,
6968 const u64 start,
6969 const u64 len,
6970 const u64 orig_start,
6971 const u64 block_start,
6972 const u64 block_len,
6973 const u64 orig_block_len,
6974 const u64 ram_bytes,
6975 const int type)
6976 {
6977 struct extent_map *em = NULL;
6978 struct btrfs_ordered_extent *ordered;
6979
6980 if (type != BTRFS_ORDERED_NOCOW) {
6981 em = create_io_em(inode, start, len, orig_start, block_start,
6982 block_len, orig_block_len, ram_bytes,
6983 BTRFS_COMPRESS_NONE, /* compress_type */
6984 type);
6985 if (IS_ERR(em))
6986 goto out;
6987 }
6988 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6989 block_start, block_len, 0,
6990 (1 << type) |
6991 (1 << BTRFS_ORDERED_DIRECT),
6992 BTRFS_COMPRESS_NONE);
6993 if (IS_ERR(ordered)) {
6994 if (em) {
6995 free_extent_map(em);
6996 btrfs_drop_extent_map_range(inode, start,
6997 start + len - 1, false);
6998 }
6999 em = ERR_CAST(ordered);
7000 } else {
7001 ASSERT(!dio_data->ordered);
7002 dio_data->ordered = ordered;
7003 }
7004 out:
7005
7006 return em;
7007 }
7008
btrfs_new_extent_direct(struct btrfs_inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7009 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7010 struct btrfs_dio_data *dio_data,
7011 u64 start, u64 len)
7012 {
7013 struct btrfs_root *root = inode->root;
7014 struct btrfs_fs_info *fs_info = root->fs_info;
7015 struct extent_map *em;
7016 struct btrfs_key ins;
7017 u64 alloc_hint;
7018 int ret;
7019
7020 alloc_hint = get_extent_allocation_hint(inode, start, len);
7021 again:
7022 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7023 0, alloc_hint, &ins, 1, 1);
7024 if (ret == -EAGAIN) {
7025 ASSERT(btrfs_is_zoned(fs_info));
7026 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7027 TASK_UNINTERRUPTIBLE);
7028 goto again;
7029 }
7030 if (ret)
7031 return ERR_PTR(ret);
7032
7033 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7034 ins.objectid, ins.offset, ins.offset,
7035 ins.offset, BTRFS_ORDERED_REGULAR);
7036 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7037 if (IS_ERR(em))
7038 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7039 1);
7040
7041 return em;
7042 }
7043
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7044 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7045 {
7046 struct btrfs_block_group *block_group;
7047 bool readonly = false;
7048
7049 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7050 if (!block_group || block_group->ro)
7051 readonly = true;
7052 if (block_group)
7053 btrfs_put_block_group(block_group);
7054 return readonly;
7055 }
7056
7057 /*
7058 * Check if we can do nocow write into the range [@offset, @offset + @len)
7059 *
7060 * @offset: File offset
7061 * @len: The length to write, will be updated to the nocow writeable
7062 * range
7063 * @orig_start: (optional) Return the original file offset of the file extent
7064 * @orig_len: (optional) Return the original on-disk length of the file extent
7065 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7066 * @strict: if true, omit optimizations that might force us into unnecessary
7067 * cow. e.g., don't trust generation number.
7068 *
7069 * Return:
7070 * >0 and update @len if we can do nocow write
7071 * 0 if we can't do nocow write
7072 * <0 if error happened
7073 *
7074 * NOTE: This only checks the file extents, caller is responsible to wait for
7075 * any ordered extents.
7076 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool nowait,bool strict)7077 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7078 u64 *orig_start, u64 *orig_block_len,
7079 u64 *ram_bytes, bool nowait, bool strict)
7080 {
7081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7082 struct can_nocow_file_extent_args nocow_args = { 0 };
7083 struct btrfs_path *path;
7084 int ret;
7085 struct extent_buffer *leaf;
7086 struct btrfs_root *root = BTRFS_I(inode)->root;
7087 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7088 struct btrfs_file_extent_item *fi;
7089 struct btrfs_key key;
7090 int found_type;
7091
7092 path = btrfs_alloc_path();
7093 if (!path)
7094 return -ENOMEM;
7095 path->nowait = nowait;
7096
7097 ret = btrfs_lookup_file_extent(NULL, root, path,
7098 btrfs_ino(BTRFS_I(inode)), offset, 0);
7099 if (ret < 0)
7100 goto out;
7101
7102 if (ret == 1) {
7103 if (path->slots[0] == 0) {
7104 /* can't find the item, must cow */
7105 ret = 0;
7106 goto out;
7107 }
7108 path->slots[0]--;
7109 }
7110 ret = 0;
7111 leaf = path->nodes[0];
7112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7113 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7114 key.type != BTRFS_EXTENT_DATA_KEY) {
7115 /* not our file or wrong item type, must cow */
7116 goto out;
7117 }
7118
7119 if (key.offset > offset) {
7120 /* Wrong offset, must cow */
7121 goto out;
7122 }
7123
7124 if (btrfs_file_extent_end(path) <= offset)
7125 goto out;
7126
7127 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7128 found_type = btrfs_file_extent_type(leaf, fi);
7129 if (ram_bytes)
7130 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7131
7132 nocow_args.start = offset;
7133 nocow_args.end = offset + *len - 1;
7134 nocow_args.strict = strict;
7135 nocow_args.free_path = true;
7136
7137 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7138 /* can_nocow_file_extent() has freed the path. */
7139 path = NULL;
7140
7141 if (ret != 1) {
7142 /* Treat errors as not being able to NOCOW. */
7143 ret = 0;
7144 goto out;
7145 }
7146
7147 ret = 0;
7148 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7149 goto out;
7150
7151 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7152 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7153 u64 range_end;
7154
7155 range_end = round_up(offset + nocow_args.num_bytes,
7156 root->fs_info->sectorsize) - 1;
7157 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7158 if (ret) {
7159 ret = -EAGAIN;
7160 goto out;
7161 }
7162 }
7163
7164 if (orig_start)
7165 *orig_start = key.offset - nocow_args.extent_offset;
7166 if (orig_block_len)
7167 *orig_block_len = nocow_args.disk_num_bytes;
7168
7169 *len = nocow_args.num_bytes;
7170 ret = 1;
7171 out:
7172 btrfs_free_path(path);
7173 return ret;
7174 }
7175
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,unsigned int iomap_flags)7176 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7177 struct extent_state **cached_state,
7178 unsigned int iomap_flags)
7179 {
7180 const bool writing = (iomap_flags & IOMAP_WRITE);
7181 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7182 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7183 struct btrfs_ordered_extent *ordered;
7184 int ret = 0;
7185
7186 while (1) {
7187 if (nowait) {
7188 if (!try_lock_extent(io_tree, lockstart, lockend,
7189 cached_state))
7190 return -EAGAIN;
7191 } else {
7192 lock_extent(io_tree, lockstart, lockend, cached_state);
7193 }
7194 /*
7195 * We're concerned with the entire range that we're going to be
7196 * doing DIO to, so we need to make sure there's no ordered
7197 * extents in this range.
7198 */
7199 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7200 lockend - lockstart + 1);
7201
7202 /*
7203 * We need to make sure there are no buffered pages in this
7204 * range either, we could have raced between the invalidate in
7205 * generic_file_direct_write and locking the extent. The
7206 * invalidate needs to happen so that reads after a write do not
7207 * get stale data.
7208 */
7209 if (!ordered &&
7210 (!writing || !filemap_range_has_page(inode->i_mapping,
7211 lockstart, lockend)))
7212 break;
7213
7214 unlock_extent(io_tree, lockstart, lockend, cached_state);
7215
7216 if (ordered) {
7217 if (nowait) {
7218 btrfs_put_ordered_extent(ordered);
7219 ret = -EAGAIN;
7220 break;
7221 }
7222 /*
7223 * If we are doing a DIO read and the ordered extent we
7224 * found is for a buffered write, we can not wait for it
7225 * to complete and retry, because if we do so we can
7226 * deadlock with concurrent buffered writes on page
7227 * locks. This happens only if our DIO read covers more
7228 * than one extent map, if at this point has already
7229 * created an ordered extent for a previous extent map
7230 * and locked its range in the inode's io tree, and a
7231 * concurrent write against that previous extent map's
7232 * range and this range started (we unlock the ranges
7233 * in the io tree only when the bios complete and
7234 * buffered writes always lock pages before attempting
7235 * to lock range in the io tree).
7236 */
7237 if (writing ||
7238 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7239 btrfs_start_ordered_extent(ordered);
7240 else
7241 ret = nowait ? -EAGAIN : -ENOTBLK;
7242 btrfs_put_ordered_extent(ordered);
7243 } else {
7244 /*
7245 * We could trigger writeback for this range (and wait
7246 * for it to complete) and then invalidate the pages for
7247 * this range (through invalidate_inode_pages2_range()),
7248 * but that can lead us to a deadlock with a concurrent
7249 * call to readahead (a buffered read or a defrag call
7250 * triggered a readahead) on a page lock due to an
7251 * ordered dio extent we created before but did not have
7252 * yet a corresponding bio submitted (whence it can not
7253 * complete), which makes readahead wait for that
7254 * ordered extent to complete while holding a lock on
7255 * that page.
7256 */
7257 ret = nowait ? -EAGAIN : -ENOTBLK;
7258 }
7259
7260 if (ret)
7261 break;
7262
7263 cond_resched();
7264 }
7265
7266 return ret;
7267 }
7268
7269 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7270 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7271 u64 len, u64 orig_start, u64 block_start,
7272 u64 block_len, u64 orig_block_len,
7273 u64 ram_bytes, int compress_type,
7274 int type)
7275 {
7276 struct extent_map *em;
7277 int ret;
7278
7279 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7280 type == BTRFS_ORDERED_COMPRESSED ||
7281 type == BTRFS_ORDERED_NOCOW ||
7282 type == BTRFS_ORDERED_REGULAR);
7283
7284 em = alloc_extent_map();
7285 if (!em)
7286 return ERR_PTR(-ENOMEM);
7287
7288 em->start = start;
7289 em->orig_start = orig_start;
7290 em->len = len;
7291 em->block_len = block_len;
7292 em->block_start = block_start;
7293 em->orig_block_len = orig_block_len;
7294 em->ram_bytes = ram_bytes;
7295 em->generation = -1;
7296 em->flags |= EXTENT_FLAG_PINNED;
7297 if (type == BTRFS_ORDERED_PREALLOC)
7298 em->flags |= EXTENT_FLAG_FILLING;
7299 else if (type == BTRFS_ORDERED_COMPRESSED)
7300 extent_map_set_compression(em, compress_type);
7301
7302 ret = btrfs_replace_extent_map_range(inode, em, true);
7303 if (ret) {
7304 free_extent_map(em);
7305 return ERR_PTR(ret);
7306 }
7307
7308 /* em got 2 refs now, callers needs to do free_extent_map once. */
7309 return em;
7310 }
7311
7312
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 * lenp,unsigned int iomap_flags)7313 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7314 struct inode *inode,
7315 struct btrfs_dio_data *dio_data,
7316 u64 start, u64 *lenp,
7317 unsigned int iomap_flags)
7318 {
7319 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7321 struct extent_map *em = *map;
7322 int type;
7323 u64 block_start, orig_start, orig_block_len, ram_bytes;
7324 struct btrfs_block_group *bg;
7325 bool can_nocow = false;
7326 bool space_reserved = false;
7327 u64 len = *lenp;
7328 u64 prev_len;
7329 int ret = 0;
7330
7331 /*
7332 * We don't allocate a new extent in the following cases
7333 *
7334 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7335 * existing extent.
7336 * 2) The extent is marked as PREALLOC. We're good to go here and can
7337 * just use the extent.
7338 *
7339 */
7340 if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7341 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7342 em->block_start != EXTENT_MAP_HOLE)) {
7343 if (em->flags & EXTENT_FLAG_PREALLOC)
7344 type = BTRFS_ORDERED_PREALLOC;
7345 else
7346 type = BTRFS_ORDERED_NOCOW;
7347 len = min(len, em->len - (start - em->start));
7348 block_start = em->block_start + (start - em->start);
7349
7350 if (can_nocow_extent(inode, start, &len, &orig_start,
7351 &orig_block_len, &ram_bytes, false, false) == 1) {
7352 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7353 if (bg)
7354 can_nocow = true;
7355 }
7356 }
7357
7358 prev_len = len;
7359 if (can_nocow) {
7360 struct extent_map *em2;
7361
7362 /* We can NOCOW, so only need to reserve metadata space. */
7363 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7364 nowait);
7365 if (ret < 0) {
7366 /* Our caller expects us to free the input extent map. */
7367 free_extent_map(em);
7368 *map = NULL;
7369 btrfs_dec_nocow_writers(bg);
7370 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7371 ret = -EAGAIN;
7372 goto out;
7373 }
7374 space_reserved = true;
7375
7376 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7377 orig_start, block_start,
7378 len, orig_block_len,
7379 ram_bytes, type);
7380 btrfs_dec_nocow_writers(bg);
7381 if (type == BTRFS_ORDERED_PREALLOC) {
7382 free_extent_map(em);
7383 *map = em2;
7384 em = em2;
7385 }
7386
7387 if (IS_ERR(em2)) {
7388 ret = PTR_ERR(em2);
7389 goto out;
7390 }
7391
7392 dio_data->nocow_done = true;
7393 } else {
7394 /* Our caller expects us to free the input extent map. */
7395 free_extent_map(em);
7396 *map = NULL;
7397
7398 if (nowait) {
7399 ret = -EAGAIN;
7400 goto out;
7401 }
7402
7403 /*
7404 * If we could not allocate data space before locking the file
7405 * range and we can't do a NOCOW write, then we have to fail.
7406 */
7407 if (!dio_data->data_space_reserved) {
7408 ret = -ENOSPC;
7409 goto out;
7410 }
7411
7412 /*
7413 * We have to COW and we have already reserved data space before,
7414 * so now we reserve only metadata.
7415 */
7416 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7417 false);
7418 if (ret < 0)
7419 goto out;
7420 space_reserved = true;
7421
7422 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7423 if (IS_ERR(em)) {
7424 ret = PTR_ERR(em);
7425 goto out;
7426 }
7427 *map = em;
7428 len = min(len, em->len - (start - em->start));
7429 if (len < prev_len)
7430 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7431 prev_len - len, true);
7432 }
7433
7434 /*
7435 * We have created our ordered extent, so we can now release our reservation
7436 * for an outstanding extent.
7437 */
7438 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7439
7440 /*
7441 * Need to update the i_size under the extent lock so buffered
7442 * readers will get the updated i_size when we unlock.
7443 */
7444 if (start + len > i_size_read(inode))
7445 i_size_write(inode, start + len);
7446 out:
7447 if (ret && space_reserved) {
7448 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7449 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7450 }
7451 *lenp = len;
7452 return ret;
7453 }
7454
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7455 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7456 loff_t length, unsigned int flags, struct iomap *iomap,
7457 struct iomap *srcmap)
7458 {
7459 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7461 struct extent_map *em;
7462 struct extent_state *cached_state = NULL;
7463 struct btrfs_dio_data *dio_data = iter->private;
7464 u64 lockstart, lockend;
7465 const bool write = !!(flags & IOMAP_WRITE);
7466 int ret = 0;
7467 u64 len = length;
7468 const u64 data_alloc_len = length;
7469 bool unlock_extents = false;
7470
7471 /*
7472 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7473 * we're NOWAIT we may submit a bio for a partial range and return
7474 * EIOCBQUEUED, which would result in an errant short read.
7475 *
7476 * The best way to handle this would be to allow for partial completions
7477 * of iocb's, so we could submit the partial bio, return and fault in
7478 * the rest of the pages, and then submit the io for the rest of the
7479 * range. However we don't have that currently, so simply return
7480 * -EAGAIN at this point so that the normal path is used.
7481 */
7482 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7483 return -EAGAIN;
7484
7485 /*
7486 * Cap the size of reads to that usually seen in buffered I/O as we need
7487 * to allocate a contiguous array for the checksums.
7488 */
7489 if (!write)
7490 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7491
7492 lockstart = start;
7493 lockend = start + len - 1;
7494
7495 /*
7496 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7497 * enough if we've written compressed pages to this area, so we need to
7498 * flush the dirty pages again to make absolutely sure that any
7499 * outstanding dirty pages are on disk - the first flush only starts
7500 * compression on the data, while keeping the pages locked, so by the
7501 * time the second flush returns we know bios for the compressed pages
7502 * were submitted and finished, and the pages no longer under writeback.
7503 *
7504 * If we have a NOWAIT request and we have any pages in the range that
7505 * are locked, likely due to compression still in progress, we don't want
7506 * to block on page locks. We also don't want to block on pages marked as
7507 * dirty or under writeback (same as for the non-compression case).
7508 * iomap_dio_rw() did the same check, but after that and before we got
7509 * here, mmap'ed writes may have happened or buffered reads started
7510 * (readpage() and readahead(), which lock pages), as we haven't locked
7511 * the file range yet.
7512 */
7513 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7514 &BTRFS_I(inode)->runtime_flags)) {
7515 if (flags & IOMAP_NOWAIT) {
7516 if (filemap_range_needs_writeback(inode->i_mapping,
7517 lockstart, lockend))
7518 return -EAGAIN;
7519 } else {
7520 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7521 start + length - 1);
7522 if (ret)
7523 return ret;
7524 }
7525 }
7526
7527 memset(dio_data, 0, sizeof(*dio_data));
7528
7529 /*
7530 * We always try to allocate data space and must do it before locking
7531 * the file range, to avoid deadlocks with concurrent writes to the same
7532 * range if the range has several extents and the writes don't expand the
7533 * current i_size (the inode lock is taken in shared mode). If we fail to
7534 * allocate data space here we continue and later, after locking the
7535 * file range, we fail with ENOSPC only if we figure out we can not do a
7536 * NOCOW write.
7537 */
7538 if (write && !(flags & IOMAP_NOWAIT)) {
7539 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7540 &dio_data->data_reserved,
7541 start, data_alloc_len, false);
7542 if (!ret)
7543 dio_data->data_space_reserved = true;
7544 else if (ret && !(BTRFS_I(inode)->flags &
7545 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7546 goto err;
7547 }
7548
7549 /*
7550 * If this errors out it's because we couldn't invalidate pagecache for
7551 * this range and we need to fallback to buffered IO, or we are doing a
7552 * NOWAIT read/write and we need to block.
7553 */
7554 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7555 if (ret < 0)
7556 goto err;
7557
7558 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7559 if (IS_ERR(em)) {
7560 ret = PTR_ERR(em);
7561 goto unlock_err;
7562 }
7563
7564 /*
7565 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7566 * io. INLINE is special, and we could probably kludge it in here, but
7567 * it's still buffered so for safety lets just fall back to the generic
7568 * buffered path.
7569 *
7570 * For COMPRESSED we _have_ to read the entire extent in so we can
7571 * decompress it, so there will be buffering required no matter what we
7572 * do, so go ahead and fallback to buffered.
7573 *
7574 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7575 * to buffered IO. Don't blame me, this is the price we pay for using
7576 * the generic code.
7577 */
7578 if (extent_map_is_compressed(em) ||
7579 em->block_start == EXTENT_MAP_INLINE) {
7580 free_extent_map(em);
7581 /*
7582 * If we are in a NOWAIT context, return -EAGAIN in order to
7583 * fallback to buffered IO. This is not only because we can
7584 * block with buffered IO (no support for NOWAIT semantics at
7585 * the moment) but also to avoid returning short reads to user
7586 * space - this happens if we were able to read some data from
7587 * previous non-compressed extents and then when we fallback to
7588 * buffered IO, at btrfs_file_read_iter() by calling
7589 * filemap_read(), we fail to fault in pages for the read buffer,
7590 * in which case filemap_read() returns a short read (the number
7591 * of bytes previously read is > 0, so it does not return -EFAULT).
7592 */
7593 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7594 goto unlock_err;
7595 }
7596
7597 len = min(len, em->len - (start - em->start));
7598
7599 /*
7600 * If we have a NOWAIT request and the range contains multiple extents
7601 * (or a mix of extents and holes), then we return -EAGAIN to make the
7602 * caller fallback to a context where it can do a blocking (without
7603 * NOWAIT) request. This way we avoid doing partial IO and returning
7604 * success to the caller, which is not optimal for writes and for reads
7605 * it can result in unexpected behaviour for an application.
7606 *
7607 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7608 * iomap_dio_rw(), we can end up returning less data then what the caller
7609 * asked for, resulting in an unexpected, and incorrect, short read.
7610 * That is, the caller asked to read N bytes and we return less than that,
7611 * which is wrong unless we are crossing EOF. This happens if we get a
7612 * page fault error when trying to fault in pages for the buffer that is
7613 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7614 * have previously submitted bios for other extents in the range, in
7615 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7616 * those bios have completed by the time we get the page fault error,
7617 * which we return back to our caller - we should only return EIOCBQUEUED
7618 * after we have submitted bios for all the extents in the range.
7619 */
7620 if ((flags & IOMAP_NOWAIT) && len < length) {
7621 free_extent_map(em);
7622 ret = -EAGAIN;
7623 goto unlock_err;
7624 }
7625
7626 if (write) {
7627 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7628 start, &len, flags);
7629 if (ret < 0)
7630 goto unlock_err;
7631 unlock_extents = true;
7632 /* Recalc len in case the new em is smaller than requested */
7633 len = min(len, em->len - (start - em->start));
7634 if (dio_data->data_space_reserved) {
7635 u64 release_offset;
7636 u64 release_len = 0;
7637
7638 if (dio_data->nocow_done) {
7639 release_offset = start;
7640 release_len = data_alloc_len;
7641 } else if (len < data_alloc_len) {
7642 release_offset = start + len;
7643 release_len = data_alloc_len - len;
7644 }
7645
7646 if (release_len > 0)
7647 btrfs_free_reserved_data_space(BTRFS_I(inode),
7648 dio_data->data_reserved,
7649 release_offset,
7650 release_len);
7651 }
7652 } else {
7653 /*
7654 * We need to unlock only the end area that we aren't using.
7655 * The rest is going to be unlocked by the endio routine.
7656 */
7657 lockstart = start + len;
7658 if (lockstart < lockend)
7659 unlock_extents = true;
7660 }
7661
7662 if (unlock_extents)
7663 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7664 &cached_state);
7665 else
7666 free_extent_state(cached_state);
7667
7668 /*
7669 * Translate extent map information to iomap.
7670 * We trim the extents (and move the addr) even though iomap code does
7671 * that, since we have locked only the parts we are performing I/O in.
7672 */
7673 if ((em->block_start == EXTENT_MAP_HOLE) ||
7674 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7675 iomap->addr = IOMAP_NULL_ADDR;
7676 iomap->type = IOMAP_HOLE;
7677 } else {
7678 iomap->addr = em->block_start + (start - em->start);
7679 iomap->type = IOMAP_MAPPED;
7680 }
7681 iomap->offset = start;
7682 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7683 iomap->length = len;
7684 free_extent_map(em);
7685
7686 return 0;
7687
7688 unlock_err:
7689 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7690 &cached_state);
7691 err:
7692 if (dio_data->data_space_reserved) {
7693 btrfs_free_reserved_data_space(BTRFS_I(inode),
7694 dio_data->data_reserved,
7695 start, data_alloc_len);
7696 extent_changeset_free(dio_data->data_reserved);
7697 }
7698
7699 return ret;
7700 }
7701
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7702 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7703 ssize_t written, unsigned int flags, struct iomap *iomap)
7704 {
7705 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7706 struct btrfs_dio_data *dio_data = iter->private;
7707 size_t submitted = dio_data->submitted;
7708 const bool write = !!(flags & IOMAP_WRITE);
7709 int ret = 0;
7710
7711 if (!write && (iomap->type == IOMAP_HOLE)) {
7712 /* If reading from a hole, unlock and return */
7713 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7714 NULL);
7715 return 0;
7716 }
7717
7718 if (submitted < length) {
7719 pos += submitted;
7720 length -= submitted;
7721 if (write)
7722 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7723 pos, length, false);
7724 else
7725 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7726 pos + length - 1, NULL);
7727 ret = -ENOTBLK;
7728 }
7729 if (write) {
7730 btrfs_put_ordered_extent(dio_data->ordered);
7731 dio_data->ordered = NULL;
7732 }
7733
7734 if (write)
7735 extent_changeset_free(dio_data->data_reserved);
7736 return ret;
7737 }
7738
btrfs_dio_end_io(struct btrfs_bio * bbio)7739 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7740 {
7741 struct btrfs_dio_private *dip =
7742 container_of(bbio, struct btrfs_dio_private, bbio);
7743 struct btrfs_inode *inode = bbio->inode;
7744 struct bio *bio = &bbio->bio;
7745
7746 if (bio->bi_status) {
7747 btrfs_warn(inode->root->fs_info,
7748 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7749 btrfs_ino(inode), bio->bi_opf,
7750 dip->file_offset, dip->bytes, bio->bi_status);
7751 }
7752
7753 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7754 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7755 dip->file_offset, dip->bytes,
7756 !bio->bi_status);
7757 } else {
7758 unlock_extent(&inode->io_tree, dip->file_offset,
7759 dip->file_offset + dip->bytes - 1, NULL);
7760 }
7761
7762 bbio->bio.bi_private = bbio->private;
7763 iomap_dio_bio_end_io(bio);
7764 }
7765
btrfs_dio_submit_io(const struct iomap_iter * iter,struct bio * bio,loff_t file_offset)7766 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7767 loff_t file_offset)
7768 {
7769 struct btrfs_bio *bbio = btrfs_bio(bio);
7770 struct btrfs_dio_private *dip =
7771 container_of(bbio, struct btrfs_dio_private, bbio);
7772 struct btrfs_dio_data *dio_data = iter->private;
7773
7774 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7775 btrfs_dio_end_io, bio->bi_private);
7776 bbio->inode = BTRFS_I(iter->inode);
7777 bbio->file_offset = file_offset;
7778
7779 dip->file_offset = file_offset;
7780 dip->bytes = bio->bi_iter.bi_size;
7781
7782 dio_data->submitted += bio->bi_iter.bi_size;
7783
7784 /*
7785 * Check if we are doing a partial write. If we are, we need to split
7786 * the ordered extent to match the submitted bio. Hang on to the
7787 * remaining unfinishable ordered_extent in dio_data so that it can be
7788 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7789 * remaining pages is blocked on the outstanding ordered extent.
7790 */
7791 if (iter->flags & IOMAP_WRITE) {
7792 int ret;
7793
7794 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7795 if (ret) {
7796 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7797 file_offset, dip->bytes,
7798 !ret);
7799 bio->bi_status = errno_to_blk_status(ret);
7800 iomap_dio_bio_end_io(bio);
7801 return;
7802 }
7803 }
7804
7805 btrfs_submit_bio(bbio, 0);
7806 }
7807
7808 static const struct iomap_ops btrfs_dio_iomap_ops = {
7809 .iomap_begin = btrfs_dio_iomap_begin,
7810 .iomap_end = btrfs_dio_iomap_end,
7811 };
7812
7813 static const struct iomap_dio_ops btrfs_dio_ops = {
7814 .submit_io = btrfs_dio_submit_io,
7815 .bio_set = &btrfs_dio_bioset,
7816 };
7817
btrfs_dio_read(struct kiocb * iocb,struct iov_iter * iter,size_t done_before)7818 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7819 {
7820 struct btrfs_dio_data data = { 0 };
7821
7822 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7823 IOMAP_DIO_PARTIAL, &data, done_before);
7824 }
7825
btrfs_dio_write(struct kiocb * iocb,struct iov_iter * iter,size_t done_before)7826 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7827 size_t done_before)
7828 {
7829 struct btrfs_dio_data data = { 0 };
7830
7831 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7832 IOMAP_DIO_PARTIAL, &data, done_before);
7833 }
7834
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)7835 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7836 u64 start, u64 len)
7837 {
7838 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7839 int ret;
7840
7841 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7842 if (ret)
7843 return ret;
7844
7845 /*
7846 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7847 * file range (0 to LLONG_MAX), but that is not enough if we have
7848 * compression enabled. The first filemap_fdatawrite_range() only kicks
7849 * in the compression of data (in an async thread) and will return
7850 * before the compression is done and writeback is started. A second
7851 * filemap_fdatawrite_range() is needed to wait for the compression to
7852 * complete and writeback to start. We also need to wait for ordered
7853 * extents to complete, because our fiemap implementation uses mainly
7854 * file extent items to list the extents, searching for extent maps
7855 * only for file ranges with holes or prealloc extents to figure out
7856 * if we have delalloc in those ranges.
7857 */
7858 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7859 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7860 if (ret)
7861 return ret;
7862 }
7863
7864 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7865
7866 /*
7867 * We did an initial flush to avoid holding the inode's lock while
7868 * triggering writeback and waiting for the completion of IO and ordered
7869 * extents. Now after we locked the inode we do it again, because it's
7870 * possible a new write may have happened in between those two steps.
7871 */
7872 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7873 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7874 if (ret) {
7875 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7876 return ret;
7877 }
7878 }
7879
7880 ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7881 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7882
7883 return ret;
7884 }
7885
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)7886 static int btrfs_writepages(struct address_space *mapping,
7887 struct writeback_control *wbc)
7888 {
7889 return extent_writepages(mapping, wbc);
7890 }
7891
btrfs_readahead(struct readahead_control * rac)7892 static void btrfs_readahead(struct readahead_control *rac)
7893 {
7894 extent_readahead(rac);
7895 }
7896
7897 /*
7898 * For release_folio() and invalidate_folio() we have a race window where
7899 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7900 * If we continue to release/invalidate the page, we could cause use-after-free
7901 * for subpage spinlock. So this function is to spin and wait for subpage
7902 * spinlock.
7903 */
wait_subpage_spinlock(struct page * page)7904 static void wait_subpage_spinlock(struct page *page)
7905 {
7906 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7907 struct folio *folio = page_folio(page);
7908 struct btrfs_subpage *subpage;
7909
7910 if (!btrfs_is_subpage(fs_info, page->mapping))
7911 return;
7912
7913 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7914 subpage = folio_get_private(folio);
7915
7916 /*
7917 * This may look insane as we just acquire the spinlock and release it,
7918 * without doing anything. But we just want to make sure no one is
7919 * still holding the subpage spinlock.
7920 * And since the page is not dirty nor writeback, and we have page
7921 * locked, the only possible way to hold a spinlock is from the endio
7922 * function to clear page writeback.
7923 *
7924 * Here we just acquire the spinlock so that all existing callers
7925 * should exit and we're safe to release/invalidate the page.
7926 */
7927 spin_lock_irq(&subpage->lock);
7928 spin_unlock_irq(&subpage->lock);
7929 }
7930
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7931 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7932 {
7933 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7934
7935 if (ret == 1) {
7936 wait_subpage_spinlock(&folio->page);
7937 clear_page_extent_mapped(&folio->page);
7938 }
7939 return ret;
7940 }
7941
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7942 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7943 {
7944 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7945 return false;
7946 return __btrfs_release_folio(folio, gfp_flags);
7947 }
7948
7949 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7950 static int btrfs_migrate_folio(struct address_space *mapping,
7951 struct folio *dst, struct folio *src,
7952 enum migrate_mode mode)
7953 {
7954 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7955
7956 if (ret != MIGRATEPAGE_SUCCESS)
7957 return ret;
7958
7959 if (folio_test_ordered(src)) {
7960 folio_clear_ordered(src);
7961 folio_set_ordered(dst);
7962 }
7963
7964 return MIGRATEPAGE_SUCCESS;
7965 }
7966 #else
7967 #define btrfs_migrate_folio NULL
7968 #endif
7969
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7970 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7971 size_t length)
7972 {
7973 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7974 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7975 struct extent_io_tree *tree = &inode->io_tree;
7976 struct extent_state *cached_state = NULL;
7977 u64 page_start = folio_pos(folio);
7978 u64 page_end = page_start + folio_size(folio) - 1;
7979 u64 cur;
7980 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7981
7982 /*
7983 * We have folio locked so no new ordered extent can be created on this
7984 * page, nor bio can be submitted for this folio.
7985 *
7986 * But already submitted bio can still be finished on this folio.
7987 * Furthermore, endio function won't skip folio which has Ordered
7988 * (Private2) already cleared, so it's possible for endio and
7989 * invalidate_folio to do the same ordered extent accounting twice
7990 * on one folio.
7991 *
7992 * So here we wait for any submitted bios to finish, so that we won't
7993 * do double ordered extent accounting on the same folio.
7994 */
7995 folio_wait_writeback(folio);
7996 wait_subpage_spinlock(&folio->page);
7997
7998 /*
7999 * For subpage case, we have call sites like
8000 * btrfs_punch_hole_lock_range() which passes range not aligned to
8001 * sectorsize.
8002 * If the range doesn't cover the full folio, we don't need to and
8003 * shouldn't clear page extent mapped, as folio->private can still
8004 * record subpage dirty bits for other part of the range.
8005 *
8006 * For cases that invalidate the full folio even the range doesn't
8007 * cover the full folio, like invalidating the last folio, we're
8008 * still safe to wait for ordered extent to finish.
8009 */
8010 if (!(offset == 0 && length == folio_size(folio))) {
8011 btrfs_release_folio(folio, GFP_NOFS);
8012 return;
8013 }
8014
8015 if (!inode_evicting)
8016 lock_extent(tree, page_start, page_end, &cached_state);
8017
8018 cur = page_start;
8019 while (cur < page_end) {
8020 struct btrfs_ordered_extent *ordered;
8021 u64 range_end;
8022 u32 range_len;
8023 u32 extra_flags = 0;
8024
8025 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8026 page_end + 1 - cur);
8027 if (!ordered) {
8028 range_end = page_end;
8029 /*
8030 * No ordered extent covering this range, we are safe
8031 * to delete all extent states in the range.
8032 */
8033 extra_flags = EXTENT_CLEAR_ALL_BITS;
8034 goto next;
8035 }
8036 if (ordered->file_offset > cur) {
8037 /*
8038 * There is a range between [cur, oe->file_offset) not
8039 * covered by any ordered extent.
8040 * We are safe to delete all extent states, and handle
8041 * the ordered extent in the next iteration.
8042 */
8043 range_end = ordered->file_offset - 1;
8044 extra_flags = EXTENT_CLEAR_ALL_BITS;
8045 goto next;
8046 }
8047
8048 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8049 page_end);
8050 ASSERT(range_end + 1 - cur < U32_MAX);
8051 range_len = range_end + 1 - cur;
8052 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
8053 /*
8054 * If Ordered (Private2) is cleared, it means endio has
8055 * already been executed for the range.
8056 * We can't delete the extent states as
8057 * btrfs_finish_ordered_io() may still use some of them.
8058 */
8059 goto next;
8060 }
8061 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
8062
8063 /*
8064 * IO on this page will never be started, so we need to account
8065 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8066 * here, must leave that up for the ordered extent completion.
8067 *
8068 * This will also unlock the range for incoming
8069 * btrfs_finish_ordered_io().
8070 */
8071 if (!inode_evicting)
8072 clear_extent_bit(tree, cur, range_end,
8073 EXTENT_DELALLOC |
8074 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8075 EXTENT_DEFRAG, &cached_state);
8076
8077 spin_lock_irq(&inode->ordered_tree_lock);
8078 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8079 ordered->truncated_len = min(ordered->truncated_len,
8080 cur - ordered->file_offset);
8081 spin_unlock_irq(&inode->ordered_tree_lock);
8082
8083 /*
8084 * If the ordered extent has finished, we're safe to delete all
8085 * the extent states of the range, otherwise
8086 * btrfs_finish_ordered_io() will get executed by endio for
8087 * other pages, so we can't delete extent states.
8088 */
8089 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8090 cur, range_end + 1 - cur)) {
8091 btrfs_finish_ordered_io(ordered);
8092 /*
8093 * The ordered extent has finished, now we're again
8094 * safe to delete all extent states of the range.
8095 */
8096 extra_flags = EXTENT_CLEAR_ALL_BITS;
8097 }
8098 next:
8099 if (ordered)
8100 btrfs_put_ordered_extent(ordered);
8101 /*
8102 * Qgroup reserved space handler
8103 * Sector(s) here will be either:
8104 *
8105 * 1) Already written to disk or bio already finished
8106 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8107 * Qgroup will be handled by its qgroup_record then.
8108 * btrfs_qgroup_free_data() call will do nothing here.
8109 *
8110 * 2) Not written to disk yet
8111 * Then btrfs_qgroup_free_data() call will clear the
8112 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8113 * reserved data space.
8114 * Since the IO will never happen for this page.
8115 */
8116 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8117 if (!inode_evicting) {
8118 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8119 EXTENT_DELALLOC | EXTENT_UPTODATE |
8120 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8121 extra_flags, &cached_state);
8122 }
8123 cur = range_end + 1;
8124 }
8125 /*
8126 * We have iterated through all ordered extents of the page, the page
8127 * should not have Ordered (Private2) anymore, or the above iteration
8128 * did something wrong.
8129 */
8130 ASSERT(!folio_test_ordered(folio));
8131 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
8132 if (!inode_evicting)
8133 __btrfs_release_folio(folio, GFP_NOFS);
8134 clear_page_extent_mapped(&folio->page);
8135 }
8136
8137 /*
8138 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8139 * called from a page fault handler when a page is first dirtied. Hence we must
8140 * be careful to check for EOF conditions here. We set the page up correctly
8141 * for a written page which means we get ENOSPC checking when writing into
8142 * holes and correct delalloc and unwritten extent mapping on filesystems that
8143 * support these features.
8144 *
8145 * We are not allowed to take the i_mutex here so we have to play games to
8146 * protect against truncate races as the page could now be beyond EOF. Because
8147 * truncate_setsize() writes the inode size before removing pages, once we have
8148 * the page lock we can determine safely if the page is beyond EOF. If it is not
8149 * beyond EOF, then the page is guaranteed safe against truncation until we
8150 * unlock the page.
8151 */
btrfs_page_mkwrite(struct vm_fault * vmf)8152 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8153 {
8154 struct page *page = vmf->page;
8155 struct folio *folio = page_folio(page);
8156 struct inode *inode = file_inode(vmf->vma->vm_file);
8157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8158 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8159 struct btrfs_ordered_extent *ordered;
8160 struct extent_state *cached_state = NULL;
8161 struct extent_changeset *data_reserved = NULL;
8162 unsigned long zero_start;
8163 loff_t size;
8164 vm_fault_t ret;
8165 int ret2;
8166 int reserved = 0;
8167 u64 reserved_space;
8168 u64 page_start;
8169 u64 page_end;
8170 u64 end;
8171
8172 ASSERT(folio_order(folio) == 0);
8173
8174 reserved_space = PAGE_SIZE;
8175
8176 sb_start_pagefault(inode->i_sb);
8177 page_start = page_offset(page);
8178 page_end = page_start + PAGE_SIZE - 1;
8179 end = page_end;
8180
8181 /*
8182 * Reserving delalloc space after obtaining the page lock can lead to
8183 * deadlock. For example, if a dirty page is locked by this function
8184 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8185 * dirty page write out, then the btrfs_writepages() function could
8186 * end up waiting indefinitely to get a lock on the page currently
8187 * being processed by btrfs_page_mkwrite() function.
8188 */
8189 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8190 page_start, reserved_space);
8191 if (!ret2) {
8192 ret2 = file_update_time(vmf->vma->vm_file);
8193 reserved = 1;
8194 }
8195 if (ret2) {
8196 ret = vmf_error(ret2);
8197 if (reserved)
8198 goto out;
8199 goto out_noreserve;
8200 }
8201
8202 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8203 again:
8204 down_read(&BTRFS_I(inode)->i_mmap_lock);
8205 lock_page(page);
8206 size = i_size_read(inode);
8207
8208 if ((page->mapping != inode->i_mapping) ||
8209 (page_start >= size)) {
8210 /* page got truncated out from underneath us */
8211 goto out_unlock;
8212 }
8213 wait_on_page_writeback(page);
8214
8215 lock_extent(io_tree, page_start, page_end, &cached_state);
8216 ret2 = set_page_extent_mapped(page);
8217 if (ret2 < 0) {
8218 ret = vmf_error(ret2);
8219 unlock_extent(io_tree, page_start, page_end, &cached_state);
8220 goto out_unlock;
8221 }
8222
8223 /*
8224 * we can't set the delalloc bits if there are pending ordered
8225 * extents. Drop our locks and wait for them to finish
8226 */
8227 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8228 PAGE_SIZE);
8229 if (ordered) {
8230 unlock_extent(io_tree, page_start, page_end, &cached_state);
8231 unlock_page(page);
8232 up_read(&BTRFS_I(inode)->i_mmap_lock);
8233 btrfs_start_ordered_extent(ordered);
8234 btrfs_put_ordered_extent(ordered);
8235 goto again;
8236 }
8237
8238 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8239 reserved_space = round_up(size - page_start,
8240 fs_info->sectorsize);
8241 if (reserved_space < PAGE_SIZE) {
8242 end = page_start + reserved_space - 1;
8243 btrfs_delalloc_release_space(BTRFS_I(inode),
8244 data_reserved, page_start,
8245 PAGE_SIZE - reserved_space, true);
8246 }
8247 }
8248
8249 /*
8250 * page_mkwrite gets called when the page is firstly dirtied after it's
8251 * faulted in, but write(2) could also dirty a page and set delalloc
8252 * bits, thus in this case for space account reason, we still need to
8253 * clear any delalloc bits within this page range since we have to
8254 * reserve data&meta space before lock_page() (see above comments).
8255 */
8256 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8257 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8258 EXTENT_DEFRAG, &cached_state);
8259
8260 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8261 &cached_state);
8262 if (ret2) {
8263 unlock_extent(io_tree, page_start, page_end, &cached_state);
8264 ret = VM_FAULT_SIGBUS;
8265 goto out_unlock;
8266 }
8267
8268 /* page is wholly or partially inside EOF */
8269 if (page_start + PAGE_SIZE > size)
8270 zero_start = offset_in_page(size);
8271 else
8272 zero_start = PAGE_SIZE;
8273
8274 if (zero_start != PAGE_SIZE)
8275 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8276
8277 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8278 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8279 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
8280
8281 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8282
8283 unlock_extent(io_tree, page_start, page_end, &cached_state);
8284 up_read(&BTRFS_I(inode)->i_mmap_lock);
8285
8286 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8287 sb_end_pagefault(inode->i_sb);
8288 extent_changeset_free(data_reserved);
8289 return VM_FAULT_LOCKED;
8290
8291 out_unlock:
8292 unlock_page(page);
8293 up_read(&BTRFS_I(inode)->i_mmap_lock);
8294 out:
8295 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8296 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8297 reserved_space, (ret != 0));
8298 out_noreserve:
8299 sb_end_pagefault(inode->i_sb);
8300 extent_changeset_free(data_reserved);
8301 return ret;
8302 }
8303
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)8304 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8305 {
8306 struct btrfs_truncate_control control = {
8307 .inode = inode,
8308 .ino = btrfs_ino(inode),
8309 .min_type = BTRFS_EXTENT_DATA_KEY,
8310 .clear_extent_range = true,
8311 };
8312 struct btrfs_root *root = inode->root;
8313 struct btrfs_fs_info *fs_info = root->fs_info;
8314 struct btrfs_block_rsv *rsv;
8315 int ret;
8316 struct btrfs_trans_handle *trans;
8317 u64 mask = fs_info->sectorsize - 1;
8318 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8319
8320 if (!skip_writeback) {
8321 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8322 inode->vfs_inode.i_size & (~mask),
8323 (u64)-1);
8324 if (ret)
8325 return ret;
8326 }
8327
8328 /*
8329 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8330 * things going on here:
8331 *
8332 * 1) We need to reserve space to update our inode.
8333 *
8334 * 2) We need to have something to cache all the space that is going to
8335 * be free'd up by the truncate operation, but also have some slack
8336 * space reserved in case it uses space during the truncate (thank you
8337 * very much snapshotting).
8338 *
8339 * And we need these to be separate. The fact is we can use a lot of
8340 * space doing the truncate, and we have no earthly idea how much space
8341 * we will use, so we need the truncate reservation to be separate so it
8342 * doesn't end up using space reserved for updating the inode. We also
8343 * need to be able to stop the transaction and start a new one, which
8344 * means we need to be able to update the inode several times, and we
8345 * have no idea of knowing how many times that will be, so we can't just
8346 * reserve 1 item for the entirety of the operation, so that has to be
8347 * done separately as well.
8348 *
8349 * So that leaves us with
8350 *
8351 * 1) rsv - for the truncate reservation, which we will steal from the
8352 * transaction reservation.
8353 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8354 * updating the inode.
8355 */
8356 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8357 if (!rsv)
8358 return -ENOMEM;
8359 rsv->size = min_size;
8360 rsv->failfast = true;
8361
8362 /*
8363 * 1 for the truncate slack space
8364 * 1 for updating the inode.
8365 */
8366 trans = btrfs_start_transaction(root, 2);
8367 if (IS_ERR(trans)) {
8368 ret = PTR_ERR(trans);
8369 goto out;
8370 }
8371
8372 /* Migrate the slack space for the truncate to our reserve */
8373 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8374 min_size, false);
8375 /*
8376 * We have reserved 2 metadata units when we started the transaction and
8377 * min_size matches 1 unit, so this should never fail, but if it does,
8378 * it's not critical we just fail truncation.
8379 */
8380 if (WARN_ON(ret)) {
8381 btrfs_end_transaction(trans);
8382 goto out;
8383 }
8384
8385 trans->block_rsv = rsv;
8386
8387 while (1) {
8388 struct extent_state *cached_state = NULL;
8389 const u64 new_size = inode->vfs_inode.i_size;
8390 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8391
8392 control.new_size = new_size;
8393 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8394 /*
8395 * We want to drop from the next block forward in case this new
8396 * size is not block aligned since we will be keeping the last
8397 * block of the extent just the way it is.
8398 */
8399 btrfs_drop_extent_map_range(inode,
8400 ALIGN(new_size, fs_info->sectorsize),
8401 (u64)-1, false);
8402
8403 ret = btrfs_truncate_inode_items(trans, root, &control);
8404
8405 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8406 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8407
8408 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8409
8410 trans->block_rsv = &fs_info->trans_block_rsv;
8411 if (ret != -ENOSPC && ret != -EAGAIN)
8412 break;
8413
8414 ret = btrfs_update_inode(trans, inode);
8415 if (ret)
8416 break;
8417
8418 btrfs_end_transaction(trans);
8419 btrfs_btree_balance_dirty(fs_info);
8420
8421 trans = btrfs_start_transaction(root, 2);
8422 if (IS_ERR(trans)) {
8423 ret = PTR_ERR(trans);
8424 trans = NULL;
8425 break;
8426 }
8427
8428 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8429 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8430 rsv, min_size, false);
8431 /*
8432 * We have reserved 2 metadata units when we started the
8433 * transaction and min_size matches 1 unit, so this should never
8434 * fail, but if it does, it's not critical we just fail truncation.
8435 */
8436 if (WARN_ON(ret))
8437 break;
8438
8439 trans->block_rsv = rsv;
8440 }
8441
8442 /*
8443 * We can't call btrfs_truncate_block inside a trans handle as we could
8444 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8445 * know we've truncated everything except the last little bit, and can
8446 * do btrfs_truncate_block and then update the disk_i_size.
8447 */
8448 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8449 btrfs_end_transaction(trans);
8450 btrfs_btree_balance_dirty(fs_info);
8451
8452 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8453 if (ret)
8454 goto out;
8455 trans = btrfs_start_transaction(root, 1);
8456 if (IS_ERR(trans)) {
8457 ret = PTR_ERR(trans);
8458 goto out;
8459 }
8460 btrfs_inode_safe_disk_i_size_write(inode, 0);
8461 }
8462
8463 if (trans) {
8464 int ret2;
8465
8466 trans->block_rsv = &fs_info->trans_block_rsv;
8467 ret2 = btrfs_update_inode(trans, inode);
8468 if (ret2 && !ret)
8469 ret = ret2;
8470
8471 ret2 = btrfs_end_transaction(trans);
8472 if (ret2 && !ret)
8473 ret = ret2;
8474 btrfs_btree_balance_dirty(fs_info);
8475 }
8476 out:
8477 btrfs_free_block_rsv(fs_info, rsv);
8478 /*
8479 * So if we truncate and then write and fsync we normally would just
8480 * write the extents that changed, which is a problem if we need to
8481 * first truncate that entire inode. So set this flag so we write out
8482 * all of the extents in the inode to the sync log so we're completely
8483 * safe.
8484 *
8485 * If no extents were dropped or trimmed we don't need to force the next
8486 * fsync to truncate all the inode's items from the log and re-log them
8487 * all. This means the truncate operation did not change the file size,
8488 * or changed it to a smaller size but there was only an implicit hole
8489 * between the old i_size and the new i_size, and there were no prealloc
8490 * extents beyond i_size to drop.
8491 */
8492 if (control.extents_found > 0)
8493 btrfs_set_inode_full_sync(inode);
8494
8495 return ret;
8496 }
8497
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)8498 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8499 struct inode *dir)
8500 {
8501 struct inode *inode;
8502
8503 inode = new_inode(dir->i_sb);
8504 if (inode) {
8505 /*
8506 * Subvolumes don't inherit the sgid bit or the parent's gid if
8507 * the parent's sgid bit is set. This is probably a bug.
8508 */
8509 inode_init_owner(idmap, inode, NULL,
8510 S_IFDIR | (~current_umask() & S_IRWXUGO));
8511 inode->i_op = &btrfs_dir_inode_operations;
8512 inode->i_fop = &btrfs_dir_file_operations;
8513 }
8514 return inode;
8515 }
8516
btrfs_alloc_inode(struct super_block * sb)8517 struct inode *btrfs_alloc_inode(struct super_block *sb)
8518 {
8519 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8520 struct btrfs_inode *ei;
8521 struct inode *inode;
8522 struct extent_io_tree *file_extent_tree = NULL;
8523
8524 /* Self tests may pass a NULL fs_info. */
8525 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8526 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8527 if (!file_extent_tree)
8528 return NULL;
8529 }
8530
8531 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8532 if (!ei) {
8533 kfree(file_extent_tree);
8534 return NULL;
8535 }
8536
8537 ei->root = NULL;
8538 ei->generation = 0;
8539 ei->last_trans = 0;
8540 ei->last_sub_trans = 0;
8541 ei->logged_trans = 0;
8542 ei->delalloc_bytes = 0;
8543 ei->new_delalloc_bytes = 0;
8544 ei->defrag_bytes = 0;
8545 ei->disk_i_size = 0;
8546 ei->flags = 0;
8547 ei->ro_flags = 0;
8548 ei->csum_bytes = 0;
8549 ei->index_cnt = (u64)-1;
8550 ei->dir_index = 0;
8551 ei->last_unlink_trans = 0;
8552 ei->last_reflink_trans = 0;
8553 ei->last_log_commit = 0;
8554
8555 spin_lock_init(&ei->lock);
8556 ei->outstanding_extents = 0;
8557 if (sb->s_magic != BTRFS_TEST_MAGIC)
8558 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8559 BTRFS_BLOCK_RSV_DELALLOC);
8560 ei->runtime_flags = 0;
8561 ei->prop_compress = BTRFS_COMPRESS_NONE;
8562 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8563
8564 ei->delayed_node = NULL;
8565
8566 ei->i_otime_sec = 0;
8567 ei->i_otime_nsec = 0;
8568
8569 inode = &ei->vfs_inode;
8570 extent_map_tree_init(&ei->extent_tree);
8571
8572 /* This io tree sets the valid inode. */
8573 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8574 ei->io_tree.inode = ei;
8575
8576 ei->file_extent_tree = file_extent_tree;
8577 if (file_extent_tree) {
8578 extent_io_tree_init(fs_info, ei->file_extent_tree,
8579 IO_TREE_INODE_FILE_EXTENT);
8580 /* Lockdep class is set only for the file extent tree. */
8581 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8582 }
8583 mutex_init(&ei->log_mutex);
8584 spin_lock_init(&ei->ordered_tree_lock);
8585 ei->ordered_tree = RB_ROOT;
8586 ei->ordered_tree_last = NULL;
8587 INIT_LIST_HEAD(&ei->delalloc_inodes);
8588 INIT_LIST_HEAD(&ei->delayed_iput);
8589 RB_CLEAR_NODE(&ei->rb_node);
8590 init_rwsem(&ei->i_mmap_lock);
8591
8592 return inode;
8593 }
8594
8595 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8596 void btrfs_test_destroy_inode(struct inode *inode)
8597 {
8598 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8599 kfree(BTRFS_I(inode)->file_extent_tree);
8600 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8601 }
8602 #endif
8603
btrfs_free_inode(struct inode * inode)8604 void btrfs_free_inode(struct inode *inode)
8605 {
8606 kfree(BTRFS_I(inode)->file_extent_tree);
8607 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8608 }
8609
btrfs_destroy_inode(struct inode * vfs_inode)8610 void btrfs_destroy_inode(struct inode *vfs_inode)
8611 {
8612 struct btrfs_ordered_extent *ordered;
8613 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8614 struct btrfs_root *root = inode->root;
8615 bool freespace_inode;
8616
8617 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8618 WARN_ON(vfs_inode->i_data.nrpages);
8619 WARN_ON(inode->block_rsv.reserved);
8620 WARN_ON(inode->block_rsv.size);
8621 WARN_ON(inode->outstanding_extents);
8622 if (!S_ISDIR(vfs_inode->i_mode)) {
8623 WARN_ON(inode->delalloc_bytes);
8624 WARN_ON(inode->new_delalloc_bytes);
8625 }
8626 WARN_ON(inode->csum_bytes);
8627 WARN_ON(inode->defrag_bytes);
8628
8629 /*
8630 * This can happen where we create an inode, but somebody else also
8631 * created the same inode and we need to destroy the one we already
8632 * created.
8633 */
8634 if (!root)
8635 return;
8636
8637 /*
8638 * If this is a free space inode do not take the ordered extents lockdep
8639 * map.
8640 */
8641 freespace_inode = btrfs_is_free_space_inode(inode);
8642
8643 while (1) {
8644 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8645 if (!ordered)
8646 break;
8647 else {
8648 btrfs_err(root->fs_info,
8649 "found ordered extent %llu %llu on inode cleanup",
8650 ordered->file_offset, ordered->num_bytes);
8651
8652 if (!freespace_inode)
8653 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8654
8655 btrfs_remove_ordered_extent(inode, ordered);
8656 btrfs_put_ordered_extent(ordered);
8657 btrfs_put_ordered_extent(ordered);
8658 }
8659 }
8660 btrfs_qgroup_check_reserved_leak(inode);
8661 inode_tree_del(inode);
8662 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8663 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8664 btrfs_put_root(inode->root);
8665 }
8666
btrfs_drop_inode(struct inode * inode)8667 int btrfs_drop_inode(struct inode *inode)
8668 {
8669 struct btrfs_root *root = BTRFS_I(inode)->root;
8670
8671 if (root == NULL)
8672 return 1;
8673
8674 /* the snap/subvol tree is on deleting */
8675 if (btrfs_root_refs(&root->root_item) == 0)
8676 return 1;
8677 else
8678 return generic_drop_inode(inode);
8679 }
8680
init_once(void * foo)8681 static void init_once(void *foo)
8682 {
8683 struct btrfs_inode *ei = foo;
8684
8685 inode_init_once(&ei->vfs_inode);
8686 }
8687
btrfs_destroy_cachep(void)8688 void __cold btrfs_destroy_cachep(void)
8689 {
8690 /*
8691 * Make sure all delayed rcu free inodes are flushed before we
8692 * destroy cache.
8693 */
8694 rcu_barrier();
8695 bioset_exit(&btrfs_dio_bioset);
8696 kmem_cache_destroy(btrfs_inode_cachep);
8697 }
8698
btrfs_init_cachep(void)8699 int __init btrfs_init_cachep(void)
8700 {
8701 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8702 sizeof(struct btrfs_inode), 0,
8703 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8704 init_once);
8705 if (!btrfs_inode_cachep)
8706 goto fail;
8707
8708 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8709 offsetof(struct btrfs_dio_private, bbio.bio),
8710 BIOSET_NEED_BVECS))
8711 goto fail;
8712
8713 return 0;
8714 fail:
8715 btrfs_destroy_cachep();
8716 return -ENOMEM;
8717 }
8718
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8719 static int btrfs_getattr(struct mnt_idmap *idmap,
8720 const struct path *path, struct kstat *stat,
8721 u32 request_mask, unsigned int flags)
8722 {
8723 u64 delalloc_bytes;
8724 u64 inode_bytes;
8725 struct inode *inode = d_inode(path->dentry);
8726 u32 blocksize = inode->i_sb->s_blocksize;
8727 u32 bi_flags = BTRFS_I(inode)->flags;
8728 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8729
8730 stat->result_mask |= STATX_BTIME;
8731 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8732 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8733 if (bi_flags & BTRFS_INODE_APPEND)
8734 stat->attributes |= STATX_ATTR_APPEND;
8735 if (bi_flags & BTRFS_INODE_COMPRESS)
8736 stat->attributes |= STATX_ATTR_COMPRESSED;
8737 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8738 stat->attributes |= STATX_ATTR_IMMUTABLE;
8739 if (bi_flags & BTRFS_INODE_NODUMP)
8740 stat->attributes |= STATX_ATTR_NODUMP;
8741 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8742 stat->attributes |= STATX_ATTR_VERITY;
8743
8744 stat->attributes_mask |= (STATX_ATTR_APPEND |
8745 STATX_ATTR_COMPRESSED |
8746 STATX_ATTR_IMMUTABLE |
8747 STATX_ATTR_NODUMP);
8748
8749 generic_fillattr(idmap, request_mask, inode, stat);
8750 stat->dev = BTRFS_I(inode)->root->anon_dev;
8751
8752 spin_lock(&BTRFS_I(inode)->lock);
8753 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8754 inode_bytes = inode_get_bytes(inode);
8755 spin_unlock(&BTRFS_I(inode)->lock);
8756 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8757 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8758 return 0;
8759 }
8760
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8761 static int btrfs_rename_exchange(struct inode *old_dir,
8762 struct dentry *old_dentry,
8763 struct inode *new_dir,
8764 struct dentry *new_dentry)
8765 {
8766 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8767 struct btrfs_trans_handle *trans;
8768 unsigned int trans_num_items;
8769 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8770 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8771 struct inode *new_inode = new_dentry->d_inode;
8772 struct inode *old_inode = old_dentry->d_inode;
8773 struct btrfs_rename_ctx old_rename_ctx;
8774 struct btrfs_rename_ctx new_rename_ctx;
8775 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8776 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8777 u64 old_idx = 0;
8778 u64 new_idx = 0;
8779 int ret;
8780 int ret2;
8781 bool need_abort = false;
8782 struct fscrypt_name old_fname, new_fname;
8783 struct fscrypt_str *old_name, *new_name;
8784
8785 /*
8786 * For non-subvolumes allow exchange only within one subvolume, in the
8787 * same inode namespace. Two subvolumes (represented as directory) can
8788 * be exchanged as they're a logical link and have a fixed inode number.
8789 */
8790 if (root != dest &&
8791 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8792 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8793 return -EXDEV;
8794
8795 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8796 if (ret)
8797 return ret;
8798
8799 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8800 if (ret) {
8801 fscrypt_free_filename(&old_fname);
8802 return ret;
8803 }
8804
8805 old_name = &old_fname.disk_name;
8806 new_name = &new_fname.disk_name;
8807
8808 /* close the race window with snapshot create/destroy ioctl */
8809 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8810 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8811 down_read(&fs_info->subvol_sem);
8812
8813 /*
8814 * For each inode:
8815 * 1 to remove old dir item
8816 * 1 to remove old dir index
8817 * 1 to add new dir item
8818 * 1 to add new dir index
8819 * 1 to update parent inode
8820 *
8821 * If the parents are the same, we only need to account for one
8822 */
8823 trans_num_items = (old_dir == new_dir ? 9 : 10);
8824 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8825 /*
8826 * 1 to remove old root ref
8827 * 1 to remove old root backref
8828 * 1 to add new root ref
8829 * 1 to add new root backref
8830 */
8831 trans_num_items += 4;
8832 } else {
8833 /*
8834 * 1 to update inode item
8835 * 1 to remove old inode ref
8836 * 1 to add new inode ref
8837 */
8838 trans_num_items += 3;
8839 }
8840 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8841 trans_num_items += 4;
8842 else
8843 trans_num_items += 3;
8844 trans = btrfs_start_transaction(root, trans_num_items);
8845 if (IS_ERR(trans)) {
8846 ret = PTR_ERR(trans);
8847 goto out_notrans;
8848 }
8849
8850 if (dest != root) {
8851 ret = btrfs_record_root_in_trans(trans, dest);
8852 if (ret)
8853 goto out_fail;
8854 }
8855
8856 /*
8857 * We need to find a free sequence number both in the source and
8858 * in the destination directory for the exchange.
8859 */
8860 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8861 if (ret)
8862 goto out_fail;
8863 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8864 if (ret)
8865 goto out_fail;
8866
8867 BTRFS_I(old_inode)->dir_index = 0ULL;
8868 BTRFS_I(new_inode)->dir_index = 0ULL;
8869
8870 /* Reference for the source. */
8871 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8872 /* force full log commit if subvolume involved. */
8873 btrfs_set_log_full_commit(trans);
8874 } else {
8875 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8876 btrfs_ino(BTRFS_I(new_dir)),
8877 old_idx);
8878 if (ret)
8879 goto out_fail;
8880 need_abort = true;
8881 }
8882
8883 /* And now for the dest. */
8884 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8885 /* force full log commit if subvolume involved. */
8886 btrfs_set_log_full_commit(trans);
8887 } else {
8888 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8889 btrfs_ino(BTRFS_I(old_dir)),
8890 new_idx);
8891 if (ret) {
8892 if (need_abort)
8893 btrfs_abort_transaction(trans, ret);
8894 goto out_fail;
8895 }
8896 }
8897
8898 /* Update inode version and ctime/mtime. */
8899 inode_inc_iversion(old_dir);
8900 inode_inc_iversion(new_dir);
8901 inode_inc_iversion(old_inode);
8902 inode_inc_iversion(new_inode);
8903 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8904
8905 if (old_dentry->d_parent != new_dentry->d_parent) {
8906 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8907 BTRFS_I(old_inode), true);
8908 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8909 BTRFS_I(new_inode), true);
8910 }
8911
8912 /* src is a subvolume */
8913 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8914 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8915 } else { /* src is an inode */
8916 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8917 BTRFS_I(old_dentry->d_inode),
8918 old_name, &old_rename_ctx);
8919 if (!ret)
8920 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8921 }
8922 if (ret) {
8923 btrfs_abort_transaction(trans, ret);
8924 goto out_fail;
8925 }
8926
8927 /* dest is a subvolume */
8928 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8929 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8930 } else { /* dest is an inode */
8931 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8932 BTRFS_I(new_dentry->d_inode),
8933 new_name, &new_rename_ctx);
8934 if (!ret)
8935 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8936 }
8937 if (ret) {
8938 btrfs_abort_transaction(trans, ret);
8939 goto out_fail;
8940 }
8941
8942 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8943 new_name, 0, old_idx);
8944 if (ret) {
8945 btrfs_abort_transaction(trans, ret);
8946 goto out_fail;
8947 }
8948
8949 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8950 old_name, 0, new_idx);
8951 if (ret) {
8952 btrfs_abort_transaction(trans, ret);
8953 goto out_fail;
8954 }
8955
8956 if (old_inode->i_nlink == 1)
8957 BTRFS_I(old_inode)->dir_index = old_idx;
8958 if (new_inode->i_nlink == 1)
8959 BTRFS_I(new_inode)->dir_index = new_idx;
8960
8961 /*
8962 * Now pin the logs of the roots. We do it to ensure that no other task
8963 * can sync the logs while we are in progress with the rename, because
8964 * that could result in an inconsistency in case any of the inodes that
8965 * are part of this rename operation were logged before.
8966 */
8967 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8968 btrfs_pin_log_trans(root);
8969 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8970 btrfs_pin_log_trans(dest);
8971
8972 /* Do the log updates for all inodes. */
8973 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8974 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8975 old_rename_ctx.index, new_dentry->d_parent);
8976 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8977 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8978 new_rename_ctx.index, old_dentry->d_parent);
8979
8980 /* Now unpin the logs. */
8981 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8982 btrfs_end_log_trans(root);
8983 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8984 btrfs_end_log_trans(dest);
8985 out_fail:
8986 ret2 = btrfs_end_transaction(trans);
8987 ret = ret ? ret : ret2;
8988 out_notrans:
8989 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8990 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8991 up_read(&fs_info->subvol_sem);
8992
8993 fscrypt_free_filename(&new_fname);
8994 fscrypt_free_filename(&old_fname);
8995 return ret;
8996 }
8997
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8998 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8999 struct inode *dir)
9000 {
9001 struct inode *inode;
9002
9003 inode = new_inode(dir->i_sb);
9004 if (inode) {
9005 inode_init_owner(idmap, inode, dir,
9006 S_IFCHR | WHITEOUT_MODE);
9007 inode->i_op = &btrfs_special_inode_operations;
9008 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9009 }
9010 return inode;
9011 }
9012
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9013 static int btrfs_rename(struct mnt_idmap *idmap,
9014 struct inode *old_dir, struct dentry *old_dentry,
9015 struct inode *new_dir, struct dentry *new_dentry,
9016 unsigned int flags)
9017 {
9018 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9019 struct btrfs_new_inode_args whiteout_args = {
9020 .dir = old_dir,
9021 .dentry = old_dentry,
9022 };
9023 struct btrfs_trans_handle *trans;
9024 unsigned int trans_num_items;
9025 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9026 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9027 struct inode *new_inode = d_inode(new_dentry);
9028 struct inode *old_inode = d_inode(old_dentry);
9029 struct btrfs_rename_ctx rename_ctx;
9030 u64 index = 0;
9031 int ret;
9032 int ret2;
9033 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9034 struct fscrypt_name old_fname, new_fname;
9035
9036 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9037 return -EPERM;
9038
9039 /* we only allow rename subvolume link between subvolumes */
9040 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9041 return -EXDEV;
9042
9043 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9044 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9045 return -ENOTEMPTY;
9046
9047 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9048 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9049 return -ENOTEMPTY;
9050
9051 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9052 if (ret)
9053 return ret;
9054
9055 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9056 if (ret) {
9057 fscrypt_free_filename(&old_fname);
9058 return ret;
9059 }
9060
9061 /* check for collisions, even if the name isn't there */
9062 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9063 if (ret) {
9064 if (ret == -EEXIST) {
9065 /* we shouldn't get
9066 * eexist without a new_inode */
9067 if (WARN_ON(!new_inode)) {
9068 goto out_fscrypt_names;
9069 }
9070 } else {
9071 /* maybe -EOVERFLOW */
9072 goto out_fscrypt_names;
9073 }
9074 }
9075 ret = 0;
9076
9077 /*
9078 * we're using rename to replace one file with another. Start IO on it
9079 * now so we don't add too much work to the end of the transaction
9080 */
9081 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9082 filemap_flush(old_inode->i_mapping);
9083
9084 if (flags & RENAME_WHITEOUT) {
9085 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9086 if (!whiteout_args.inode) {
9087 ret = -ENOMEM;
9088 goto out_fscrypt_names;
9089 }
9090 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9091 if (ret)
9092 goto out_whiteout_inode;
9093 } else {
9094 /* 1 to update the old parent inode. */
9095 trans_num_items = 1;
9096 }
9097
9098 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9099 /* Close the race window with snapshot create/destroy ioctl */
9100 down_read(&fs_info->subvol_sem);
9101 /*
9102 * 1 to remove old root ref
9103 * 1 to remove old root backref
9104 * 1 to add new root ref
9105 * 1 to add new root backref
9106 */
9107 trans_num_items += 4;
9108 } else {
9109 /*
9110 * 1 to update inode
9111 * 1 to remove old inode ref
9112 * 1 to add new inode ref
9113 */
9114 trans_num_items += 3;
9115 }
9116 /*
9117 * 1 to remove old dir item
9118 * 1 to remove old dir index
9119 * 1 to add new dir item
9120 * 1 to add new dir index
9121 */
9122 trans_num_items += 4;
9123 /* 1 to update new parent inode if it's not the same as the old parent */
9124 if (new_dir != old_dir)
9125 trans_num_items++;
9126 if (new_inode) {
9127 /*
9128 * 1 to update inode
9129 * 1 to remove inode ref
9130 * 1 to remove dir item
9131 * 1 to remove dir index
9132 * 1 to possibly add orphan item
9133 */
9134 trans_num_items += 5;
9135 }
9136 trans = btrfs_start_transaction(root, trans_num_items);
9137 if (IS_ERR(trans)) {
9138 ret = PTR_ERR(trans);
9139 goto out_notrans;
9140 }
9141
9142 if (dest != root) {
9143 ret = btrfs_record_root_in_trans(trans, dest);
9144 if (ret)
9145 goto out_fail;
9146 }
9147
9148 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9149 if (ret)
9150 goto out_fail;
9151
9152 BTRFS_I(old_inode)->dir_index = 0ULL;
9153 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9154 /* force full log commit if subvolume involved. */
9155 btrfs_set_log_full_commit(trans);
9156 } else {
9157 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9158 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9159 index);
9160 if (ret)
9161 goto out_fail;
9162 }
9163
9164 inode_inc_iversion(old_dir);
9165 inode_inc_iversion(new_dir);
9166 inode_inc_iversion(old_inode);
9167 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9168
9169 if (old_dentry->d_parent != new_dentry->d_parent)
9170 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9171 BTRFS_I(old_inode), true);
9172
9173 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9174 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9175 } else {
9176 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9177 BTRFS_I(d_inode(old_dentry)),
9178 &old_fname.disk_name, &rename_ctx);
9179 if (!ret)
9180 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9181 }
9182 if (ret) {
9183 btrfs_abort_transaction(trans, ret);
9184 goto out_fail;
9185 }
9186
9187 if (new_inode) {
9188 inode_inc_iversion(new_inode);
9189 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9190 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9191 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9192 BUG_ON(new_inode->i_nlink == 0);
9193 } else {
9194 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9195 BTRFS_I(d_inode(new_dentry)),
9196 &new_fname.disk_name);
9197 }
9198 if (!ret && new_inode->i_nlink == 0)
9199 ret = btrfs_orphan_add(trans,
9200 BTRFS_I(d_inode(new_dentry)));
9201 if (ret) {
9202 btrfs_abort_transaction(trans, ret);
9203 goto out_fail;
9204 }
9205 }
9206
9207 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9208 &new_fname.disk_name, 0, index);
9209 if (ret) {
9210 btrfs_abort_transaction(trans, ret);
9211 goto out_fail;
9212 }
9213
9214 if (old_inode->i_nlink == 1)
9215 BTRFS_I(old_inode)->dir_index = index;
9216
9217 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9218 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9219 rename_ctx.index, new_dentry->d_parent);
9220
9221 if (flags & RENAME_WHITEOUT) {
9222 ret = btrfs_create_new_inode(trans, &whiteout_args);
9223 if (ret) {
9224 btrfs_abort_transaction(trans, ret);
9225 goto out_fail;
9226 } else {
9227 unlock_new_inode(whiteout_args.inode);
9228 iput(whiteout_args.inode);
9229 whiteout_args.inode = NULL;
9230 }
9231 }
9232 out_fail:
9233 ret2 = btrfs_end_transaction(trans);
9234 ret = ret ? ret : ret2;
9235 out_notrans:
9236 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9237 up_read(&fs_info->subvol_sem);
9238 if (flags & RENAME_WHITEOUT)
9239 btrfs_new_inode_args_destroy(&whiteout_args);
9240 out_whiteout_inode:
9241 if (flags & RENAME_WHITEOUT)
9242 iput(whiteout_args.inode);
9243 out_fscrypt_names:
9244 fscrypt_free_filename(&old_fname);
9245 fscrypt_free_filename(&new_fname);
9246 return ret;
9247 }
9248
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9249 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9250 struct dentry *old_dentry, struct inode *new_dir,
9251 struct dentry *new_dentry, unsigned int flags)
9252 {
9253 int ret;
9254
9255 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9256 return -EINVAL;
9257
9258 if (flags & RENAME_EXCHANGE)
9259 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9260 new_dentry);
9261 else
9262 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9263 new_dentry, flags);
9264
9265 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9266
9267 return ret;
9268 }
9269
9270 struct btrfs_delalloc_work {
9271 struct inode *inode;
9272 struct completion completion;
9273 struct list_head list;
9274 struct btrfs_work work;
9275 };
9276
btrfs_run_delalloc_work(struct btrfs_work * work)9277 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9278 {
9279 struct btrfs_delalloc_work *delalloc_work;
9280 struct inode *inode;
9281
9282 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9283 work);
9284 inode = delalloc_work->inode;
9285 filemap_flush(inode->i_mapping);
9286 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9287 &BTRFS_I(inode)->runtime_flags))
9288 filemap_flush(inode->i_mapping);
9289
9290 iput(inode);
9291 complete(&delalloc_work->completion);
9292 }
9293
btrfs_alloc_delalloc_work(struct inode * inode)9294 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9295 {
9296 struct btrfs_delalloc_work *work;
9297
9298 work = kmalloc(sizeof(*work), GFP_NOFS);
9299 if (!work)
9300 return NULL;
9301
9302 init_completion(&work->completion);
9303 INIT_LIST_HEAD(&work->list);
9304 work->inode = inode;
9305 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9306
9307 return work;
9308 }
9309
9310 /*
9311 * some fairly slow code that needs optimization. This walks the list
9312 * of all the inodes with pending delalloc and forces them to disk.
9313 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9314 static int start_delalloc_inodes(struct btrfs_root *root,
9315 struct writeback_control *wbc, bool snapshot,
9316 bool in_reclaim_context)
9317 {
9318 struct btrfs_inode *binode;
9319 struct inode *inode;
9320 struct btrfs_delalloc_work *work, *next;
9321 LIST_HEAD(works);
9322 LIST_HEAD(splice);
9323 int ret = 0;
9324 bool full_flush = wbc->nr_to_write == LONG_MAX;
9325
9326 mutex_lock(&root->delalloc_mutex);
9327 spin_lock(&root->delalloc_lock);
9328 list_splice_init(&root->delalloc_inodes, &splice);
9329 while (!list_empty(&splice)) {
9330 binode = list_entry(splice.next, struct btrfs_inode,
9331 delalloc_inodes);
9332
9333 list_move_tail(&binode->delalloc_inodes,
9334 &root->delalloc_inodes);
9335
9336 if (in_reclaim_context &&
9337 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9338 continue;
9339
9340 inode = igrab(&binode->vfs_inode);
9341 if (!inode) {
9342 cond_resched_lock(&root->delalloc_lock);
9343 continue;
9344 }
9345 spin_unlock(&root->delalloc_lock);
9346
9347 if (snapshot)
9348 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9349 &binode->runtime_flags);
9350 if (full_flush) {
9351 work = btrfs_alloc_delalloc_work(inode);
9352 if (!work) {
9353 iput(inode);
9354 ret = -ENOMEM;
9355 goto out;
9356 }
9357 list_add_tail(&work->list, &works);
9358 btrfs_queue_work(root->fs_info->flush_workers,
9359 &work->work);
9360 } else {
9361 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9362 btrfs_add_delayed_iput(BTRFS_I(inode));
9363 if (ret || wbc->nr_to_write <= 0)
9364 goto out;
9365 }
9366 cond_resched();
9367 spin_lock(&root->delalloc_lock);
9368 }
9369 spin_unlock(&root->delalloc_lock);
9370
9371 out:
9372 list_for_each_entry_safe(work, next, &works, list) {
9373 list_del_init(&work->list);
9374 wait_for_completion(&work->completion);
9375 kfree(work);
9376 }
9377
9378 if (!list_empty(&splice)) {
9379 spin_lock(&root->delalloc_lock);
9380 list_splice_tail(&splice, &root->delalloc_inodes);
9381 spin_unlock(&root->delalloc_lock);
9382 }
9383 mutex_unlock(&root->delalloc_mutex);
9384 return ret;
9385 }
9386
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)9387 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9388 {
9389 struct writeback_control wbc = {
9390 .nr_to_write = LONG_MAX,
9391 .sync_mode = WB_SYNC_NONE,
9392 .range_start = 0,
9393 .range_end = LLONG_MAX,
9394 };
9395 struct btrfs_fs_info *fs_info = root->fs_info;
9396
9397 if (BTRFS_FS_ERROR(fs_info))
9398 return -EROFS;
9399
9400 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9401 }
9402
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)9403 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9404 bool in_reclaim_context)
9405 {
9406 struct writeback_control wbc = {
9407 .nr_to_write = nr,
9408 .sync_mode = WB_SYNC_NONE,
9409 .range_start = 0,
9410 .range_end = LLONG_MAX,
9411 };
9412 struct btrfs_root *root;
9413 LIST_HEAD(splice);
9414 int ret;
9415
9416 if (BTRFS_FS_ERROR(fs_info))
9417 return -EROFS;
9418
9419 mutex_lock(&fs_info->delalloc_root_mutex);
9420 spin_lock(&fs_info->delalloc_root_lock);
9421 list_splice_init(&fs_info->delalloc_roots, &splice);
9422 while (!list_empty(&splice)) {
9423 /*
9424 * Reset nr_to_write here so we know that we're doing a full
9425 * flush.
9426 */
9427 if (nr == LONG_MAX)
9428 wbc.nr_to_write = LONG_MAX;
9429
9430 root = list_first_entry(&splice, struct btrfs_root,
9431 delalloc_root);
9432 root = btrfs_grab_root(root);
9433 BUG_ON(!root);
9434 list_move_tail(&root->delalloc_root,
9435 &fs_info->delalloc_roots);
9436 spin_unlock(&fs_info->delalloc_root_lock);
9437
9438 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9439 btrfs_put_root(root);
9440 if (ret < 0 || wbc.nr_to_write <= 0)
9441 goto out;
9442 spin_lock(&fs_info->delalloc_root_lock);
9443 }
9444 spin_unlock(&fs_info->delalloc_root_lock);
9445
9446 ret = 0;
9447 out:
9448 if (!list_empty(&splice)) {
9449 spin_lock(&fs_info->delalloc_root_lock);
9450 list_splice_tail(&splice, &fs_info->delalloc_roots);
9451 spin_unlock(&fs_info->delalloc_root_lock);
9452 }
9453 mutex_unlock(&fs_info->delalloc_root_mutex);
9454 return ret;
9455 }
9456
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)9457 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9458 struct dentry *dentry, const char *symname)
9459 {
9460 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9461 struct btrfs_trans_handle *trans;
9462 struct btrfs_root *root = BTRFS_I(dir)->root;
9463 struct btrfs_path *path;
9464 struct btrfs_key key;
9465 struct inode *inode;
9466 struct btrfs_new_inode_args new_inode_args = {
9467 .dir = dir,
9468 .dentry = dentry,
9469 };
9470 unsigned int trans_num_items;
9471 int err;
9472 int name_len;
9473 int datasize;
9474 unsigned long ptr;
9475 struct btrfs_file_extent_item *ei;
9476 struct extent_buffer *leaf;
9477
9478 name_len = strlen(symname);
9479 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9480 return -ENAMETOOLONG;
9481
9482 inode = new_inode(dir->i_sb);
9483 if (!inode)
9484 return -ENOMEM;
9485 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9486 inode->i_op = &btrfs_symlink_inode_operations;
9487 inode_nohighmem(inode);
9488 inode->i_mapping->a_ops = &btrfs_aops;
9489 btrfs_i_size_write(BTRFS_I(inode), name_len);
9490 inode_set_bytes(inode, name_len);
9491
9492 new_inode_args.inode = inode;
9493 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9494 if (err)
9495 goto out_inode;
9496 /* 1 additional item for the inline extent */
9497 trans_num_items++;
9498
9499 trans = btrfs_start_transaction(root, trans_num_items);
9500 if (IS_ERR(trans)) {
9501 err = PTR_ERR(trans);
9502 goto out_new_inode_args;
9503 }
9504
9505 err = btrfs_create_new_inode(trans, &new_inode_args);
9506 if (err)
9507 goto out;
9508
9509 path = btrfs_alloc_path();
9510 if (!path) {
9511 err = -ENOMEM;
9512 btrfs_abort_transaction(trans, err);
9513 discard_new_inode(inode);
9514 inode = NULL;
9515 goto out;
9516 }
9517 key.objectid = btrfs_ino(BTRFS_I(inode));
9518 key.offset = 0;
9519 key.type = BTRFS_EXTENT_DATA_KEY;
9520 datasize = btrfs_file_extent_calc_inline_size(name_len);
9521 err = btrfs_insert_empty_item(trans, root, path, &key,
9522 datasize);
9523 if (err) {
9524 btrfs_abort_transaction(trans, err);
9525 btrfs_free_path(path);
9526 discard_new_inode(inode);
9527 inode = NULL;
9528 goto out;
9529 }
9530 leaf = path->nodes[0];
9531 ei = btrfs_item_ptr(leaf, path->slots[0],
9532 struct btrfs_file_extent_item);
9533 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9534 btrfs_set_file_extent_type(leaf, ei,
9535 BTRFS_FILE_EXTENT_INLINE);
9536 btrfs_set_file_extent_encryption(leaf, ei, 0);
9537 btrfs_set_file_extent_compression(leaf, ei, 0);
9538 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9539 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9540
9541 ptr = btrfs_file_extent_inline_start(ei);
9542 write_extent_buffer(leaf, symname, ptr, name_len);
9543 btrfs_mark_buffer_dirty(trans, leaf);
9544 btrfs_free_path(path);
9545
9546 d_instantiate_new(dentry, inode);
9547 err = 0;
9548 out:
9549 btrfs_end_transaction(trans);
9550 btrfs_btree_balance_dirty(fs_info);
9551 out_new_inode_args:
9552 btrfs_new_inode_args_destroy(&new_inode_args);
9553 out_inode:
9554 if (err)
9555 iput(inode);
9556 return err;
9557 }
9558
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)9559 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9560 struct btrfs_trans_handle *trans_in,
9561 struct btrfs_inode *inode,
9562 struct btrfs_key *ins,
9563 u64 file_offset)
9564 {
9565 struct btrfs_file_extent_item stack_fi;
9566 struct btrfs_replace_extent_info extent_info;
9567 struct btrfs_trans_handle *trans = trans_in;
9568 struct btrfs_path *path;
9569 u64 start = ins->objectid;
9570 u64 len = ins->offset;
9571 u64 qgroup_released = 0;
9572 int ret;
9573
9574 memset(&stack_fi, 0, sizeof(stack_fi));
9575
9576 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9577 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9578 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9579 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9580 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9581 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9582 /* Encryption and other encoding is reserved and all 0 */
9583
9584 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9585 if (ret < 0)
9586 return ERR_PTR(ret);
9587
9588 if (trans) {
9589 ret = insert_reserved_file_extent(trans, inode,
9590 file_offset, &stack_fi,
9591 true, qgroup_released);
9592 if (ret)
9593 goto free_qgroup;
9594 return trans;
9595 }
9596
9597 extent_info.disk_offset = start;
9598 extent_info.disk_len = len;
9599 extent_info.data_offset = 0;
9600 extent_info.data_len = len;
9601 extent_info.file_offset = file_offset;
9602 extent_info.extent_buf = (char *)&stack_fi;
9603 extent_info.is_new_extent = true;
9604 extent_info.update_times = true;
9605 extent_info.qgroup_reserved = qgroup_released;
9606 extent_info.insertions = 0;
9607
9608 path = btrfs_alloc_path();
9609 if (!path) {
9610 ret = -ENOMEM;
9611 goto free_qgroup;
9612 }
9613
9614 ret = btrfs_replace_file_extents(inode, path, file_offset,
9615 file_offset + len - 1, &extent_info,
9616 &trans);
9617 btrfs_free_path(path);
9618 if (ret)
9619 goto free_qgroup;
9620 return trans;
9621
9622 free_qgroup:
9623 /*
9624 * We have released qgroup data range at the beginning of the function,
9625 * and normally qgroup_released bytes will be freed when committing
9626 * transaction.
9627 * But if we error out early, we have to free what we have released
9628 * or we leak qgroup data reservation.
9629 */
9630 btrfs_qgroup_free_refroot(inode->root->fs_info,
9631 inode->root->root_key.objectid, qgroup_released,
9632 BTRFS_QGROUP_RSV_DATA);
9633 return ERR_PTR(ret);
9634 }
9635
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9636 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9637 u64 start, u64 num_bytes, u64 min_size,
9638 loff_t actual_len, u64 *alloc_hint,
9639 struct btrfs_trans_handle *trans)
9640 {
9641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9642 struct extent_map *em;
9643 struct btrfs_root *root = BTRFS_I(inode)->root;
9644 struct btrfs_key ins;
9645 u64 cur_offset = start;
9646 u64 clear_offset = start;
9647 u64 i_size;
9648 u64 cur_bytes;
9649 u64 last_alloc = (u64)-1;
9650 int ret = 0;
9651 bool own_trans = true;
9652 u64 end = start + num_bytes - 1;
9653
9654 if (trans)
9655 own_trans = false;
9656 while (num_bytes > 0) {
9657 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9658 cur_bytes = max(cur_bytes, min_size);
9659 /*
9660 * If we are severely fragmented we could end up with really
9661 * small allocations, so if the allocator is returning small
9662 * chunks lets make its job easier by only searching for those
9663 * sized chunks.
9664 */
9665 cur_bytes = min(cur_bytes, last_alloc);
9666 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9667 min_size, 0, *alloc_hint, &ins, 1, 0);
9668 if (ret)
9669 break;
9670
9671 /*
9672 * We've reserved this space, and thus converted it from
9673 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9674 * from here on out we will only need to clear our reservation
9675 * for the remaining unreserved area, so advance our
9676 * clear_offset by our extent size.
9677 */
9678 clear_offset += ins.offset;
9679
9680 last_alloc = ins.offset;
9681 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9682 &ins, cur_offset);
9683 /*
9684 * Now that we inserted the prealloc extent we can finally
9685 * decrement the number of reservations in the block group.
9686 * If we did it before, we could race with relocation and have
9687 * relocation miss the reserved extent, making it fail later.
9688 */
9689 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9690 if (IS_ERR(trans)) {
9691 ret = PTR_ERR(trans);
9692 btrfs_free_reserved_extent(fs_info, ins.objectid,
9693 ins.offset, 0);
9694 break;
9695 }
9696
9697 em = alloc_extent_map();
9698 if (!em) {
9699 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9700 cur_offset + ins.offset - 1, false);
9701 btrfs_set_inode_full_sync(BTRFS_I(inode));
9702 goto next;
9703 }
9704
9705 em->start = cur_offset;
9706 em->orig_start = cur_offset;
9707 em->len = ins.offset;
9708 em->block_start = ins.objectid;
9709 em->block_len = ins.offset;
9710 em->orig_block_len = ins.offset;
9711 em->ram_bytes = ins.offset;
9712 em->flags |= EXTENT_FLAG_PREALLOC;
9713 em->generation = trans->transid;
9714
9715 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9716 free_extent_map(em);
9717 next:
9718 num_bytes -= ins.offset;
9719 cur_offset += ins.offset;
9720 *alloc_hint = ins.objectid + ins.offset;
9721
9722 inode_inc_iversion(inode);
9723 inode_set_ctime_current(inode);
9724 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9725 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9726 (actual_len > inode->i_size) &&
9727 (cur_offset > inode->i_size)) {
9728 if (cur_offset > actual_len)
9729 i_size = actual_len;
9730 else
9731 i_size = cur_offset;
9732 i_size_write(inode, i_size);
9733 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9734 }
9735
9736 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9737
9738 if (ret) {
9739 btrfs_abort_transaction(trans, ret);
9740 if (own_trans)
9741 btrfs_end_transaction(trans);
9742 break;
9743 }
9744
9745 if (own_trans) {
9746 btrfs_end_transaction(trans);
9747 trans = NULL;
9748 }
9749 }
9750 if (clear_offset < end)
9751 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9752 end - clear_offset + 1);
9753 return ret;
9754 }
9755
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9756 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9757 u64 start, u64 num_bytes, u64 min_size,
9758 loff_t actual_len, u64 *alloc_hint)
9759 {
9760 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9761 min_size, actual_len, alloc_hint,
9762 NULL);
9763 }
9764
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9765 int btrfs_prealloc_file_range_trans(struct inode *inode,
9766 struct btrfs_trans_handle *trans, int mode,
9767 u64 start, u64 num_bytes, u64 min_size,
9768 loff_t actual_len, u64 *alloc_hint)
9769 {
9770 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9771 min_size, actual_len, alloc_hint, trans);
9772 }
9773
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9774 static int btrfs_permission(struct mnt_idmap *idmap,
9775 struct inode *inode, int mask)
9776 {
9777 struct btrfs_root *root = BTRFS_I(inode)->root;
9778 umode_t mode = inode->i_mode;
9779
9780 if (mask & MAY_WRITE &&
9781 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9782 if (btrfs_root_readonly(root))
9783 return -EROFS;
9784 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9785 return -EACCES;
9786 }
9787 return generic_permission(idmap, inode, mask);
9788 }
9789
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9790 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9791 struct file *file, umode_t mode)
9792 {
9793 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9794 struct btrfs_trans_handle *trans;
9795 struct btrfs_root *root = BTRFS_I(dir)->root;
9796 struct inode *inode;
9797 struct btrfs_new_inode_args new_inode_args = {
9798 .dir = dir,
9799 .dentry = file->f_path.dentry,
9800 .orphan = true,
9801 };
9802 unsigned int trans_num_items;
9803 int ret;
9804
9805 inode = new_inode(dir->i_sb);
9806 if (!inode)
9807 return -ENOMEM;
9808 inode_init_owner(idmap, inode, dir, mode);
9809 inode->i_fop = &btrfs_file_operations;
9810 inode->i_op = &btrfs_file_inode_operations;
9811 inode->i_mapping->a_ops = &btrfs_aops;
9812
9813 new_inode_args.inode = inode;
9814 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9815 if (ret)
9816 goto out_inode;
9817
9818 trans = btrfs_start_transaction(root, trans_num_items);
9819 if (IS_ERR(trans)) {
9820 ret = PTR_ERR(trans);
9821 goto out_new_inode_args;
9822 }
9823
9824 ret = btrfs_create_new_inode(trans, &new_inode_args);
9825
9826 /*
9827 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9828 * set it to 1 because d_tmpfile() will issue a warning if the count is
9829 * 0, through:
9830 *
9831 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9832 */
9833 set_nlink(inode, 1);
9834
9835 if (!ret) {
9836 d_tmpfile(file, inode);
9837 unlock_new_inode(inode);
9838 mark_inode_dirty(inode);
9839 }
9840
9841 btrfs_end_transaction(trans);
9842 btrfs_btree_balance_dirty(fs_info);
9843 out_new_inode_args:
9844 btrfs_new_inode_args_destroy(&new_inode_args);
9845 out_inode:
9846 if (ret)
9847 iput(inode);
9848 return finish_open_simple(file, ret);
9849 }
9850
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)9851 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9852 {
9853 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9854 unsigned long index = start >> PAGE_SHIFT;
9855 unsigned long end_index = end >> PAGE_SHIFT;
9856 struct page *page;
9857 u32 len;
9858
9859 ASSERT(end + 1 - start <= U32_MAX);
9860 len = end + 1 - start;
9861 while (index <= end_index) {
9862 page = find_get_page(inode->vfs_inode.i_mapping, index);
9863 ASSERT(page); /* Pages should be in the extent_io_tree */
9864
9865 /* This is for data, which doesn't yet support larger folio. */
9866 ASSERT(folio_order(page_folio(page)) == 0);
9867 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9868 put_page(page);
9869 index++;
9870 }
9871 }
9872
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9873 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9874 int compress_type)
9875 {
9876 switch (compress_type) {
9877 case BTRFS_COMPRESS_NONE:
9878 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9879 case BTRFS_COMPRESS_ZLIB:
9880 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9881 case BTRFS_COMPRESS_LZO:
9882 /*
9883 * The LZO format depends on the sector size. 64K is the maximum
9884 * sector size that we support.
9885 */
9886 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9887 return -EINVAL;
9888 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9889 (fs_info->sectorsize_bits - 12);
9890 case BTRFS_COMPRESS_ZSTD:
9891 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9892 default:
9893 return -EUCLEAN;
9894 }
9895 }
9896
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9897 static ssize_t btrfs_encoded_read_inline(
9898 struct kiocb *iocb,
9899 struct iov_iter *iter, u64 start,
9900 u64 lockend,
9901 struct extent_state **cached_state,
9902 u64 extent_start, size_t count,
9903 struct btrfs_ioctl_encoded_io_args *encoded,
9904 bool *unlocked)
9905 {
9906 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9907 struct btrfs_root *root = inode->root;
9908 struct btrfs_fs_info *fs_info = root->fs_info;
9909 struct extent_io_tree *io_tree = &inode->io_tree;
9910 struct btrfs_path *path;
9911 struct extent_buffer *leaf;
9912 struct btrfs_file_extent_item *item;
9913 u64 ram_bytes;
9914 unsigned long ptr;
9915 void *tmp;
9916 ssize_t ret;
9917
9918 path = btrfs_alloc_path();
9919 if (!path) {
9920 ret = -ENOMEM;
9921 goto out;
9922 }
9923 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9924 extent_start, 0);
9925 if (ret) {
9926 if (ret > 0) {
9927 /* The extent item disappeared? */
9928 ret = -EIO;
9929 }
9930 goto out;
9931 }
9932 leaf = path->nodes[0];
9933 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9934
9935 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9936 ptr = btrfs_file_extent_inline_start(item);
9937
9938 encoded->len = min_t(u64, extent_start + ram_bytes,
9939 inode->vfs_inode.i_size) - iocb->ki_pos;
9940 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9941 btrfs_file_extent_compression(leaf, item));
9942 if (ret < 0)
9943 goto out;
9944 encoded->compression = ret;
9945 if (encoded->compression) {
9946 size_t inline_size;
9947
9948 inline_size = btrfs_file_extent_inline_item_len(leaf,
9949 path->slots[0]);
9950 if (inline_size > count) {
9951 ret = -ENOBUFS;
9952 goto out;
9953 }
9954 count = inline_size;
9955 encoded->unencoded_len = ram_bytes;
9956 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9957 } else {
9958 count = min_t(u64, count, encoded->len);
9959 encoded->len = count;
9960 encoded->unencoded_len = count;
9961 ptr += iocb->ki_pos - extent_start;
9962 }
9963
9964 tmp = kmalloc(count, GFP_NOFS);
9965 if (!tmp) {
9966 ret = -ENOMEM;
9967 goto out;
9968 }
9969 read_extent_buffer(leaf, tmp, ptr, count);
9970 btrfs_release_path(path);
9971 unlock_extent(io_tree, start, lockend, cached_state);
9972 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9973 *unlocked = true;
9974
9975 ret = copy_to_iter(tmp, count, iter);
9976 if (ret != count)
9977 ret = -EFAULT;
9978 kfree(tmp);
9979 out:
9980 btrfs_free_path(path);
9981 return ret;
9982 }
9983
9984 struct btrfs_encoded_read_private {
9985 wait_queue_head_t wait;
9986 atomic_t pending;
9987 blk_status_t status;
9988 };
9989
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9990 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9991 {
9992 struct btrfs_encoded_read_private *priv = bbio->private;
9993
9994 if (bbio->bio.bi_status) {
9995 /*
9996 * The memory barrier implied by the atomic_dec_return() here
9997 * pairs with the memory barrier implied by the
9998 * atomic_dec_return() or io_wait_event() in
9999 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10000 * write is observed before the load of status in
10001 * btrfs_encoded_read_regular_fill_pages().
10002 */
10003 WRITE_ONCE(priv->status, bbio->bio.bi_status);
10004 }
10005 if (!atomic_dec_return(&priv->pending))
10006 wake_up(&priv->wait);
10007 bio_put(&bbio->bio);
10008 }
10009
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 disk_io_size,struct page ** pages)10010 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10011 u64 file_offset, u64 disk_bytenr,
10012 u64 disk_io_size, struct page **pages)
10013 {
10014 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10015 struct btrfs_encoded_read_private priv = {
10016 .pending = ATOMIC_INIT(1),
10017 };
10018 unsigned long i = 0;
10019 struct btrfs_bio *bbio;
10020
10021 init_waitqueue_head(&priv.wait);
10022
10023 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10024 btrfs_encoded_read_endio, &priv);
10025 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10026 bbio->inode = inode;
10027
10028 do {
10029 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10030
10031 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10032 atomic_inc(&priv.pending);
10033 btrfs_submit_bio(bbio, 0);
10034
10035 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10036 btrfs_encoded_read_endio, &priv);
10037 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10038 bbio->inode = inode;
10039 continue;
10040 }
10041
10042 i++;
10043 disk_bytenr += bytes;
10044 disk_io_size -= bytes;
10045 } while (disk_io_size);
10046
10047 atomic_inc(&priv.pending);
10048 btrfs_submit_bio(bbio, 0);
10049
10050 if (atomic_dec_return(&priv.pending))
10051 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10052 /* See btrfs_encoded_read_endio() for ordering. */
10053 return blk_status_to_errno(READ_ONCE(priv.status));
10054 }
10055
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)10056 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10057 struct iov_iter *iter,
10058 u64 start, u64 lockend,
10059 struct extent_state **cached_state,
10060 u64 disk_bytenr, u64 disk_io_size,
10061 size_t count, bool compressed,
10062 bool *unlocked)
10063 {
10064 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10065 struct extent_io_tree *io_tree = &inode->io_tree;
10066 struct page **pages;
10067 unsigned long nr_pages, i;
10068 u64 cur;
10069 size_t page_offset;
10070 ssize_t ret;
10071
10072 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10073 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10074 if (!pages)
10075 return -ENOMEM;
10076 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
10077 if (ret) {
10078 ret = -ENOMEM;
10079 goto out;
10080 }
10081
10082 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10083 disk_io_size, pages);
10084 if (ret)
10085 goto out;
10086
10087 unlock_extent(io_tree, start, lockend, cached_state);
10088 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10089 *unlocked = true;
10090
10091 if (compressed) {
10092 i = 0;
10093 page_offset = 0;
10094 } else {
10095 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10096 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10097 }
10098 cur = 0;
10099 while (cur < count) {
10100 size_t bytes = min_t(size_t, count - cur,
10101 PAGE_SIZE - page_offset);
10102
10103 if (copy_page_to_iter(pages[i], page_offset, bytes,
10104 iter) != bytes) {
10105 ret = -EFAULT;
10106 goto out;
10107 }
10108 i++;
10109 cur += bytes;
10110 page_offset = 0;
10111 }
10112 ret = count;
10113 out:
10114 for (i = 0; i < nr_pages; i++) {
10115 if (pages[i])
10116 __free_page(pages[i]);
10117 }
10118 kfree(pages);
10119 return ret;
10120 }
10121
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded)10122 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10123 struct btrfs_ioctl_encoded_io_args *encoded)
10124 {
10125 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10126 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10127 struct extent_io_tree *io_tree = &inode->io_tree;
10128 ssize_t ret;
10129 size_t count = iov_iter_count(iter);
10130 u64 start, lockend, disk_bytenr, disk_io_size;
10131 struct extent_state *cached_state = NULL;
10132 struct extent_map *em;
10133 bool unlocked = false;
10134
10135 file_accessed(iocb->ki_filp);
10136
10137 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10138
10139 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10140 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10141 return 0;
10142 }
10143 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10144 /*
10145 * We don't know how long the extent containing iocb->ki_pos is, but if
10146 * it's compressed we know that it won't be longer than this.
10147 */
10148 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10149
10150 for (;;) {
10151 struct btrfs_ordered_extent *ordered;
10152
10153 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10154 lockend - start + 1);
10155 if (ret)
10156 goto out_unlock_inode;
10157 lock_extent(io_tree, start, lockend, &cached_state);
10158 ordered = btrfs_lookup_ordered_range(inode, start,
10159 lockend - start + 1);
10160 if (!ordered)
10161 break;
10162 btrfs_put_ordered_extent(ordered);
10163 unlock_extent(io_tree, start, lockend, &cached_state);
10164 cond_resched();
10165 }
10166
10167 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10168 if (IS_ERR(em)) {
10169 ret = PTR_ERR(em);
10170 goto out_unlock_extent;
10171 }
10172
10173 if (em->block_start == EXTENT_MAP_INLINE) {
10174 u64 extent_start = em->start;
10175
10176 /*
10177 * For inline extents we get everything we need out of the
10178 * extent item.
10179 */
10180 free_extent_map(em);
10181 em = NULL;
10182 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10183 &cached_state, extent_start,
10184 count, encoded, &unlocked);
10185 goto out;
10186 }
10187
10188 /*
10189 * We only want to return up to EOF even if the extent extends beyond
10190 * that.
10191 */
10192 encoded->len = min_t(u64, extent_map_end(em),
10193 inode->vfs_inode.i_size) - iocb->ki_pos;
10194 if (em->block_start == EXTENT_MAP_HOLE ||
10195 (em->flags & EXTENT_FLAG_PREALLOC)) {
10196 disk_bytenr = EXTENT_MAP_HOLE;
10197 count = min_t(u64, count, encoded->len);
10198 encoded->len = count;
10199 encoded->unencoded_len = count;
10200 } else if (extent_map_is_compressed(em)) {
10201 disk_bytenr = em->block_start;
10202 /*
10203 * Bail if the buffer isn't large enough to return the whole
10204 * compressed extent.
10205 */
10206 if (em->block_len > count) {
10207 ret = -ENOBUFS;
10208 goto out_em;
10209 }
10210 disk_io_size = em->block_len;
10211 count = em->block_len;
10212 encoded->unencoded_len = em->ram_bytes;
10213 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10214 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10215 extent_map_compression(em));
10216 if (ret < 0)
10217 goto out_em;
10218 encoded->compression = ret;
10219 } else {
10220 disk_bytenr = em->block_start + (start - em->start);
10221 if (encoded->len > count)
10222 encoded->len = count;
10223 /*
10224 * Don't read beyond what we locked. This also limits the page
10225 * allocations that we'll do.
10226 */
10227 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10228 count = start + disk_io_size - iocb->ki_pos;
10229 encoded->len = count;
10230 encoded->unencoded_len = count;
10231 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10232 }
10233 free_extent_map(em);
10234 em = NULL;
10235
10236 if (disk_bytenr == EXTENT_MAP_HOLE) {
10237 unlock_extent(io_tree, start, lockend, &cached_state);
10238 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10239 unlocked = true;
10240 ret = iov_iter_zero(count, iter);
10241 if (ret != count)
10242 ret = -EFAULT;
10243 } else {
10244 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10245 &cached_state, disk_bytenr,
10246 disk_io_size, count,
10247 encoded->compression,
10248 &unlocked);
10249 }
10250
10251 out:
10252 if (ret >= 0)
10253 iocb->ki_pos += encoded->len;
10254 out_em:
10255 free_extent_map(em);
10256 out_unlock_extent:
10257 if (!unlocked)
10258 unlock_extent(io_tree, start, lockend, &cached_state);
10259 out_unlock_inode:
10260 if (!unlocked)
10261 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10262 return ret;
10263 }
10264
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)10265 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10266 const struct btrfs_ioctl_encoded_io_args *encoded)
10267 {
10268 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10269 struct btrfs_root *root = inode->root;
10270 struct btrfs_fs_info *fs_info = root->fs_info;
10271 struct extent_io_tree *io_tree = &inode->io_tree;
10272 struct extent_changeset *data_reserved = NULL;
10273 struct extent_state *cached_state = NULL;
10274 struct btrfs_ordered_extent *ordered;
10275 int compression;
10276 size_t orig_count;
10277 u64 start, end;
10278 u64 num_bytes, ram_bytes, disk_num_bytes;
10279 unsigned long nr_pages, i;
10280 struct page **pages;
10281 struct btrfs_key ins;
10282 bool extent_reserved = false;
10283 struct extent_map *em;
10284 ssize_t ret;
10285
10286 switch (encoded->compression) {
10287 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10288 compression = BTRFS_COMPRESS_ZLIB;
10289 break;
10290 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10291 compression = BTRFS_COMPRESS_ZSTD;
10292 break;
10293 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10294 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10295 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10296 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10297 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10298 /* The sector size must match for LZO. */
10299 if (encoded->compression -
10300 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10301 fs_info->sectorsize_bits)
10302 return -EINVAL;
10303 compression = BTRFS_COMPRESS_LZO;
10304 break;
10305 default:
10306 return -EINVAL;
10307 }
10308 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10309 return -EINVAL;
10310
10311 /*
10312 * Compressed extents should always have checksums, so error out if we
10313 * have a NOCOW file or inode was created while mounted with NODATASUM.
10314 */
10315 if (inode->flags & BTRFS_INODE_NODATASUM)
10316 return -EINVAL;
10317
10318 orig_count = iov_iter_count(from);
10319
10320 /* The extent size must be sane. */
10321 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10322 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10323 return -EINVAL;
10324
10325 /*
10326 * The compressed data must be smaller than the decompressed data.
10327 *
10328 * It's of course possible for data to compress to larger or the same
10329 * size, but the buffered I/O path falls back to no compression for such
10330 * data, and we don't want to break any assumptions by creating these
10331 * extents.
10332 *
10333 * Note that this is less strict than the current check we have that the
10334 * compressed data must be at least one sector smaller than the
10335 * decompressed data. We only want to enforce the weaker requirement
10336 * from old kernels that it is at least one byte smaller.
10337 */
10338 if (orig_count >= encoded->unencoded_len)
10339 return -EINVAL;
10340
10341 /* The extent must start on a sector boundary. */
10342 start = iocb->ki_pos;
10343 if (!IS_ALIGNED(start, fs_info->sectorsize))
10344 return -EINVAL;
10345
10346 /*
10347 * The extent must end on a sector boundary. However, we allow a write
10348 * which ends at or extends i_size to have an unaligned length; we round
10349 * up the extent size and set i_size to the unaligned end.
10350 */
10351 if (start + encoded->len < inode->vfs_inode.i_size &&
10352 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10353 return -EINVAL;
10354
10355 /* Finally, the offset in the unencoded data must be sector-aligned. */
10356 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10357 return -EINVAL;
10358
10359 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10360 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10361 end = start + num_bytes - 1;
10362
10363 /*
10364 * If the extent cannot be inline, the compressed data on disk must be
10365 * sector-aligned. For convenience, we extend it with zeroes if it
10366 * isn't.
10367 */
10368 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10369 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10370 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10371 if (!pages)
10372 return -ENOMEM;
10373 for (i = 0; i < nr_pages; i++) {
10374 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10375 char *kaddr;
10376
10377 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10378 if (!pages[i]) {
10379 ret = -ENOMEM;
10380 goto out_pages;
10381 }
10382 kaddr = kmap_local_page(pages[i]);
10383 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10384 kunmap_local(kaddr);
10385 ret = -EFAULT;
10386 goto out_pages;
10387 }
10388 if (bytes < PAGE_SIZE)
10389 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10390 kunmap_local(kaddr);
10391 }
10392
10393 for (;;) {
10394 struct btrfs_ordered_extent *ordered;
10395
10396 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10397 if (ret)
10398 goto out_pages;
10399 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10400 start >> PAGE_SHIFT,
10401 end >> PAGE_SHIFT);
10402 if (ret)
10403 goto out_pages;
10404 lock_extent(io_tree, start, end, &cached_state);
10405 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10406 if (!ordered &&
10407 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10408 break;
10409 if (ordered)
10410 btrfs_put_ordered_extent(ordered);
10411 unlock_extent(io_tree, start, end, &cached_state);
10412 cond_resched();
10413 }
10414
10415 /*
10416 * We don't use the higher-level delalloc space functions because our
10417 * num_bytes and disk_num_bytes are different.
10418 */
10419 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10420 if (ret)
10421 goto out_unlock;
10422 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10423 if (ret)
10424 goto out_free_data_space;
10425 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10426 false);
10427 if (ret)
10428 goto out_qgroup_free_data;
10429
10430 /* Try an inline extent first. */
10431 if (start == 0 && encoded->unencoded_len == encoded->len &&
10432 encoded->unencoded_offset == 0) {
10433 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10434 compression, pages, true);
10435 if (ret <= 0) {
10436 if (ret == 0)
10437 ret = orig_count;
10438 goto out_delalloc_release;
10439 }
10440 }
10441
10442 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10443 disk_num_bytes, 0, 0, &ins, 1, 1);
10444 if (ret)
10445 goto out_delalloc_release;
10446 extent_reserved = true;
10447
10448 em = create_io_em(inode, start, num_bytes,
10449 start - encoded->unencoded_offset, ins.objectid,
10450 ins.offset, ins.offset, ram_bytes, compression,
10451 BTRFS_ORDERED_COMPRESSED);
10452 if (IS_ERR(em)) {
10453 ret = PTR_ERR(em);
10454 goto out_free_reserved;
10455 }
10456 free_extent_map(em);
10457
10458 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10459 ins.objectid, ins.offset,
10460 encoded->unencoded_offset,
10461 (1 << BTRFS_ORDERED_ENCODED) |
10462 (1 << BTRFS_ORDERED_COMPRESSED),
10463 compression);
10464 if (IS_ERR(ordered)) {
10465 btrfs_drop_extent_map_range(inode, start, end, false);
10466 ret = PTR_ERR(ordered);
10467 goto out_free_reserved;
10468 }
10469 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10470
10471 if (start + encoded->len > inode->vfs_inode.i_size)
10472 i_size_write(&inode->vfs_inode, start + encoded->len);
10473
10474 unlock_extent(io_tree, start, end, &cached_state);
10475
10476 btrfs_delalloc_release_extents(inode, num_bytes);
10477
10478 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10479 ret = orig_count;
10480 goto out;
10481
10482 out_free_reserved:
10483 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10484 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10485 out_delalloc_release:
10486 btrfs_delalloc_release_extents(inode, num_bytes);
10487 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10488 out_qgroup_free_data:
10489 if (ret < 0)
10490 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10491 out_free_data_space:
10492 /*
10493 * If btrfs_reserve_extent() succeeded, then we already decremented
10494 * bytes_may_use.
10495 */
10496 if (!extent_reserved)
10497 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10498 out_unlock:
10499 unlock_extent(io_tree, start, end, &cached_state);
10500 out_pages:
10501 for (i = 0; i < nr_pages; i++) {
10502 if (pages[i])
10503 __free_page(pages[i]);
10504 }
10505 kvfree(pages);
10506 out:
10507 if (ret >= 0)
10508 iocb->ki_pos += encoded->len;
10509 return ret;
10510 }
10511
10512 #ifdef CONFIG_SWAP
10513 /*
10514 * Add an entry indicating a block group or device which is pinned by a
10515 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10516 * negative errno on failure.
10517 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10518 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10519 bool is_block_group)
10520 {
10521 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10522 struct btrfs_swapfile_pin *sp, *entry;
10523 struct rb_node **p;
10524 struct rb_node *parent = NULL;
10525
10526 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10527 if (!sp)
10528 return -ENOMEM;
10529 sp->ptr = ptr;
10530 sp->inode = inode;
10531 sp->is_block_group = is_block_group;
10532 sp->bg_extent_count = 1;
10533
10534 spin_lock(&fs_info->swapfile_pins_lock);
10535 p = &fs_info->swapfile_pins.rb_node;
10536 while (*p) {
10537 parent = *p;
10538 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10539 if (sp->ptr < entry->ptr ||
10540 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10541 p = &(*p)->rb_left;
10542 } else if (sp->ptr > entry->ptr ||
10543 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10544 p = &(*p)->rb_right;
10545 } else {
10546 if (is_block_group)
10547 entry->bg_extent_count++;
10548 spin_unlock(&fs_info->swapfile_pins_lock);
10549 kfree(sp);
10550 return 1;
10551 }
10552 }
10553 rb_link_node(&sp->node, parent, p);
10554 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10555 spin_unlock(&fs_info->swapfile_pins_lock);
10556 return 0;
10557 }
10558
10559 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10560 static void btrfs_free_swapfile_pins(struct inode *inode)
10561 {
10562 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10563 struct btrfs_swapfile_pin *sp;
10564 struct rb_node *node, *next;
10565
10566 spin_lock(&fs_info->swapfile_pins_lock);
10567 node = rb_first(&fs_info->swapfile_pins);
10568 while (node) {
10569 next = rb_next(node);
10570 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10571 if (sp->inode == inode) {
10572 rb_erase(&sp->node, &fs_info->swapfile_pins);
10573 if (sp->is_block_group) {
10574 btrfs_dec_block_group_swap_extents(sp->ptr,
10575 sp->bg_extent_count);
10576 btrfs_put_block_group(sp->ptr);
10577 }
10578 kfree(sp);
10579 }
10580 node = next;
10581 }
10582 spin_unlock(&fs_info->swapfile_pins_lock);
10583 }
10584
10585 struct btrfs_swap_info {
10586 u64 start;
10587 u64 block_start;
10588 u64 block_len;
10589 u64 lowest_ppage;
10590 u64 highest_ppage;
10591 unsigned long nr_pages;
10592 int nr_extents;
10593 };
10594
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10595 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10596 struct btrfs_swap_info *bsi)
10597 {
10598 unsigned long nr_pages;
10599 unsigned long max_pages;
10600 u64 first_ppage, first_ppage_reported, next_ppage;
10601 int ret;
10602
10603 /*
10604 * Our swapfile may have had its size extended after the swap header was
10605 * written. In that case activating the swapfile should not go beyond
10606 * the max size set in the swap header.
10607 */
10608 if (bsi->nr_pages >= sis->max)
10609 return 0;
10610
10611 max_pages = sis->max - bsi->nr_pages;
10612 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10613 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10614
10615 if (first_ppage >= next_ppage)
10616 return 0;
10617 nr_pages = next_ppage - first_ppage;
10618 nr_pages = min(nr_pages, max_pages);
10619
10620 first_ppage_reported = first_ppage;
10621 if (bsi->start == 0)
10622 first_ppage_reported++;
10623 if (bsi->lowest_ppage > first_ppage_reported)
10624 bsi->lowest_ppage = first_ppage_reported;
10625 if (bsi->highest_ppage < (next_ppage - 1))
10626 bsi->highest_ppage = next_ppage - 1;
10627
10628 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10629 if (ret < 0)
10630 return ret;
10631 bsi->nr_extents += ret;
10632 bsi->nr_pages += nr_pages;
10633 return 0;
10634 }
10635
btrfs_swap_deactivate(struct file * file)10636 static void btrfs_swap_deactivate(struct file *file)
10637 {
10638 struct inode *inode = file_inode(file);
10639
10640 btrfs_free_swapfile_pins(inode);
10641 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10642 }
10643
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10644 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10645 sector_t *span)
10646 {
10647 struct inode *inode = file_inode(file);
10648 struct btrfs_root *root = BTRFS_I(inode)->root;
10649 struct btrfs_fs_info *fs_info = root->fs_info;
10650 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10651 struct extent_state *cached_state = NULL;
10652 struct extent_map *em = NULL;
10653 struct btrfs_chunk_map *map = NULL;
10654 struct btrfs_device *device = NULL;
10655 struct btrfs_swap_info bsi = {
10656 .lowest_ppage = (sector_t)-1ULL,
10657 };
10658 int ret = 0;
10659 u64 isize;
10660 u64 start;
10661
10662 /*
10663 * If the swap file was just created, make sure delalloc is done. If the
10664 * file changes again after this, the user is doing something stupid and
10665 * we don't really care.
10666 */
10667 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10668 if (ret)
10669 return ret;
10670
10671 /*
10672 * The inode is locked, so these flags won't change after we check them.
10673 */
10674 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10675 btrfs_warn(fs_info, "swapfile must not be compressed");
10676 return -EINVAL;
10677 }
10678 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10679 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10680 return -EINVAL;
10681 }
10682 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10683 btrfs_warn(fs_info, "swapfile must not be checksummed");
10684 return -EINVAL;
10685 }
10686
10687 /*
10688 * Balance or device remove/replace/resize can move stuff around from
10689 * under us. The exclop protection makes sure they aren't running/won't
10690 * run concurrently while we are mapping the swap extents, and
10691 * fs_info->swapfile_pins prevents them from running while the swap
10692 * file is active and moving the extents. Note that this also prevents
10693 * a concurrent device add which isn't actually necessary, but it's not
10694 * really worth the trouble to allow it.
10695 */
10696 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10697 btrfs_warn(fs_info,
10698 "cannot activate swapfile while exclusive operation is running");
10699 return -EBUSY;
10700 }
10701
10702 /*
10703 * Prevent snapshot creation while we are activating the swap file.
10704 * We do not want to race with snapshot creation. If snapshot creation
10705 * already started before we bumped nr_swapfiles from 0 to 1 and
10706 * completes before the first write into the swap file after it is
10707 * activated, than that write would fallback to COW.
10708 */
10709 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10710 btrfs_exclop_finish(fs_info);
10711 btrfs_warn(fs_info,
10712 "cannot activate swapfile because snapshot creation is in progress");
10713 return -EINVAL;
10714 }
10715 /*
10716 * Snapshots can create extents which require COW even if NODATACOW is
10717 * set. We use this counter to prevent snapshots. We must increment it
10718 * before walking the extents because we don't want a concurrent
10719 * snapshot to run after we've already checked the extents.
10720 *
10721 * It is possible that subvolume is marked for deletion but still not
10722 * removed yet. To prevent this race, we check the root status before
10723 * activating the swapfile.
10724 */
10725 spin_lock(&root->root_item_lock);
10726 if (btrfs_root_dead(root)) {
10727 spin_unlock(&root->root_item_lock);
10728
10729 btrfs_exclop_finish(fs_info);
10730 btrfs_warn(fs_info,
10731 "cannot activate swapfile because subvolume %llu is being deleted",
10732 root->root_key.objectid);
10733 return -EPERM;
10734 }
10735 atomic_inc(&root->nr_swapfiles);
10736 spin_unlock(&root->root_item_lock);
10737
10738 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10739
10740 lock_extent(io_tree, 0, isize - 1, &cached_state);
10741 start = 0;
10742 while (start < isize) {
10743 u64 logical_block_start, physical_block_start;
10744 struct btrfs_block_group *bg;
10745 u64 len = isize - start;
10746
10747 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10748 if (IS_ERR(em)) {
10749 ret = PTR_ERR(em);
10750 goto out;
10751 }
10752
10753 if (em->block_start == EXTENT_MAP_HOLE) {
10754 btrfs_warn(fs_info, "swapfile must not have holes");
10755 ret = -EINVAL;
10756 goto out;
10757 }
10758 if (em->block_start == EXTENT_MAP_INLINE) {
10759 /*
10760 * It's unlikely we'll ever actually find ourselves
10761 * here, as a file small enough to fit inline won't be
10762 * big enough to store more than the swap header, but in
10763 * case something changes in the future, let's catch it
10764 * here rather than later.
10765 */
10766 btrfs_warn(fs_info, "swapfile must not be inline");
10767 ret = -EINVAL;
10768 goto out;
10769 }
10770 if (extent_map_is_compressed(em)) {
10771 btrfs_warn(fs_info, "swapfile must not be compressed");
10772 ret = -EINVAL;
10773 goto out;
10774 }
10775
10776 logical_block_start = em->block_start + (start - em->start);
10777 len = min(len, em->len - (start - em->start));
10778 free_extent_map(em);
10779 em = NULL;
10780
10781 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10782 if (ret < 0) {
10783 goto out;
10784 } else if (ret) {
10785 ret = 0;
10786 } else {
10787 btrfs_warn(fs_info,
10788 "swapfile must not be copy-on-write");
10789 ret = -EINVAL;
10790 goto out;
10791 }
10792
10793 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10794 if (IS_ERR(map)) {
10795 ret = PTR_ERR(map);
10796 goto out;
10797 }
10798
10799 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10800 btrfs_warn(fs_info,
10801 "swapfile must have single data profile");
10802 ret = -EINVAL;
10803 goto out;
10804 }
10805
10806 if (device == NULL) {
10807 device = map->stripes[0].dev;
10808 ret = btrfs_add_swapfile_pin(inode, device, false);
10809 if (ret == 1)
10810 ret = 0;
10811 else if (ret)
10812 goto out;
10813 } else if (device != map->stripes[0].dev) {
10814 btrfs_warn(fs_info, "swapfile must be on one device");
10815 ret = -EINVAL;
10816 goto out;
10817 }
10818
10819 physical_block_start = (map->stripes[0].physical +
10820 (logical_block_start - map->start));
10821 len = min(len, map->chunk_len - (logical_block_start - map->start));
10822 btrfs_free_chunk_map(map);
10823 map = NULL;
10824
10825 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10826 if (!bg) {
10827 btrfs_warn(fs_info,
10828 "could not find block group containing swapfile");
10829 ret = -EINVAL;
10830 goto out;
10831 }
10832
10833 if (!btrfs_inc_block_group_swap_extents(bg)) {
10834 btrfs_warn(fs_info,
10835 "block group for swapfile at %llu is read-only%s",
10836 bg->start,
10837 atomic_read(&fs_info->scrubs_running) ?
10838 " (scrub running)" : "");
10839 btrfs_put_block_group(bg);
10840 ret = -EINVAL;
10841 goto out;
10842 }
10843
10844 ret = btrfs_add_swapfile_pin(inode, bg, true);
10845 if (ret) {
10846 btrfs_put_block_group(bg);
10847 if (ret == 1)
10848 ret = 0;
10849 else
10850 goto out;
10851 }
10852
10853 if (bsi.block_len &&
10854 bsi.block_start + bsi.block_len == physical_block_start) {
10855 bsi.block_len += len;
10856 } else {
10857 if (bsi.block_len) {
10858 ret = btrfs_add_swap_extent(sis, &bsi);
10859 if (ret)
10860 goto out;
10861 }
10862 bsi.start = start;
10863 bsi.block_start = physical_block_start;
10864 bsi.block_len = len;
10865 }
10866
10867 start += len;
10868 }
10869
10870 if (bsi.block_len)
10871 ret = btrfs_add_swap_extent(sis, &bsi);
10872
10873 out:
10874 if (!IS_ERR_OR_NULL(em))
10875 free_extent_map(em);
10876 if (!IS_ERR_OR_NULL(map))
10877 btrfs_free_chunk_map(map);
10878
10879 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10880
10881 if (ret)
10882 btrfs_swap_deactivate(file);
10883
10884 btrfs_drew_write_unlock(&root->snapshot_lock);
10885
10886 btrfs_exclop_finish(fs_info);
10887
10888 if (ret)
10889 return ret;
10890
10891 if (device)
10892 sis->bdev = device->bdev;
10893 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10894 sis->max = bsi.nr_pages;
10895 sis->pages = bsi.nr_pages - 1;
10896 sis->highest_bit = bsi.nr_pages - 1;
10897 return bsi.nr_extents;
10898 }
10899 #else
btrfs_swap_deactivate(struct file * file)10900 static void btrfs_swap_deactivate(struct file *file)
10901 {
10902 }
10903
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10904 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10905 sector_t *span)
10906 {
10907 return -EOPNOTSUPP;
10908 }
10909 #endif
10910
10911 /*
10912 * Update the number of bytes used in the VFS' inode. When we replace extents in
10913 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10914 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10915 * always get a correct value.
10916 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10917 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10918 const u64 add_bytes,
10919 const u64 del_bytes)
10920 {
10921 if (add_bytes == del_bytes)
10922 return;
10923
10924 spin_lock(&inode->lock);
10925 if (del_bytes > 0)
10926 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10927 if (add_bytes > 0)
10928 inode_add_bytes(&inode->vfs_inode, add_bytes);
10929 spin_unlock(&inode->lock);
10930 }
10931
10932 /*
10933 * Verify that there are no ordered extents for a given file range.
10934 *
10935 * @inode: The target inode.
10936 * @start: Start offset of the file range, should be sector size aligned.
10937 * @end: End offset (inclusive) of the file range, its value +1 should be
10938 * sector size aligned.
10939 *
10940 * This should typically be used for cases where we locked an inode's VFS lock in
10941 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10942 * we have flushed all delalloc in the range, we have waited for all ordered
10943 * extents in the range to complete and finally we have locked the file range in
10944 * the inode's io_tree.
10945 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10946 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10947 {
10948 struct btrfs_root *root = inode->root;
10949 struct btrfs_ordered_extent *ordered;
10950
10951 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10952 return;
10953
10954 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10955 if (ordered) {
10956 btrfs_err(root->fs_info,
10957 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10958 start, end, btrfs_ino(inode), root->root_key.objectid,
10959 ordered->file_offset,
10960 ordered->file_offset + ordered->num_bytes - 1);
10961 btrfs_put_ordered_extent(ordered);
10962 }
10963
10964 ASSERT(ordered == NULL);
10965 }
10966
10967 static const struct inode_operations btrfs_dir_inode_operations = {
10968 .getattr = btrfs_getattr,
10969 .lookup = btrfs_lookup,
10970 .create = btrfs_create,
10971 .unlink = btrfs_unlink,
10972 .link = btrfs_link,
10973 .mkdir = btrfs_mkdir,
10974 .rmdir = btrfs_rmdir,
10975 .rename = btrfs_rename2,
10976 .symlink = btrfs_symlink,
10977 .setattr = btrfs_setattr,
10978 .mknod = btrfs_mknod,
10979 .listxattr = btrfs_listxattr,
10980 .permission = btrfs_permission,
10981 .get_inode_acl = btrfs_get_acl,
10982 .set_acl = btrfs_set_acl,
10983 .update_time = btrfs_update_time,
10984 .tmpfile = btrfs_tmpfile,
10985 .fileattr_get = btrfs_fileattr_get,
10986 .fileattr_set = btrfs_fileattr_set,
10987 };
10988
10989 static const struct file_operations btrfs_dir_file_operations = {
10990 .llseek = btrfs_dir_llseek,
10991 .read = generic_read_dir,
10992 .iterate_shared = btrfs_real_readdir,
10993 .open = btrfs_opendir,
10994 .unlocked_ioctl = btrfs_ioctl,
10995 #ifdef CONFIG_COMPAT
10996 .compat_ioctl = btrfs_compat_ioctl,
10997 #endif
10998 .release = btrfs_release_file,
10999 .fsync = btrfs_sync_file,
11000 };
11001
11002 /*
11003 * btrfs doesn't support the bmap operation because swapfiles
11004 * use bmap to make a mapping of extents in the file. They assume
11005 * these extents won't change over the life of the file and they
11006 * use the bmap result to do IO directly to the drive.
11007 *
11008 * the btrfs bmap call would return logical addresses that aren't
11009 * suitable for IO and they also will change frequently as COW
11010 * operations happen. So, swapfile + btrfs == corruption.
11011 *
11012 * For now we're avoiding this by dropping bmap.
11013 */
11014 static const struct address_space_operations btrfs_aops = {
11015 .read_folio = btrfs_read_folio,
11016 .writepages = btrfs_writepages,
11017 .readahead = btrfs_readahead,
11018 .invalidate_folio = btrfs_invalidate_folio,
11019 .release_folio = btrfs_release_folio,
11020 .migrate_folio = btrfs_migrate_folio,
11021 .dirty_folio = filemap_dirty_folio,
11022 .error_remove_folio = generic_error_remove_folio,
11023 .swap_activate = btrfs_swap_activate,
11024 .swap_deactivate = btrfs_swap_deactivate,
11025 };
11026
11027 static const struct inode_operations btrfs_file_inode_operations = {
11028 .getattr = btrfs_getattr,
11029 .setattr = btrfs_setattr,
11030 .listxattr = btrfs_listxattr,
11031 .permission = btrfs_permission,
11032 .fiemap = btrfs_fiemap,
11033 .get_inode_acl = btrfs_get_acl,
11034 .set_acl = btrfs_set_acl,
11035 .update_time = btrfs_update_time,
11036 .fileattr_get = btrfs_fileattr_get,
11037 .fileattr_set = btrfs_fileattr_set,
11038 };
11039 static const struct inode_operations btrfs_special_inode_operations = {
11040 .getattr = btrfs_getattr,
11041 .setattr = btrfs_setattr,
11042 .permission = btrfs_permission,
11043 .listxattr = btrfs_listxattr,
11044 .get_inode_acl = btrfs_get_acl,
11045 .set_acl = btrfs_set_acl,
11046 .update_time = btrfs_update_time,
11047 };
11048 static const struct inode_operations btrfs_symlink_inode_operations = {
11049 .get_link = page_get_link,
11050 .getattr = btrfs_getattr,
11051 .setattr = btrfs_setattr,
11052 .permission = btrfs_permission,
11053 .listxattr = btrfs_listxattr,
11054 .update_time = btrfs_update_time,
11055 };
11056
11057 const struct dentry_operations btrfs_dentry_operations = {
11058 .d_delete = btrfs_dentry_delete,
11059 };
11060