1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
4 * Copyright 2012 Google, Inc.
5 */
6
7 #include "bcachefs.h"
8 #include "alloc_foreground.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_update.h"
12 #include "buckets.h"
13 #include "checksum.h"
14 #include "clock.h"
15 #include "compress.h"
16 #include "debug.h"
17 #include "ec.h"
18 #include "error.h"
19 #include "extent_update.h"
20 #include "inode.h"
21 #include "io_write.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "nocow_locking.h"
26 #include "rebalance.h"
27 #include "subvolume.h"
28 #include "super.h"
29 #include "super-io.h"
30 #include "trace.h"
31
32 #include <linux/blkdev.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/sched/mm.h>
36
37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
bch2_congested_acct(struct bch_dev * ca,u64 io_latency,u64 now,int rw)39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40 u64 now, int rw)
41 {
42 u64 latency_capable =
43 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44 /* ideally we'd be taking into account the device's variance here: */
45 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46 s64 latency_over = io_latency - latency_threshold;
47
48 if (latency_threshold && latency_over > 0) {
49 /*
50 * bump up congested by approximately latency_over * 4 /
51 * latency_threshold - we don't need much accuracy here so don't
52 * bother with the divide:
53 */
54 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55 atomic_add(latency_over >>
56 max_t(int, ilog2(latency_threshold) - 2, 0),
57 &ca->congested);
58
59 ca->congested_last = now;
60 } else if (atomic_read(&ca->congested) > 0) {
61 atomic_dec(&ca->congested);
62 }
63 }
64
bch2_latency_acct(struct bch_dev * ca,u64 submit_time,int rw)65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66 {
67 atomic64_t *latency = &ca->cur_latency[rw];
68 u64 now = local_clock();
69 u64 io_latency = time_after64(now, submit_time)
70 ? now - submit_time
71 : 0;
72 u64 old, new, v = atomic64_read(latency);
73
74 do {
75 old = v;
76
77 /*
78 * If the io latency was reasonably close to the current
79 * latency, skip doing the update and atomic operation - most of
80 * the time:
81 */
82 if (abs((int) (old - io_latency)) < (old >> 1) &&
83 now & ~(~0U << 5))
84 break;
85
86 new = ewma_add(old, io_latency, 5);
87 } while ((v = atomic64_cmpxchg(latency, old, new)) != old);
88
89 bch2_congested_acct(ca, io_latency, now, rw);
90
91 __bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
92 }
93
94 #endif
95
96 /* Allocate, free from mempool: */
97
bch2_bio_free_pages_pool(struct bch_fs * c,struct bio * bio)98 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
99 {
100 struct bvec_iter_all iter;
101 struct bio_vec *bv;
102
103 bio_for_each_segment_all(bv, bio, iter)
104 if (bv->bv_page != ZERO_PAGE(0))
105 mempool_free(bv->bv_page, &c->bio_bounce_pages);
106 bio->bi_vcnt = 0;
107 }
108
__bio_alloc_page_pool(struct bch_fs * c,bool * using_mempool)109 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
110 {
111 struct page *page;
112
113 if (likely(!*using_mempool)) {
114 page = alloc_page(GFP_NOFS);
115 if (unlikely(!page)) {
116 mutex_lock(&c->bio_bounce_pages_lock);
117 *using_mempool = true;
118 goto pool_alloc;
119
120 }
121 } else {
122 pool_alloc:
123 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
124 }
125
126 return page;
127 }
128
bch2_bio_alloc_pages_pool(struct bch_fs * c,struct bio * bio,size_t size)129 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
130 size_t size)
131 {
132 bool using_mempool = false;
133
134 while (size) {
135 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
136 unsigned len = min_t(size_t, PAGE_SIZE, size);
137
138 BUG_ON(!bio_add_page(bio, page, len, 0));
139 size -= len;
140 }
141
142 if (using_mempool)
143 mutex_unlock(&c->bio_bounce_pages_lock);
144 }
145
146 /* Extent update path: */
147
bch2_sum_sector_overwrites(struct btree_trans * trans,struct btree_iter * extent_iter,struct bkey_i * new,bool * usage_increasing,s64 * i_sectors_delta,s64 * disk_sectors_delta)148 int bch2_sum_sector_overwrites(struct btree_trans *trans,
149 struct btree_iter *extent_iter,
150 struct bkey_i *new,
151 bool *usage_increasing,
152 s64 *i_sectors_delta,
153 s64 *disk_sectors_delta)
154 {
155 struct bch_fs *c = trans->c;
156 struct btree_iter iter;
157 struct bkey_s_c old;
158 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
159 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
160 int ret = 0;
161
162 *usage_increasing = false;
163 *i_sectors_delta = 0;
164 *disk_sectors_delta = 0;
165
166 bch2_trans_copy_iter(&iter, extent_iter);
167
168 for_each_btree_key_upto_continue_norestart(iter,
169 new->k.p, BTREE_ITER_SLOTS, old, ret) {
170 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
171 max(bkey_start_offset(&new->k),
172 bkey_start_offset(old.k));
173
174 *i_sectors_delta += sectors *
175 (bkey_extent_is_allocation(&new->k) -
176 bkey_extent_is_allocation(old.k));
177
178 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
179 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
180 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
181 : 0;
182
183 if (!*usage_increasing &&
184 (new->k.p.snapshot != old.k->p.snapshot ||
185 new_replicas > bch2_bkey_replicas(c, old) ||
186 (!new_compressed && bch2_bkey_sectors_compressed(old))))
187 *usage_increasing = true;
188
189 if (bkey_ge(old.k->p, new->k.p))
190 break;
191 }
192
193 bch2_trans_iter_exit(trans, &iter);
194 return ret;
195 }
196
bch2_extent_update_i_size_sectors(struct btree_trans * trans,struct btree_iter * extent_iter,u64 new_i_size,s64 i_sectors_delta)197 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
198 struct btree_iter *extent_iter,
199 u64 new_i_size,
200 s64 i_sectors_delta)
201 {
202 struct btree_iter iter;
203 struct bkey_i *k;
204 struct bkey_i_inode_v3 *inode;
205 /*
206 * Crazy performance optimization:
207 * Every extent update needs to also update the inode: the inode trigger
208 * will set bi->journal_seq to the journal sequence number of this
209 * transaction - for fsync.
210 *
211 * But if that's the only reason we're updating the inode (we're not
212 * updating bi_size or bi_sectors), then we don't need the inode update
213 * to be journalled - if we crash, the bi_journal_seq update will be
214 * lost, but that's fine.
215 */
216 unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL;
217 int ret;
218
219 k = bch2_bkey_get_mut_noupdate(trans, &iter, BTREE_ID_inodes,
220 SPOS(0,
221 extent_iter->pos.inode,
222 extent_iter->snapshot),
223 BTREE_ITER_CACHED);
224 ret = PTR_ERR_OR_ZERO(k);
225 if (unlikely(ret))
226 return ret;
227
228 if (unlikely(k->k.type != KEY_TYPE_inode_v3)) {
229 k = bch2_inode_to_v3(trans, k);
230 ret = PTR_ERR_OR_ZERO(k);
231 if (unlikely(ret))
232 goto err;
233 }
234
235 inode = bkey_i_to_inode_v3(k);
236
237 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
238 new_i_size > le64_to_cpu(inode->v.bi_size)) {
239 inode->v.bi_size = cpu_to_le64(new_i_size);
240 inode_update_flags = 0;
241 }
242
243 if (i_sectors_delta) {
244 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
245 inode_update_flags = 0;
246 }
247
248 if (inode->k.p.snapshot != iter.snapshot) {
249 inode->k.p.snapshot = iter.snapshot;
250 inode_update_flags = 0;
251 }
252
253 ret = bch2_trans_update(trans, &iter, &inode->k_i,
254 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
255 inode_update_flags);
256 err:
257 bch2_trans_iter_exit(trans, &iter);
258 return ret;
259 }
260
bch2_extent_update(struct btree_trans * trans,subvol_inum inum,struct btree_iter * iter,struct bkey_i * k,struct disk_reservation * disk_res,u64 new_i_size,s64 * i_sectors_delta_total,bool check_enospc)261 int bch2_extent_update(struct btree_trans *trans,
262 subvol_inum inum,
263 struct btree_iter *iter,
264 struct bkey_i *k,
265 struct disk_reservation *disk_res,
266 u64 new_i_size,
267 s64 *i_sectors_delta_total,
268 bool check_enospc)
269 {
270 struct bpos next_pos;
271 bool usage_increasing;
272 s64 i_sectors_delta = 0, disk_sectors_delta = 0;
273 int ret;
274
275 /*
276 * This traverses us the iterator without changing iter->path->pos to
277 * search_key() (which is pos + 1 for extents): we want there to be a
278 * path already traversed at iter->pos because
279 * bch2_trans_extent_update() will use it to attempt extent merging
280 */
281 ret = __bch2_btree_iter_traverse(iter);
282 if (ret)
283 return ret;
284
285 ret = bch2_extent_trim_atomic(trans, iter, k);
286 if (ret)
287 return ret;
288
289 next_pos = k->k.p;
290
291 ret = bch2_sum_sector_overwrites(trans, iter, k,
292 &usage_increasing,
293 &i_sectors_delta,
294 &disk_sectors_delta);
295 if (ret)
296 return ret;
297
298 if (disk_res &&
299 disk_sectors_delta > (s64) disk_res->sectors) {
300 ret = bch2_disk_reservation_add(trans->c, disk_res,
301 disk_sectors_delta - disk_res->sectors,
302 !check_enospc || !usage_increasing
303 ? BCH_DISK_RESERVATION_NOFAIL : 0);
304 if (ret)
305 return ret;
306 }
307
308 /*
309 * Note:
310 * We always have to do an inode update - even when i_size/i_sectors
311 * aren't changing - for fsync to work properly; fsync relies on
312 * inode->bi_journal_seq which is updated by the trigger code:
313 */
314 ret = bch2_extent_update_i_size_sectors(trans, iter,
315 min(k->k.p.offset << 9, new_i_size),
316 i_sectors_delta) ?:
317 bch2_trans_update(trans, iter, k, 0) ?:
318 bch2_trans_commit(trans, disk_res, NULL,
319 BCH_TRANS_COMMIT_no_check_rw|
320 BCH_TRANS_COMMIT_no_enospc);
321 if (unlikely(ret))
322 return ret;
323
324 if (i_sectors_delta_total)
325 *i_sectors_delta_total += i_sectors_delta;
326 bch2_btree_iter_set_pos(iter, next_pos);
327 return 0;
328 }
329
bch2_write_index_default(struct bch_write_op * op)330 static int bch2_write_index_default(struct bch_write_op *op)
331 {
332 struct bch_fs *c = op->c;
333 struct bkey_buf sk;
334 struct keylist *keys = &op->insert_keys;
335 struct bkey_i *k = bch2_keylist_front(keys);
336 struct btree_trans *trans = bch2_trans_get(c);
337 struct btree_iter iter;
338 subvol_inum inum = {
339 .subvol = op->subvol,
340 .inum = k->k.p.inode,
341 };
342 int ret;
343
344 BUG_ON(!inum.subvol);
345
346 bch2_bkey_buf_init(&sk);
347
348 do {
349 bch2_trans_begin(trans);
350
351 k = bch2_keylist_front(keys);
352 bch2_bkey_buf_copy(&sk, c, k);
353
354 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
355 &sk.k->k.p.snapshot);
356 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
357 continue;
358 if (ret)
359 break;
360
361 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
362 bkey_start_pos(&sk.k->k),
363 BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
364
365 ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
366 bch2_extent_update(trans, inum, &iter, sk.k,
367 &op->res,
368 op->new_i_size, &op->i_sectors_delta,
369 op->flags & BCH_WRITE_CHECK_ENOSPC);
370 bch2_trans_iter_exit(trans, &iter);
371
372 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
373 continue;
374 if (ret)
375 break;
376
377 if (bkey_ge(iter.pos, k->k.p))
378 bch2_keylist_pop_front(&op->insert_keys);
379 else
380 bch2_cut_front(iter.pos, k);
381 } while (!bch2_keylist_empty(keys));
382
383 bch2_trans_put(trans);
384 bch2_bkey_buf_exit(&sk, c);
385
386 return ret;
387 }
388
389 /* Writes */
390
bch2_submit_wbio_replicas(struct bch_write_bio * wbio,struct bch_fs * c,enum bch_data_type type,const struct bkey_i * k,bool nocow)391 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
392 enum bch_data_type type,
393 const struct bkey_i *k,
394 bool nocow)
395 {
396 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
397 struct bch_write_bio *n;
398
399 BUG_ON(c->opts.nochanges);
400
401 bkey_for_each_ptr(ptrs, ptr) {
402 BUG_ON(!bch2_dev_exists2(c, ptr->dev));
403
404 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
405
406 if (to_entry(ptr + 1) < ptrs.end) {
407 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
408 GFP_NOFS, &ca->replica_set));
409
410 n->bio.bi_end_io = wbio->bio.bi_end_io;
411 n->bio.bi_private = wbio->bio.bi_private;
412 n->parent = wbio;
413 n->split = true;
414 n->bounce = false;
415 n->put_bio = true;
416 n->bio.bi_opf = wbio->bio.bi_opf;
417 bio_inc_remaining(&wbio->bio);
418 } else {
419 n = wbio;
420 n->split = false;
421 }
422
423 n->c = c;
424 n->dev = ptr->dev;
425 n->have_ioref = nocow || bch2_dev_get_ioref(ca,
426 type == BCH_DATA_btree ? READ : WRITE);
427 n->nocow = nocow;
428 n->submit_time = local_clock();
429 n->inode_offset = bkey_start_offset(&k->k);
430 n->bio.bi_iter.bi_sector = ptr->offset;
431
432 if (likely(n->have_ioref)) {
433 this_cpu_add(ca->io_done->sectors[WRITE][type],
434 bio_sectors(&n->bio));
435
436 bio_set_dev(&n->bio, ca->disk_sb.bdev);
437
438 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
439 bio_endio(&n->bio);
440 continue;
441 }
442
443 submit_bio(&n->bio);
444 } else {
445 n->bio.bi_status = BLK_STS_REMOVED;
446 bio_endio(&n->bio);
447 }
448 }
449 }
450
451 static void __bch2_write(struct bch_write_op *);
452
bch2_write_done(struct closure * cl)453 static void bch2_write_done(struct closure *cl)
454 {
455 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
456 struct bch_fs *c = op->c;
457
458 EBUG_ON(op->open_buckets.nr);
459
460 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
461 bch2_disk_reservation_put(c, &op->res);
462
463 if (!(op->flags & BCH_WRITE_MOVE))
464 bch2_write_ref_put(c, BCH_WRITE_REF_write);
465 bch2_keylist_free(&op->insert_keys, op->inline_keys);
466
467 EBUG_ON(cl->parent);
468 closure_debug_destroy(cl);
469 if (op->end_io)
470 op->end_io(op);
471 }
472
bch2_write_drop_io_error_ptrs(struct bch_write_op * op)473 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
474 {
475 struct keylist *keys = &op->insert_keys;
476 struct bch_extent_ptr *ptr;
477 struct bkey_i *src, *dst = keys->keys, *n;
478
479 for (src = keys->keys; src != keys->top; src = n) {
480 n = bkey_next(src);
481
482 if (bkey_extent_is_direct_data(&src->k)) {
483 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
484 test_bit(ptr->dev, op->failed.d));
485
486 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
487 return -EIO;
488 }
489
490 if (dst != src)
491 memmove_u64s_down(dst, src, src->k.u64s);
492 dst = bkey_next(dst);
493 }
494
495 keys->top = dst;
496 return 0;
497 }
498
499 /**
500 * __bch2_write_index - after a write, update index to point to new data
501 * @op: bch_write_op to process
502 */
__bch2_write_index(struct bch_write_op * op)503 static void __bch2_write_index(struct bch_write_op *op)
504 {
505 struct bch_fs *c = op->c;
506 struct keylist *keys = &op->insert_keys;
507 unsigned dev;
508 int ret = 0;
509
510 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
511 ret = bch2_write_drop_io_error_ptrs(op);
512 if (ret)
513 goto err;
514 }
515
516 if (!bch2_keylist_empty(keys)) {
517 u64 sectors_start = keylist_sectors(keys);
518
519 ret = !(op->flags & BCH_WRITE_MOVE)
520 ? bch2_write_index_default(op)
521 : bch2_data_update_index_update(op);
522
523 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
524 BUG_ON(keylist_sectors(keys) && !ret);
525
526 op->written += sectors_start - keylist_sectors(keys);
527
528 if (ret && !bch2_err_matches(ret, EROFS)) {
529 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
530
531 bch_err_inum_offset_ratelimited(c,
532 insert->k.p.inode, insert->k.p.offset << 9,
533 "write error while doing btree update: %s",
534 bch2_err_str(ret));
535 }
536
537 if (ret)
538 goto err;
539 }
540 out:
541 /* If some a bucket wasn't written, we can't erasure code it: */
542 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
543 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
544
545 bch2_open_buckets_put(c, &op->open_buckets);
546 return;
547 err:
548 keys->top = keys->keys;
549 op->error = ret;
550 op->flags |= BCH_WRITE_DONE;
551 goto out;
552 }
553
__wp_update_state(struct write_point * wp,enum write_point_state state)554 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
555 {
556 if (state != wp->state) {
557 u64 now = ktime_get_ns();
558
559 if (wp->last_state_change &&
560 time_after64(now, wp->last_state_change))
561 wp->time[wp->state] += now - wp->last_state_change;
562 wp->state = state;
563 wp->last_state_change = now;
564 }
565 }
566
wp_update_state(struct write_point * wp,bool running)567 static inline void wp_update_state(struct write_point *wp, bool running)
568 {
569 enum write_point_state state;
570
571 state = running ? WRITE_POINT_running :
572 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
573 : WRITE_POINT_stopped;
574
575 __wp_update_state(wp, state);
576 }
577
CLOSURE_CALLBACK(bch2_write_index)578 static CLOSURE_CALLBACK(bch2_write_index)
579 {
580 closure_type(op, struct bch_write_op, cl);
581 struct write_point *wp = op->wp;
582 struct workqueue_struct *wq = index_update_wq(op);
583 unsigned long flags;
584
585 if ((op->flags & BCH_WRITE_DONE) &&
586 (op->flags & BCH_WRITE_MOVE))
587 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
588
589 spin_lock_irqsave(&wp->writes_lock, flags);
590 if (wp->state == WRITE_POINT_waiting_io)
591 __wp_update_state(wp, WRITE_POINT_waiting_work);
592 list_add_tail(&op->wp_list, &wp->writes);
593 spin_unlock_irqrestore (&wp->writes_lock, flags);
594
595 queue_work(wq, &wp->index_update_work);
596 }
597
bch2_write_queue(struct bch_write_op * op,struct write_point * wp)598 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
599 {
600 op->wp = wp;
601
602 if (wp->state == WRITE_POINT_stopped) {
603 spin_lock_irq(&wp->writes_lock);
604 __wp_update_state(wp, WRITE_POINT_waiting_io);
605 spin_unlock_irq(&wp->writes_lock);
606 }
607 }
608
bch2_write_point_do_index_updates(struct work_struct * work)609 void bch2_write_point_do_index_updates(struct work_struct *work)
610 {
611 struct write_point *wp =
612 container_of(work, struct write_point, index_update_work);
613 struct bch_write_op *op;
614
615 while (1) {
616 spin_lock_irq(&wp->writes_lock);
617 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
618 if (op)
619 list_del(&op->wp_list);
620 wp_update_state(wp, op != NULL);
621 spin_unlock_irq(&wp->writes_lock);
622
623 if (!op)
624 break;
625
626 op->flags |= BCH_WRITE_IN_WORKER;
627
628 __bch2_write_index(op);
629
630 if (!(op->flags & BCH_WRITE_DONE))
631 __bch2_write(op);
632 else
633 bch2_write_done(&op->cl);
634 }
635 }
636
bch2_write_endio(struct bio * bio)637 static void bch2_write_endio(struct bio *bio)
638 {
639 struct closure *cl = bio->bi_private;
640 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
641 struct bch_write_bio *wbio = to_wbio(bio);
642 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
643 struct bch_fs *c = wbio->c;
644 struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
645
646 if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
647 op->pos.inode,
648 wbio->inode_offset << 9,
649 "data write error: %s",
650 bch2_blk_status_to_str(bio->bi_status))) {
651 set_bit(wbio->dev, op->failed.d);
652 op->flags |= BCH_WRITE_IO_ERROR;
653 }
654
655 if (wbio->nocow)
656 set_bit(wbio->dev, op->devs_need_flush->d);
657
658 if (wbio->have_ioref) {
659 bch2_latency_acct(ca, wbio->submit_time, WRITE);
660 percpu_ref_put(&ca->io_ref);
661 }
662
663 if (wbio->bounce)
664 bch2_bio_free_pages_pool(c, bio);
665
666 if (wbio->put_bio)
667 bio_put(bio);
668
669 if (parent)
670 bio_endio(&parent->bio);
671 else
672 closure_put(cl);
673 }
674
init_append_extent(struct bch_write_op * op,struct write_point * wp,struct bversion version,struct bch_extent_crc_unpacked crc)675 static void init_append_extent(struct bch_write_op *op,
676 struct write_point *wp,
677 struct bversion version,
678 struct bch_extent_crc_unpacked crc)
679 {
680 struct bkey_i_extent *e;
681
682 op->pos.offset += crc.uncompressed_size;
683
684 e = bkey_extent_init(op->insert_keys.top);
685 e->k.p = op->pos;
686 e->k.size = crc.uncompressed_size;
687 e->k.version = version;
688
689 if (crc.csum_type ||
690 crc.compression_type ||
691 crc.nonce)
692 bch2_extent_crc_append(&e->k_i, crc);
693
694 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
695 op->flags & BCH_WRITE_CACHED);
696
697 bch2_keylist_push(&op->insert_keys);
698 }
699
bch2_write_bio_alloc(struct bch_fs * c,struct write_point * wp,struct bio * src,bool * page_alloc_failed,void * buf)700 static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
701 struct write_point *wp,
702 struct bio *src,
703 bool *page_alloc_failed,
704 void *buf)
705 {
706 struct bch_write_bio *wbio;
707 struct bio *bio;
708 unsigned output_available =
709 min(wp->sectors_free << 9, src->bi_iter.bi_size);
710 unsigned pages = DIV_ROUND_UP(output_available +
711 (buf
712 ? ((unsigned long) buf & (PAGE_SIZE - 1))
713 : 0), PAGE_SIZE);
714
715 pages = min(pages, BIO_MAX_VECS);
716
717 bio = bio_alloc_bioset(NULL, pages, 0,
718 GFP_NOFS, &c->bio_write);
719 wbio = wbio_init(bio);
720 wbio->put_bio = true;
721 /* copy WRITE_SYNC flag */
722 wbio->bio.bi_opf = src->bi_opf;
723
724 if (buf) {
725 bch2_bio_map(bio, buf, output_available);
726 return bio;
727 }
728
729 wbio->bounce = true;
730
731 /*
732 * We can't use mempool for more than c->sb.encoded_extent_max
733 * worth of pages, but we'd like to allocate more if we can:
734 */
735 bch2_bio_alloc_pages_pool(c, bio,
736 min_t(unsigned, output_available,
737 c->opts.encoded_extent_max));
738
739 if (bio->bi_iter.bi_size < output_available)
740 *page_alloc_failed =
741 bch2_bio_alloc_pages(bio,
742 output_available -
743 bio->bi_iter.bi_size,
744 GFP_NOFS) != 0;
745
746 return bio;
747 }
748
bch2_write_rechecksum(struct bch_fs * c,struct bch_write_op * op,unsigned new_csum_type)749 static int bch2_write_rechecksum(struct bch_fs *c,
750 struct bch_write_op *op,
751 unsigned new_csum_type)
752 {
753 struct bio *bio = &op->wbio.bio;
754 struct bch_extent_crc_unpacked new_crc;
755 int ret;
756
757 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
758
759 if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
760 bch2_csum_type_is_encryption(new_csum_type))
761 new_csum_type = op->crc.csum_type;
762
763 ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
764 NULL, &new_crc,
765 op->crc.offset, op->crc.live_size,
766 new_csum_type);
767 if (ret)
768 return ret;
769
770 bio_advance(bio, op->crc.offset << 9);
771 bio->bi_iter.bi_size = op->crc.live_size << 9;
772 op->crc = new_crc;
773 return 0;
774 }
775
bch2_write_decrypt(struct bch_write_op * op)776 static int bch2_write_decrypt(struct bch_write_op *op)
777 {
778 struct bch_fs *c = op->c;
779 struct nonce nonce = extent_nonce(op->version, op->crc);
780 struct bch_csum csum;
781 int ret;
782
783 if (!bch2_csum_type_is_encryption(op->crc.csum_type))
784 return 0;
785
786 /*
787 * If we need to decrypt data in the write path, we'll no longer be able
788 * to verify the existing checksum (poly1305 mac, in this case) after
789 * it's decrypted - this is the last point we'll be able to reverify the
790 * checksum:
791 */
792 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
793 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
794 return -EIO;
795
796 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
797 op->crc.csum_type = 0;
798 op->crc.csum = (struct bch_csum) { 0, 0 };
799 return ret;
800 }
801
802 static enum prep_encoded_ret {
803 PREP_ENCODED_OK,
804 PREP_ENCODED_ERR,
805 PREP_ENCODED_CHECKSUM_ERR,
806 PREP_ENCODED_DO_WRITE,
bch2_write_prep_encoded_data(struct bch_write_op * op,struct write_point * wp)807 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
808 {
809 struct bch_fs *c = op->c;
810 struct bio *bio = &op->wbio.bio;
811
812 if (!(op->flags & BCH_WRITE_DATA_ENCODED))
813 return PREP_ENCODED_OK;
814
815 BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
816
817 /* Can we just write the entire extent as is? */
818 if (op->crc.uncompressed_size == op->crc.live_size &&
819 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
820 op->crc.compressed_size <= wp->sectors_free &&
821 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
822 op->incompressible)) {
823 if (!crc_is_compressed(op->crc) &&
824 op->csum_type != op->crc.csum_type &&
825 bch2_write_rechecksum(c, op, op->csum_type) &&
826 !c->opts.no_data_io)
827 return PREP_ENCODED_CHECKSUM_ERR;
828
829 return PREP_ENCODED_DO_WRITE;
830 }
831
832 /*
833 * If the data is compressed and we couldn't write the entire extent as
834 * is, we have to decompress it:
835 */
836 if (crc_is_compressed(op->crc)) {
837 struct bch_csum csum;
838
839 if (bch2_write_decrypt(op))
840 return PREP_ENCODED_CHECKSUM_ERR;
841
842 /* Last point we can still verify checksum: */
843 csum = bch2_checksum_bio(c, op->crc.csum_type,
844 extent_nonce(op->version, op->crc),
845 bio);
846 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
847 return PREP_ENCODED_CHECKSUM_ERR;
848
849 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
850 return PREP_ENCODED_ERR;
851 }
852
853 /*
854 * No longer have compressed data after this point - data might be
855 * encrypted:
856 */
857
858 /*
859 * If the data is checksummed and we're only writing a subset,
860 * rechecksum and adjust bio to point to currently live data:
861 */
862 if ((op->crc.live_size != op->crc.uncompressed_size ||
863 op->crc.csum_type != op->csum_type) &&
864 bch2_write_rechecksum(c, op, op->csum_type) &&
865 !c->opts.no_data_io)
866 return PREP_ENCODED_CHECKSUM_ERR;
867
868 /*
869 * If we want to compress the data, it has to be decrypted:
870 */
871 if ((op->compression_opt ||
872 bch2_csum_type_is_encryption(op->crc.csum_type) !=
873 bch2_csum_type_is_encryption(op->csum_type)) &&
874 bch2_write_decrypt(op))
875 return PREP_ENCODED_CHECKSUM_ERR;
876
877 return PREP_ENCODED_OK;
878 }
879
bch2_write_extent(struct bch_write_op * op,struct write_point * wp,struct bio ** _dst)880 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
881 struct bio **_dst)
882 {
883 struct bch_fs *c = op->c;
884 struct bio *src = &op->wbio.bio, *dst = src;
885 struct bvec_iter saved_iter;
886 void *ec_buf;
887 unsigned total_output = 0, total_input = 0;
888 bool bounce = false;
889 bool page_alloc_failed = false;
890 int ret, more = 0;
891
892 BUG_ON(!bio_sectors(src));
893
894 ec_buf = bch2_writepoint_ec_buf(c, wp);
895
896 switch (bch2_write_prep_encoded_data(op, wp)) {
897 case PREP_ENCODED_OK:
898 break;
899 case PREP_ENCODED_ERR:
900 ret = -EIO;
901 goto err;
902 case PREP_ENCODED_CHECKSUM_ERR:
903 goto csum_err;
904 case PREP_ENCODED_DO_WRITE:
905 /* XXX look for bug here */
906 if (ec_buf) {
907 dst = bch2_write_bio_alloc(c, wp, src,
908 &page_alloc_failed,
909 ec_buf);
910 bio_copy_data(dst, src);
911 bounce = true;
912 }
913 init_append_extent(op, wp, op->version, op->crc);
914 goto do_write;
915 }
916
917 if (ec_buf ||
918 op->compression_opt ||
919 (op->csum_type &&
920 !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
921 (bch2_csum_type_is_encryption(op->csum_type) &&
922 !(op->flags & BCH_WRITE_PAGES_OWNED))) {
923 dst = bch2_write_bio_alloc(c, wp, src,
924 &page_alloc_failed,
925 ec_buf);
926 bounce = true;
927 }
928
929 saved_iter = dst->bi_iter;
930
931 do {
932 struct bch_extent_crc_unpacked crc = { 0 };
933 struct bversion version = op->version;
934 size_t dst_len = 0, src_len = 0;
935
936 if (page_alloc_failed &&
937 dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
938 dst->bi_iter.bi_size < c->opts.encoded_extent_max)
939 break;
940
941 BUG_ON(op->compression_opt &&
942 (op->flags & BCH_WRITE_DATA_ENCODED) &&
943 bch2_csum_type_is_encryption(op->crc.csum_type));
944 BUG_ON(op->compression_opt && !bounce);
945
946 crc.compression_type = op->incompressible
947 ? BCH_COMPRESSION_TYPE_incompressible
948 : op->compression_opt
949 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
950 op->compression_opt)
951 : 0;
952 if (!crc_is_compressed(crc)) {
953 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
954 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
955
956 if (op->csum_type)
957 dst_len = min_t(unsigned, dst_len,
958 c->opts.encoded_extent_max);
959
960 if (bounce) {
961 swap(dst->bi_iter.bi_size, dst_len);
962 bio_copy_data(dst, src);
963 swap(dst->bi_iter.bi_size, dst_len);
964 }
965
966 src_len = dst_len;
967 }
968
969 BUG_ON(!src_len || !dst_len);
970
971 if (bch2_csum_type_is_encryption(op->csum_type)) {
972 if (bversion_zero(version)) {
973 version.lo = atomic64_inc_return(&c->key_version);
974 } else {
975 crc.nonce = op->nonce;
976 op->nonce += src_len >> 9;
977 }
978 }
979
980 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
981 !crc_is_compressed(crc) &&
982 bch2_csum_type_is_encryption(op->crc.csum_type) ==
983 bch2_csum_type_is_encryption(op->csum_type)) {
984 u8 compression_type = crc.compression_type;
985 u16 nonce = crc.nonce;
986 /*
987 * Note: when we're using rechecksum(), we need to be
988 * checksumming @src because it has all the data our
989 * existing checksum covers - if we bounced (because we
990 * were trying to compress), @dst will only have the
991 * part of the data the new checksum will cover.
992 *
993 * But normally we want to be checksumming post bounce,
994 * because part of the reason for bouncing is so the
995 * data can't be modified (by userspace) while it's in
996 * flight.
997 */
998 if (bch2_rechecksum_bio(c, src, version, op->crc,
999 &crc, &op->crc,
1000 src_len >> 9,
1001 bio_sectors(src) - (src_len >> 9),
1002 op->csum_type))
1003 goto csum_err;
1004 /*
1005 * rchecksum_bio sets compression_type on crc from op->crc,
1006 * this isn't always correct as sometimes we're changing
1007 * an extent from uncompressed to incompressible.
1008 */
1009 crc.compression_type = compression_type;
1010 crc.nonce = nonce;
1011 } else {
1012 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1013 bch2_rechecksum_bio(c, src, version, op->crc,
1014 NULL, &op->crc,
1015 src_len >> 9,
1016 bio_sectors(src) - (src_len >> 9),
1017 op->crc.csum_type))
1018 goto csum_err;
1019
1020 crc.compressed_size = dst_len >> 9;
1021 crc.uncompressed_size = src_len >> 9;
1022 crc.live_size = src_len >> 9;
1023
1024 swap(dst->bi_iter.bi_size, dst_len);
1025 ret = bch2_encrypt_bio(c, op->csum_type,
1026 extent_nonce(version, crc), dst);
1027 if (ret)
1028 goto err;
1029
1030 crc.csum = bch2_checksum_bio(c, op->csum_type,
1031 extent_nonce(version, crc), dst);
1032 crc.csum_type = op->csum_type;
1033 swap(dst->bi_iter.bi_size, dst_len);
1034 }
1035
1036 init_append_extent(op, wp, version, crc);
1037
1038 if (dst != src)
1039 bio_advance(dst, dst_len);
1040 bio_advance(src, src_len);
1041 total_output += dst_len;
1042 total_input += src_len;
1043 } while (dst->bi_iter.bi_size &&
1044 src->bi_iter.bi_size &&
1045 wp->sectors_free &&
1046 !bch2_keylist_realloc(&op->insert_keys,
1047 op->inline_keys,
1048 ARRAY_SIZE(op->inline_keys),
1049 BKEY_EXTENT_U64s_MAX));
1050
1051 more = src->bi_iter.bi_size != 0;
1052
1053 dst->bi_iter = saved_iter;
1054
1055 if (dst == src && more) {
1056 BUG_ON(total_output != total_input);
1057
1058 dst = bio_split(src, total_input >> 9,
1059 GFP_NOFS, &c->bio_write);
1060 wbio_init(dst)->put_bio = true;
1061 /* copy WRITE_SYNC flag */
1062 dst->bi_opf = src->bi_opf;
1063 }
1064
1065 dst->bi_iter.bi_size = total_output;
1066 do_write:
1067 *_dst = dst;
1068 return more;
1069 csum_err:
1070 bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)");
1071 ret = -EIO;
1072 err:
1073 if (to_wbio(dst)->bounce)
1074 bch2_bio_free_pages_pool(c, dst);
1075 if (to_wbio(dst)->put_bio)
1076 bio_put(dst);
1077
1078 return ret;
1079 }
1080
bch2_extent_is_writeable(struct bch_write_op * op,struct bkey_s_c k)1081 static bool bch2_extent_is_writeable(struct bch_write_op *op,
1082 struct bkey_s_c k)
1083 {
1084 struct bch_fs *c = op->c;
1085 struct bkey_s_c_extent e;
1086 struct extent_ptr_decoded p;
1087 const union bch_extent_entry *entry;
1088 unsigned replicas = 0;
1089
1090 if (k.k->type != KEY_TYPE_extent)
1091 return false;
1092
1093 e = bkey_s_c_to_extent(k);
1094 extent_for_each_ptr_decode(e, p, entry) {
1095 if (crc_is_encoded(p.crc) || p.has_ec)
1096 return false;
1097
1098 replicas += bch2_extent_ptr_durability(c, &p);
1099 }
1100
1101 return replicas >= op->opts.data_replicas;
1102 }
1103
bch2_nocow_write_unlock(struct bch_write_op * op)1104 static inline void bch2_nocow_write_unlock(struct bch_write_op *op)
1105 {
1106 struct bch_fs *c = op->c;
1107
1108 for_each_keylist_key(&op->insert_keys, k) {
1109 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
1110
1111 bkey_for_each_ptr(ptrs, ptr)
1112 bch2_bucket_nocow_unlock(&c->nocow_locks,
1113 PTR_BUCKET_POS(c, ptr),
1114 BUCKET_NOCOW_LOCK_UPDATE);
1115 }
1116 }
1117
bch2_nocow_write_convert_one_unwritten(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * orig,struct bkey_s_c k,u64 new_i_size)1118 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1119 struct btree_iter *iter,
1120 struct bkey_i *orig,
1121 struct bkey_s_c k,
1122 u64 new_i_size)
1123 {
1124 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1125 /* trace this */
1126 return 0;
1127 }
1128
1129 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1130 int ret = PTR_ERR_OR_ZERO(new);
1131 if (ret)
1132 return ret;
1133
1134 bch2_cut_front(bkey_start_pos(&orig->k), new);
1135 bch2_cut_back(orig->k.p, new);
1136
1137 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1138 bkey_for_each_ptr(ptrs, ptr)
1139 ptr->unwritten = 0;
1140
1141 /*
1142 * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1143 * that was done when we kicked off the write, and here it's important
1144 * that we update the extent that we wrote to - even if a snapshot has
1145 * since been created. The write is still outstanding, so we're ok
1146 * w.r.t. snapshot atomicity:
1147 */
1148 return bch2_extent_update_i_size_sectors(trans, iter,
1149 min(new->k.p.offset << 9, new_i_size), 0) ?:
1150 bch2_trans_update(trans, iter, new,
1151 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
1152 }
1153
bch2_nocow_write_convert_unwritten(struct bch_write_op * op)1154 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1155 {
1156 struct bch_fs *c = op->c;
1157 struct btree_trans *trans = bch2_trans_get(c);
1158
1159 for_each_keylist_key(&op->insert_keys, orig) {
1160 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1161 bkey_start_pos(&orig->k), orig->k.p,
1162 BTREE_ITER_INTENT, k,
1163 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1164 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1165 }));
1166
1167 if (ret && !bch2_err_matches(ret, EROFS)) {
1168 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1169
1170 bch_err_inum_offset_ratelimited(c,
1171 insert->k.p.inode, insert->k.p.offset << 9,
1172 "write error while doing btree update: %s",
1173 bch2_err_str(ret));
1174 }
1175
1176 if (ret) {
1177 op->error = ret;
1178 break;
1179 }
1180 }
1181
1182 bch2_trans_put(trans);
1183 }
1184
__bch2_nocow_write_done(struct bch_write_op * op)1185 static void __bch2_nocow_write_done(struct bch_write_op *op)
1186 {
1187 bch2_nocow_write_unlock(op);
1188
1189 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1190 op->error = -EIO;
1191 } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1192 bch2_nocow_write_convert_unwritten(op);
1193 }
1194
CLOSURE_CALLBACK(bch2_nocow_write_done)1195 static CLOSURE_CALLBACK(bch2_nocow_write_done)
1196 {
1197 closure_type(op, struct bch_write_op, cl);
1198
1199 __bch2_nocow_write_done(op);
1200 bch2_write_done(cl);
1201 }
1202
1203 struct bucket_to_lock {
1204 struct bpos b;
1205 unsigned gen;
1206 struct nocow_lock_bucket *l;
1207 };
1208
bch2_nocow_write(struct bch_write_op * op)1209 static void bch2_nocow_write(struct bch_write_op *op)
1210 {
1211 struct bch_fs *c = op->c;
1212 struct btree_trans *trans;
1213 struct btree_iter iter;
1214 struct bkey_s_c k;
1215 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1216 u32 snapshot;
1217 struct bucket_to_lock *stale_at;
1218 int ret;
1219
1220 if (op->flags & BCH_WRITE_MOVE)
1221 return;
1222
1223 darray_init(&buckets);
1224 trans = bch2_trans_get(c);
1225 retry:
1226 bch2_trans_begin(trans);
1227
1228 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1229 if (unlikely(ret))
1230 goto err;
1231
1232 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1233 SPOS(op->pos.inode, op->pos.offset, snapshot),
1234 BTREE_ITER_SLOTS);
1235 while (1) {
1236 struct bio *bio = &op->wbio.bio;
1237
1238 buckets.nr = 0;
1239
1240 k = bch2_btree_iter_peek_slot(&iter);
1241 ret = bkey_err(k);
1242 if (ret)
1243 break;
1244
1245 /* fall back to normal cow write path? */
1246 if (unlikely(k.k->p.snapshot != snapshot ||
1247 !bch2_extent_is_writeable(op, k)))
1248 break;
1249
1250 if (bch2_keylist_realloc(&op->insert_keys,
1251 op->inline_keys,
1252 ARRAY_SIZE(op->inline_keys),
1253 k.k->u64s))
1254 break;
1255
1256 /* Get iorefs before dropping btree locks: */
1257 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1258 bkey_for_each_ptr(ptrs, ptr) {
1259 struct bpos b = PTR_BUCKET_POS(c, ptr);
1260 struct nocow_lock_bucket *l =
1261 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1262 prefetch(l);
1263
1264 if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE)))
1265 goto err_get_ioref;
1266
1267 /* XXX allocating memory with btree locks held - rare */
1268 darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1269 .b = b, .gen = ptr->gen, .l = l,
1270 }), GFP_KERNEL|__GFP_NOFAIL);
1271
1272 if (ptr->unwritten)
1273 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1274 }
1275
1276 /* Unlock before taking nocow locks, doing IO: */
1277 bkey_reassemble(op->insert_keys.top, k);
1278 bch2_trans_unlock(trans);
1279
1280 bch2_cut_front(op->pos, op->insert_keys.top);
1281 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1282 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1283
1284 darray_for_each(buckets, i) {
1285 struct bch_dev *ca = bch_dev_bkey_exists(c, i->b.inode);
1286
1287 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1288 bucket_to_u64(i->b),
1289 BUCKET_NOCOW_LOCK_UPDATE);
1290
1291 rcu_read_lock();
1292 bool stale = gen_after(*bucket_gen(ca, i->b.offset), i->gen);
1293 rcu_read_unlock();
1294
1295 if (unlikely(stale)) {
1296 stale_at = i;
1297 goto err_bucket_stale;
1298 }
1299 }
1300
1301 bio = &op->wbio.bio;
1302 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1303 bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1304 GFP_KERNEL, &c->bio_write);
1305 wbio_init(bio)->put_bio = true;
1306 bio->bi_opf = op->wbio.bio.bi_opf;
1307 } else {
1308 op->flags |= BCH_WRITE_DONE;
1309 }
1310
1311 op->pos.offset += bio_sectors(bio);
1312 op->written += bio_sectors(bio);
1313
1314 bio->bi_end_io = bch2_write_endio;
1315 bio->bi_private = &op->cl;
1316 bio->bi_opf |= REQ_OP_WRITE;
1317 closure_get(&op->cl);
1318 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1319 op->insert_keys.top, true);
1320
1321 bch2_keylist_push(&op->insert_keys);
1322 if (op->flags & BCH_WRITE_DONE)
1323 break;
1324 bch2_btree_iter_advance(&iter);
1325 }
1326 out:
1327 bch2_trans_iter_exit(trans, &iter);
1328 err:
1329 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1330 goto retry;
1331
1332 if (ret) {
1333 bch_err_inum_offset_ratelimited(c,
1334 op->pos.inode, op->pos.offset << 9,
1335 "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1336 op->error = ret;
1337 op->flags |= BCH_WRITE_DONE;
1338 }
1339
1340 bch2_trans_put(trans);
1341 darray_exit(&buckets);
1342
1343 /* fallback to cow write path? */
1344 if (!(op->flags & BCH_WRITE_DONE)) {
1345 closure_sync(&op->cl);
1346 __bch2_nocow_write_done(op);
1347 op->insert_keys.top = op->insert_keys.keys;
1348 } else if (op->flags & BCH_WRITE_SYNC) {
1349 closure_sync(&op->cl);
1350 bch2_nocow_write_done(&op->cl.work);
1351 } else {
1352 /*
1353 * XXX
1354 * needs to run out of process context because ei_quota_lock is
1355 * a mutex
1356 */
1357 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1358 }
1359 return;
1360 err_get_ioref:
1361 darray_for_each(buckets, i)
1362 percpu_ref_put(&bch_dev_bkey_exists(c, i->b.inode)->io_ref);
1363
1364 /* Fall back to COW path: */
1365 goto out;
1366 err_bucket_stale:
1367 darray_for_each(buckets, i) {
1368 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1369 if (i == stale_at)
1370 break;
1371 }
1372
1373 /* We can retry this: */
1374 ret = -BCH_ERR_transaction_restart;
1375 goto err_get_ioref;
1376 }
1377
__bch2_write(struct bch_write_op * op)1378 static void __bch2_write(struct bch_write_op *op)
1379 {
1380 struct bch_fs *c = op->c;
1381 struct write_point *wp = NULL;
1382 struct bio *bio = NULL;
1383 unsigned nofs_flags;
1384 int ret;
1385
1386 nofs_flags = memalloc_nofs_save();
1387
1388 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1389 bch2_nocow_write(op);
1390 if (op->flags & BCH_WRITE_DONE)
1391 goto out_nofs_restore;
1392 }
1393 again:
1394 memset(&op->failed, 0, sizeof(op->failed));
1395
1396 do {
1397 struct bkey_i *key_to_write;
1398 unsigned key_to_write_offset = op->insert_keys.top_p -
1399 op->insert_keys.keys_p;
1400
1401 /* +1 for possible cache device: */
1402 if (op->open_buckets.nr + op->nr_replicas + 1 >
1403 ARRAY_SIZE(op->open_buckets.v))
1404 break;
1405
1406 if (bch2_keylist_realloc(&op->insert_keys,
1407 op->inline_keys,
1408 ARRAY_SIZE(op->inline_keys),
1409 BKEY_EXTENT_U64s_MAX))
1410 break;
1411
1412 /*
1413 * The copygc thread is now global, which means it's no longer
1414 * freeing up space on specific disks, which means that
1415 * allocations for specific disks may hang arbitrarily long:
1416 */
1417 ret = bch2_trans_do(c, NULL, NULL, 0,
1418 bch2_alloc_sectors_start_trans(trans,
1419 op->target,
1420 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1421 op->write_point,
1422 &op->devs_have,
1423 op->nr_replicas,
1424 op->nr_replicas_required,
1425 op->watermark,
1426 op->flags,
1427 (op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1428 BCH_WRITE_ONLY_SPECIFIED_DEVS))
1429 ? NULL : &op->cl, &wp));
1430 if (unlikely(ret)) {
1431 if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1432 break;
1433
1434 goto err;
1435 }
1436
1437 EBUG_ON(!wp);
1438
1439 bch2_open_bucket_get(c, wp, &op->open_buckets);
1440 ret = bch2_write_extent(op, wp, &bio);
1441
1442 bch2_alloc_sectors_done_inlined(c, wp);
1443 err:
1444 if (ret <= 0) {
1445 op->flags |= BCH_WRITE_DONE;
1446
1447 if (ret < 0) {
1448 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
1449 bch_err_inum_offset_ratelimited(c,
1450 op->pos.inode,
1451 op->pos.offset << 9,
1452 "%s(): error: %s", __func__, bch2_err_str(ret));
1453 op->error = ret;
1454 break;
1455 }
1456 }
1457
1458 bio->bi_end_io = bch2_write_endio;
1459 bio->bi_private = &op->cl;
1460 bio->bi_opf |= REQ_OP_WRITE;
1461
1462 closure_get(bio->bi_private);
1463
1464 key_to_write = (void *) (op->insert_keys.keys_p +
1465 key_to_write_offset);
1466
1467 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1468 key_to_write, false);
1469 } while (ret);
1470
1471 /*
1472 * Sync or no?
1473 *
1474 * If we're running asynchronously, wne may still want to block
1475 * synchronously here if we weren't able to submit all of the IO at
1476 * once, as that signals backpressure to the caller.
1477 */
1478 if ((op->flags & BCH_WRITE_SYNC) ||
1479 (!(op->flags & BCH_WRITE_DONE) &&
1480 !(op->flags & BCH_WRITE_IN_WORKER))) {
1481 closure_sync(&op->cl);
1482 __bch2_write_index(op);
1483
1484 if (!(op->flags & BCH_WRITE_DONE))
1485 goto again;
1486 bch2_write_done(&op->cl);
1487 } else {
1488 bch2_write_queue(op, wp);
1489 continue_at(&op->cl, bch2_write_index, NULL);
1490 }
1491 out_nofs_restore:
1492 memalloc_nofs_restore(nofs_flags);
1493 }
1494
bch2_write_data_inline(struct bch_write_op * op,unsigned data_len)1495 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1496 {
1497 struct bio *bio = &op->wbio.bio;
1498 struct bvec_iter iter;
1499 struct bkey_i_inline_data *id;
1500 unsigned sectors;
1501 int ret;
1502
1503 op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1504 op->flags |= BCH_WRITE_DONE;
1505
1506 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1507
1508 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1509 ARRAY_SIZE(op->inline_keys),
1510 BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1511 if (ret) {
1512 op->error = ret;
1513 goto err;
1514 }
1515
1516 sectors = bio_sectors(bio);
1517 op->pos.offset += sectors;
1518
1519 id = bkey_inline_data_init(op->insert_keys.top);
1520 id->k.p = op->pos;
1521 id->k.version = op->version;
1522 id->k.size = sectors;
1523
1524 iter = bio->bi_iter;
1525 iter.bi_size = data_len;
1526 memcpy_from_bio(id->v.data, bio, iter);
1527
1528 while (data_len & 7)
1529 id->v.data[data_len++] = '\0';
1530 set_bkey_val_bytes(&id->k, data_len);
1531 bch2_keylist_push(&op->insert_keys);
1532
1533 __bch2_write_index(op);
1534 err:
1535 bch2_write_done(&op->cl);
1536 }
1537
1538 /**
1539 * bch2_write() - handle a write to a cache device or flash only volume
1540 * @cl: &bch_write_op->cl
1541 *
1542 * This is the starting point for any data to end up in a cache device; it could
1543 * be from a normal write, or a writeback write, or a write to a flash only
1544 * volume - it's also used by the moving garbage collector to compact data in
1545 * mostly empty buckets.
1546 *
1547 * It first writes the data to the cache, creating a list of keys to be inserted
1548 * (if the data won't fit in a single open bucket, there will be multiple keys);
1549 * after the data is written it calls bch_journal, and after the keys have been
1550 * added to the next journal write they're inserted into the btree.
1551 *
1552 * If op->discard is true, instead of inserting the data it invalidates the
1553 * region of the cache represented by op->bio and op->inode.
1554 */
CLOSURE_CALLBACK(bch2_write)1555 CLOSURE_CALLBACK(bch2_write)
1556 {
1557 closure_type(op, struct bch_write_op, cl);
1558 struct bio *bio = &op->wbio.bio;
1559 struct bch_fs *c = op->c;
1560 unsigned data_len;
1561
1562 EBUG_ON(op->cl.parent);
1563 BUG_ON(!op->nr_replicas);
1564 BUG_ON(!op->write_point.v);
1565 BUG_ON(bkey_eq(op->pos, POS_MAX));
1566
1567 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
1568 op->start_time = local_clock();
1569 bch2_keylist_init(&op->insert_keys, op->inline_keys);
1570 wbio_init(bio)->put_bio = false;
1571
1572 if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1573 bch_err_inum_offset_ratelimited(c,
1574 op->pos.inode,
1575 op->pos.offset << 9,
1576 "misaligned write");
1577 op->error = -EIO;
1578 goto err;
1579 }
1580
1581 if (c->opts.nochanges) {
1582 op->error = -BCH_ERR_erofs_no_writes;
1583 goto err;
1584 }
1585
1586 if (!(op->flags & BCH_WRITE_MOVE) &&
1587 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1588 op->error = -BCH_ERR_erofs_no_writes;
1589 goto err;
1590 }
1591
1592 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1593 bch2_increment_clock(c, bio_sectors(bio), WRITE);
1594
1595 data_len = min_t(u64, bio->bi_iter.bi_size,
1596 op->new_i_size - (op->pos.offset << 9));
1597
1598 if (c->opts.inline_data &&
1599 data_len <= min(block_bytes(c) / 2, 1024U)) {
1600 bch2_write_data_inline(op, data_len);
1601 return;
1602 }
1603
1604 __bch2_write(op);
1605 return;
1606 err:
1607 bch2_disk_reservation_put(c, &op->res);
1608
1609 closure_debug_destroy(&op->cl);
1610 if (op->end_io)
1611 op->end_io(op);
1612 }
1613
1614 static const char * const bch2_write_flags[] = {
1615 #define x(f) #f,
1616 BCH_WRITE_FLAGS()
1617 #undef x
1618 NULL
1619 };
1620
bch2_write_op_to_text(struct printbuf * out,struct bch_write_op * op)1621 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1622 {
1623 prt_str(out, "pos: ");
1624 bch2_bpos_to_text(out, op->pos);
1625 prt_newline(out);
1626 printbuf_indent_add(out, 2);
1627
1628 prt_str(out, "started: ");
1629 bch2_pr_time_units(out, local_clock() - op->start_time);
1630 prt_newline(out);
1631
1632 prt_str(out, "flags: ");
1633 prt_bitflags(out, bch2_write_flags, op->flags);
1634 prt_newline(out);
1635
1636 prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl));
1637 prt_newline(out);
1638
1639 printbuf_indent_sub(out, 2);
1640 }
1641
bch2_fs_io_write_exit(struct bch_fs * c)1642 void bch2_fs_io_write_exit(struct bch_fs *c)
1643 {
1644 mempool_exit(&c->bio_bounce_pages);
1645 bioset_exit(&c->bio_write);
1646 }
1647
bch2_fs_io_write_init(struct bch_fs * c)1648 int bch2_fs_io_write_init(struct bch_fs *c)
1649 {
1650 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
1651 BIOSET_NEED_BVECS))
1652 return -BCH_ERR_ENOMEM_bio_write_init;
1653
1654 if (mempool_init_page_pool(&c->bio_bounce_pages,
1655 max_t(unsigned,
1656 c->opts.btree_node_size,
1657 c->opts.encoded_extent_max) /
1658 PAGE_SIZE, 0))
1659 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1660
1661 return 0;
1662 }
1663