1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "backpointers.h"
5 #include "bkey_buf.h"
6 #include "alloc_background.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "buckets.h"
13 #include "dirent.h"
14 #include "ec.h"
15 #include "errcode.h"
16 #include "error.h"
17 #include "fs-common.h"
18 #include "fsck.h"
19 #include "journal_io.h"
20 #include "journal_reclaim.h"
21 #include "journal_seq_blacklist.h"
22 #include "lru.h"
23 #include "logged_ops.h"
24 #include "move.h"
25 #include "quota.h"
26 #include "rebalance.h"
27 #include "recovery.h"
28 #include "replicas.h"
29 #include "sb-clean.h"
30 #include "sb-downgrade.h"
31 #include "snapshot.h"
32 #include "subvolume.h"
33 #include "super-io.h"
34
35 #include <linux/sort.h>
36 #include <linux/stat.h>
37
38 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
39
btree_id_is_alloc(enum btree_id id)40 static bool btree_id_is_alloc(enum btree_id id)
41 {
42 switch (id) {
43 case BTREE_ID_alloc:
44 case BTREE_ID_backpointers:
45 case BTREE_ID_need_discard:
46 case BTREE_ID_freespace:
47 case BTREE_ID_bucket_gens:
48 return true;
49 default:
50 return false;
51 }
52 }
53
54 /* for -o reconstruct_alloc: */
drop_alloc_keys(struct journal_keys * keys)55 static void drop_alloc_keys(struct journal_keys *keys)
56 {
57 size_t src, dst;
58
59 for (src = 0, dst = 0; src < keys->nr; src++)
60 if (!btree_id_is_alloc(keys->d[src].btree_id))
61 keys->d[dst++] = keys->d[src];
62
63 keys->nr = dst;
64 }
65
66 /*
67 * Btree node pointers have a field to stack a pointer to the in memory btree
68 * node; we need to zero out this field when reading in btree nodes, or when
69 * reading in keys from the journal:
70 */
zero_out_btree_mem_ptr(struct journal_keys * keys)71 static void zero_out_btree_mem_ptr(struct journal_keys *keys)
72 {
73 struct journal_key *i;
74
75 for (i = keys->d; i < keys->d + keys->nr; i++)
76 if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
77 bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
78 }
79
80 /* journal replay: */
81
replay_now_at(struct journal * j,u64 seq)82 static void replay_now_at(struct journal *j, u64 seq)
83 {
84 BUG_ON(seq < j->replay_journal_seq);
85
86 seq = min(seq, j->replay_journal_seq_end);
87
88 while (j->replay_journal_seq < seq)
89 bch2_journal_pin_put(j, j->replay_journal_seq++);
90 }
91
bch2_journal_replay_key(struct btree_trans * trans,struct journal_key * k)92 static int bch2_journal_replay_key(struct btree_trans *trans,
93 struct journal_key *k)
94 {
95 struct btree_iter iter;
96 unsigned iter_flags =
97 BTREE_ITER_INTENT|
98 BTREE_ITER_NOT_EXTENTS;
99 unsigned update_flags = BTREE_TRIGGER_NORUN;
100 int ret;
101
102 if (k->overwritten)
103 return 0;
104
105 trans->journal_res.seq = k->journal_seq;
106
107 /*
108 * BTREE_UPDATE_KEY_CACHE_RECLAIM disables key cache lookup/update to
109 * keep the key cache coherent with the underlying btree. Nothing
110 * besides the allocator is doing updates yet so we don't need key cache
111 * coherency for non-alloc btrees, and key cache fills for snapshots
112 * btrees use BTREE_ITER_FILTER_SNAPSHOTS, which isn't available until
113 * the snapshots recovery pass runs.
114 */
115 if (!k->level && k->btree_id == BTREE_ID_alloc)
116 iter_flags |= BTREE_ITER_CACHED;
117 else
118 update_flags |= BTREE_UPDATE_KEY_CACHE_RECLAIM;
119
120 bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
121 BTREE_MAX_DEPTH, k->level,
122 iter_flags);
123 ret = bch2_btree_iter_traverse(&iter);
124 if (ret)
125 goto out;
126
127 /* Must be checked with btree locked: */
128 if (k->overwritten)
129 goto out;
130
131 ret = bch2_trans_update(trans, &iter, k->k, update_flags);
132 out:
133 bch2_trans_iter_exit(trans, &iter);
134 return ret;
135 }
136
journal_sort_seq_cmp(const void * _l,const void * _r)137 static int journal_sort_seq_cmp(const void *_l, const void *_r)
138 {
139 const struct journal_key *l = *((const struct journal_key **)_l);
140 const struct journal_key *r = *((const struct journal_key **)_r);
141
142 return cmp_int(l->journal_seq, r->journal_seq);
143 }
144
bch2_journal_replay(struct bch_fs * c)145 static int bch2_journal_replay(struct bch_fs *c)
146 {
147 struct journal_keys *keys = &c->journal_keys;
148 DARRAY(struct journal_key *) keys_sorted = { 0 };
149 struct journal *j = &c->journal;
150 u64 start_seq = c->journal_replay_seq_start;
151 u64 end_seq = c->journal_replay_seq_start;
152 struct btree_trans *trans = bch2_trans_get(c);
153 int ret = 0;
154
155 if (keys->nr) {
156 ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
157 keys->nr, start_seq, end_seq);
158 if (ret)
159 goto err;
160 }
161
162 BUG_ON(!atomic_read(&keys->ref));
163
164 /*
165 * First, attempt to replay keys in sorted order. This is more
166 * efficient - better locality of btree access - but some might fail if
167 * that would cause a journal deadlock.
168 */
169 for (size_t i = 0; i < keys->nr; i++) {
170 cond_resched();
171
172 struct journal_key *k = keys->d + i;
173
174 /* Skip fastpath if we're low on space in the journal */
175 ret = c->journal.watermark ? -1 :
176 commit_do(trans, NULL, NULL,
177 BCH_TRANS_COMMIT_no_enospc|
178 BCH_TRANS_COMMIT_journal_reclaim|
179 (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0),
180 bch2_journal_replay_key(trans, k));
181 BUG_ON(!ret && !k->overwritten);
182 if (ret) {
183 ret = darray_push(&keys_sorted, k);
184 if (ret)
185 goto err;
186 }
187 }
188
189 /*
190 * Now, replay any remaining keys in the order in which they appear in
191 * the journal, unpinning those journal entries as we go:
192 */
193 sort(keys_sorted.data, keys_sorted.nr,
194 sizeof(keys_sorted.data[0]),
195 journal_sort_seq_cmp, NULL);
196
197 darray_for_each(keys_sorted, kp) {
198 cond_resched();
199
200 struct journal_key *k = *kp;
201
202 replay_now_at(j, k->journal_seq);
203
204 ret = commit_do(trans, NULL, NULL,
205 BCH_TRANS_COMMIT_no_enospc|
206 (!k->allocated
207 ? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim
208 : 0),
209 bch2_journal_replay_key(trans, k));
210 bch_err_msg(c, ret, "while replaying key at btree %s level %u:",
211 bch2_btree_id_str(k->btree_id), k->level);
212 if (ret)
213 goto err;
214
215 BUG_ON(!k->overwritten);
216 }
217
218 /*
219 * We need to put our btree_trans before calling flush_all_pins(), since
220 * that will use a btree_trans internally
221 */
222 bch2_trans_put(trans);
223 trans = NULL;
224
225 if (!c->opts.keep_journal)
226 bch2_journal_keys_put_initial(c);
227
228 replay_now_at(j, j->replay_journal_seq_end);
229 j->replay_journal_seq = 0;
230
231 bch2_journal_set_replay_done(j);
232
233 if (keys->nr)
234 bch2_journal_log_msg(c, "journal replay finished");
235 err:
236 if (trans)
237 bch2_trans_put(trans);
238 darray_exit(&keys_sorted);
239 bch_err_fn(c, ret);
240 return ret;
241 }
242
243 /* journal replay early: */
244
journal_replay_entry_early(struct bch_fs * c,struct jset_entry * entry)245 static int journal_replay_entry_early(struct bch_fs *c,
246 struct jset_entry *entry)
247 {
248 int ret = 0;
249
250 switch (entry->type) {
251 case BCH_JSET_ENTRY_btree_root: {
252 struct btree_root *r;
253
254 while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) {
255 ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL });
256 if (ret)
257 return ret;
258 }
259
260 r = bch2_btree_id_root(c, entry->btree_id);
261
262 if (entry->u64s) {
263 r->level = entry->level;
264 bkey_copy(&r->key, (struct bkey_i *) entry->start);
265 r->error = 0;
266 } else {
267 r->error = -EIO;
268 }
269 r->alive = true;
270 break;
271 }
272 case BCH_JSET_ENTRY_usage: {
273 struct jset_entry_usage *u =
274 container_of(entry, struct jset_entry_usage, entry);
275
276 switch (entry->btree_id) {
277 case BCH_FS_USAGE_reserved:
278 if (entry->level < BCH_REPLICAS_MAX)
279 c->usage_base->persistent_reserved[entry->level] =
280 le64_to_cpu(u->v);
281 break;
282 case BCH_FS_USAGE_inodes:
283 c->usage_base->b.nr_inodes = le64_to_cpu(u->v);
284 break;
285 case BCH_FS_USAGE_key_version:
286 atomic64_set(&c->key_version,
287 le64_to_cpu(u->v));
288 break;
289 }
290
291 break;
292 }
293 case BCH_JSET_ENTRY_data_usage: {
294 struct jset_entry_data_usage *u =
295 container_of(entry, struct jset_entry_data_usage, entry);
296
297 ret = bch2_replicas_set_usage(c, &u->r,
298 le64_to_cpu(u->v));
299 break;
300 }
301 case BCH_JSET_ENTRY_dev_usage: {
302 struct jset_entry_dev_usage *u =
303 container_of(entry, struct jset_entry_dev_usage, entry);
304 struct bch_dev *ca = bch_dev_bkey_exists(c, le32_to_cpu(u->dev));
305 unsigned i, nr_types = jset_entry_dev_usage_nr_types(u);
306
307 for (i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) {
308 ca->usage_base->d[i].buckets = le64_to_cpu(u->d[i].buckets);
309 ca->usage_base->d[i].sectors = le64_to_cpu(u->d[i].sectors);
310 ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented);
311 }
312
313 break;
314 }
315 case BCH_JSET_ENTRY_blacklist: {
316 struct jset_entry_blacklist *bl_entry =
317 container_of(entry, struct jset_entry_blacklist, entry);
318
319 ret = bch2_journal_seq_blacklist_add(c,
320 le64_to_cpu(bl_entry->seq),
321 le64_to_cpu(bl_entry->seq) + 1);
322 break;
323 }
324 case BCH_JSET_ENTRY_blacklist_v2: {
325 struct jset_entry_blacklist_v2 *bl_entry =
326 container_of(entry, struct jset_entry_blacklist_v2, entry);
327
328 ret = bch2_journal_seq_blacklist_add(c,
329 le64_to_cpu(bl_entry->start),
330 le64_to_cpu(bl_entry->end) + 1);
331 break;
332 }
333 case BCH_JSET_ENTRY_clock: {
334 struct jset_entry_clock *clock =
335 container_of(entry, struct jset_entry_clock, entry);
336
337 atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
338 }
339 }
340
341 return ret;
342 }
343
journal_replay_early(struct bch_fs * c,struct bch_sb_field_clean * clean)344 static int journal_replay_early(struct bch_fs *c,
345 struct bch_sb_field_clean *clean)
346 {
347 if (clean) {
348 for (struct jset_entry *entry = clean->start;
349 entry != vstruct_end(&clean->field);
350 entry = vstruct_next(entry)) {
351 int ret = journal_replay_entry_early(c, entry);
352 if (ret)
353 return ret;
354 }
355 } else {
356 struct genradix_iter iter;
357 struct journal_replay *i, **_i;
358
359 genradix_for_each(&c->journal_entries, iter, _i) {
360 i = *_i;
361
362 if (!i || i->ignore)
363 continue;
364
365 vstruct_for_each(&i->j, entry) {
366 int ret = journal_replay_entry_early(c, entry);
367 if (ret)
368 return ret;
369 }
370 }
371 }
372
373 bch2_fs_usage_initialize(c);
374
375 return 0;
376 }
377
378 /* sb clean section: */
379
read_btree_roots(struct bch_fs * c)380 static int read_btree_roots(struct bch_fs *c)
381 {
382 unsigned i;
383 int ret = 0;
384
385 for (i = 0; i < btree_id_nr_alive(c); i++) {
386 struct btree_root *r = bch2_btree_id_root(c, i);
387
388 if (!r->alive)
389 continue;
390
391 if (btree_id_is_alloc(i) &&
392 c->opts.reconstruct_alloc) {
393 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
394 continue;
395 }
396
397 if (r->error) {
398 __fsck_err(c,
399 btree_id_is_alloc(i)
400 ? FSCK_CAN_IGNORE : 0,
401 btree_root_bkey_invalid,
402 "invalid btree root %s",
403 bch2_btree_id_str(i));
404 if (i == BTREE_ID_alloc)
405 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
406 }
407
408 ret = bch2_btree_root_read(c, i, &r->key, r->level);
409 if (ret) {
410 fsck_err(c,
411 btree_root_read_error,
412 "error reading btree root %s",
413 bch2_btree_id_str(i));
414 if (btree_id_is_alloc(i))
415 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
416 ret = 0;
417 }
418 }
419
420 for (i = 0; i < BTREE_ID_NR; i++) {
421 struct btree_root *r = bch2_btree_id_root(c, i);
422
423 if (!r->b) {
424 r->alive = false;
425 r->level = 0;
426 bch2_btree_root_alloc(c, i);
427 }
428 }
429 fsck_err:
430 return ret;
431 }
432
bch2_initialize_subvolumes(struct bch_fs * c)433 static int bch2_initialize_subvolumes(struct bch_fs *c)
434 {
435 struct bkey_i_snapshot_tree root_tree;
436 struct bkey_i_snapshot root_snapshot;
437 struct bkey_i_subvolume root_volume;
438 int ret;
439
440 bkey_snapshot_tree_init(&root_tree.k_i);
441 root_tree.k.p.offset = 1;
442 root_tree.v.master_subvol = cpu_to_le32(1);
443 root_tree.v.root_snapshot = cpu_to_le32(U32_MAX);
444
445 bkey_snapshot_init(&root_snapshot.k_i);
446 root_snapshot.k.p.offset = U32_MAX;
447 root_snapshot.v.flags = 0;
448 root_snapshot.v.parent = 0;
449 root_snapshot.v.subvol = cpu_to_le32(BCACHEFS_ROOT_SUBVOL);
450 root_snapshot.v.tree = cpu_to_le32(1);
451 SET_BCH_SNAPSHOT_SUBVOL(&root_snapshot.v, true);
452
453 bkey_subvolume_init(&root_volume.k_i);
454 root_volume.k.p.offset = BCACHEFS_ROOT_SUBVOL;
455 root_volume.v.flags = 0;
456 root_volume.v.snapshot = cpu_to_le32(U32_MAX);
457 root_volume.v.inode = cpu_to_le64(BCACHEFS_ROOT_INO);
458
459 ret = bch2_btree_insert(c, BTREE_ID_snapshot_trees, &root_tree.k_i, NULL, 0) ?:
460 bch2_btree_insert(c, BTREE_ID_snapshots, &root_snapshot.k_i, NULL, 0) ?:
461 bch2_btree_insert(c, BTREE_ID_subvolumes, &root_volume.k_i, NULL, 0);
462 bch_err_fn(c, ret);
463 return ret;
464 }
465
__bch2_fs_upgrade_for_subvolumes(struct btree_trans * trans)466 static int __bch2_fs_upgrade_for_subvolumes(struct btree_trans *trans)
467 {
468 struct btree_iter iter;
469 struct bkey_s_c k;
470 struct bch_inode_unpacked inode;
471 int ret;
472
473 k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
474 SPOS(0, BCACHEFS_ROOT_INO, U32_MAX), 0);
475 ret = bkey_err(k);
476 if (ret)
477 return ret;
478
479 if (!bkey_is_inode(k.k)) {
480 bch_err(trans->c, "root inode not found");
481 ret = -BCH_ERR_ENOENT_inode;
482 goto err;
483 }
484
485 ret = bch2_inode_unpack(k, &inode);
486 BUG_ON(ret);
487
488 inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
489
490 ret = bch2_inode_write(trans, &iter, &inode);
491 err:
492 bch2_trans_iter_exit(trans, &iter);
493 return ret;
494 }
495
496 /* set bi_subvol on root inode */
497 noinline_for_stack
bch2_fs_upgrade_for_subvolumes(struct bch_fs * c)498 static int bch2_fs_upgrade_for_subvolumes(struct bch_fs *c)
499 {
500 int ret = bch2_trans_do(c, NULL, NULL, BCH_TRANS_COMMIT_lazy_rw,
501 __bch2_fs_upgrade_for_subvolumes(trans));
502 bch_err_fn(c, ret);
503 return ret;
504 }
505
506 const char * const bch2_recovery_passes[] = {
507 #define x(_fn, ...) #_fn,
508 BCH_RECOVERY_PASSES()
509 #undef x
510 NULL
511 };
512
bch2_check_allocations(struct bch_fs * c)513 static int bch2_check_allocations(struct bch_fs *c)
514 {
515 return bch2_gc(c, true, c->opts.norecovery);
516 }
517
bch2_set_may_go_rw(struct bch_fs * c)518 static int bch2_set_may_go_rw(struct bch_fs *c)
519 {
520 struct journal_keys *keys = &c->journal_keys;
521
522 /*
523 * After we go RW, the journal keys buffer can't be modified (except for
524 * setting journal_key->overwritten: it will be accessed by multiple
525 * threads
526 */
527 move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr);
528 keys->gap = keys->nr;
529
530 set_bit(BCH_FS_may_go_rw, &c->flags);
531
532 if (keys->nr || c->opts.fsck || !c->sb.clean)
533 return bch2_fs_read_write_early(c);
534 return 0;
535 }
536
537 struct recovery_pass_fn {
538 int (*fn)(struct bch_fs *);
539 unsigned when;
540 };
541
542 static struct recovery_pass_fn recovery_pass_fns[] = {
543 #define x(_fn, _id, _when) { .fn = bch2_##_fn, .when = _when },
544 BCH_RECOVERY_PASSES()
545 #undef x
546 };
547
bch2_recovery_passes_to_stable(u64 v)548 u64 bch2_recovery_passes_to_stable(u64 v)
549 {
550 static const u8 map[] = {
551 #define x(n, id, ...) [BCH_RECOVERY_PASS_##n] = BCH_RECOVERY_PASS_STABLE_##n,
552 BCH_RECOVERY_PASSES()
553 #undef x
554 };
555
556 u64 ret = 0;
557 for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
558 if (v & BIT_ULL(i))
559 ret |= BIT_ULL(map[i]);
560 return ret;
561 }
562
bch2_recovery_passes_from_stable(u64 v)563 u64 bch2_recovery_passes_from_stable(u64 v)
564 {
565 static const u8 map[] = {
566 #define x(n, id, ...) [BCH_RECOVERY_PASS_STABLE_##n] = BCH_RECOVERY_PASS_##n,
567 BCH_RECOVERY_PASSES()
568 #undef x
569 };
570
571 u64 ret = 0;
572 for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
573 if (v & BIT_ULL(i))
574 ret |= BIT_ULL(map[i]);
575 return ret;
576 }
577
check_version_upgrade(struct bch_fs * c)578 static bool check_version_upgrade(struct bch_fs *c)
579 {
580 unsigned latest_version = bcachefs_metadata_version_current;
581 unsigned latest_compatible = min(latest_version,
582 bch2_latest_compatible_version(c->sb.version));
583 unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version;
584 unsigned new_version = 0;
585
586 if (old_version < bcachefs_metadata_required_upgrade_below) {
587 if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible ||
588 latest_compatible < bcachefs_metadata_required_upgrade_below)
589 new_version = latest_version;
590 else
591 new_version = latest_compatible;
592 } else {
593 switch (c->opts.version_upgrade) {
594 case BCH_VERSION_UPGRADE_compatible:
595 new_version = latest_compatible;
596 break;
597 case BCH_VERSION_UPGRADE_incompatible:
598 new_version = latest_version;
599 break;
600 case BCH_VERSION_UPGRADE_none:
601 new_version = min(old_version, latest_version);
602 break;
603 }
604 }
605
606 if (new_version > old_version) {
607 struct printbuf buf = PRINTBUF;
608
609 if (old_version < bcachefs_metadata_required_upgrade_below)
610 prt_str(&buf, "Version upgrade required:\n");
611
612 if (old_version != c->sb.version) {
613 prt_str(&buf, "Version upgrade from ");
614 bch2_version_to_text(&buf, c->sb.version_upgrade_complete);
615 prt_str(&buf, " to ");
616 bch2_version_to_text(&buf, c->sb.version);
617 prt_str(&buf, " incomplete\n");
618 }
619
620 prt_printf(&buf, "Doing %s version upgrade from ",
621 BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version)
622 ? "incompatible" : "compatible");
623 bch2_version_to_text(&buf, old_version);
624 prt_str(&buf, " to ");
625 bch2_version_to_text(&buf, new_version);
626 prt_newline(&buf);
627
628 struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
629 __le64 passes = ext->recovery_passes_required[0];
630 bch2_sb_set_upgrade(c, old_version, new_version);
631 passes = ext->recovery_passes_required[0] & ~passes;
632
633 if (passes) {
634 prt_str(&buf, " running recovery passes: ");
635 prt_bitflags(&buf, bch2_recovery_passes,
636 bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
637 }
638
639 bch_info(c, "%s", buf.buf);
640
641 bch2_sb_upgrade(c, new_version);
642
643 printbuf_exit(&buf);
644 return true;
645 }
646
647 return false;
648 }
649
bch2_fsck_recovery_passes(void)650 u64 bch2_fsck_recovery_passes(void)
651 {
652 u64 ret = 0;
653
654 for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++)
655 if (recovery_pass_fns[i].when & PASS_FSCK)
656 ret |= BIT_ULL(i);
657 return ret;
658 }
659
should_run_recovery_pass(struct bch_fs * c,enum bch_recovery_pass pass)660 static bool should_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
661 {
662 struct recovery_pass_fn *p = recovery_pass_fns + pass;
663
664 if (c->opts.norecovery && pass > BCH_RECOVERY_PASS_snapshots_read)
665 return false;
666 if (c->recovery_passes_explicit & BIT_ULL(pass))
667 return true;
668 if ((p->when & PASS_FSCK) && c->opts.fsck)
669 return true;
670 if ((p->when & PASS_UNCLEAN) && !c->sb.clean)
671 return true;
672 if (p->when & PASS_ALWAYS)
673 return true;
674 return false;
675 }
676
bch2_run_recovery_pass(struct bch_fs * c,enum bch_recovery_pass pass)677 static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
678 {
679 struct recovery_pass_fn *p = recovery_pass_fns + pass;
680 int ret;
681
682 if (!(p->when & PASS_SILENT))
683 bch2_print(c, KERN_INFO bch2_log_msg(c, "%s..."),
684 bch2_recovery_passes[pass]);
685 ret = p->fn(c);
686 if (ret)
687 return ret;
688 if (!(p->when & PASS_SILENT))
689 bch2_print(c, KERN_CONT " done\n");
690
691 return 0;
692 }
693
bch2_run_recovery_passes(struct bch_fs * c)694 static int bch2_run_recovery_passes(struct bch_fs *c)
695 {
696 int ret = 0;
697
698 while (c->curr_recovery_pass < ARRAY_SIZE(recovery_pass_fns)) {
699 if (should_run_recovery_pass(c, c->curr_recovery_pass)) {
700 unsigned pass = c->curr_recovery_pass;
701
702 ret = bch2_run_recovery_pass(c, c->curr_recovery_pass);
703 if (bch2_err_matches(ret, BCH_ERR_restart_recovery) ||
704 (ret && c->curr_recovery_pass < pass))
705 continue;
706 if (ret)
707 break;
708
709 c->recovery_passes_complete |= BIT_ULL(c->curr_recovery_pass);
710 }
711 c->curr_recovery_pass++;
712 c->recovery_pass_done = max(c->recovery_pass_done, c->curr_recovery_pass);
713 }
714
715 return ret;
716 }
717
bch2_run_online_recovery_passes(struct bch_fs * c)718 int bch2_run_online_recovery_passes(struct bch_fs *c)
719 {
720 int ret = 0;
721
722 for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++) {
723 struct recovery_pass_fn *p = recovery_pass_fns + i;
724
725 if (!(p->when & PASS_ONLINE))
726 continue;
727
728 ret = bch2_run_recovery_pass(c, i);
729 if (bch2_err_matches(ret, BCH_ERR_restart_recovery)) {
730 i = c->curr_recovery_pass;
731 continue;
732 }
733 if (ret)
734 break;
735 }
736
737 return ret;
738 }
739
bch2_fs_recovery(struct bch_fs * c)740 int bch2_fs_recovery(struct bch_fs *c)
741 {
742 struct bch_sb_field_clean *clean = NULL;
743 struct jset *last_journal_entry = NULL;
744 u64 last_seq = 0, blacklist_seq, journal_seq;
745 int ret = 0;
746
747 if (c->sb.clean) {
748 clean = bch2_read_superblock_clean(c);
749 ret = PTR_ERR_OR_ZERO(clean);
750 if (ret)
751 goto err;
752
753 bch_info(c, "recovering from clean shutdown, journal seq %llu",
754 le64_to_cpu(clean->journal_seq));
755 } else {
756 bch_info(c, "recovering from unclean shutdown");
757 }
758
759 if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
760 bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
761 ret = -EINVAL;
762 goto err;
763 }
764
765 if (!c->sb.clean &&
766 !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
767 bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
768 ret = -EINVAL;
769 goto err;
770 }
771
772 if (c->opts.fsck && c->opts.norecovery) {
773 bch_err(c, "cannot select both norecovery and fsck");
774 ret = -EINVAL;
775 goto err;
776 }
777
778 if (!c->opts.nochanges) {
779 mutex_lock(&c->sb_lock);
780 bool write_sb = false;
781
782 struct bch_sb_field_ext *ext =
783 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
784 if (!ext) {
785 ret = -BCH_ERR_ENOSPC_sb;
786 mutex_unlock(&c->sb_lock);
787 goto err;
788 }
789
790 if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) {
791 ext->recovery_passes_required[0] |=
792 cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology)));
793 write_sb = true;
794 }
795
796 u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
797 if (sb_passes) {
798 struct printbuf buf = PRINTBUF;
799 prt_str(&buf, "superblock requires following recovery passes to be run:\n ");
800 prt_bitflags(&buf, bch2_recovery_passes, sb_passes);
801 bch_info(c, "%s", buf.buf);
802 printbuf_exit(&buf);
803 }
804
805 if (bch2_check_version_downgrade(c)) {
806 struct printbuf buf = PRINTBUF;
807
808 prt_str(&buf, "Version downgrade required:");
809
810 __le64 passes = ext->recovery_passes_required[0];
811 bch2_sb_set_downgrade(c,
812 BCH_VERSION_MINOR(bcachefs_metadata_version_current),
813 BCH_VERSION_MINOR(c->sb.version));
814 passes = ext->recovery_passes_required[0] & ~passes;
815 if (passes) {
816 prt_str(&buf, "\n running recovery passes: ");
817 prt_bitflags(&buf, bch2_recovery_passes,
818 bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
819 }
820
821 bch_info(c, "%s", buf.buf);
822 printbuf_exit(&buf);
823 write_sb = true;
824 }
825
826 if (check_version_upgrade(c))
827 write_sb = true;
828
829 if (write_sb)
830 bch2_write_super(c);
831
832 c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
833 mutex_unlock(&c->sb_lock);
834 }
835
836 if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
837 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
838
839 if (c->opts.fsck)
840 set_bit(BCH_FS_fsck_running, &c->flags);
841
842 ret = bch2_blacklist_table_initialize(c);
843 if (ret) {
844 bch_err(c, "error initializing blacklist table");
845 goto err;
846 }
847
848 if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) {
849 struct genradix_iter iter;
850 struct journal_replay **i;
851
852 bch_verbose(c, "starting journal read");
853 ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
854 if (ret)
855 goto err;
856
857 /*
858 * note: cmd_list_journal needs the blacklist table fully up to date so
859 * it can asterisk ignored journal entries:
860 */
861 if (c->opts.read_journal_only)
862 goto out;
863
864 genradix_for_each_reverse(&c->journal_entries, iter, i)
865 if (*i && !(*i)->ignore) {
866 last_journal_entry = &(*i)->j;
867 break;
868 }
869
870 if (mustfix_fsck_err_on(c->sb.clean &&
871 last_journal_entry &&
872 !journal_entry_empty(last_journal_entry), c,
873 clean_but_journal_not_empty,
874 "filesystem marked clean but journal not empty")) {
875 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
876 SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
877 c->sb.clean = false;
878 }
879
880 if (!last_journal_entry) {
881 fsck_err_on(!c->sb.clean, c,
882 dirty_but_no_journal_entries,
883 "no journal entries found");
884 if (clean)
885 goto use_clean;
886
887 genradix_for_each_reverse(&c->journal_entries, iter, i)
888 if (*i) {
889 last_journal_entry = &(*i)->j;
890 (*i)->ignore = false;
891 /*
892 * This was probably a NO_FLUSH entry,
893 * so last_seq was garbage - but we know
894 * we're only using a single journal
895 * entry, set it here:
896 */
897 (*i)->j.last_seq = (*i)->j.seq;
898 break;
899 }
900 }
901
902 ret = bch2_journal_keys_sort(c);
903 if (ret)
904 goto err;
905
906 if (c->sb.clean && last_journal_entry) {
907 ret = bch2_verify_superblock_clean(c, &clean,
908 last_journal_entry);
909 if (ret)
910 goto err;
911 }
912 } else {
913 use_clean:
914 if (!clean) {
915 bch_err(c, "no superblock clean section found");
916 ret = -BCH_ERR_fsck_repair_impossible;
917 goto err;
918
919 }
920 blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
921 }
922
923 c->journal_replay_seq_start = last_seq;
924 c->journal_replay_seq_end = blacklist_seq - 1;
925
926 if (c->opts.reconstruct_alloc) {
927 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
928 drop_alloc_keys(&c->journal_keys);
929 }
930
931 zero_out_btree_mem_ptr(&c->journal_keys);
932
933 ret = journal_replay_early(c, clean);
934 if (ret)
935 goto err;
936
937 /*
938 * After an unclean shutdown, skip then next few journal sequence
939 * numbers as they may have been referenced by btree writes that
940 * happened before their corresponding journal writes - those btree
941 * writes need to be ignored, by skipping and blacklisting the next few
942 * journal sequence numbers:
943 */
944 if (!c->sb.clean)
945 journal_seq += 8;
946
947 if (blacklist_seq != journal_seq) {
948 ret = bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
949 blacklist_seq, journal_seq) ?:
950 bch2_journal_seq_blacklist_add(c,
951 blacklist_seq, journal_seq);
952 if (ret) {
953 bch_err(c, "error creating new journal seq blacklist entry");
954 goto err;
955 }
956 }
957
958 ret = bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
959 journal_seq, last_seq, blacklist_seq - 1) ?:
960 bch2_fs_journal_start(&c->journal, journal_seq);
961 if (ret)
962 goto err;
963
964 if (c->opts.reconstruct_alloc)
965 bch2_journal_log_msg(c, "dropping alloc info");
966
967 /*
968 * Skip past versions that might have possibly been used (as nonces),
969 * but hadn't had their pointers written:
970 */
971 if (c->sb.encryption_type && !c->sb.clean)
972 atomic64_add(1 << 16, &c->key_version);
973
974 ret = read_btree_roots(c);
975 if (ret)
976 goto err;
977
978 ret = bch2_run_recovery_passes(c);
979 if (ret)
980 goto err;
981
982 clear_bit(BCH_FS_fsck_running, &c->flags);
983
984 /* If we fixed errors, verify that fs is actually clean now: */
985 if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
986 test_bit(BCH_FS_errors_fixed, &c->flags) &&
987 !test_bit(BCH_FS_errors_not_fixed, &c->flags) &&
988 !test_bit(BCH_FS_error, &c->flags)) {
989 bch2_flush_fsck_errs(c);
990
991 bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean");
992 clear_bit(BCH_FS_errors_fixed, &c->flags);
993
994 c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info;
995
996 ret = bch2_run_recovery_passes(c);
997 if (ret)
998 goto err;
999
1000 if (test_bit(BCH_FS_errors_fixed, &c->flags) ||
1001 test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
1002 bch_err(c, "Second fsck run was not clean");
1003 set_bit(BCH_FS_errors_not_fixed, &c->flags);
1004 }
1005
1006 set_bit(BCH_FS_errors_fixed, &c->flags);
1007 }
1008
1009 if (enabled_qtypes(c)) {
1010 bch_verbose(c, "reading quotas");
1011 ret = bch2_fs_quota_read(c);
1012 if (ret)
1013 goto err;
1014 bch_verbose(c, "quotas done");
1015 }
1016
1017 mutex_lock(&c->sb_lock);
1018 bool write_sb = false;
1019
1020 if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) {
1021 SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version));
1022 write_sb = true;
1023 }
1024
1025 if (!test_bit(BCH_FS_error, &c->flags) &&
1026 !(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) {
1027 c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
1028 write_sb = true;
1029 }
1030
1031 if (!test_bit(BCH_FS_error, &c->flags)) {
1032 struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
1033 if (ext &&
1034 (!bch2_is_zero(ext->recovery_passes_required, sizeof(ext->recovery_passes_required)) ||
1035 !bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent)))) {
1036 memset(ext->recovery_passes_required, 0, sizeof(ext->recovery_passes_required));
1037 memset(ext->errors_silent, 0, sizeof(ext->errors_silent));
1038 write_sb = true;
1039 }
1040 }
1041
1042 if (c->opts.fsck &&
1043 !test_bit(BCH_FS_error, &c->flags) &&
1044 !test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
1045 SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
1046 SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
1047 write_sb = true;
1048 }
1049
1050 if (write_sb)
1051 bch2_write_super(c);
1052 mutex_unlock(&c->sb_lock);
1053
1054 if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
1055 c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
1056 struct bch_move_stats stats;
1057
1058 bch2_move_stats_init(&stats, "recovery");
1059
1060 struct printbuf buf = PRINTBUF;
1061 bch2_version_to_text(&buf, c->sb.version_min);
1062 bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf);
1063 printbuf_exit(&buf);
1064
1065 ret = bch2_fs_read_write_early(c) ?:
1066 bch2_scan_old_btree_nodes(c, &stats);
1067 if (ret)
1068 goto err;
1069 bch_info(c, "scanning for old btree nodes done");
1070 }
1071
1072 if (c->journal_seq_blacklist_table &&
1073 c->journal_seq_blacklist_table->nr > 128)
1074 queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work);
1075
1076 ret = 0;
1077 out:
1078 bch2_flush_fsck_errs(c);
1079
1080 if (!c->opts.keep_journal &&
1081 test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
1082 bch2_journal_keys_put_initial(c);
1083 kfree(clean);
1084
1085 if (!ret &&
1086 test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) &&
1087 !c->opts.nochanges) {
1088 bch2_fs_read_write_early(c);
1089 bch2_delete_dead_snapshots_async(c);
1090 }
1091
1092 bch_err_fn(c, ret);
1093 return ret;
1094 err:
1095 fsck_err:
1096 bch2_fs_emergency_read_only(c);
1097 goto out;
1098 }
1099
bch2_fs_initialize(struct bch_fs * c)1100 int bch2_fs_initialize(struct bch_fs *c)
1101 {
1102 struct bch_inode_unpacked root_inode, lostfound_inode;
1103 struct bkey_inode_buf packed_inode;
1104 struct qstr lostfound = QSTR("lost+found");
1105 int ret;
1106
1107 bch_notice(c, "initializing new filesystem");
1108
1109 mutex_lock(&c->sb_lock);
1110 c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
1111 c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
1112
1113 bch2_check_version_downgrade(c);
1114
1115 if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) {
1116 bch2_sb_upgrade(c, bcachefs_metadata_version_current);
1117 SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current);
1118 bch2_write_super(c);
1119 }
1120 mutex_unlock(&c->sb_lock);
1121
1122 c->curr_recovery_pass = ARRAY_SIZE(recovery_pass_fns);
1123 set_bit(BCH_FS_may_go_rw, &c->flags);
1124
1125 for (unsigned i = 0; i < BTREE_ID_NR; i++)
1126 bch2_btree_root_alloc(c, i);
1127
1128 for_each_member_device(c, ca)
1129 bch2_dev_usage_init(ca);
1130
1131 ret = bch2_fs_journal_alloc(c);
1132 if (ret)
1133 goto err;
1134
1135 /*
1136 * journal_res_get() will crash if called before this has
1137 * set up the journal.pin FIFO and journal.cur pointer:
1138 */
1139 bch2_fs_journal_start(&c->journal, 1);
1140 bch2_journal_set_replay_done(&c->journal);
1141
1142 ret = bch2_fs_read_write_early(c);
1143 if (ret)
1144 goto err;
1145
1146 /*
1147 * Write out the superblock and journal buckets, now that we can do
1148 * btree updates
1149 */
1150 bch_verbose(c, "marking superblocks");
1151 ret = bch2_trans_mark_dev_sbs(c);
1152 bch_err_msg(c, ret, "marking superblocks");
1153 if (ret)
1154 goto err;
1155
1156 for_each_online_member(c, ca)
1157 ca->new_fs_bucket_idx = 0;
1158
1159 ret = bch2_fs_freespace_init(c);
1160 if (ret)
1161 goto err;
1162
1163 ret = bch2_initialize_subvolumes(c);
1164 if (ret)
1165 goto err;
1166
1167 bch_verbose(c, "reading snapshots table");
1168 ret = bch2_snapshots_read(c);
1169 if (ret)
1170 goto err;
1171 bch_verbose(c, "reading snapshots done");
1172
1173 bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
1174 root_inode.bi_inum = BCACHEFS_ROOT_INO;
1175 root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
1176 bch2_inode_pack(&packed_inode, &root_inode);
1177 packed_inode.inode.k.p.snapshot = U32_MAX;
1178
1179 ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0);
1180 bch_err_msg(c, ret, "creating root directory");
1181 if (ret)
1182 goto err;
1183
1184 bch2_inode_init_early(c, &lostfound_inode);
1185
1186 ret = bch2_trans_do(c, NULL, NULL, 0,
1187 bch2_create_trans(trans,
1188 BCACHEFS_ROOT_SUBVOL_INUM,
1189 &root_inode, &lostfound_inode,
1190 &lostfound,
1191 0, 0, S_IFDIR|0700, 0,
1192 NULL, NULL, (subvol_inum) { 0 }, 0));
1193 bch_err_msg(c, ret, "creating lost+found");
1194 if (ret)
1195 goto err;
1196
1197 c->recovery_pass_done = ARRAY_SIZE(recovery_pass_fns) - 1;
1198
1199 if (enabled_qtypes(c)) {
1200 ret = bch2_fs_quota_read(c);
1201 if (ret)
1202 goto err;
1203 }
1204
1205 ret = bch2_journal_flush(&c->journal);
1206 bch_err_msg(c, ret, "writing first journal entry");
1207 if (ret)
1208 goto err;
1209
1210 mutex_lock(&c->sb_lock);
1211 SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
1212 SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
1213
1214 bch2_write_super(c);
1215 mutex_unlock(&c->sb_lock);
1216
1217 return 0;
1218 err:
1219 bch_err_fn(c, ret);
1220 return ret;
1221 }
1222