1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31
32 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
33
34 static struct device_type power_supply_dev_type;
35
36 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
37
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)38 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
39 struct power_supply *supply)
40 {
41 int i;
42
43 if (!supply->supplied_from && !supplier->supplied_to)
44 return false;
45
46 /* Support both supplied_to and supplied_from modes */
47 if (supply->supplied_from) {
48 if (!supplier->desc->name)
49 return false;
50 for (i = 0; i < supply->num_supplies; i++)
51 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
52 return true;
53 } else {
54 if (!supply->desc->name)
55 return false;
56 for (i = 0; i < supplier->num_supplicants; i++)
57 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
58 return true;
59 }
60
61 return false;
62 }
63
__power_supply_changed_work(struct device * dev,void * data)64 static int __power_supply_changed_work(struct device *dev, void *data)
65 {
66 struct power_supply *psy = data;
67 struct power_supply *pst = dev_get_drvdata(dev);
68
69 if (__power_supply_is_supplied_by(psy, pst)) {
70 if (pst->desc->external_power_changed)
71 pst->desc->external_power_changed(pst);
72 }
73
74 return 0;
75 }
76
power_supply_changed_work(struct work_struct * work)77 static void power_supply_changed_work(struct work_struct *work)
78 {
79 unsigned long flags;
80 struct power_supply *psy = container_of(work, struct power_supply,
81 changed_work);
82
83 dev_dbg(&psy->dev, "%s\n", __func__);
84
85 spin_lock_irqsave(&psy->changed_lock, flags);
86 /*
87 * Check 'changed' here to avoid issues due to race between
88 * power_supply_changed() and this routine. In worst case
89 * power_supply_changed() can be called again just before we take above
90 * lock. During the first call of this routine we will mark 'changed' as
91 * false and it will stay false for the next call as well.
92 */
93 if (likely(psy->changed)) {
94 psy->changed = false;
95 spin_unlock_irqrestore(&psy->changed_lock, flags);
96 class_for_each_device(power_supply_class, NULL, psy,
97 __power_supply_changed_work);
98 power_supply_update_leds(psy);
99 blocking_notifier_call_chain(&power_supply_notifier,
100 PSY_EVENT_PROP_CHANGED, psy);
101 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
102 spin_lock_irqsave(&psy->changed_lock, flags);
103 }
104
105 /*
106 * Hold the wakeup_source until all events are processed.
107 * power_supply_changed() might have called again and have set 'changed'
108 * to true.
109 */
110 if (likely(!psy->changed))
111 pm_relax(&psy->dev);
112 spin_unlock_irqrestore(&psy->changed_lock, flags);
113 }
114
power_supply_changed(struct power_supply * psy)115 void power_supply_changed(struct power_supply *psy)
116 {
117 unsigned long flags;
118
119 dev_dbg(&psy->dev, "%s\n", __func__);
120
121 spin_lock_irqsave(&psy->changed_lock, flags);
122 psy->changed = true;
123 pm_stay_awake(&psy->dev);
124 spin_unlock_irqrestore(&psy->changed_lock, flags);
125 schedule_work(&psy->changed_work);
126 }
127 EXPORT_SYMBOL_GPL(power_supply_changed);
128
129 /*
130 * Notify that power supply was registered after parent finished the probing.
131 *
132 * Often power supply is registered from driver's probe function. However
133 * calling power_supply_changed() directly from power_supply_register()
134 * would lead to execution of get_property() function provided by the driver
135 * too early - before the probe ends.
136 *
137 * Avoid that by waiting on parent's mutex.
138 */
power_supply_deferred_register_work(struct work_struct * work)139 static void power_supply_deferred_register_work(struct work_struct *work)
140 {
141 struct power_supply *psy = container_of(work, struct power_supply,
142 deferred_register_work.work);
143
144 if (psy->dev.parent) {
145 while (!mutex_trylock(&psy->dev.parent->mutex)) {
146 if (psy->removing)
147 return;
148 msleep(10);
149 }
150 }
151
152 power_supply_changed(psy);
153
154 if (psy->dev.parent)
155 mutex_unlock(&psy->dev.parent->mutex);
156 }
157
158 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct device * dev,void * data)159 static int __power_supply_populate_supplied_from(struct device *dev,
160 void *data)
161 {
162 struct power_supply *psy = data;
163 struct power_supply *epsy = dev_get_drvdata(dev);
164 struct device_node *np;
165 int i = 0;
166
167 do {
168 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
169 if (!np)
170 break;
171
172 if (np == epsy->of_node) {
173 dev_dbg(&psy->dev, "%s: Found supply : %s\n",
174 psy->desc->name, epsy->desc->name);
175 psy->supplied_from[i-1] = (char *)epsy->desc->name;
176 psy->num_supplies++;
177 of_node_put(np);
178 break;
179 }
180 of_node_put(np);
181 } while (np);
182
183 return 0;
184 }
185
power_supply_populate_supplied_from(struct power_supply * psy)186 static int power_supply_populate_supplied_from(struct power_supply *psy)
187 {
188 int error;
189
190 error = class_for_each_device(power_supply_class, NULL, psy,
191 __power_supply_populate_supplied_from);
192
193 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
194
195 return error;
196 }
197
__power_supply_find_supply_from_node(struct device * dev,void * data)198 static int __power_supply_find_supply_from_node(struct device *dev,
199 void *data)
200 {
201 struct device_node *np = data;
202 struct power_supply *epsy = dev_get_drvdata(dev);
203
204 /* returning non-zero breaks out of class_for_each_device loop */
205 if (epsy->of_node == np)
206 return 1;
207
208 return 0;
209 }
210
power_supply_find_supply_from_node(struct device_node * supply_node)211 static int power_supply_find_supply_from_node(struct device_node *supply_node)
212 {
213 int error;
214
215 /*
216 * class_for_each_device() either returns its own errors or values
217 * returned by __power_supply_find_supply_from_node().
218 *
219 * __power_supply_find_supply_from_node() will return 0 (no match)
220 * or 1 (match).
221 *
222 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
223 * it returned 0, or error as returned by it.
224 */
225 error = class_for_each_device(power_supply_class, NULL, supply_node,
226 __power_supply_find_supply_from_node);
227
228 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
229 }
230
power_supply_check_supplies(struct power_supply * psy)231 static int power_supply_check_supplies(struct power_supply *psy)
232 {
233 struct device_node *np;
234 int cnt = 0;
235
236 /* If there is already a list honor it */
237 if (psy->supplied_from && psy->num_supplies > 0)
238 return 0;
239
240 /* No device node found, nothing to do */
241 if (!psy->of_node)
242 return 0;
243
244 do {
245 int ret;
246
247 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
248 if (!np)
249 break;
250
251 ret = power_supply_find_supply_from_node(np);
252 of_node_put(np);
253
254 if (ret) {
255 dev_dbg(&psy->dev, "Failed to find supply!\n");
256 return ret;
257 }
258 } while (np);
259
260 /* Missing valid "power-supplies" entries */
261 if (cnt == 1)
262 return 0;
263
264 /* All supplies found, allocate char ** array for filling */
265 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
266 GFP_KERNEL);
267 if (!psy->supplied_from)
268 return -ENOMEM;
269
270 *psy->supplied_from = devm_kcalloc(&psy->dev,
271 cnt - 1, sizeof(**psy->supplied_from),
272 GFP_KERNEL);
273 if (!*psy->supplied_from)
274 return -ENOMEM;
275
276 return power_supply_populate_supplied_from(psy);
277 }
278 #else
power_supply_check_supplies(struct power_supply * psy)279 static int power_supply_check_supplies(struct power_supply *psy)
280 {
281 int nval, ret;
282
283 if (!psy->dev.parent)
284 return 0;
285
286 nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
287 if (nval <= 0)
288 return 0;
289
290 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
291 sizeof(char *), GFP_KERNEL);
292 if (!psy->supplied_from)
293 return -ENOMEM;
294
295 ret = device_property_read_string_array(psy->dev.parent,
296 "supplied-from", (const char **)psy->supplied_from, nval);
297 if (ret < 0)
298 return ret;
299
300 psy->num_supplies = nval;
301
302 return 0;
303 }
304 #endif
305
306 struct psy_am_i_supplied_data {
307 struct power_supply *psy;
308 unsigned int count;
309 };
310
__power_supply_am_i_supplied(struct device * dev,void * _data)311 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
312 {
313 union power_supply_propval ret = {0,};
314 struct power_supply *epsy = dev_get_drvdata(dev);
315 struct psy_am_i_supplied_data *data = _data;
316
317 if (__power_supply_is_supplied_by(epsy, data->psy)) {
318 data->count++;
319 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
320 &ret))
321 return ret.intval;
322 }
323
324 return 0;
325 }
326
power_supply_am_i_supplied(struct power_supply * psy)327 int power_supply_am_i_supplied(struct power_supply *psy)
328 {
329 struct psy_am_i_supplied_data data = { psy, 0 };
330 int error;
331
332 error = class_for_each_device(power_supply_class, NULL, &data,
333 __power_supply_am_i_supplied);
334
335 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
336
337 if (data.count == 0)
338 return -ENODEV;
339
340 return error;
341 }
342 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
343
__power_supply_is_system_supplied(struct device * dev,void * data)344 static int __power_supply_is_system_supplied(struct device *dev, void *data)
345 {
346 union power_supply_propval ret = {0,};
347 struct power_supply *psy = dev_get_drvdata(dev);
348 unsigned int *count = data;
349
350 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
351 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
352 return 0;
353
354 (*count)++;
355 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
356 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
357 &ret))
358 return ret.intval;
359
360 return 0;
361 }
362
power_supply_is_system_supplied(void)363 int power_supply_is_system_supplied(void)
364 {
365 int error;
366 unsigned int count = 0;
367
368 error = class_for_each_device(power_supply_class, NULL, &count,
369 __power_supply_is_system_supplied);
370
371 /*
372 * If no system scope power class device was found at all, most probably we
373 * are running on a desktop system, so assume we are on mains power.
374 */
375 if (count == 0)
376 return 1;
377
378 return error;
379 }
380 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
381
382 struct psy_get_supplier_prop_data {
383 struct power_supply *psy;
384 enum power_supply_property psp;
385 union power_supply_propval *val;
386 };
387
__power_supply_get_supplier_property(struct device * dev,void * _data)388 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
389 {
390 struct power_supply *epsy = dev_get_drvdata(dev);
391 struct psy_get_supplier_prop_data *data = _data;
392
393 if (__power_supply_is_supplied_by(epsy, data->psy))
394 if (!power_supply_get_property(epsy, data->psp, data->val))
395 return 1; /* Success */
396
397 return 0; /* Continue iterating */
398 }
399
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)400 int power_supply_get_property_from_supplier(struct power_supply *psy,
401 enum power_supply_property psp,
402 union power_supply_propval *val)
403 {
404 struct psy_get_supplier_prop_data data = {
405 .psy = psy,
406 .psp = psp,
407 .val = val,
408 };
409 int ret;
410
411 /*
412 * This function is not intended for use with a supply with multiple
413 * suppliers, we simply pick the first supply to report the psp.
414 */
415 ret = class_for_each_device(power_supply_class, NULL, &data,
416 __power_supply_get_supplier_property);
417 if (ret < 0)
418 return ret;
419 if (ret == 0)
420 return -ENODEV;
421
422 return 0;
423 }
424 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
425
power_supply_set_battery_charged(struct power_supply * psy)426 int power_supply_set_battery_charged(struct power_supply *psy)
427 {
428 if (atomic_read(&psy->use_cnt) >= 0 &&
429 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
430 psy->desc->set_charged) {
431 psy->desc->set_charged(psy);
432 return 0;
433 }
434
435 return -EINVAL;
436 }
437 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
438
power_supply_match_device_by_name(struct device * dev,const void * data)439 static int power_supply_match_device_by_name(struct device *dev, const void *data)
440 {
441 const char *name = data;
442 struct power_supply *psy = dev_get_drvdata(dev);
443
444 return strcmp(psy->desc->name, name) == 0;
445 }
446
447 /**
448 * power_supply_get_by_name() - Search for a power supply and returns its ref
449 * @name: Power supply name to fetch
450 *
451 * If power supply was found, it increases reference count for the
452 * internal power supply's device. The user should power_supply_put()
453 * after usage.
454 *
455 * Return: On success returns a reference to a power supply with
456 * matching name equals to @name, a NULL otherwise.
457 */
power_supply_get_by_name(const char * name)458 struct power_supply *power_supply_get_by_name(const char *name)
459 {
460 struct power_supply *psy = NULL;
461 struct device *dev = class_find_device(power_supply_class, NULL, name,
462 power_supply_match_device_by_name);
463
464 if (dev) {
465 psy = dev_get_drvdata(dev);
466 atomic_inc(&psy->use_cnt);
467 }
468
469 return psy;
470 }
471 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
472
473 /**
474 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
475 * @psy: Reference to put
476 *
477 * The reference to power supply should be put before unregistering
478 * the power supply.
479 */
power_supply_put(struct power_supply * psy)480 void power_supply_put(struct power_supply *psy)
481 {
482 might_sleep();
483
484 atomic_dec(&psy->use_cnt);
485 put_device(&psy->dev);
486 }
487 EXPORT_SYMBOL_GPL(power_supply_put);
488
489 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)490 static int power_supply_match_device_node(struct device *dev, const void *data)
491 {
492 return dev->parent && dev->parent->of_node == data;
493 }
494
495 /**
496 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
497 * @np: Pointer to device node holding phandle property
498 * @property: Name of property holding a power supply name
499 *
500 * If power supply was found, it increases reference count for the
501 * internal power supply's device. The user should power_supply_put()
502 * after usage.
503 *
504 * Return: On success returns a reference to a power supply with
505 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
506 */
power_supply_get_by_phandle(struct device_node * np,const char * property)507 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
508 const char *property)
509 {
510 struct device_node *power_supply_np;
511 struct power_supply *psy = NULL;
512 struct device *dev;
513
514 power_supply_np = of_parse_phandle(np, property, 0);
515 if (!power_supply_np)
516 return ERR_PTR(-ENODEV);
517
518 dev = class_find_device(power_supply_class, NULL, power_supply_np,
519 power_supply_match_device_node);
520
521 of_node_put(power_supply_np);
522
523 if (dev) {
524 psy = dev_get_drvdata(dev);
525 atomic_inc(&psy->use_cnt);
526 }
527
528 return psy;
529 }
530 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
531
devm_power_supply_put(struct device * dev,void * res)532 static void devm_power_supply_put(struct device *dev, void *res)
533 {
534 struct power_supply **psy = res;
535
536 power_supply_put(*psy);
537 }
538
539 /**
540 * devm_power_supply_get_by_phandle() - Resource managed version of
541 * power_supply_get_by_phandle()
542 * @dev: Pointer to device holding phandle property
543 * @property: Name of property holding a power supply phandle
544 *
545 * Return: On success returns a reference to a power supply with
546 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
547 */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)548 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
549 const char *property)
550 {
551 struct power_supply **ptr, *psy;
552
553 if (!dev->of_node)
554 return ERR_PTR(-ENODEV);
555
556 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
557 if (!ptr)
558 return ERR_PTR(-ENOMEM);
559
560 psy = power_supply_get_by_phandle(dev->of_node, property);
561 if (IS_ERR_OR_NULL(psy)) {
562 devres_free(ptr);
563 } else {
564 *ptr = psy;
565 devres_add(dev, ptr);
566 }
567 return psy;
568 }
569 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
570 #endif /* CONFIG_OF */
571
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info ** info_out)572 int power_supply_get_battery_info(struct power_supply *psy,
573 struct power_supply_battery_info **info_out)
574 {
575 struct power_supply_resistance_temp_table *resist_table;
576 struct power_supply_battery_info *info;
577 struct device_node *battery_np = NULL;
578 struct fwnode_reference_args args;
579 struct fwnode_handle *fwnode = NULL;
580 const char *value;
581 int err, len, index;
582 const __be32 *list;
583 u32 min_max[2];
584
585 if (psy->of_node) {
586 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
587 if (!battery_np)
588 return -ENODEV;
589
590 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
591 } else if (psy->dev.parent) {
592 err = fwnode_property_get_reference_args(
593 dev_fwnode(psy->dev.parent),
594 "monitored-battery", NULL, 0, 0, &args);
595 if (err)
596 return err;
597
598 fwnode = args.fwnode;
599 }
600
601 if (!fwnode)
602 return -ENOENT;
603
604 err = fwnode_property_read_string(fwnode, "compatible", &value);
605 if (err)
606 goto out_put_node;
607
608
609 /* Try static batteries first */
610 err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
611 if (!err)
612 goto out_ret_pointer;
613 else if (err == -ENODEV)
614 /*
615 * Device does not have a static battery.
616 * Proceed to look for a simple battery.
617 */
618 err = 0;
619
620 if (strcmp("simple-battery", value)) {
621 err = -ENODEV;
622 goto out_put_node;
623 }
624
625 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
626 if (!info) {
627 err = -ENOMEM;
628 goto out_put_node;
629 }
630
631 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
632 info->energy_full_design_uwh = -EINVAL;
633 info->charge_full_design_uah = -EINVAL;
634 info->voltage_min_design_uv = -EINVAL;
635 info->voltage_max_design_uv = -EINVAL;
636 info->precharge_current_ua = -EINVAL;
637 info->charge_term_current_ua = -EINVAL;
638 info->constant_charge_current_max_ua = -EINVAL;
639 info->constant_charge_voltage_max_uv = -EINVAL;
640 info->tricklecharge_current_ua = -EINVAL;
641 info->precharge_voltage_max_uv = -EINVAL;
642 info->charge_restart_voltage_uv = -EINVAL;
643 info->overvoltage_limit_uv = -EINVAL;
644 info->maintenance_charge = NULL;
645 info->alert_low_temp_charge_current_ua = -EINVAL;
646 info->alert_low_temp_charge_voltage_uv = -EINVAL;
647 info->alert_high_temp_charge_current_ua = -EINVAL;
648 info->alert_high_temp_charge_voltage_uv = -EINVAL;
649 info->temp_ambient_alert_min = INT_MIN;
650 info->temp_ambient_alert_max = INT_MAX;
651 info->temp_alert_min = INT_MIN;
652 info->temp_alert_max = INT_MAX;
653 info->temp_min = INT_MIN;
654 info->temp_max = INT_MAX;
655 info->factory_internal_resistance_uohm = -EINVAL;
656 info->resist_table = NULL;
657 info->bti_resistance_ohm = -EINVAL;
658 info->bti_resistance_tolerance = -EINVAL;
659
660 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
661 info->ocv_table[index] = NULL;
662 info->ocv_temp[index] = -EINVAL;
663 info->ocv_table_size[index] = -EINVAL;
664 }
665
666 /* The property and field names below must correspond to elements
667 * in enum power_supply_property. For reasoning, see
668 * Documentation/power/power_supply_class.rst.
669 */
670
671 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
672 if (!strcmp("nickel-cadmium", value))
673 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
674 else if (!strcmp("nickel-metal-hydride", value))
675 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
676 else if (!strcmp("lithium-ion", value))
677 /* Imprecise lithium-ion type */
678 info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
679 else if (!strcmp("lithium-ion-polymer", value))
680 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
681 else if (!strcmp("lithium-ion-iron-phosphate", value))
682 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
683 else if (!strcmp("lithium-ion-manganese-oxide", value))
684 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
685 else
686 dev_warn(&psy->dev, "%s unknown battery type\n", value);
687 }
688
689 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
690 &info->energy_full_design_uwh);
691 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
692 &info->charge_full_design_uah);
693 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
694 &info->voltage_min_design_uv);
695 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
696 &info->voltage_max_design_uv);
697 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
698 &info->tricklecharge_current_ua);
699 fwnode_property_read_u32(fwnode, "precharge-current-microamp",
700 &info->precharge_current_ua);
701 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
702 &info->precharge_voltage_max_uv);
703 fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
704 &info->charge_term_current_ua);
705 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
706 &info->charge_restart_voltage_uv);
707 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
708 &info->overvoltage_limit_uv);
709 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
710 &info->constant_charge_current_max_ua);
711 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
712 &info->constant_charge_voltage_max_uv);
713 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
714 &info->factory_internal_resistance_uohm);
715
716 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
717 min_max, ARRAY_SIZE(min_max))) {
718 info->temp_ambient_alert_min = min_max[0];
719 info->temp_ambient_alert_max = min_max[1];
720 }
721 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
722 min_max, ARRAY_SIZE(min_max))) {
723 info->temp_alert_min = min_max[0];
724 info->temp_alert_max = min_max[1];
725 }
726 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
727 min_max, ARRAY_SIZE(min_max))) {
728 info->temp_min = min_max[0];
729 info->temp_max = min_max[1];
730 }
731
732 /*
733 * The below code uses raw of-data parsing to parse
734 * /schemas/types.yaml#/definitions/uint32-matrix
735 * data, so for now this is only support with of.
736 */
737 if (!battery_np)
738 goto out_ret_pointer;
739
740 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
741 if (len < 0 && len != -EINVAL) {
742 err = len;
743 goto out_put_node;
744 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
745 dev_err(&psy->dev, "Too many temperature values\n");
746 err = -EINVAL;
747 goto out_put_node;
748 } else if (len > 0) {
749 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
750 info->ocv_temp, len);
751 }
752
753 for (index = 0; index < len; index++) {
754 struct power_supply_battery_ocv_table *table;
755 char *propname;
756 int i, tab_len, size;
757
758 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
759 if (!propname) {
760 power_supply_put_battery_info(psy, info);
761 err = -ENOMEM;
762 goto out_put_node;
763 }
764 list = of_get_property(battery_np, propname, &size);
765 if (!list || !size) {
766 dev_err(&psy->dev, "failed to get %s\n", propname);
767 kfree(propname);
768 power_supply_put_battery_info(psy, info);
769 err = -EINVAL;
770 goto out_put_node;
771 }
772
773 kfree(propname);
774 tab_len = size / (2 * sizeof(__be32));
775 info->ocv_table_size[index] = tab_len;
776
777 table = info->ocv_table[index] =
778 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
779 if (!info->ocv_table[index]) {
780 power_supply_put_battery_info(psy, info);
781 err = -ENOMEM;
782 goto out_put_node;
783 }
784
785 for (i = 0; i < tab_len; i++) {
786 table[i].ocv = be32_to_cpu(*list);
787 list++;
788 table[i].capacity = be32_to_cpu(*list);
789 list++;
790 }
791 }
792
793 list = of_get_property(battery_np, "resistance-temp-table", &len);
794 if (!list || !len)
795 goto out_ret_pointer;
796
797 info->resist_table_size = len / (2 * sizeof(__be32));
798 resist_table = info->resist_table = devm_kcalloc(&psy->dev,
799 info->resist_table_size,
800 sizeof(*resist_table),
801 GFP_KERNEL);
802 if (!info->resist_table) {
803 power_supply_put_battery_info(psy, info);
804 err = -ENOMEM;
805 goto out_put_node;
806 }
807
808 for (index = 0; index < info->resist_table_size; index++) {
809 resist_table[index].temp = be32_to_cpu(*list++);
810 resist_table[index].resistance = be32_to_cpu(*list++);
811 }
812
813 out_ret_pointer:
814 /* Finally return the whole thing */
815 *info_out = info;
816
817 out_put_node:
818 fwnode_handle_put(fwnode);
819 of_node_put(battery_np);
820 return err;
821 }
822 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
823
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)824 void power_supply_put_battery_info(struct power_supply *psy,
825 struct power_supply_battery_info *info)
826 {
827 int i;
828
829 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
830 if (info->ocv_table[i])
831 devm_kfree(&psy->dev, info->ocv_table[i]);
832 }
833
834 if (info->resist_table)
835 devm_kfree(&psy->dev, info->resist_table);
836
837 devm_kfree(&psy->dev, info);
838 }
839 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
840
841 const enum power_supply_property power_supply_battery_info_properties[] = {
842 POWER_SUPPLY_PROP_TECHNOLOGY,
843 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
844 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
845 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
846 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
847 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
848 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
849 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
850 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
851 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
852 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
853 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
854 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
855 POWER_SUPPLY_PROP_TEMP_MIN,
856 POWER_SUPPLY_PROP_TEMP_MAX,
857 };
858 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
859
860 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
861 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
862
power_supply_battery_info_has_prop(struct power_supply_battery_info * info,enum power_supply_property psp)863 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
864 enum power_supply_property psp)
865 {
866 if (!info)
867 return false;
868
869 switch (psp) {
870 case POWER_SUPPLY_PROP_TECHNOLOGY:
871 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
872 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
873 return info->energy_full_design_uwh >= 0;
874 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
875 return info->charge_full_design_uah >= 0;
876 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
877 return info->voltage_min_design_uv >= 0;
878 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
879 return info->voltage_max_design_uv >= 0;
880 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
881 return info->precharge_current_ua >= 0;
882 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
883 return info->charge_term_current_ua >= 0;
884 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
885 return info->constant_charge_current_max_ua >= 0;
886 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
887 return info->constant_charge_voltage_max_uv >= 0;
888 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
889 return info->temp_ambient_alert_min > INT_MIN;
890 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
891 return info->temp_ambient_alert_max < INT_MAX;
892 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
893 return info->temp_alert_min > INT_MIN;
894 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
895 return info->temp_alert_max < INT_MAX;
896 case POWER_SUPPLY_PROP_TEMP_MIN:
897 return info->temp_min > INT_MIN;
898 case POWER_SUPPLY_PROP_TEMP_MAX:
899 return info->temp_max < INT_MAX;
900 default:
901 return false;
902 }
903 }
904 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
905
power_supply_battery_info_get_prop(struct power_supply_battery_info * info,enum power_supply_property psp,union power_supply_propval * val)906 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
907 enum power_supply_property psp,
908 union power_supply_propval *val)
909 {
910 if (!info)
911 return -EINVAL;
912
913 if (!power_supply_battery_info_has_prop(info, psp))
914 return -EINVAL;
915
916 switch (psp) {
917 case POWER_SUPPLY_PROP_TECHNOLOGY:
918 val->intval = info->technology;
919 return 0;
920 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
921 val->intval = info->energy_full_design_uwh;
922 return 0;
923 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
924 val->intval = info->charge_full_design_uah;
925 return 0;
926 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
927 val->intval = info->voltage_min_design_uv;
928 return 0;
929 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
930 val->intval = info->voltage_max_design_uv;
931 return 0;
932 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
933 val->intval = info->precharge_current_ua;
934 return 0;
935 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
936 val->intval = info->charge_term_current_ua;
937 return 0;
938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
939 val->intval = info->constant_charge_current_max_ua;
940 return 0;
941 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
942 val->intval = info->constant_charge_voltage_max_uv;
943 return 0;
944 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
945 val->intval = info->temp_ambient_alert_min;
946 return 0;
947 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
948 val->intval = info->temp_ambient_alert_max;
949 return 0;
950 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
951 val->intval = info->temp_alert_min;
952 return 0;
953 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
954 val->intval = info->temp_alert_max;
955 return 0;
956 case POWER_SUPPLY_PROP_TEMP_MIN:
957 val->intval = info->temp_min;
958 return 0;
959 case POWER_SUPPLY_PROP_TEMP_MAX:
960 val->intval = info->temp_max;
961 return 0;
962 default:
963 return -EINVAL;
964 }
965 }
966 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
967
968 /**
969 * power_supply_temp2resist_simple() - find the battery internal resistance
970 * percent from temperature
971 * @table: Pointer to battery resistance temperature table
972 * @table_len: The table length
973 * @temp: Current temperature
974 *
975 * This helper function is used to look up battery internal resistance percent
976 * according to current temperature value from the resistance temperature table,
977 * and the table must be ordered descending. Then the actual battery internal
978 * resistance = the ideal battery internal resistance * percent / 100.
979 *
980 * Return: the battery internal resistance percent
981 */
power_supply_temp2resist_simple(struct power_supply_resistance_temp_table * table,int table_len,int temp)982 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
983 int table_len, int temp)
984 {
985 int i, high, low;
986
987 for (i = 0; i < table_len; i++)
988 if (temp > table[i].temp)
989 break;
990
991 /* The library function will deal with high == low */
992 if (i == 0)
993 high = low = i;
994 else if (i == table_len)
995 high = low = i - 1;
996 else
997 high = (low = i) - 1;
998
999 return fixp_linear_interpolate(table[low].temp,
1000 table[low].resistance,
1001 table[high].temp,
1002 table[high].resistance,
1003 temp);
1004 }
1005 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1006
1007 /**
1008 * power_supply_vbat2ri() - find the battery internal resistance
1009 * from the battery voltage
1010 * @info: The battery information container
1011 * @vbat_uv: The battery voltage in microvolt
1012 * @charging: If we are charging (true) or not (false)
1013 *
1014 * This helper function is used to look up battery internal resistance
1015 * according to current battery voltage. Depending on whether the battery
1016 * is currently charging or not, different resistance will be returned.
1017 *
1018 * Returns the internal resistance in microohm or negative error code.
1019 */
power_supply_vbat2ri(struct power_supply_battery_info * info,int vbat_uv,bool charging)1020 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1021 int vbat_uv, bool charging)
1022 {
1023 struct power_supply_vbat_ri_table *vbat2ri;
1024 int table_len;
1025 int i, high, low;
1026
1027 /*
1028 * If we are charging, and the battery supplies a separate table
1029 * for this state, we use that in order to compensate for the
1030 * charging voltage. Otherwise we use the main table.
1031 */
1032 if (charging && info->vbat2ri_charging) {
1033 vbat2ri = info->vbat2ri_charging;
1034 table_len = info->vbat2ri_charging_size;
1035 } else {
1036 vbat2ri = info->vbat2ri_discharging;
1037 table_len = info->vbat2ri_discharging_size;
1038 }
1039
1040 /*
1041 * If no tables are specified, or if we are above the highest voltage in
1042 * the voltage table, just return the factory specified internal resistance.
1043 */
1044 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1045 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1046 return info->factory_internal_resistance_charging_uohm;
1047 else
1048 return info->factory_internal_resistance_uohm;
1049 }
1050
1051 /* Break loop at table_len - 1 because that is the highest index */
1052 for (i = 0; i < table_len - 1; i++)
1053 if (vbat_uv > vbat2ri[i].vbat_uv)
1054 break;
1055
1056 /* The library function will deal with high == low */
1057 if ((i == 0) || (i == (table_len - 1)))
1058 high = i;
1059 else
1060 high = i - 1;
1061 low = i;
1062
1063 return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1064 vbat2ri[low].ri_uohm,
1065 vbat2ri[high].vbat_uv,
1066 vbat2ri[high].ri_uohm,
1067 vbat_uv);
1068 }
1069 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1070
1071 struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info * info,int index)1072 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1073 int index)
1074 {
1075 if (index >= info->maintenance_charge_size)
1076 return NULL;
1077 return &info->maintenance_charge[index];
1078 }
1079 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1080
1081 /**
1082 * power_supply_ocv2cap_simple() - find the battery capacity
1083 * @table: Pointer to battery OCV lookup table
1084 * @table_len: OCV table length
1085 * @ocv: Current OCV value
1086 *
1087 * This helper function is used to look up battery capacity according to
1088 * current OCV value from one OCV table, and the OCV table must be ordered
1089 * descending.
1090 *
1091 * Return: the battery capacity.
1092 */
power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table * table,int table_len,int ocv)1093 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1094 int table_len, int ocv)
1095 {
1096 int i, high, low;
1097
1098 for (i = 0; i < table_len; i++)
1099 if (ocv > table[i].ocv)
1100 break;
1101
1102 /* The library function will deal with high == low */
1103 if (i == 0)
1104 high = low = i;
1105 else if (i == table_len)
1106 high = low = i - 1;
1107 else
1108 high = (low = i) - 1;
1109
1110 return fixp_linear_interpolate(table[low].ocv,
1111 table[low].capacity,
1112 table[high].ocv,
1113 table[high].capacity,
1114 ocv);
1115 }
1116 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1117
1118 struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)1119 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1120 int temp, int *table_len)
1121 {
1122 int best_temp_diff = INT_MAX, temp_diff;
1123 u8 i, best_index = 0;
1124
1125 if (!info->ocv_table[0])
1126 return NULL;
1127
1128 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1129 /* Out of capacity tables */
1130 if (!info->ocv_table[i])
1131 break;
1132
1133 temp_diff = abs(info->ocv_temp[i] - temp);
1134
1135 if (temp_diff < best_temp_diff) {
1136 best_temp_diff = temp_diff;
1137 best_index = i;
1138 }
1139 }
1140
1141 *table_len = info->ocv_table_size[best_index];
1142 return info->ocv_table[best_index];
1143 }
1144 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1145
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)1146 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1147 int ocv, int temp)
1148 {
1149 struct power_supply_battery_ocv_table *table;
1150 int table_len;
1151
1152 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1153 if (!table)
1154 return -EINVAL;
1155
1156 return power_supply_ocv2cap_simple(table, table_len, ocv);
1157 }
1158 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1159
power_supply_battery_bti_in_range(struct power_supply_battery_info * info,int resistance)1160 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1161 int resistance)
1162 {
1163 int low, high;
1164
1165 /* Nothing like this can be checked */
1166 if (info->bti_resistance_ohm <= 0)
1167 return false;
1168
1169 /* This will be extremely strict and unlikely to work */
1170 if (info->bti_resistance_tolerance <= 0)
1171 return (info->bti_resistance_ohm == resistance);
1172
1173 low = info->bti_resistance_ohm -
1174 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1175 high = info->bti_resistance_ohm +
1176 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1177
1178 return ((resistance >= low) && (resistance <= high));
1179 }
1180 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1181
psy_has_property(const struct power_supply_desc * psy_desc,enum power_supply_property psp)1182 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1183 enum power_supply_property psp)
1184 {
1185 bool found = false;
1186 int i;
1187
1188 for (i = 0; i < psy_desc->num_properties; i++) {
1189 if (psy_desc->properties[i] == psp) {
1190 found = true;
1191 break;
1192 }
1193 }
1194
1195 return found;
1196 }
1197
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)1198 int power_supply_get_property(struct power_supply *psy,
1199 enum power_supply_property psp,
1200 union power_supply_propval *val)
1201 {
1202 if (atomic_read(&psy->use_cnt) <= 0) {
1203 if (!psy->initialized)
1204 return -EAGAIN;
1205 return -ENODEV;
1206 }
1207
1208 if (psy_has_property(psy->desc, psp))
1209 return psy->desc->get_property(psy, psp, val);
1210 else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1211 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1212 else
1213 return -EINVAL;
1214 }
1215 EXPORT_SYMBOL_GPL(power_supply_get_property);
1216
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)1217 int power_supply_set_property(struct power_supply *psy,
1218 enum power_supply_property psp,
1219 const union power_supply_propval *val)
1220 {
1221 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1222 return -ENODEV;
1223
1224 return psy->desc->set_property(psy, psp, val);
1225 }
1226 EXPORT_SYMBOL_GPL(power_supply_set_property);
1227
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)1228 int power_supply_property_is_writeable(struct power_supply *psy,
1229 enum power_supply_property psp)
1230 {
1231 if (atomic_read(&psy->use_cnt) <= 0 ||
1232 !psy->desc->property_is_writeable)
1233 return -ENODEV;
1234
1235 return psy->desc->property_is_writeable(psy, psp);
1236 }
1237 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1238
power_supply_external_power_changed(struct power_supply * psy)1239 void power_supply_external_power_changed(struct power_supply *psy)
1240 {
1241 if (atomic_read(&psy->use_cnt) <= 0 ||
1242 !psy->desc->external_power_changed)
1243 return;
1244
1245 psy->desc->external_power_changed(psy);
1246 }
1247 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1248
power_supply_powers(struct power_supply * psy,struct device * dev)1249 int power_supply_powers(struct power_supply *psy, struct device *dev)
1250 {
1251 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1252 }
1253 EXPORT_SYMBOL_GPL(power_supply_powers);
1254
power_supply_dev_release(struct device * dev)1255 static void power_supply_dev_release(struct device *dev)
1256 {
1257 struct power_supply *psy = to_power_supply(dev);
1258
1259 dev_dbg(dev, "%s\n", __func__);
1260 kfree(psy);
1261 }
1262
power_supply_reg_notifier(struct notifier_block * nb)1263 int power_supply_reg_notifier(struct notifier_block *nb)
1264 {
1265 return blocking_notifier_chain_register(&power_supply_notifier, nb);
1266 }
1267 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1268
power_supply_unreg_notifier(struct notifier_block * nb)1269 void power_supply_unreg_notifier(struct notifier_block *nb)
1270 {
1271 blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1272 }
1273 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1274
1275 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1276 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1277 int *temp)
1278 {
1279 struct power_supply *psy;
1280 union power_supply_propval val;
1281 int ret;
1282
1283 WARN_ON(tzd == NULL);
1284 psy = thermal_zone_device_priv(tzd);
1285 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1286 if (ret)
1287 return ret;
1288
1289 /* Convert tenths of degree Celsius to milli degree Celsius. */
1290 *temp = val.intval * 100;
1291
1292 return ret;
1293 }
1294
1295 static struct thermal_zone_device_ops psy_tzd_ops = {
1296 .get_temp = power_supply_read_temp,
1297 };
1298
psy_register_thermal(struct power_supply * psy)1299 static int psy_register_thermal(struct power_supply *psy)
1300 {
1301 int ret;
1302
1303 if (psy->desc->no_thermal)
1304 return 0;
1305
1306 /* Register battery zone device psy reports temperature */
1307 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1308 /* Prefer our hwmon device and avoid duplicates */
1309 struct thermal_zone_params tzp = {
1310 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1311 };
1312 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1313 psy, &psy_tzd_ops, &tzp);
1314 if (IS_ERR(psy->tzd))
1315 return PTR_ERR(psy->tzd);
1316 ret = thermal_zone_device_enable(psy->tzd);
1317 if (ret)
1318 thermal_zone_device_unregister(psy->tzd);
1319 return ret;
1320 }
1321
1322 return 0;
1323 }
1324
psy_unregister_thermal(struct power_supply * psy)1325 static void psy_unregister_thermal(struct power_supply *psy)
1326 {
1327 if (IS_ERR_OR_NULL(psy->tzd))
1328 return;
1329 thermal_zone_device_unregister(psy->tzd);
1330 }
1331
1332 #else
psy_register_thermal(struct power_supply * psy)1333 static int psy_register_thermal(struct power_supply *psy)
1334 {
1335 return 0;
1336 }
1337
psy_unregister_thermal(struct power_supply * psy)1338 static void psy_unregister_thermal(struct power_supply *psy)
1339 {
1340 }
1341 #endif
1342
1343 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg,bool ws)1344 __power_supply_register(struct device *parent,
1345 const struct power_supply_desc *desc,
1346 const struct power_supply_config *cfg,
1347 bool ws)
1348 {
1349 struct device *dev;
1350 struct power_supply *psy;
1351 int rc;
1352
1353 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1354 return ERR_PTR(-EINVAL);
1355
1356 if (!parent)
1357 pr_warn("%s: Expected proper parent device for '%s'\n",
1358 __func__, desc->name);
1359
1360 if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1361 (!desc->usb_types || !desc->num_usb_types))
1362 return ERR_PTR(-EINVAL);
1363
1364 psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1365 if (!psy)
1366 return ERR_PTR(-ENOMEM);
1367
1368 dev = &psy->dev;
1369
1370 device_initialize(dev);
1371
1372 dev->class = power_supply_class;
1373 dev->type = &power_supply_dev_type;
1374 dev->parent = parent;
1375 dev->release = power_supply_dev_release;
1376 dev_set_drvdata(dev, psy);
1377 psy->desc = desc;
1378 if (cfg) {
1379 dev->groups = cfg->attr_grp;
1380 psy->drv_data = cfg->drv_data;
1381 psy->of_node =
1382 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1383 dev->of_node = psy->of_node;
1384 psy->supplied_to = cfg->supplied_to;
1385 psy->num_supplicants = cfg->num_supplicants;
1386 }
1387
1388 rc = dev_set_name(dev, "%s", desc->name);
1389 if (rc)
1390 goto dev_set_name_failed;
1391
1392 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1393 INIT_DELAYED_WORK(&psy->deferred_register_work,
1394 power_supply_deferred_register_work);
1395
1396 rc = power_supply_check_supplies(psy);
1397 if (rc) {
1398 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1399 goto check_supplies_failed;
1400 }
1401
1402 /*
1403 * Expose constant battery info, if it is available. While there are
1404 * some chargers accessing constant battery data, we only want to
1405 * expose battery data to userspace for battery devices.
1406 */
1407 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1408 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1409 if (rc && rc != -ENODEV && rc != -ENOENT)
1410 goto check_supplies_failed;
1411 }
1412
1413 spin_lock_init(&psy->changed_lock);
1414 rc = device_add(dev);
1415 if (rc)
1416 goto device_add_failed;
1417
1418 rc = device_init_wakeup(dev, ws);
1419 if (rc)
1420 goto wakeup_init_failed;
1421
1422 rc = psy_register_thermal(psy);
1423 if (rc)
1424 goto register_thermal_failed;
1425
1426 rc = power_supply_create_triggers(psy);
1427 if (rc)
1428 goto create_triggers_failed;
1429
1430 rc = power_supply_add_hwmon_sysfs(psy);
1431 if (rc)
1432 goto add_hwmon_sysfs_failed;
1433
1434 /*
1435 * Update use_cnt after any uevents (most notably from device_add()).
1436 * We are here still during driver's probe but
1437 * the power_supply_uevent() calls back driver's get_property
1438 * method so:
1439 * 1. Driver did not assigned the returned struct power_supply,
1440 * 2. Driver could not finish initialization (anything in its probe
1441 * after calling power_supply_register()).
1442 */
1443 atomic_inc(&psy->use_cnt);
1444 psy->initialized = true;
1445
1446 queue_delayed_work(system_power_efficient_wq,
1447 &psy->deferred_register_work,
1448 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1449
1450 return psy;
1451
1452 add_hwmon_sysfs_failed:
1453 power_supply_remove_triggers(psy);
1454 create_triggers_failed:
1455 psy_unregister_thermal(psy);
1456 register_thermal_failed:
1457 wakeup_init_failed:
1458 device_del(dev);
1459 device_add_failed:
1460 check_supplies_failed:
1461 dev_set_name_failed:
1462 put_device(dev);
1463 return ERR_PTR(rc);
1464 }
1465
1466 /**
1467 * power_supply_register() - Register new power supply
1468 * @parent: Device to be a parent of power supply's device, usually
1469 * the device which probe function calls this
1470 * @desc: Description of power supply, must be valid through whole
1471 * lifetime of this power supply
1472 * @cfg: Run-time specific configuration accessed during registering,
1473 * may be NULL
1474 *
1475 * Return: A pointer to newly allocated power_supply on success
1476 * or ERR_PTR otherwise.
1477 * Use power_supply_unregister() on returned power_supply pointer to release
1478 * resources.
1479 */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1480 struct power_supply *__must_check power_supply_register(struct device *parent,
1481 const struct power_supply_desc *desc,
1482 const struct power_supply_config *cfg)
1483 {
1484 return __power_supply_register(parent, desc, cfg, true);
1485 }
1486 EXPORT_SYMBOL_GPL(power_supply_register);
1487
1488 /**
1489 * power_supply_register_no_ws() - Register new non-waking-source power supply
1490 * @parent: Device to be a parent of power supply's device, usually
1491 * the device which probe function calls this
1492 * @desc: Description of power supply, must be valid through whole
1493 * lifetime of this power supply
1494 * @cfg: Run-time specific configuration accessed during registering,
1495 * may be NULL
1496 *
1497 * Return: A pointer to newly allocated power_supply on success
1498 * or ERR_PTR otherwise.
1499 * Use power_supply_unregister() on returned power_supply pointer to release
1500 * resources.
1501 */
1502 struct power_supply *__must_check
power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1503 power_supply_register_no_ws(struct device *parent,
1504 const struct power_supply_desc *desc,
1505 const struct power_supply_config *cfg)
1506 {
1507 return __power_supply_register(parent, desc, cfg, false);
1508 }
1509 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1510
devm_power_supply_release(struct device * dev,void * res)1511 static void devm_power_supply_release(struct device *dev, void *res)
1512 {
1513 struct power_supply **psy = res;
1514
1515 power_supply_unregister(*psy);
1516 }
1517
1518 /**
1519 * devm_power_supply_register() - Register managed power supply
1520 * @parent: Device to be a parent of power supply's device, usually
1521 * the device which probe function calls this
1522 * @desc: Description of power supply, must be valid through whole
1523 * lifetime of this power supply
1524 * @cfg: Run-time specific configuration accessed during registering,
1525 * may be NULL
1526 *
1527 * Return: A pointer to newly allocated power_supply on success
1528 * or ERR_PTR otherwise.
1529 * The returned power_supply pointer will be automatically unregistered
1530 * on driver detach.
1531 */
1532 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1533 devm_power_supply_register(struct device *parent,
1534 const struct power_supply_desc *desc,
1535 const struct power_supply_config *cfg)
1536 {
1537 struct power_supply **ptr, *psy;
1538
1539 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1540
1541 if (!ptr)
1542 return ERR_PTR(-ENOMEM);
1543 psy = __power_supply_register(parent, desc, cfg, true);
1544 if (IS_ERR(psy)) {
1545 devres_free(ptr);
1546 } else {
1547 *ptr = psy;
1548 devres_add(parent, ptr);
1549 }
1550 return psy;
1551 }
1552 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1553
1554 /**
1555 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1556 * @parent: Device to be a parent of power supply's device, usually
1557 * the device which probe function calls this
1558 * @desc: Description of power supply, must be valid through whole
1559 * lifetime of this power supply
1560 * @cfg: Run-time specific configuration accessed during registering,
1561 * may be NULL
1562 *
1563 * Return: A pointer to newly allocated power_supply on success
1564 * or ERR_PTR otherwise.
1565 * The returned power_supply pointer will be automatically unregistered
1566 * on driver detach.
1567 */
1568 struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1569 devm_power_supply_register_no_ws(struct device *parent,
1570 const struct power_supply_desc *desc,
1571 const struct power_supply_config *cfg)
1572 {
1573 struct power_supply **ptr, *psy;
1574
1575 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1576
1577 if (!ptr)
1578 return ERR_PTR(-ENOMEM);
1579 psy = __power_supply_register(parent, desc, cfg, false);
1580 if (IS_ERR(psy)) {
1581 devres_free(ptr);
1582 } else {
1583 *ptr = psy;
1584 devres_add(parent, ptr);
1585 }
1586 return psy;
1587 }
1588 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1589
1590 /**
1591 * power_supply_unregister() - Remove this power supply from system
1592 * @psy: Pointer to power supply to unregister
1593 *
1594 * Remove this power supply from the system. The resources of power supply
1595 * will be freed here or on last power_supply_put() call.
1596 */
power_supply_unregister(struct power_supply * psy)1597 void power_supply_unregister(struct power_supply *psy)
1598 {
1599 WARN_ON(atomic_dec_return(&psy->use_cnt));
1600 psy->removing = true;
1601 cancel_work_sync(&psy->changed_work);
1602 cancel_delayed_work_sync(&psy->deferred_register_work);
1603 sysfs_remove_link(&psy->dev.kobj, "powers");
1604 power_supply_remove_hwmon_sysfs(psy);
1605 power_supply_remove_triggers(psy);
1606 psy_unregister_thermal(psy);
1607 device_init_wakeup(&psy->dev, false);
1608 device_unregister(&psy->dev);
1609 }
1610 EXPORT_SYMBOL_GPL(power_supply_unregister);
1611
power_supply_get_drvdata(struct power_supply * psy)1612 void *power_supply_get_drvdata(struct power_supply *psy)
1613 {
1614 return psy->drv_data;
1615 }
1616 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1617
power_supply_class_init(void)1618 static int __init power_supply_class_init(void)
1619 {
1620 power_supply_class = class_create("power_supply");
1621
1622 if (IS_ERR(power_supply_class))
1623 return PTR_ERR(power_supply_class);
1624
1625 power_supply_class->dev_uevent = power_supply_uevent;
1626 power_supply_init_attrs(&power_supply_dev_type);
1627
1628 return 0;
1629 }
1630
power_supply_class_exit(void)1631 static void __exit power_supply_class_exit(void)
1632 {
1633 class_destroy(power_supply_class);
1634 }
1635
1636 subsys_initcall(power_supply_class_init);
1637 module_exit(power_supply_class_exit);
1638
1639 MODULE_DESCRIPTION("Universal power supply monitor class");
1640 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1641 MODULE_AUTHOR("Szabolcs Gyurko");
1642 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1643