1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 #include "ice_hwmon.h"
18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
19  * ice tracepoint functions. This must be done exactly once across the
20  * ice driver.
21  */
22 #define CREATE_TRACE_POINTS
23 #include "ice_trace.h"
24 #include "ice_eswitch.h"
25 #include "ice_tc_lib.h"
26 #include "ice_vsi_vlan_ops.h"
27 #include <net/xdp_sock_drv.h>
28 
29 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
30 static const char ice_driver_string[] = DRV_SUMMARY;
31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
32 
33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
34 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
35 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
36 
37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
38 MODULE_DESCRIPTION(DRV_SUMMARY);
39 MODULE_LICENSE("GPL v2");
40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
41 
42 static int debug = -1;
43 module_param(debug, int, 0644);
44 #ifndef CONFIG_DYNAMIC_DEBUG
45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
46 #else
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
48 #endif /* !CONFIG_DYNAMIC_DEBUG */
49 
50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
51 EXPORT_SYMBOL(ice_xdp_locking_key);
52 
53 /**
54  * ice_hw_to_dev - Get device pointer from the hardware structure
55  * @hw: pointer to the device HW structure
56  *
57  * Used to access the device pointer from compilation units which can't easily
58  * include the definition of struct ice_pf without leading to circular header
59  * dependencies.
60  */
ice_hw_to_dev(struct ice_hw * hw)61 struct device *ice_hw_to_dev(struct ice_hw *hw)
62 {
63 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
64 
65 	return &pf->pdev->dev;
66 }
67 
68 static struct workqueue_struct *ice_wq;
69 struct workqueue_struct *ice_lag_wq;
70 static const struct net_device_ops ice_netdev_safe_mode_ops;
71 static const struct net_device_ops ice_netdev_ops;
72 
73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
74 
75 static void ice_vsi_release_all(struct ice_pf *pf);
76 
77 static int ice_rebuild_channels(struct ice_pf *pf);
78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
79 
80 static int
81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
82 		     void *cb_priv, enum tc_setup_type type, void *type_data,
83 		     void *data,
84 		     void (*cleanup)(struct flow_block_cb *block_cb));
85 
netif_is_ice(const struct net_device * dev)86 bool netif_is_ice(const struct net_device *dev)
87 {
88 	return dev && (dev->netdev_ops == &ice_netdev_ops);
89 }
90 
91 /**
92  * ice_get_tx_pending - returns number of Tx descriptors not processed
93  * @ring: the ring of descriptors
94  */
ice_get_tx_pending(struct ice_tx_ring * ring)95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96 {
97 	u16 head, tail;
98 
99 	head = ring->next_to_clean;
100 	tail = ring->next_to_use;
101 
102 	if (head != tail)
103 		return (head < tail) ?
104 			tail - head : (tail + ring->count - head);
105 	return 0;
106 }
107 
108 /**
109  * ice_check_for_hang_subtask - check for and recover hung queues
110  * @pf: pointer to PF struct
111  */
ice_check_for_hang_subtask(struct ice_pf * pf)112 static void ice_check_for_hang_subtask(struct ice_pf *pf)
113 {
114 	struct ice_vsi *vsi = NULL;
115 	struct ice_hw *hw;
116 	unsigned int i;
117 	int packets;
118 	u32 v;
119 
120 	ice_for_each_vsi(pf, v)
121 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 			vsi = pf->vsi[v];
123 			break;
124 		}
125 
126 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 		return;
128 
129 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 		return;
131 
132 	hw = &vsi->back->hw;
133 
134 	ice_for_each_txq(vsi, i) {
135 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 		struct ice_ring_stats *ring_stats;
137 
138 		if (!tx_ring)
139 			continue;
140 		if (ice_ring_ch_enabled(tx_ring))
141 			continue;
142 
143 		ring_stats = tx_ring->ring_stats;
144 		if (!ring_stats)
145 			continue;
146 
147 		if (tx_ring->desc) {
148 			/* If packet counter has not changed the queue is
149 			 * likely stalled, so force an interrupt for this
150 			 * queue.
151 			 *
152 			 * prev_pkt would be negative if there was no
153 			 * pending work.
154 			 */
155 			packets = ring_stats->stats.pkts & INT_MAX;
156 			if (ring_stats->tx_stats.prev_pkt == packets) {
157 				/* Trigger sw interrupt to revive the queue */
158 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 				continue;
160 			}
161 
162 			/* Memory barrier between read of packet count and call
163 			 * to ice_get_tx_pending()
164 			 */
165 			smp_rmb();
166 			ring_stats->tx_stats.prev_pkt =
167 			    ice_get_tx_pending(tx_ring) ? packets : -1;
168 		}
169 	}
170 }
171 
172 /**
173  * ice_init_mac_fltr - Set initial MAC filters
174  * @pf: board private structure
175  *
176  * Set initial set of MAC filters for PF VSI; configure filters for permanent
177  * address and broadcast address. If an error is encountered, netdevice will be
178  * unregistered.
179  */
ice_init_mac_fltr(struct ice_pf * pf)180 static int ice_init_mac_fltr(struct ice_pf *pf)
181 {
182 	struct ice_vsi *vsi;
183 	u8 *perm_addr;
184 
185 	vsi = ice_get_main_vsi(pf);
186 	if (!vsi)
187 		return -EINVAL;
188 
189 	perm_addr = vsi->port_info->mac.perm_addr;
190 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191 }
192 
193 /**
194  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195  * @netdev: the net device on which the sync is happening
196  * @addr: MAC address to sync
197  *
198  * This is a callback function which is called by the in kernel device sync
199  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201  * MAC filters from the hardware.
202  */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204 {
205 	struct ice_netdev_priv *np = netdev_priv(netdev);
206 	struct ice_vsi *vsi = np->vsi;
207 
208 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 				     ICE_FWD_TO_VSI))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /**
216  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217  * @netdev: the net device on which the unsync is happening
218  * @addr: MAC address to unsync
219  *
220  * This is a callback function which is called by the in kernel device unsync
221  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223  * delete the MAC filters from the hardware.
224  */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226 {
227 	struct ice_netdev_priv *np = netdev_priv(netdev);
228 	struct ice_vsi *vsi = np->vsi;
229 
230 	/* Under some circumstances, we might receive a request to delete our
231 	 * own device address from our uc list. Because we store the device
232 	 * address in the VSI's MAC filter list, we need to ignore such
233 	 * requests and not delete our device address from this list.
234 	 */
235 	if (ether_addr_equal(addr, netdev->dev_addr))
236 		return 0;
237 
238 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 				     ICE_FWD_TO_VSI))
240 		return -EINVAL;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_fltr_changed - check if filter state changed
247  * @vsi: VSI to be checked
248  *
249  * returns true if filter state has changed, false otherwise.
250  */
ice_vsi_fltr_changed(struct ice_vsi * vsi)251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252 {
253 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255 }
256 
257 /**
258  * ice_set_promisc - Enable promiscuous mode for a given PF
259  * @vsi: the VSI being configured
260  * @promisc_m: mask of promiscuous config bits
261  *
262  */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264 {
265 	int status;
266 
267 	if (vsi->type != ICE_VSI_PF)
268 		return 0;
269 
270 	if (ice_vsi_has_non_zero_vlans(vsi)) {
271 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 						       promisc_m);
274 	} else {
275 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 						  promisc_m, 0);
277 	}
278 	if (status && status != -EEXIST)
279 		return status;
280 
281 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 		   vsi->vsi_num, promisc_m);
283 	return 0;
284 }
285 
286 /**
287  * ice_clear_promisc - Disable promiscuous mode for a given PF
288  * @vsi: the VSI being configured
289  * @promisc_m: mask of promiscuous config bits
290  *
291  */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293 {
294 	int status;
295 
296 	if (vsi->type != ICE_VSI_PF)
297 		return 0;
298 
299 	if (ice_vsi_has_non_zero_vlans(vsi)) {
300 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 							 promisc_m);
303 	} else {
304 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 						    promisc_m, 0);
306 	}
307 
308 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 		   vsi->vsi_num, promisc_m);
310 	return status;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
ice_vsi_sync_fltr(struct ice_vsi * vsi)319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 				err = ice_set_dflt_vsi(vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 
425 				/* promiscuous mode implies allmulticast so
426 				 * that VSIs that are in promiscuous mode are
427 				 * subscribed to multicast packets coming to
428 				 * the port
429 				 */
430 				err = ice_set_promisc(vsi,
431 						      ICE_MCAST_PROMISC_BITS);
432 				if (err)
433 					goto out_promisc;
434 			}
435 		} else {
436 			/* Clear Rx filter to remove traffic from wire */
437 			if (ice_is_vsi_dflt_vsi(vsi)) {
438 				err = ice_clear_dflt_vsi(vsi);
439 				if (err) {
440 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 						   err, vsi->vsi_num);
442 					vsi->current_netdev_flags |=
443 						IFF_PROMISC;
444 					goto out_promisc;
445 				}
446 				if (vsi->netdev->features &
447 				    NETIF_F_HW_VLAN_CTAG_FILTER)
448 					vlan_ops->ena_rx_filtering(vsi);
449 			}
450 
451 			/* disable allmulti here, but only if allmulti is not
452 			 * still enabled for the netdev
453 			 */
454 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 				err = ice_clear_promisc(vsi,
456 							ICE_MCAST_PROMISC_BITS);
457 				if (err) {
458 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 						   err, vsi->vsi_num);
460 				}
461 			}
462 		}
463 	}
464 	goto exit;
465 
466 out_promisc:
467 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 	goto exit;
469 out:
470 	/* if something went wrong then set the changed flag so we try again */
471 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473 exit:
474 	clear_bit(ICE_CFG_BUSY, vsi->state);
475 	return err;
476 }
477 
478 /**
479  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480  * @pf: board private structure
481  */
ice_sync_fltr_subtask(struct ice_pf * pf)482 static void ice_sync_fltr_subtask(struct ice_pf *pf)
483 {
484 	int v;
485 
486 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 		return;
488 
489 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490 
491 	ice_for_each_vsi(pf, v)
492 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 		    ice_vsi_sync_fltr(pf->vsi[v])) {
494 			/* come back and try again later */
495 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 			break;
497 		}
498 }
499 
500 /**
501  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502  * @pf: the PF
503  * @locked: is the rtnl_lock already held
504  */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506 {
507 	int node;
508 	int v;
509 
510 	ice_for_each_vsi(pf, v)
511 		if (pf->vsi[v])
512 			ice_dis_vsi(pf->vsi[v], locked);
513 
514 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 		pf->pf_agg_node[node].num_vsis = 0;
516 
517 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 		pf->vf_agg_node[node].num_vsis = 0;
519 }
520 
521 /**
522  * ice_clear_sw_switch_recipes - clear switch recipes
523  * @pf: board private structure
524  *
525  * Mark switch recipes as not created in sw structures. There are cases where
526  * rules (especially advanced rules) need to be restored, either re-read from
527  * hardware or added again. For example after the reset. 'recp_created' flag
528  * prevents from doing that and need to be cleared upfront.
529  */
ice_clear_sw_switch_recipes(struct ice_pf * pf)530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
531 {
532 	struct ice_sw_recipe *recp;
533 	u8 i;
534 
535 	recp = pf->hw.switch_info->recp_list;
536 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
537 		recp[i].recp_created = false;
538 }
539 
540 /**
541  * ice_prepare_for_reset - prep for reset
542  * @pf: board private structure
543  * @reset_type: reset type requested
544  *
545  * Inform or close all dependent features in prep for reset.
546  */
547 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
549 {
550 	struct ice_hw *hw = &pf->hw;
551 	struct ice_vsi *vsi;
552 	struct ice_vf *vf;
553 	unsigned int bkt;
554 
555 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
556 
557 	/* already prepared for reset */
558 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
559 		return;
560 
561 	ice_unplug_aux_dev(pf);
562 
563 	/* Notify VFs of impending reset */
564 	if (ice_check_sq_alive(hw, &hw->mailboxq))
565 		ice_vc_notify_reset(pf);
566 
567 	/* Disable VFs until reset is completed */
568 	mutex_lock(&pf->vfs.table_lock);
569 	ice_for_each_vf(pf, bkt, vf)
570 		ice_set_vf_state_dis(vf);
571 	mutex_unlock(&pf->vfs.table_lock);
572 
573 	if (ice_is_eswitch_mode_switchdev(pf)) {
574 		if (reset_type != ICE_RESET_PFR)
575 			ice_clear_sw_switch_recipes(pf);
576 	}
577 
578 	/* release ADQ specific HW and SW resources */
579 	vsi = ice_get_main_vsi(pf);
580 	if (!vsi)
581 		goto skip;
582 
583 	/* to be on safe side, reset orig_rss_size so that normal flow
584 	 * of deciding rss_size can take precedence
585 	 */
586 	vsi->orig_rss_size = 0;
587 
588 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
589 		if (reset_type == ICE_RESET_PFR) {
590 			vsi->old_ena_tc = vsi->all_enatc;
591 			vsi->old_numtc = vsi->all_numtc;
592 		} else {
593 			ice_remove_q_channels(vsi, true);
594 
595 			/* for other reset type, do not support channel rebuild
596 			 * hence reset needed info
597 			 */
598 			vsi->old_ena_tc = 0;
599 			vsi->all_enatc = 0;
600 			vsi->old_numtc = 0;
601 			vsi->all_numtc = 0;
602 			vsi->req_txq = 0;
603 			vsi->req_rxq = 0;
604 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
605 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
606 		}
607 	}
608 skip:
609 
610 	/* clear SW filtering DB */
611 	ice_clear_hw_tbls(hw);
612 	/* disable the VSIs and their queues that are not already DOWN */
613 	ice_pf_dis_all_vsi(pf, false);
614 
615 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
616 		ice_ptp_prepare_for_reset(pf);
617 
618 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
619 		ice_gnss_exit(pf);
620 
621 	if (hw->port_info)
622 		ice_sched_clear_port(hw->port_info);
623 
624 	ice_shutdown_all_ctrlq(hw);
625 
626 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 }
628 
629 /**
630  * ice_do_reset - Initiate one of many types of resets
631  * @pf: board private structure
632  * @reset_type: reset type requested before this function was called.
633  */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
635 {
636 	struct device *dev = ice_pf_to_dev(pf);
637 	struct ice_hw *hw = &pf->hw;
638 
639 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
640 
641 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
642 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
643 		reset_type = ICE_RESET_CORER;
644 	}
645 
646 	ice_prepare_for_reset(pf, reset_type);
647 
648 	/* trigger the reset */
649 	if (ice_reset(hw, reset_type)) {
650 		dev_err(dev, "reset %d failed\n", reset_type);
651 		set_bit(ICE_RESET_FAILED, pf->state);
652 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
653 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
654 		clear_bit(ICE_PFR_REQ, pf->state);
655 		clear_bit(ICE_CORER_REQ, pf->state);
656 		clear_bit(ICE_GLOBR_REQ, pf->state);
657 		wake_up(&pf->reset_wait_queue);
658 		return;
659 	}
660 
661 	/* PFR is a bit of a special case because it doesn't result in an OICR
662 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
663 	 * associated state bits.
664 	 */
665 	if (reset_type == ICE_RESET_PFR) {
666 		pf->pfr_count++;
667 		ice_rebuild(pf, reset_type);
668 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
669 		clear_bit(ICE_PFR_REQ, pf->state);
670 		wake_up(&pf->reset_wait_queue);
671 		ice_reset_all_vfs(pf);
672 	}
673 }
674 
675 /**
676  * ice_reset_subtask - Set up for resetting the device and driver
677  * @pf: board private structure
678  */
ice_reset_subtask(struct ice_pf * pf)679 static void ice_reset_subtask(struct ice_pf *pf)
680 {
681 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
682 
683 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
684 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
685 	 * of reset is pending and sets bits in pf->state indicating the reset
686 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
687 	 * prepare for pending reset if not already (for PF software-initiated
688 	 * global resets the software should already be prepared for it as
689 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
690 	 * by firmware or software on other PFs, that bit is not set so prepare
691 	 * for the reset now), poll for reset done, rebuild and return.
692 	 */
693 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
694 		/* Perform the largest reset requested */
695 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
696 			reset_type = ICE_RESET_CORER;
697 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
698 			reset_type = ICE_RESET_GLOBR;
699 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
700 			reset_type = ICE_RESET_EMPR;
701 		/* return if no valid reset type requested */
702 		if (reset_type == ICE_RESET_INVAL)
703 			return;
704 		ice_prepare_for_reset(pf, reset_type);
705 
706 		/* make sure we are ready to rebuild */
707 		if (ice_check_reset(&pf->hw)) {
708 			set_bit(ICE_RESET_FAILED, pf->state);
709 		} else {
710 			/* done with reset. start rebuild */
711 			pf->hw.reset_ongoing = false;
712 			ice_rebuild(pf, reset_type);
713 			/* clear bit to resume normal operations, but
714 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
715 			 */
716 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
717 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
718 			clear_bit(ICE_PFR_REQ, pf->state);
719 			clear_bit(ICE_CORER_REQ, pf->state);
720 			clear_bit(ICE_GLOBR_REQ, pf->state);
721 			wake_up(&pf->reset_wait_queue);
722 			ice_reset_all_vfs(pf);
723 		}
724 
725 		return;
726 	}
727 
728 	/* No pending resets to finish processing. Check for new resets */
729 	if (test_bit(ICE_PFR_REQ, pf->state)) {
730 		reset_type = ICE_RESET_PFR;
731 		if (pf->lag && pf->lag->bonded) {
732 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
733 			reset_type = ICE_RESET_CORER;
734 		}
735 	}
736 	if (test_bit(ICE_CORER_REQ, pf->state))
737 		reset_type = ICE_RESET_CORER;
738 	if (test_bit(ICE_GLOBR_REQ, pf->state))
739 		reset_type = ICE_RESET_GLOBR;
740 	/* If no valid reset type requested just return */
741 	if (reset_type == ICE_RESET_INVAL)
742 		return;
743 
744 	/* reset if not already down or busy */
745 	if (!test_bit(ICE_DOWN, pf->state) &&
746 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
747 		ice_do_reset(pf, reset_type);
748 	}
749 }
750 
751 /**
752  * ice_print_topo_conflict - print topology conflict message
753  * @vsi: the VSI whose topology status is being checked
754  */
ice_print_topo_conflict(struct ice_vsi * vsi)755 static void ice_print_topo_conflict(struct ice_vsi *vsi)
756 {
757 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
758 	case ICE_AQ_LINK_TOPO_CONFLICT:
759 	case ICE_AQ_LINK_MEDIA_CONFLICT:
760 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
761 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
762 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
763 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
764 		break;
765 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
766 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
767 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
768 		else
769 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
770 		break;
771 	default:
772 		break;
773 	}
774 }
775 
776 /**
777  * ice_print_link_msg - print link up or down message
778  * @vsi: the VSI whose link status is being queried
779  * @isup: boolean for if the link is now up or down
780  */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
782 {
783 	struct ice_aqc_get_phy_caps_data *caps;
784 	const char *an_advertised;
785 	const char *fec_req;
786 	const char *speed;
787 	const char *fec;
788 	const char *fc;
789 	const char *an;
790 	int status;
791 
792 	if (!vsi)
793 		return;
794 
795 	if (vsi->current_isup == isup)
796 		return;
797 
798 	vsi->current_isup = isup;
799 
800 	if (!isup) {
801 		netdev_info(vsi->netdev, "NIC Link is Down\n");
802 		return;
803 	}
804 
805 	switch (vsi->port_info->phy.link_info.link_speed) {
806 	case ICE_AQ_LINK_SPEED_100GB:
807 		speed = "100 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_50GB:
810 		speed = "50 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_40GB:
813 		speed = "40 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_25GB:
816 		speed = "25 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_20GB:
819 		speed = "20 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_10GB:
822 		speed = "10 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_5GB:
825 		speed = "5 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_2500MB:
828 		speed = "2.5 G";
829 		break;
830 	case ICE_AQ_LINK_SPEED_1000MB:
831 		speed = "1 G";
832 		break;
833 	case ICE_AQ_LINK_SPEED_100MB:
834 		speed = "100 M";
835 		break;
836 	default:
837 		speed = "Unknown ";
838 		break;
839 	}
840 
841 	switch (vsi->port_info->fc.current_mode) {
842 	case ICE_FC_FULL:
843 		fc = "Rx/Tx";
844 		break;
845 	case ICE_FC_TX_PAUSE:
846 		fc = "Tx";
847 		break;
848 	case ICE_FC_RX_PAUSE:
849 		fc = "Rx";
850 		break;
851 	case ICE_FC_NONE:
852 		fc = "None";
853 		break;
854 	default:
855 		fc = "Unknown";
856 		break;
857 	}
858 
859 	/* Get FEC mode based on negotiated link info */
860 	switch (vsi->port_info->phy.link_info.fec_info) {
861 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
862 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
863 		fec = "RS-FEC";
864 		break;
865 	case ICE_AQ_LINK_25G_KR_FEC_EN:
866 		fec = "FC-FEC/BASE-R";
867 		break;
868 	default:
869 		fec = "NONE";
870 		break;
871 	}
872 
873 	/* check if autoneg completed, might be false due to not supported */
874 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
875 		an = "True";
876 	else
877 		an = "False";
878 
879 	/* Get FEC mode requested based on PHY caps last SW configuration */
880 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
881 	if (!caps) {
882 		fec_req = "Unknown";
883 		an_advertised = "Unknown";
884 		goto done;
885 	}
886 
887 	status = ice_aq_get_phy_caps(vsi->port_info, false,
888 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
889 	if (status)
890 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
891 
892 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
893 
894 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
895 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
896 		fec_req = "RS-FEC";
897 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
898 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
899 		fec_req = "FC-FEC/BASE-R";
900 	else
901 		fec_req = "NONE";
902 
903 	kfree(caps);
904 
905 done:
906 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
907 		    speed, fec_req, fec, an_advertised, an, fc);
908 	ice_print_topo_conflict(vsi);
909 }
910 
911 /**
912  * ice_vsi_link_event - update the VSI's netdev
913  * @vsi: the VSI on which the link event occurred
914  * @link_up: whether or not the VSI needs to be set up or down
915  */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
917 {
918 	if (!vsi)
919 		return;
920 
921 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
922 		return;
923 
924 	if (vsi->type == ICE_VSI_PF) {
925 		if (link_up == netif_carrier_ok(vsi->netdev))
926 			return;
927 
928 		if (link_up) {
929 			netif_carrier_on(vsi->netdev);
930 			netif_tx_wake_all_queues(vsi->netdev);
931 		} else {
932 			netif_carrier_off(vsi->netdev);
933 			netif_tx_stop_all_queues(vsi->netdev);
934 		}
935 	}
936 }
937 
938 /**
939  * ice_set_dflt_mib - send a default config MIB to the FW
940  * @pf: private PF struct
941  *
942  * This function sends a default configuration MIB to the FW.
943  *
944  * If this function errors out at any point, the driver is still able to
945  * function.  The main impact is that LFC may not operate as expected.
946  * Therefore an error state in this function should be treated with a DBG
947  * message and continue on with driver rebuild/reenable.
948  */
ice_set_dflt_mib(struct ice_pf * pf)949 static void ice_set_dflt_mib(struct ice_pf *pf)
950 {
951 	struct device *dev = ice_pf_to_dev(pf);
952 	u8 mib_type, *buf, *lldpmib = NULL;
953 	u16 len, typelen, offset = 0;
954 	struct ice_lldp_org_tlv *tlv;
955 	struct ice_hw *hw = &pf->hw;
956 	u32 ouisubtype;
957 
958 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
959 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
960 	if (!lldpmib) {
961 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
962 			__func__);
963 		return;
964 	}
965 
966 	/* Add ETS CFG TLV */
967 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
968 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 		   ICE_IEEE_ETS_TLV_LEN);
970 	tlv->typelen = htons(typelen);
971 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
972 		      ICE_IEEE_SUBTYPE_ETS_CFG);
973 	tlv->ouisubtype = htonl(ouisubtype);
974 
975 	buf = tlv->tlvinfo;
976 	buf[0] = 0;
977 
978 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
979 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
980 	 * Octets 13 - 20 are TSA values - leave as zeros
981 	 */
982 	buf[5] = 0x64;
983 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
984 	offset += len + 2;
985 	tlv = (struct ice_lldp_org_tlv *)
986 		((char *)tlv + sizeof(tlv->typelen) + len);
987 
988 	/* Add ETS REC TLV */
989 	buf = tlv->tlvinfo;
990 	tlv->typelen = htons(typelen);
991 
992 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
993 		      ICE_IEEE_SUBTYPE_ETS_REC);
994 	tlv->ouisubtype = htonl(ouisubtype);
995 
996 	/* First octet of buf is reserved
997 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
998 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
999 	 * Octets 13 - 20 are TSA value - leave as zeros
1000 	 */
1001 	buf[5] = 0x64;
1002 	offset += len + 2;
1003 	tlv = (struct ice_lldp_org_tlv *)
1004 		((char *)tlv + sizeof(tlv->typelen) + len);
1005 
1006 	/* Add PFC CFG TLV */
1007 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1008 		   ICE_IEEE_PFC_TLV_LEN);
1009 	tlv->typelen = htons(typelen);
1010 
1011 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1012 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1013 	tlv->ouisubtype = htonl(ouisubtype);
1014 
1015 	/* Octet 1 left as all zeros - PFC disabled */
1016 	buf[0] = 0x08;
1017 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1018 	offset += len + 2;
1019 
1020 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1021 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1022 
1023 	kfree(lldpmib);
1024 }
1025 
1026 /**
1027  * ice_check_phy_fw_load - check if PHY FW load failed
1028  * @pf: pointer to PF struct
1029  * @link_cfg_err: bitmap from the link info structure
1030  *
1031  * check if external PHY FW load failed and print an error message if it did
1032  */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1034 {
1035 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1036 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1037 		return;
1038 	}
1039 
1040 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1041 		return;
1042 
1043 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1044 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1045 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_module_power
1051  * @pf: pointer to PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * check module power level returned by a previous call to aq_get_link_info
1055  * and print error messages if module power level is not supported
1056  */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	/* if module power level is supported, clear the flag */
1060 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1061 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1062 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 		return;
1064 	}
1065 
1066 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1067 	 * above block didn't clear this bit, there's nothing to do
1068 	 */
1069 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1070 		return;
1071 
1072 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1073 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1074 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1075 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1076 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1077 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1078 	}
1079 }
1080 
1081 /**
1082  * ice_check_link_cfg_err - check if link configuration failed
1083  * @pf: pointer to the PF struct
1084  * @link_cfg_err: bitmap from the link info structure
1085  *
1086  * print if any link configuration failure happens due to the value in the
1087  * link_cfg_err parameter in the link info structure
1088  */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1090 {
1091 	ice_check_module_power(pf, link_cfg_err);
1092 	ice_check_phy_fw_load(pf, link_cfg_err);
1093 }
1094 
1095 /**
1096  * ice_link_event - process the link event
1097  * @pf: PF that the link event is associated with
1098  * @pi: port_info for the port that the link event is associated with
1099  * @link_up: true if the physical link is up and false if it is down
1100  * @link_speed: current link speed received from the link event
1101  *
1102  * Returns 0 on success and negative on failure
1103  */
1104 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1106 	       u16 link_speed)
1107 {
1108 	struct device *dev = ice_pf_to_dev(pf);
1109 	struct ice_phy_info *phy_info;
1110 	struct ice_vsi *vsi;
1111 	u16 old_link_speed;
1112 	bool old_link;
1113 	int status;
1114 
1115 	phy_info = &pi->phy;
1116 	phy_info->link_info_old = phy_info->link_info;
1117 
1118 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1119 	old_link_speed = phy_info->link_info_old.link_speed;
1120 
1121 	/* update the link info structures and re-enable link events,
1122 	 * don't bail on failure due to other book keeping needed
1123 	 */
1124 	status = ice_update_link_info(pi);
1125 	if (status)
1126 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1127 			pi->lport, status,
1128 			ice_aq_str(pi->hw->adminq.sq_last_status));
1129 
1130 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1131 
1132 	/* Check if the link state is up after updating link info, and treat
1133 	 * this event as an UP event since the link is actually UP now.
1134 	 */
1135 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1136 		link_up = true;
1137 
1138 	vsi = ice_get_main_vsi(pf);
1139 	if (!vsi || !vsi->port_info)
1140 		return -EINVAL;
1141 
1142 	/* turn off PHY if media was removed */
1143 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1144 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1145 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1146 		ice_set_link(vsi, false);
1147 	}
1148 
1149 	/* if the old link up/down and speed is the same as the new */
1150 	if (link_up == old_link && link_speed == old_link_speed)
1151 		return 0;
1152 
1153 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1154 
1155 	if (ice_is_dcb_active(pf)) {
1156 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1157 			ice_dcb_rebuild(pf);
1158 	} else {
1159 		if (link_up)
1160 			ice_set_dflt_mib(pf);
1161 	}
1162 	ice_vsi_link_event(vsi, link_up);
1163 	ice_print_link_msg(vsi, link_up);
1164 
1165 	ice_vc_notify_link_state(pf);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1172  * @pf: board private structure
1173  */
ice_watchdog_subtask(struct ice_pf * pf)1174 static void ice_watchdog_subtask(struct ice_pf *pf)
1175 {
1176 	int i;
1177 
1178 	/* if interface is down do nothing */
1179 	if (test_bit(ICE_DOWN, pf->state) ||
1180 	    test_bit(ICE_CFG_BUSY, pf->state))
1181 		return;
1182 
1183 	/* make sure we don't do these things too often */
1184 	if (time_before(jiffies,
1185 			pf->serv_tmr_prev + pf->serv_tmr_period))
1186 		return;
1187 
1188 	pf->serv_tmr_prev = jiffies;
1189 
1190 	/* Update the stats for active netdevs so the network stack
1191 	 * can look at updated numbers whenever it cares to
1192 	 */
1193 	ice_update_pf_stats(pf);
1194 	ice_for_each_vsi(pf, i)
1195 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1196 			ice_update_vsi_stats(pf->vsi[i]);
1197 }
1198 
1199 /**
1200  * ice_init_link_events - enable/initialize link events
1201  * @pi: pointer to the port_info instance
1202  *
1203  * Returns -EIO on failure, 0 on success
1204  */
ice_init_link_events(struct ice_port_info * pi)1205 static int ice_init_link_events(struct ice_port_info *pi)
1206 {
1207 	u16 mask;
1208 
1209 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1210 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1211 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1212 
1213 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1220 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1221 			pi->lport);
1222 		return -EIO;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ice_handle_link_event - handle link event via ARQ
1230  * @pf: PF that the link event is associated with
1231  * @event: event structure containing link status info
1232  */
1233 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1235 {
1236 	struct ice_aqc_get_link_status_data *link_data;
1237 	struct ice_port_info *port_info;
1238 	int status;
1239 
1240 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1241 	port_info = pf->hw.port_info;
1242 	if (!port_info)
1243 		return -EINVAL;
1244 
1245 	status = ice_link_event(pf, port_info,
1246 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1247 				le16_to_cpu(link_data->link_speed));
1248 	if (status)
1249 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1250 			status);
1251 
1252 	return status;
1253 }
1254 
1255 /**
1256  * ice_get_fwlog_data - copy the FW log data from ARQ event
1257  * @pf: PF that the FW log event is associated with
1258  * @event: event structure containing FW log data
1259  */
1260 static void
ice_get_fwlog_data(struct ice_pf * pf,struct ice_rq_event_info * event)1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1262 {
1263 	struct ice_fwlog_data *fwlog;
1264 	struct ice_hw *hw = &pf->hw;
1265 
1266 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1267 
1268 	memset(fwlog->data, 0, PAGE_SIZE);
1269 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1270 
1271 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1272 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1273 
1274 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1275 		/* the rings are full so bump the head to create room */
1276 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1277 					 hw->fwlog_ring.size);
1278 	}
1279 }
1280 
1281 /**
1282  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1283  * @pf: pointer to the PF private structure
1284  * @task: intermediate helper storage and identifier for waiting
1285  * @opcode: the opcode to wait for
1286  *
1287  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1288  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1289  *
1290  * Calls are separated to allow caller registering for event before sending
1291  * the command, which mitigates a race between registering and FW responding.
1292  *
1293  * To obtain only the descriptor contents, pass an task->event with null
1294  * msg_buf. If the complete data buffer is desired, allocate the
1295  * task->event.msg_buf with enough space ahead of time.
1296  */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1298 			   u16 opcode)
1299 {
1300 	INIT_HLIST_NODE(&task->entry);
1301 	task->opcode = opcode;
1302 	task->state = ICE_AQ_TASK_WAITING;
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 }
1308 
1309 /**
1310  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1311  * @pf: pointer to the PF private structure
1312  * @task: ptr prepared by ice_aq_prep_for_event()
1313  * @timeout: how long to wait, in jiffies
1314  *
1315  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1316  * current thread will be put to sleep until the specified event occurs or
1317  * until the given timeout is reached.
1318  *
1319  * Returns: zero on success, or a negative error code on failure.
1320  */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1322 			  unsigned long timeout)
1323 {
1324 	enum ice_aq_task_state *state = &task->state;
1325 	struct device *dev = ice_pf_to_dev(pf);
1326 	unsigned long start = jiffies;
1327 	long ret;
1328 	int err;
1329 
1330 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1331 					       *state != ICE_AQ_TASK_WAITING,
1332 					       timeout);
1333 	switch (*state) {
1334 	case ICE_AQ_TASK_NOT_PREPARED:
1335 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1336 		err = -EINVAL;
1337 		break;
1338 	case ICE_AQ_TASK_WAITING:
1339 		err = ret < 0 ? ret : -ETIMEDOUT;
1340 		break;
1341 	case ICE_AQ_TASK_CANCELED:
1342 		err = ret < 0 ? ret : -ECANCELED;
1343 		break;
1344 	case ICE_AQ_TASK_COMPLETE:
1345 		err = ret < 0 ? ret : 0;
1346 		break;
1347 	default:
1348 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1349 		err = -EINVAL;
1350 		break;
1351 	}
1352 
1353 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1354 		jiffies_to_msecs(jiffies - start),
1355 		jiffies_to_msecs(timeout),
1356 		task->opcode);
1357 
1358 	spin_lock_bh(&pf->aq_wait_lock);
1359 	hlist_del(&task->entry);
1360 	spin_unlock_bh(&pf->aq_wait_lock);
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1367  * @pf: pointer to the PF private structure
1368  * @opcode: the opcode of the event
1369  * @event: the event to check
1370  *
1371  * Loops over the current list of pending threads waiting for an AdminQ event.
1372  * For each matching task, copy the contents of the event into the task
1373  * structure and wake up the thread.
1374  *
1375  * If multiple threads wait for the same opcode, they will all be woken up.
1376  *
1377  * Note that event->msg_buf will only be duplicated if the event has a buffer
1378  * with enough space already allocated. Otherwise, only the descriptor and
1379  * message length will be copied.
1380  *
1381  * Returns: true if an event was found, false otherwise
1382  */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1384 				struct ice_rq_event_info *event)
1385 {
1386 	struct ice_rq_event_info *task_ev;
1387 	struct ice_aq_task *task;
1388 	bool found = false;
1389 
1390 	spin_lock_bh(&pf->aq_wait_lock);
1391 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1392 		if (task->state != ICE_AQ_TASK_WAITING)
1393 			continue;
1394 		if (task->opcode != opcode)
1395 			continue;
1396 
1397 		task_ev = &task->event;
1398 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1399 		task_ev->msg_len = event->msg_len;
1400 
1401 		/* Only copy the data buffer if a destination was set */
1402 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1403 			memcpy(task_ev->msg_buf, event->msg_buf,
1404 			       event->buf_len);
1405 			task_ev->buf_len = event->buf_len;
1406 		}
1407 
1408 		task->state = ICE_AQ_TASK_COMPLETE;
1409 		found = true;
1410 	}
1411 	spin_unlock_bh(&pf->aq_wait_lock);
1412 
1413 	if (found)
1414 		wake_up(&pf->aq_wait_queue);
1415 }
1416 
1417 /**
1418  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1419  * @pf: the PF private structure
1420  *
1421  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1422  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1423  */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1425 {
1426 	struct ice_aq_task *task;
1427 
1428 	spin_lock_bh(&pf->aq_wait_lock);
1429 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1430 		task->state = ICE_AQ_TASK_CANCELED;
1431 	spin_unlock_bh(&pf->aq_wait_lock);
1432 
1433 	wake_up(&pf->aq_wait_queue);
1434 }
1435 
1436 #define ICE_MBX_OVERFLOW_WATERMARK 64
1437 
1438 /**
1439  * __ice_clean_ctrlq - helper function to clean controlq rings
1440  * @pf: ptr to struct ice_pf
1441  * @q_type: specific Control queue type
1442  */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1444 {
1445 	struct device *dev = ice_pf_to_dev(pf);
1446 	struct ice_rq_event_info event;
1447 	struct ice_hw *hw = &pf->hw;
1448 	struct ice_ctl_q_info *cq;
1449 	u16 pending, i = 0;
1450 	const char *qtype;
1451 	u32 oldval, val;
1452 
1453 	/* Do not clean control queue if/when PF reset fails */
1454 	if (test_bit(ICE_RESET_FAILED, pf->state))
1455 		return 0;
1456 
1457 	switch (q_type) {
1458 	case ICE_CTL_Q_ADMIN:
1459 		cq = &hw->adminq;
1460 		qtype = "Admin";
1461 		break;
1462 	case ICE_CTL_Q_SB:
1463 		cq = &hw->sbq;
1464 		qtype = "Sideband";
1465 		break;
1466 	case ICE_CTL_Q_MAILBOX:
1467 		cq = &hw->mailboxq;
1468 		qtype = "Mailbox";
1469 		/* we are going to try to detect a malicious VF, so set the
1470 		 * state to begin detection
1471 		 */
1472 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1473 		break;
1474 	default:
1475 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1476 		return 0;
1477 	}
1478 
1479 	/* check for error indications - PF_xx_AxQLEN register layout for
1480 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1481 	 */
1482 	val = rd32(hw, cq->rq.len);
1483 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1484 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1485 		oldval = val;
1486 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1487 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1488 				qtype);
1489 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1490 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1491 				qtype);
1492 		}
1493 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1494 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1495 				qtype);
1496 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1497 			 PF_FW_ARQLEN_ARQCRIT_M);
1498 		if (oldval != val)
1499 			wr32(hw, cq->rq.len, val);
1500 	}
1501 
1502 	val = rd32(hw, cq->sq.len);
1503 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1504 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1505 		oldval = val;
1506 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1507 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1508 				qtype);
1509 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1510 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1511 				qtype);
1512 		}
1513 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1514 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1515 				qtype);
1516 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1517 			 PF_FW_ATQLEN_ATQCRIT_M);
1518 		if (oldval != val)
1519 			wr32(hw, cq->sq.len, val);
1520 	}
1521 
1522 	event.buf_len = cq->rq_buf_size;
1523 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1524 	if (!event.msg_buf)
1525 		return 0;
1526 
1527 	do {
1528 		struct ice_mbx_data data = {};
1529 		u16 opcode;
1530 		int ret;
1531 
1532 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1533 		if (ret == -EALREADY)
1534 			break;
1535 		if (ret) {
1536 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1537 				ret);
1538 			break;
1539 		}
1540 
1541 		opcode = le16_to_cpu(event.desc.opcode);
1542 
1543 		/* Notify any thread that might be waiting for this event */
1544 		ice_aq_check_events(pf, opcode, &event);
1545 
1546 		switch (opcode) {
1547 		case ice_aqc_opc_get_link_status:
1548 			if (ice_handle_link_event(pf, &event))
1549 				dev_err(dev, "Could not handle link event\n");
1550 			break;
1551 		case ice_aqc_opc_event_lan_overflow:
1552 			ice_vf_lan_overflow_event(pf, &event);
1553 			break;
1554 		case ice_mbx_opc_send_msg_to_pf:
1555 			data.num_msg_proc = i;
1556 			data.num_pending_arq = pending;
1557 			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1558 			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1559 
1560 			ice_vc_process_vf_msg(pf, &event, &data);
1561 			break;
1562 		case ice_aqc_opc_fw_logs_event:
1563 			ice_get_fwlog_data(pf, &event);
1564 			break;
1565 		case ice_aqc_opc_lldp_set_mib_change:
1566 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1567 			break;
1568 		default:
1569 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1570 				qtype, opcode);
1571 			break;
1572 		}
1573 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1574 
1575 	kfree(event.msg_buf);
1576 
1577 	return pending && (i == ICE_DFLT_IRQ_WORK);
1578 }
1579 
1580 /**
1581  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1582  * @hw: pointer to hardware info
1583  * @cq: control queue information
1584  *
1585  * returns true if there are pending messages in a queue, false if there aren't
1586  */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1588 {
1589 	u16 ntu;
1590 
1591 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1592 	return cq->rq.next_to_clean != ntu;
1593 }
1594 
1595 /**
1596  * ice_clean_adminq_subtask - clean the AdminQ rings
1597  * @pf: board private structure
1598  */
ice_clean_adminq_subtask(struct ice_pf * pf)1599 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1600 {
1601 	struct ice_hw *hw = &pf->hw;
1602 
1603 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1604 		return;
1605 
1606 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1607 		return;
1608 
1609 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1610 
1611 	/* There might be a situation where new messages arrive to a control
1612 	 * queue between processing the last message and clearing the
1613 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1614 	 * ice_ctrlq_pending) and process new messages if any.
1615 	 */
1616 	if (ice_ctrlq_pending(hw, &hw->adminq))
1617 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1618 
1619 	ice_flush(hw);
1620 }
1621 
1622 /**
1623  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1624  * @pf: board private structure
1625  */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1627 {
1628 	struct ice_hw *hw = &pf->hw;
1629 
1630 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1631 		return;
1632 
1633 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1634 		return;
1635 
1636 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1637 
1638 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1639 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1640 
1641 	ice_flush(hw);
1642 }
1643 
1644 /**
1645  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1646  * @pf: board private structure
1647  */
ice_clean_sbq_subtask(struct ice_pf * pf)1648 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1649 {
1650 	struct ice_hw *hw = &pf->hw;
1651 
1652 	/* Nothing to do here if sideband queue is not supported */
1653 	if (!ice_is_sbq_supported(hw)) {
1654 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1655 		return;
1656 	}
1657 
1658 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1659 		return;
1660 
1661 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1662 		return;
1663 
1664 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1665 
1666 	if (ice_ctrlq_pending(hw, &hw->sbq))
1667 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1668 
1669 	ice_flush(hw);
1670 }
1671 
1672 /**
1673  * ice_service_task_schedule - schedule the service task to wake up
1674  * @pf: board private structure
1675  *
1676  * If not already scheduled, this puts the task into the work queue.
1677  */
ice_service_task_schedule(struct ice_pf * pf)1678 void ice_service_task_schedule(struct ice_pf *pf)
1679 {
1680 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1681 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1682 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1683 		queue_work(ice_wq, &pf->serv_task);
1684 }
1685 
1686 /**
1687  * ice_service_task_complete - finish up the service task
1688  * @pf: board private structure
1689  */
ice_service_task_complete(struct ice_pf * pf)1690 static void ice_service_task_complete(struct ice_pf *pf)
1691 {
1692 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1693 
1694 	/* force memory (pf->state) to sync before next service task */
1695 	smp_mb__before_atomic();
1696 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1697 }
1698 
1699 /**
1700  * ice_service_task_stop - stop service task and cancel works
1701  * @pf: board private structure
1702  *
1703  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1704  * 1 otherwise.
1705  */
ice_service_task_stop(struct ice_pf * pf)1706 static int ice_service_task_stop(struct ice_pf *pf)
1707 {
1708 	int ret;
1709 
1710 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1711 
1712 	if (pf->serv_tmr.function)
1713 		del_timer_sync(&pf->serv_tmr);
1714 	if (pf->serv_task.func)
1715 		cancel_work_sync(&pf->serv_task);
1716 
1717 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1718 	return ret;
1719 }
1720 
1721 /**
1722  * ice_service_task_restart - restart service task and schedule works
1723  * @pf: board private structure
1724  *
1725  * This function is needed for suspend and resume works (e.g WoL scenario)
1726  */
ice_service_task_restart(struct ice_pf * pf)1727 static void ice_service_task_restart(struct ice_pf *pf)
1728 {
1729 	clear_bit(ICE_SERVICE_DIS, pf->state);
1730 	ice_service_task_schedule(pf);
1731 }
1732 
1733 /**
1734  * ice_service_timer - timer callback to schedule service task
1735  * @t: pointer to timer_list
1736  */
ice_service_timer(struct timer_list * t)1737 static void ice_service_timer(struct timer_list *t)
1738 {
1739 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1740 
1741 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1742 	ice_service_task_schedule(pf);
1743 }
1744 
1745 /**
1746  * ice_handle_mdd_event - handle malicious driver detect event
1747  * @pf: pointer to the PF structure
1748  *
1749  * Called from service task. OICR interrupt handler indicates MDD event.
1750  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1751  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1752  * disable the queue, the PF can be configured to reset the VF using ethtool
1753  * private flag mdd-auto-reset-vf.
1754  */
ice_handle_mdd_event(struct ice_pf * pf)1755 static void ice_handle_mdd_event(struct ice_pf *pf)
1756 {
1757 	struct device *dev = ice_pf_to_dev(pf);
1758 	struct ice_hw *hw = &pf->hw;
1759 	struct ice_vf *vf;
1760 	unsigned int bkt;
1761 	u32 reg;
1762 
1763 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1764 		/* Since the VF MDD event logging is rate limited, check if
1765 		 * there are pending MDD events.
1766 		 */
1767 		ice_print_vfs_mdd_events(pf);
1768 		return;
1769 	}
1770 
1771 	/* find what triggered an MDD event */
1772 	reg = rd32(hw, GL_MDET_TX_PQM);
1773 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1774 		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1775 		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1776 		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1777 		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1778 
1779 		if (netif_msg_tx_err(pf))
1780 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1781 				 event, queue, pf_num, vf_num);
1782 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1783 	}
1784 
1785 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1786 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1787 		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1788 		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1789 		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1790 		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1791 
1792 		if (netif_msg_tx_err(pf))
1793 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1794 				 event, queue, pf_num, vf_num);
1795 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1796 	}
1797 
1798 	reg = rd32(hw, GL_MDET_RX);
1799 	if (reg & GL_MDET_RX_VALID_M) {
1800 		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1801 		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1802 		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1803 		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1804 
1805 		if (netif_msg_rx_err(pf))
1806 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1807 				 event, queue, pf_num, vf_num);
1808 		wr32(hw, GL_MDET_RX, 0xffffffff);
1809 	}
1810 
1811 	/* check to see if this PF caused an MDD event */
1812 	reg = rd32(hw, PF_MDET_TX_PQM);
1813 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1814 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1815 		if (netif_msg_tx_err(pf))
1816 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1817 	}
1818 
1819 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1820 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1821 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1822 		if (netif_msg_tx_err(pf))
1823 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1824 	}
1825 
1826 	reg = rd32(hw, PF_MDET_RX);
1827 	if (reg & PF_MDET_RX_VALID_M) {
1828 		wr32(hw, PF_MDET_RX, 0xFFFF);
1829 		if (netif_msg_rx_err(pf))
1830 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1831 	}
1832 
1833 	/* Check to see if one of the VFs caused an MDD event, and then
1834 	 * increment counters and set print pending
1835 	 */
1836 	mutex_lock(&pf->vfs.table_lock);
1837 	ice_for_each_vf(pf, bkt, vf) {
1838 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1839 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1840 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1841 			vf->mdd_tx_events.count++;
1842 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1843 			if (netif_msg_tx_err(pf))
1844 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1845 					 vf->vf_id);
1846 		}
1847 
1848 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1849 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1850 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1851 			vf->mdd_tx_events.count++;
1852 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1853 			if (netif_msg_tx_err(pf))
1854 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1855 					 vf->vf_id);
1856 		}
1857 
1858 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1859 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1860 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1861 			vf->mdd_tx_events.count++;
1862 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1863 			if (netif_msg_tx_err(pf))
1864 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1865 					 vf->vf_id);
1866 		}
1867 
1868 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1869 		if (reg & VP_MDET_RX_VALID_M) {
1870 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1871 			vf->mdd_rx_events.count++;
1872 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1873 			if (netif_msg_rx_err(pf))
1874 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1875 					 vf->vf_id);
1876 
1877 			/* Since the queue is disabled on VF Rx MDD events, the
1878 			 * PF can be configured to reset the VF through ethtool
1879 			 * private flag mdd-auto-reset-vf.
1880 			 */
1881 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1882 				/* VF MDD event counters will be cleared by
1883 				 * reset, so print the event prior to reset.
1884 				 */
1885 				ice_print_vf_rx_mdd_event(vf);
1886 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1887 			}
1888 		}
1889 	}
1890 	mutex_unlock(&pf->vfs.table_lock);
1891 
1892 	ice_print_vfs_mdd_events(pf);
1893 }
1894 
1895 /**
1896  * ice_force_phys_link_state - Force the physical link state
1897  * @vsi: VSI to force the physical link state to up/down
1898  * @link_up: true/false indicates to set the physical link to up/down
1899  *
1900  * Force the physical link state by getting the current PHY capabilities from
1901  * hardware and setting the PHY config based on the determined capabilities. If
1902  * link changes a link event will be triggered because both the Enable Automatic
1903  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1904  *
1905  * Returns 0 on success, negative on failure
1906  */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1907 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1908 {
1909 	struct ice_aqc_get_phy_caps_data *pcaps;
1910 	struct ice_aqc_set_phy_cfg_data *cfg;
1911 	struct ice_port_info *pi;
1912 	struct device *dev;
1913 	int retcode;
1914 
1915 	if (!vsi || !vsi->port_info || !vsi->back)
1916 		return -EINVAL;
1917 	if (vsi->type != ICE_VSI_PF)
1918 		return 0;
1919 
1920 	dev = ice_pf_to_dev(vsi->back);
1921 
1922 	pi = vsi->port_info;
1923 
1924 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1925 	if (!pcaps)
1926 		return -ENOMEM;
1927 
1928 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1929 				      NULL);
1930 	if (retcode) {
1931 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1932 			vsi->vsi_num, retcode);
1933 		retcode = -EIO;
1934 		goto out;
1935 	}
1936 
1937 	/* No change in link */
1938 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1939 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1940 		goto out;
1941 
1942 	/* Use the current user PHY configuration. The current user PHY
1943 	 * configuration is initialized during probe from PHY capabilities
1944 	 * software mode, and updated on set PHY configuration.
1945 	 */
1946 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1947 	if (!cfg) {
1948 		retcode = -ENOMEM;
1949 		goto out;
1950 	}
1951 
1952 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1953 	if (link_up)
1954 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1955 	else
1956 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1957 
1958 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1959 	if (retcode) {
1960 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1961 			vsi->vsi_num, retcode);
1962 		retcode = -EIO;
1963 	}
1964 
1965 	kfree(cfg);
1966 out:
1967 	kfree(pcaps);
1968 	return retcode;
1969 }
1970 
1971 /**
1972  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1973  * @pi: port info structure
1974  *
1975  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1976  */
ice_init_nvm_phy_type(struct ice_port_info * pi)1977 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1978 {
1979 	struct ice_aqc_get_phy_caps_data *pcaps;
1980 	struct ice_pf *pf = pi->hw->back;
1981 	int err;
1982 
1983 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1984 	if (!pcaps)
1985 		return -ENOMEM;
1986 
1987 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1988 				  pcaps, NULL);
1989 
1990 	if (err) {
1991 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1992 		goto out;
1993 	}
1994 
1995 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1996 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1997 
1998 out:
1999 	kfree(pcaps);
2000 	return err;
2001 }
2002 
2003 /**
2004  * ice_init_link_dflt_override - Initialize link default override
2005  * @pi: port info structure
2006  *
2007  * Initialize link default override and PHY total port shutdown during probe
2008  */
ice_init_link_dflt_override(struct ice_port_info * pi)2009 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2010 {
2011 	struct ice_link_default_override_tlv *ldo;
2012 	struct ice_pf *pf = pi->hw->back;
2013 
2014 	ldo = &pf->link_dflt_override;
2015 	if (ice_get_link_default_override(ldo, pi))
2016 		return;
2017 
2018 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2019 		return;
2020 
2021 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2022 	 * ethtool private flag) for ports with Port Disable bit set.
2023 	 */
2024 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2025 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2026 }
2027 
2028 /**
2029  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2030  * @pi: port info structure
2031  *
2032  * If default override is enabled, initialize the user PHY cfg speed and FEC
2033  * settings using the default override mask from the NVM.
2034  *
2035  * The PHY should only be configured with the default override settings the
2036  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2037  * is used to indicate that the user PHY cfg default override is initialized
2038  * and the PHY has not been configured with the default override settings. The
2039  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2040  * configured.
2041  *
2042  * This function should be called only if the FW doesn't support default
2043  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2044  */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2045 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2046 {
2047 	struct ice_link_default_override_tlv *ldo;
2048 	struct ice_aqc_set_phy_cfg_data *cfg;
2049 	struct ice_phy_info *phy = &pi->phy;
2050 	struct ice_pf *pf = pi->hw->back;
2051 
2052 	ldo = &pf->link_dflt_override;
2053 
2054 	/* If link default override is enabled, use to mask NVM PHY capabilities
2055 	 * for speed and FEC default configuration.
2056 	 */
2057 	cfg = &phy->curr_user_phy_cfg;
2058 
2059 	if (ldo->phy_type_low || ldo->phy_type_high) {
2060 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2061 				    cpu_to_le64(ldo->phy_type_low);
2062 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2063 				     cpu_to_le64(ldo->phy_type_high);
2064 	}
2065 	cfg->link_fec_opt = ldo->fec_options;
2066 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2067 
2068 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2069 }
2070 
2071 /**
2072  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2073  * @pi: port info structure
2074  *
2075  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2076  * mode to default. The PHY defaults are from get PHY capabilities topology
2077  * with media so call when media is first available. An error is returned if
2078  * called when media is not available. The PHY initialization completed state is
2079  * set here.
2080  *
2081  * These configurations are used when setting PHY
2082  * configuration. The user PHY configuration is updated on set PHY
2083  * configuration. Returns 0 on success, negative on failure
2084  */
ice_init_phy_user_cfg(struct ice_port_info * pi)2085 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2086 {
2087 	struct ice_aqc_get_phy_caps_data *pcaps;
2088 	struct ice_phy_info *phy = &pi->phy;
2089 	struct ice_pf *pf = pi->hw->back;
2090 	int err;
2091 
2092 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2093 		return -EIO;
2094 
2095 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2096 	if (!pcaps)
2097 		return -ENOMEM;
2098 
2099 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2100 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2101 					  pcaps, NULL);
2102 	else
2103 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2104 					  pcaps, NULL);
2105 	if (err) {
2106 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2107 		goto err_out;
2108 	}
2109 
2110 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2111 
2112 	/* check if lenient mode is supported and enabled */
2113 	if (ice_fw_supports_link_override(pi->hw) &&
2114 	    !(pcaps->module_compliance_enforcement &
2115 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2116 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2117 
2118 		/* if the FW supports default PHY configuration mode, then the driver
2119 		 * does not have to apply link override settings. If not,
2120 		 * initialize user PHY configuration with link override values
2121 		 */
2122 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2123 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2124 			ice_init_phy_cfg_dflt_override(pi);
2125 			goto out;
2126 		}
2127 	}
2128 
2129 	/* if link default override is not enabled, set user flow control and
2130 	 * FEC settings based on what get_phy_caps returned
2131 	 */
2132 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2133 						      pcaps->link_fec_options);
2134 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2135 
2136 out:
2137 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2138 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2139 err_out:
2140 	kfree(pcaps);
2141 	return err;
2142 }
2143 
2144 /**
2145  * ice_configure_phy - configure PHY
2146  * @vsi: VSI of PHY
2147  *
2148  * Set the PHY configuration. If the current PHY configuration is the same as
2149  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2150  * configure the based get PHY capabilities for topology with media.
2151  */
ice_configure_phy(struct ice_vsi * vsi)2152 static int ice_configure_phy(struct ice_vsi *vsi)
2153 {
2154 	struct device *dev = ice_pf_to_dev(vsi->back);
2155 	struct ice_port_info *pi = vsi->port_info;
2156 	struct ice_aqc_get_phy_caps_data *pcaps;
2157 	struct ice_aqc_set_phy_cfg_data *cfg;
2158 	struct ice_phy_info *phy = &pi->phy;
2159 	struct ice_pf *pf = vsi->back;
2160 	int err;
2161 
2162 	/* Ensure we have media as we cannot configure a medialess port */
2163 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2164 		return -ENOMEDIUM;
2165 
2166 	ice_print_topo_conflict(vsi);
2167 
2168 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2169 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2170 		return -EPERM;
2171 
2172 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2173 		return ice_force_phys_link_state(vsi, true);
2174 
2175 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2176 	if (!pcaps)
2177 		return -ENOMEM;
2178 
2179 	/* Get current PHY config */
2180 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2181 				  NULL);
2182 	if (err) {
2183 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2184 			vsi->vsi_num, err);
2185 		goto done;
2186 	}
2187 
2188 	/* If PHY enable link is configured and configuration has not changed,
2189 	 * there's nothing to do
2190 	 */
2191 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2192 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2193 		goto done;
2194 
2195 	/* Use PHY topology as baseline for configuration */
2196 	memset(pcaps, 0, sizeof(*pcaps));
2197 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2198 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2199 					  pcaps, NULL);
2200 	else
2201 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2202 					  pcaps, NULL);
2203 	if (err) {
2204 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2205 			vsi->vsi_num, err);
2206 		goto done;
2207 	}
2208 
2209 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2210 	if (!cfg) {
2211 		err = -ENOMEM;
2212 		goto done;
2213 	}
2214 
2215 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2216 
2217 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2218 	 * ice_init_phy_user_cfg_ldo.
2219 	 */
2220 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2221 			       vsi->back->state)) {
2222 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2223 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2224 	} else {
2225 		u64 phy_low = 0, phy_high = 0;
2226 
2227 		ice_update_phy_type(&phy_low, &phy_high,
2228 				    pi->phy.curr_user_speed_req);
2229 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2230 		cfg->phy_type_high = pcaps->phy_type_high &
2231 				     cpu_to_le64(phy_high);
2232 	}
2233 
2234 	/* Can't provide what was requested; use PHY capabilities */
2235 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2236 		cfg->phy_type_low = pcaps->phy_type_low;
2237 		cfg->phy_type_high = pcaps->phy_type_high;
2238 	}
2239 
2240 	/* FEC */
2241 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2242 
2243 	/* Can't provide what was requested; use PHY capabilities */
2244 	if (cfg->link_fec_opt !=
2245 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2246 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2247 		cfg->link_fec_opt = pcaps->link_fec_options;
2248 	}
2249 
2250 	/* Flow Control - always supported; no need to check against
2251 	 * capabilities
2252 	 */
2253 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2254 
2255 	/* Enable link and link update */
2256 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2257 
2258 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2259 	if (err)
2260 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2261 			vsi->vsi_num, err);
2262 
2263 	kfree(cfg);
2264 done:
2265 	kfree(pcaps);
2266 	return err;
2267 }
2268 
2269 /**
2270  * ice_check_media_subtask - Check for media
2271  * @pf: pointer to PF struct
2272  *
2273  * If media is available, then initialize PHY user configuration if it is not
2274  * been, and configure the PHY if the interface is up.
2275  */
ice_check_media_subtask(struct ice_pf * pf)2276 static void ice_check_media_subtask(struct ice_pf *pf)
2277 {
2278 	struct ice_port_info *pi;
2279 	struct ice_vsi *vsi;
2280 	int err;
2281 
2282 	/* No need to check for media if it's already present */
2283 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2284 		return;
2285 
2286 	vsi = ice_get_main_vsi(pf);
2287 	if (!vsi)
2288 		return;
2289 
2290 	/* Refresh link info and check if media is present */
2291 	pi = vsi->port_info;
2292 	err = ice_update_link_info(pi);
2293 	if (err)
2294 		return;
2295 
2296 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2297 
2298 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2299 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2300 			ice_init_phy_user_cfg(pi);
2301 
2302 		/* PHY settings are reset on media insertion, reconfigure
2303 		 * PHY to preserve settings.
2304 		 */
2305 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2306 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2307 			return;
2308 
2309 		err = ice_configure_phy(vsi);
2310 		if (!err)
2311 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2312 
2313 		/* A Link Status Event will be generated; the event handler
2314 		 * will complete bringing the interface up
2315 		 */
2316 	}
2317 }
2318 
2319 /**
2320  * ice_service_task - manage and run subtasks
2321  * @work: pointer to work_struct contained by the PF struct
2322  */
ice_service_task(struct work_struct * work)2323 static void ice_service_task(struct work_struct *work)
2324 {
2325 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2326 	unsigned long start_time = jiffies;
2327 
2328 	/* subtasks */
2329 
2330 	/* process reset requests first */
2331 	ice_reset_subtask(pf);
2332 
2333 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2334 	if (ice_is_reset_in_progress(pf->state) ||
2335 	    test_bit(ICE_SUSPENDED, pf->state) ||
2336 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2337 		ice_service_task_complete(pf);
2338 		return;
2339 	}
2340 
2341 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2342 		struct iidc_event *event;
2343 
2344 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2345 		if (event) {
2346 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2347 			/* report the entire OICR value to AUX driver */
2348 			swap(event->reg, pf->oicr_err_reg);
2349 			ice_send_event_to_aux(pf, event);
2350 			kfree(event);
2351 		}
2352 	}
2353 
2354 	/* unplug aux dev per request, if an unplug request came in
2355 	 * while processing a plug request, this will handle it
2356 	 */
2357 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2358 		ice_unplug_aux_dev(pf);
2359 
2360 	/* Plug aux device per request */
2361 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2362 		ice_plug_aux_dev(pf);
2363 
2364 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2365 		struct iidc_event *event;
2366 
2367 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2368 		if (event) {
2369 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2370 			ice_send_event_to_aux(pf, event);
2371 			kfree(event);
2372 		}
2373 	}
2374 
2375 	ice_clean_adminq_subtask(pf);
2376 	ice_check_media_subtask(pf);
2377 	ice_check_for_hang_subtask(pf);
2378 	ice_sync_fltr_subtask(pf);
2379 	ice_handle_mdd_event(pf);
2380 	ice_watchdog_subtask(pf);
2381 
2382 	if (ice_is_safe_mode(pf)) {
2383 		ice_service_task_complete(pf);
2384 		return;
2385 	}
2386 
2387 	ice_process_vflr_event(pf);
2388 	ice_clean_mailboxq_subtask(pf);
2389 	ice_clean_sbq_subtask(pf);
2390 	ice_sync_arfs_fltrs(pf);
2391 	ice_flush_fdir_ctx(pf);
2392 
2393 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2394 	ice_service_task_complete(pf);
2395 
2396 	/* If the tasks have taken longer than one service timer period
2397 	 * or there is more work to be done, reset the service timer to
2398 	 * schedule the service task now.
2399 	 */
2400 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2401 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2402 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2403 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2404 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2405 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2406 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2407 		mod_timer(&pf->serv_tmr, jiffies);
2408 }
2409 
2410 /**
2411  * ice_set_ctrlq_len - helper function to set controlq length
2412  * @hw: pointer to the HW instance
2413  */
ice_set_ctrlq_len(struct ice_hw * hw)2414 static void ice_set_ctrlq_len(struct ice_hw *hw)
2415 {
2416 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2417 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2418 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2419 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2420 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2421 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2422 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2423 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2424 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2425 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2426 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2427 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2428 }
2429 
2430 /**
2431  * ice_schedule_reset - schedule a reset
2432  * @pf: board private structure
2433  * @reset: reset being requested
2434  */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2435 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2436 {
2437 	struct device *dev = ice_pf_to_dev(pf);
2438 
2439 	/* bail out if earlier reset has failed */
2440 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2441 		dev_dbg(dev, "earlier reset has failed\n");
2442 		return -EIO;
2443 	}
2444 	/* bail if reset/recovery already in progress */
2445 	if (ice_is_reset_in_progress(pf->state)) {
2446 		dev_dbg(dev, "Reset already in progress\n");
2447 		return -EBUSY;
2448 	}
2449 
2450 	switch (reset) {
2451 	case ICE_RESET_PFR:
2452 		set_bit(ICE_PFR_REQ, pf->state);
2453 		break;
2454 	case ICE_RESET_CORER:
2455 		set_bit(ICE_CORER_REQ, pf->state);
2456 		break;
2457 	case ICE_RESET_GLOBR:
2458 		set_bit(ICE_GLOBR_REQ, pf->state);
2459 		break;
2460 	default:
2461 		return -EINVAL;
2462 	}
2463 
2464 	ice_service_task_schedule(pf);
2465 	return 0;
2466 }
2467 
2468 /**
2469  * ice_irq_affinity_notify - Callback for affinity changes
2470  * @notify: context as to what irq was changed
2471  * @mask: the new affinity mask
2472  *
2473  * This is a callback function used by the irq_set_affinity_notifier function
2474  * so that we may register to receive changes to the irq affinity masks.
2475  */
2476 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2477 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2478 			const cpumask_t *mask)
2479 {
2480 	struct ice_q_vector *q_vector =
2481 		container_of(notify, struct ice_q_vector, affinity_notify);
2482 
2483 	cpumask_copy(&q_vector->affinity_mask, mask);
2484 }
2485 
2486 /**
2487  * ice_irq_affinity_release - Callback for affinity notifier release
2488  * @ref: internal core kernel usage
2489  *
2490  * This is a callback function used by the irq_set_affinity_notifier function
2491  * to inform the current notification subscriber that they will no longer
2492  * receive notifications.
2493  */
ice_irq_affinity_release(struct kref __always_unused * ref)2494 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2495 
2496 /**
2497  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2498  * @vsi: the VSI being configured
2499  */
ice_vsi_ena_irq(struct ice_vsi * vsi)2500 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2501 {
2502 	struct ice_hw *hw = &vsi->back->hw;
2503 	int i;
2504 
2505 	ice_for_each_q_vector(vsi, i)
2506 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2507 
2508 	ice_flush(hw);
2509 	return 0;
2510 }
2511 
2512 /**
2513  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2514  * @vsi: the VSI being configured
2515  * @basename: name for the vector
2516  */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2517 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2518 {
2519 	int q_vectors = vsi->num_q_vectors;
2520 	struct ice_pf *pf = vsi->back;
2521 	struct device *dev;
2522 	int rx_int_idx = 0;
2523 	int tx_int_idx = 0;
2524 	int vector, err;
2525 	int irq_num;
2526 
2527 	dev = ice_pf_to_dev(pf);
2528 	for (vector = 0; vector < q_vectors; vector++) {
2529 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2530 
2531 		irq_num = q_vector->irq.virq;
2532 
2533 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2534 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2535 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2536 			tx_int_idx++;
2537 		} else if (q_vector->rx.rx_ring) {
2538 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2539 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2540 		} else if (q_vector->tx.tx_ring) {
2541 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2542 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2543 		} else {
2544 			/* skip this unused q_vector */
2545 			continue;
2546 		}
2547 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2548 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2549 					       IRQF_SHARED, q_vector->name,
2550 					       q_vector);
2551 		else
2552 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2553 					       0, q_vector->name, q_vector);
2554 		if (err) {
2555 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2556 				   err);
2557 			goto free_q_irqs;
2558 		}
2559 
2560 		/* register for affinity change notifications */
2561 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2562 			struct irq_affinity_notify *affinity_notify;
2563 
2564 			affinity_notify = &q_vector->affinity_notify;
2565 			affinity_notify->notify = ice_irq_affinity_notify;
2566 			affinity_notify->release = ice_irq_affinity_release;
2567 			irq_set_affinity_notifier(irq_num, affinity_notify);
2568 		}
2569 
2570 		/* assign the mask for this irq */
2571 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2572 	}
2573 
2574 	err = ice_set_cpu_rx_rmap(vsi);
2575 	if (err) {
2576 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2577 			   vsi->vsi_num, ERR_PTR(err));
2578 		goto free_q_irqs;
2579 	}
2580 
2581 	vsi->irqs_ready = true;
2582 	return 0;
2583 
2584 free_q_irqs:
2585 	while (vector--) {
2586 		irq_num = vsi->q_vectors[vector]->irq.virq;
2587 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2588 			irq_set_affinity_notifier(irq_num, NULL);
2589 		irq_set_affinity_hint(irq_num, NULL);
2590 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2591 	}
2592 	return err;
2593 }
2594 
2595 /**
2596  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2597  * @vsi: VSI to setup Tx rings used by XDP
2598  *
2599  * Return 0 on success and negative value on error
2600  */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2601 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2602 {
2603 	struct device *dev = ice_pf_to_dev(vsi->back);
2604 	struct ice_tx_desc *tx_desc;
2605 	int i, j;
2606 
2607 	ice_for_each_xdp_txq(vsi, i) {
2608 		u16 xdp_q_idx = vsi->alloc_txq + i;
2609 		struct ice_ring_stats *ring_stats;
2610 		struct ice_tx_ring *xdp_ring;
2611 
2612 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2613 		if (!xdp_ring)
2614 			goto free_xdp_rings;
2615 
2616 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2617 		if (!ring_stats) {
2618 			ice_free_tx_ring(xdp_ring);
2619 			goto free_xdp_rings;
2620 		}
2621 
2622 		xdp_ring->ring_stats = ring_stats;
2623 		xdp_ring->q_index = xdp_q_idx;
2624 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2625 		xdp_ring->vsi = vsi;
2626 		xdp_ring->netdev = NULL;
2627 		xdp_ring->dev = dev;
2628 		xdp_ring->count = vsi->num_tx_desc;
2629 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2630 		if (ice_setup_tx_ring(xdp_ring))
2631 			goto free_xdp_rings;
2632 		ice_set_ring_xdp(xdp_ring);
2633 		spin_lock_init(&xdp_ring->tx_lock);
2634 		for (j = 0; j < xdp_ring->count; j++) {
2635 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2636 			tx_desc->cmd_type_offset_bsz = 0;
2637 		}
2638 	}
2639 
2640 	return 0;
2641 
2642 free_xdp_rings:
2643 	for (; i >= 0; i--) {
2644 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2645 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2646 			vsi->xdp_rings[i]->ring_stats = NULL;
2647 			ice_free_tx_ring(vsi->xdp_rings[i]);
2648 		}
2649 	}
2650 	return -ENOMEM;
2651 }
2652 
2653 /**
2654  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2655  * @vsi: VSI to set the bpf prog on
2656  * @prog: the bpf prog pointer
2657  */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2658 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2659 {
2660 	struct bpf_prog *old_prog;
2661 	int i;
2662 
2663 	old_prog = xchg(&vsi->xdp_prog, prog);
2664 	ice_for_each_rxq(vsi, i)
2665 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2666 
2667 	if (old_prog)
2668 		bpf_prog_put(old_prog);
2669 }
2670 
2671 /**
2672  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2673  * @vsi: VSI to bring up Tx rings used by XDP
2674  * @prog: bpf program that will be assigned to VSI
2675  *
2676  * Return 0 on success and negative value on error
2677  */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2678 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2679 {
2680 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2681 	int xdp_rings_rem = vsi->num_xdp_txq;
2682 	struct ice_pf *pf = vsi->back;
2683 	struct ice_qs_cfg xdp_qs_cfg = {
2684 		.qs_mutex = &pf->avail_q_mutex,
2685 		.pf_map = pf->avail_txqs,
2686 		.pf_map_size = pf->max_pf_txqs,
2687 		.q_count = vsi->num_xdp_txq,
2688 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2689 		.vsi_map = vsi->txq_map,
2690 		.vsi_map_offset = vsi->alloc_txq,
2691 		.mapping_mode = ICE_VSI_MAP_CONTIG
2692 	};
2693 	struct device *dev;
2694 	int i, v_idx;
2695 	int status;
2696 
2697 	dev = ice_pf_to_dev(pf);
2698 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2699 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2700 	if (!vsi->xdp_rings)
2701 		return -ENOMEM;
2702 
2703 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2704 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2705 		goto err_map_xdp;
2706 
2707 	if (static_key_enabled(&ice_xdp_locking_key))
2708 		netdev_warn(vsi->netdev,
2709 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2710 
2711 	if (ice_xdp_alloc_setup_rings(vsi))
2712 		goto clear_xdp_rings;
2713 
2714 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2715 	ice_for_each_q_vector(vsi, v_idx) {
2716 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2717 		int xdp_rings_per_v, q_id, q_base;
2718 
2719 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2720 					       vsi->num_q_vectors - v_idx);
2721 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2722 
2723 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2724 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2725 
2726 			xdp_ring->q_vector = q_vector;
2727 			xdp_ring->next = q_vector->tx.tx_ring;
2728 			q_vector->tx.tx_ring = xdp_ring;
2729 		}
2730 		xdp_rings_rem -= xdp_rings_per_v;
2731 	}
2732 
2733 	ice_for_each_rxq(vsi, i) {
2734 		if (static_key_enabled(&ice_xdp_locking_key)) {
2735 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2736 		} else {
2737 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2738 			struct ice_tx_ring *ring;
2739 
2740 			ice_for_each_tx_ring(ring, q_vector->tx) {
2741 				if (ice_ring_is_xdp(ring)) {
2742 					vsi->rx_rings[i]->xdp_ring = ring;
2743 					break;
2744 				}
2745 			}
2746 		}
2747 		ice_tx_xsk_pool(vsi, i);
2748 	}
2749 
2750 	/* omit the scheduler update if in reset path; XDP queues will be
2751 	 * taken into account at the end of ice_vsi_rebuild, where
2752 	 * ice_cfg_vsi_lan is being called
2753 	 */
2754 	if (ice_is_reset_in_progress(pf->state))
2755 		return 0;
2756 
2757 	/* tell the Tx scheduler that right now we have
2758 	 * additional queues
2759 	 */
2760 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2761 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2762 
2763 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2764 				 max_txqs);
2765 	if (status) {
2766 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2767 			status);
2768 		goto clear_xdp_rings;
2769 	}
2770 
2771 	/* assign the prog only when it's not already present on VSI;
2772 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2773 	 * VSI rebuild that happens under ethtool -L can expose us to
2774 	 * the bpf_prog refcount issues as we would be swapping same
2775 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2776 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2777 	 * this is not harmful as dev_xdp_install bumps the refcount
2778 	 * before calling the op exposed by the driver;
2779 	 */
2780 	if (!ice_is_xdp_ena_vsi(vsi))
2781 		ice_vsi_assign_bpf_prog(vsi, prog);
2782 
2783 	return 0;
2784 clear_xdp_rings:
2785 	ice_for_each_xdp_txq(vsi, i)
2786 		if (vsi->xdp_rings[i]) {
2787 			kfree_rcu(vsi->xdp_rings[i], rcu);
2788 			vsi->xdp_rings[i] = NULL;
2789 		}
2790 
2791 err_map_xdp:
2792 	mutex_lock(&pf->avail_q_mutex);
2793 	ice_for_each_xdp_txq(vsi, i) {
2794 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2795 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2796 	}
2797 	mutex_unlock(&pf->avail_q_mutex);
2798 
2799 	devm_kfree(dev, vsi->xdp_rings);
2800 	return -ENOMEM;
2801 }
2802 
2803 /**
2804  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2805  * @vsi: VSI to remove XDP rings
2806  *
2807  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2808  * resources
2809  */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2810 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2811 {
2812 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2813 	struct ice_pf *pf = vsi->back;
2814 	int i, v_idx;
2815 
2816 	/* q_vectors are freed in reset path so there's no point in detaching
2817 	 * rings; in case of rebuild being triggered not from reset bits
2818 	 * in pf->state won't be set, so additionally check first q_vector
2819 	 * against NULL
2820 	 */
2821 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2822 		goto free_qmap;
2823 
2824 	ice_for_each_q_vector(vsi, v_idx) {
2825 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2826 		struct ice_tx_ring *ring;
2827 
2828 		ice_for_each_tx_ring(ring, q_vector->tx)
2829 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2830 				break;
2831 
2832 		/* restore the value of last node prior to XDP setup */
2833 		q_vector->tx.tx_ring = ring;
2834 	}
2835 
2836 free_qmap:
2837 	mutex_lock(&pf->avail_q_mutex);
2838 	ice_for_each_xdp_txq(vsi, i) {
2839 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2840 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2841 	}
2842 	mutex_unlock(&pf->avail_q_mutex);
2843 
2844 	ice_for_each_xdp_txq(vsi, i)
2845 		if (vsi->xdp_rings[i]) {
2846 			if (vsi->xdp_rings[i]->desc) {
2847 				synchronize_rcu();
2848 				ice_free_tx_ring(vsi->xdp_rings[i]);
2849 			}
2850 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2851 			vsi->xdp_rings[i]->ring_stats = NULL;
2852 			kfree_rcu(vsi->xdp_rings[i], rcu);
2853 			vsi->xdp_rings[i] = NULL;
2854 		}
2855 
2856 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2857 	vsi->xdp_rings = NULL;
2858 
2859 	if (static_key_enabled(&ice_xdp_locking_key))
2860 		static_branch_dec(&ice_xdp_locking_key);
2861 
2862 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2863 		return 0;
2864 
2865 	ice_vsi_assign_bpf_prog(vsi, NULL);
2866 
2867 	/* notify Tx scheduler that we destroyed XDP queues and bring
2868 	 * back the old number of child nodes
2869 	 */
2870 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2871 		max_txqs[i] = vsi->num_txq;
2872 
2873 	/* change number of XDP Tx queues to 0 */
2874 	vsi->num_xdp_txq = 0;
2875 
2876 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2877 			       max_txqs);
2878 }
2879 
2880 /**
2881  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2882  * @vsi: VSI to schedule napi on
2883  */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2884 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2885 {
2886 	int i;
2887 
2888 	ice_for_each_rxq(vsi, i) {
2889 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2890 
2891 		if (rx_ring->xsk_pool)
2892 			napi_schedule(&rx_ring->q_vector->napi);
2893 	}
2894 }
2895 
2896 /**
2897  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2898  * @vsi: VSI to determine the count of XDP Tx qs
2899  *
2900  * returns 0 if Tx qs count is higher than at least half of CPU count,
2901  * -ENOMEM otherwise
2902  */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2903 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2904 {
2905 	u16 avail = ice_get_avail_txq_count(vsi->back);
2906 	u16 cpus = num_possible_cpus();
2907 
2908 	if (avail < cpus / 2)
2909 		return -ENOMEM;
2910 
2911 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2912 
2913 	if (vsi->num_xdp_txq < cpus)
2914 		static_branch_inc(&ice_xdp_locking_key);
2915 
2916 	return 0;
2917 }
2918 
2919 /**
2920  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2921  * @vsi: Pointer to VSI structure
2922  */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2923 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2924 {
2925 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2926 		return ICE_RXBUF_1664;
2927 	else
2928 		return ICE_RXBUF_3072;
2929 }
2930 
2931 /**
2932  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2933  * @vsi: VSI to setup XDP for
2934  * @prog: XDP program
2935  * @extack: netlink extended ack
2936  */
2937 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2938 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2939 		   struct netlink_ext_ack *extack)
2940 {
2941 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2942 	bool if_running = netif_running(vsi->netdev);
2943 	int ret = 0, xdp_ring_err = 0;
2944 
2945 	if (prog && !prog->aux->xdp_has_frags) {
2946 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2947 			NL_SET_ERR_MSG_MOD(extack,
2948 					   "MTU is too large for linear frames and XDP prog does not support frags");
2949 			return -EOPNOTSUPP;
2950 		}
2951 	}
2952 
2953 	/* hot swap progs and avoid toggling link */
2954 	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2955 		ice_vsi_assign_bpf_prog(vsi, prog);
2956 		return 0;
2957 	}
2958 
2959 	/* need to stop netdev while setting up the program for Rx rings */
2960 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2961 		ret = ice_down(vsi);
2962 		if (ret) {
2963 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2964 			return ret;
2965 		}
2966 	}
2967 
2968 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2969 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2970 		if (xdp_ring_err) {
2971 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2972 		} else {
2973 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2974 			if (xdp_ring_err)
2975 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2976 		}
2977 		xdp_features_set_redirect_target(vsi->netdev, true);
2978 		/* reallocate Rx queues that are used for zero-copy */
2979 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2980 		if (xdp_ring_err)
2981 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2982 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2983 		xdp_features_clear_redirect_target(vsi->netdev);
2984 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2985 		if (xdp_ring_err)
2986 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2987 		/* reallocate Rx queues that were used for zero-copy */
2988 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2989 		if (xdp_ring_err)
2990 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2991 	}
2992 
2993 	if (if_running)
2994 		ret = ice_up(vsi);
2995 
2996 	if (!ret && prog)
2997 		ice_vsi_rx_napi_schedule(vsi);
2998 
2999 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3000 }
3001 
3002 /**
3003  * ice_xdp_safe_mode - XDP handler for safe mode
3004  * @dev: netdevice
3005  * @xdp: XDP command
3006  */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3007 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3008 			     struct netdev_bpf *xdp)
3009 {
3010 	NL_SET_ERR_MSG_MOD(xdp->extack,
3011 			   "Please provide working DDP firmware package in order to use XDP\n"
3012 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3013 	return -EOPNOTSUPP;
3014 }
3015 
3016 /**
3017  * ice_xdp - implements XDP handler
3018  * @dev: netdevice
3019  * @xdp: XDP command
3020  */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3021 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3022 {
3023 	struct ice_netdev_priv *np = netdev_priv(dev);
3024 	struct ice_vsi *vsi = np->vsi;
3025 
3026 	if (vsi->type != ICE_VSI_PF) {
3027 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3028 		return -EINVAL;
3029 	}
3030 
3031 	switch (xdp->command) {
3032 	case XDP_SETUP_PROG:
3033 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3034 	case XDP_SETUP_XSK_POOL:
3035 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3036 					  xdp->xsk.queue_id);
3037 	default:
3038 		return -EINVAL;
3039 	}
3040 }
3041 
3042 /**
3043  * ice_ena_misc_vector - enable the non-queue interrupts
3044  * @pf: board private structure
3045  */
ice_ena_misc_vector(struct ice_pf * pf)3046 static void ice_ena_misc_vector(struct ice_pf *pf)
3047 {
3048 	struct ice_hw *hw = &pf->hw;
3049 	u32 pf_intr_start_offset;
3050 	u32 val;
3051 
3052 	/* Disable anti-spoof detection interrupt to prevent spurious event
3053 	 * interrupts during a function reset. Anti-spoof functionally is
3054 	 * still supported.
3055 	 */
3056 	val = rd32(hw, GL_MDCK_TX_TDPU);
3057 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3058 	wr32(hw, GL_MDCK_TX_TDPU, val);
3059 
3060 	/* clear things first */
3061 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3062 	rd32(hw, PFINT_OICR);		/* read to clear */
3063 
3064 	val = (PFINT_OICR_ECC_ERR_M |
3065 	       PFINT_OICR_MAL_DETECT_M |
3066 	       PFINT_OICR_GRST_M |
3067 	       PFINT_OICR_PCI_EXCEPTION_M |
3068 	       PFINT_OICR_VFLR_M |
3069 	       PFINT_OICR_HMC_ERR_M |
3070 	       PFINT_OICR_PE_PUSH_M |
3071 	       PFINT_OICR_PE_CRITERR_M);
3072 
3073 	wr32(hw, PFINT_OICR_ENA, val);
3074 
3075 	/* SW_ITR_IDX = 0, but don't change INTENA */
3076 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3077 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3078 
3079 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3080 		return;
3081 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3082 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3083 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3084 }
3085 
3086 /**
3087  * ice_ll_ts_intr - ll_ts interrupt handler
3088  * @irq: interrupt number
3089  * @data: pointer to a q_vector
3090  */
ice_ll_ts_intr(int __always_unused irq,void * data)3091 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3092 {
3093 	struct ice_pf *pf = data;
3094 	u32 pf_intr_start_offset;
3095 	struct ice_ptp_tx *tx;
3096 	unsigned long flags;
3097 	struct ice_hw *hw;
3098 	u32 val;
3099 	u8 idx;
3100 
3101 	hw = &pf->hw;
3102 	tx = &pf->ptp.port.tx;
3103 	spin_lock_irqsave(&tx->lock, flags);
3104 	ice_ptp_complete_tx_single_tstamp(tx);
3105 
3106 	idx = find_next_bit_wrap(tx->in_use, tx->len,
3107 				 tx->last_ll_ts_idx_read + 1);
3108 	if (idx != tx->len)
3109 		ice_ptp_req_tx_single_tstamp(tx, idx);
3110 	spin_unlock_irqrestore(&tx->lock, flags);
3111 
3112 	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3113 	      (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3114 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3115 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3116 	     val);
3117 
3118 	return IRQ_HANDLED;
3119 }
3120 
3121 /**
3122  * ice_misc_intr - misc interrupt handler
3123  * @irq: interrupt number
3124  * @data: pointer to a q_vector
3125  */
ice_misc_intr(int __always_unused irq,void * data)3126 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3127 {
3128 	struct ice_pf *pf = (struct ice_pf *)data;
3129 	irqreturn_t ret = IRQ_HANDLED;
3130 	struct ice_hw *hw = &pf->hw;
3131 	struct device *dev;
3132 	u32 oicr, ena_mask;
3133 
3134 	dev = ice_pf_to_dev(pf);
3135 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3136 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3137 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3138 
3139 	oicr = rd32(hw, PFINT_OICR);
3140 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3141 
3142 	if (oicr & PFINT_OICR_SWINT_M) {
3143 		ena_mask &= ~PFINT_OICR_SWINT_M;
3144 		pf->sw_int_count++;
3145 	}
3146 
3147 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3148 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3149 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3150 	}
3151 	if (oicr & PFINT_OICR_VFLR_M) {
3152 		/* disable any further VFLR event notifications */
3153 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3154 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3155 
3156 			reg &= ~PFINT_OICR_VFLR_M;
3157 			wr32(hw, PFINT_OICR_ENA, reg);
3158 		} else {
3159 			ena_mask &= ~PFINT_OICR_VFLR_M;
3160 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3161 		}
3162 	}
3163 
3164 	if (oicr & PFINT_OICR_GRST_M) {
3165 		u32 reset;
3166 
3167 		/* we have a reset warning */
3168 		ena_mask &= ~PFINT_OICR_GRST_M;
3169 		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3170 				  rd32(hw, GLGEN_RSTAT));
3171 
3172 		if (reset == ICE_RESET_CORER)
3173 			pf->corer_count++;
3174 		else if (reset == ICE_RESET_GLOBR)
3175 			pf->globr_count++;
3176 		else if (reset == ICE_RESET_EMPR)
3177 			pf->empr_count++;
3178 		else
3179 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3180 
3181 		/* If a reset cycle isn't already in progress, we set a bit in
3182 		 * pf->state so that the service task can start a reset/rebuild.
3183 		 */
3184 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3185 			if (reset == ICE_RESET_CORER)
3186 				set_bit(ICE_CORER_RECV, pf->state);
3187 			else if (reset == ICE_RESET_GLOBR)
3188 				set_bit(ICE_GLOBR_RECV, pf->state);
3189 			else
3190 				set_bit(ICE_EMPR_RECV, pf->state);
3191 
3192 			/* There are couple of different bits at play here.
3193 			 * hw->reset_ongoing indicates whether the hardware is
3194 			 * in reset. This is set to true when a reset interrupt
3195 			 * is received and set back to false after the driver
3196 			 * has determined that the hardware is out of reset.
3197 			 *
3198 			 * ICE_RESET_OICR_RECV in pf->state indicates
3199 			 * that a post reset rebuild is required before the
3200 			 * driver is operational again. This is set above.
3201 			 *
3202 			 * As this is the start of the reset/rebuild cycle, set
3203 			 * both to indicate that.
3204 			 */
3205 			hw->reset_ongoing = true;
3206 		}
3207 	}
3208 
3209 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3210 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3211 		if (ice_pf_state_is_nominal(pf) &&
3212 		    pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3213 			struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3214 			unsigned long flags;
3215 			u8 idx;
3216 
3217 			spin_lock_irqsave(&tx->lock, flags);
3218 			idx = find_next_bit_wrap(tx->in_use, tx->len,
3219 						 tx->last_ll_ts_idx_read + 1);
3220 			if (idx != tx->len)
3221 				ice_ptp_req_tx_single_tstamp(tx, idx);
3222 			spin_unlock_irqrestore(&tx->lock, flags);
3223 		} else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3224 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3225 			ret = IRQ_WAKE_THREAD;
3226 		}
3227 	}
3228 
3229 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3230 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3231 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3232 
3233 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3234 
3235 		if (ice_pf_src_tmr_owned(pf)) {
3236 			/* Save EVENTs from GLTSYN register */
3237 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3238 					      (GLTSYN_STAT_EVENT0_M |
3239 					       GLTSYN_STAT_EVENT1_M |
3240 					       GLTSYN_STAT_EVENT2_M);
3241 
3242 			ice_ptp_extts_event(pf);
3243 		}
3244 	}
3245 
3246 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3247 	if (oicr & ICE_AUX_CRIT_ERR) {
3248 		pf->oicr_err_reg |= oicr;
3249 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3250 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3251 	}
3252 
3253 	/* Report any remaining unexpected interrupts */
3254 	oicr &= ena_mask;
3255 	if (oicr) {
3256 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3257 		/* If a critical error is pending there is no choice but to
3258 		 * reset the device.
3259 		 */
3260 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3261 			    PFINT_OICR_ECC_ERR_M)) {
3262 			set_bit(ICE_PFR_REQ, pf->state);
3263 		}
3264 	}
3265 	ice_service_task_schedule(pf);
3266 	if (ret == IRQ_HANDLED)
3267 		ice_irq_dynamic_ena(hw, NULL, NULL);
3268 
3269 	return ret;
3270 }
3271 
3272 /**
3273  * ice_misc_intr_thread_fn - misc interrupt thread function
3274  * @irq: interrupt number
3275  * @data: pointer to a q_vector
3276  */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3277 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3278 {
3279 	struct ice_pf *pf = data;
3280 	struct ice_hw *hw;
3281 
3282 	hw = &pf->hw;
3283 
3284 	if (ice_is_reset_in_progress(pf->state))
3285 		goto skip_irq;
3286 
3287 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3288 		/* Process outstanding Tx timestamps. If there is more work,
3289 		 * re-arm the interrupt to trigger again.
3290 		 */
3291 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3292 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3293 			ice_flush(hw);
3294 		}
3295 	}
3296 
3297 skip_irq:
3298 	ice_irq_dynamic_ena(hw, NULL, NULL);
3299 
3300 	return IRQ_HANDLED;
3301 }
3302 
3303 /**
3304  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3305  * @hw: pointer to HW structure
3306  */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3307 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3308 {
3309 	/* disable Admin queue Interrupt causes */
3310 	wr32(hw, PFINT_FW_CTL,
3311 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3312 
3313 	/* disable Mailbox queue Interrupt causes */
3314 	wr32(hw, PFINT_MBX_CTL,
3315 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3316 
3317 	wr32(hw, PFINT_SB_CTL,
3318 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3319 
3320 	/* disable Control queue Interrupt causes */
3321 	wr32(hw, PFINT_OICR_CTL,
3322 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3323 
3324 	ice_flush(hw);
3325 }
3326 
3327 /**
3328  * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3329  * @pf: board private structure
3330  */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3331 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3332 {
3333 	int irq_num = pf->ll_ts_irq.virq;
3334 
3335 	synchronize_irq(irq_num);
3336 	devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3337 
3338 	ice_free_irq(pf, pf->ll_ts_irq);
3339 }
3340 
3341 /**
3342  * ice_free_irq_msix_misc - Unroll misc vector setup
3343  * @pf: board private structure
3344  */
ice_free_irq_msix_misc(struct ice_pf * pf)3345 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3346 {
3347 	int misc_irq_num = pf->oicr_irq.virq;
3348 	struct ice_hw *hw = &pf->hw;
3349 
3350 	ice_dis_ctrlq_interrupts(hw);
3351 
3352 	/* disable OICR interrupt */
3353 	wr32(hw, PFINT_OICR_ENA, 0);
3354 	ice_flush(hw);
3355 
3356 	synchronize_irq(misc_irq_num);
3357 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3358 
3359 	ice_free_irq(pf, pf->oicr_irq);
3360 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3361 		ice_free_irq_msix_ll_ts(pf);
3362 }
3363 
3364 /**
3365  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3366  * @hw: pointer to HW structure
3367  * @reg_idx: HW vector index to associate the control queue interrupts with
3368  */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3369 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3370 {
3371 	u32 val;
3372 
3373 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3374 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3375 	wr32(hw, PFINT_OICR_CTL, val);
3376 
3377 	/* enable Admin queue Interrupt causes */
3378 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3379 	       PFINT_FW_CTL_CAUSE_ENA_M);
3380 	wr32(hw, PFINT_FW_CTL, val);
3381 
3382 	/* enable Mailbox queue Interrupt causes */
3383 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3384 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3385 	wr32(hw, PFINT_MBX_CTL, val);
3386 
3387 	if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3388 		/* enable Sideband queue Interrupt causes */
3389 		val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3390 		       PFINT_SB_CTL_CAUSE_ENA_M);
3391 		wr32(hw, PFINT_SB_CTL, val);
3392 	}
3393 
3394 	ice_flush(hw);
3395 }
3396 
3397 /**
3398  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3399  * @pf: board private structure
3400  *
3401  * This sets up the handler for MSIX 0, which is used to manage the
3402  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3403  * when in MSI or Legacy interrupt mode.
3404  */
ice_req_irq_msix_misc(struct ice_pf * pf)3405 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3406 {
3407 	struct device *dev = ice_pf_to_dev(pf);
3408 	struct ice_hw *hw = &pf->hw;
3409 	u32 pf_intr_start_offset;
3410 	struct msi_map irq;
3411 	int err = 0;
3412 
3413 	if (!pf->int_name[0])
3414 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3415 			 dev_driver_string(dev), dev_name(dev));
3416 
3417 	if (!pf->int_name_ll_ts[0])
3418 		snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3419 			 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3420 	/* Do not request IRQ but do enable OICR interrupt since settings are
3421 	 * lost during reset. Note that this function is called only during
3422 	 * rebuild path and not while reset is in progress.
3423 	 */
3424 	if (ice_is_reset_in_progress(pf->state))
3425 		goto skip_req_irq;
3426 
3427 	/* reserve one vector in irq_tracker for misc interrupts */
3428 	irq = ice_alloc_irq(pf, false);
3429 	if (irq.index < 0)
3430 		return irq.index;
3431 
3432 	pf->oicr_irq = irq;
3433 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3434 					ice_misc_intr_thread_fn, 0,
3435 					pf->int_name, pf);
3436 	if (err) {
3437 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3438 			pf->int_name, err);
3439 		ice_free_irq(pf, pf->oicr_irq);
3440 		return err;
3441 	}
3442 
3443 	/* reserve one vector in irq_tracker for ll_ts interrupt */
3444 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3445 		goto skip_req_irq;
3446 
3447 	irq = ice_alloc_irq(pf, false);
3448 	if (irq.index < 0)
3449 		return irq.index;
3450 
3451 	pf->ll_ts_irq = irq;
3452 	err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3453 			       pf->int_name_ll_ts, pf);
3454 	if (err) {
3455 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3456 			pf->int_name_ll_ts, err);
3457 		ice_free_irq(pf, pf->ll_ts_irq);
3458 		return err;
3459 	}
3460 
3461 skip_req_irq:
3462 	ice_ena_misc_vector(pf);
3463 
3464 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3465 	/* This enables LL TS interrupt */
3466 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3467 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3468 		wr32(hw, PFINT_SB_CTL,
3469 		     ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3470 		      PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3471 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3472 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3473 
3474 	ice_flush(hw);
3475 	ice_irq_dynamic_ena(hw, NULL, NULL);
3476 
3477 	return 0;
3478 }
3479 
3480 /**
3481  * ice_napi_add - register NAPI handler for the VSI
3482  * @vsi: VSI for which NAPI handler is to be registered
3483  *
3484  * This function is only called in the driver's load path. Registering the NAPI
3485  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3486  * reset/rebuild, etc.)
3487  */
ice_napi_add(struct ice_vsi * vsi)3488 static void ice_napi_add(struct ice_vsi *vsi)
3489 {
3490 	int v_idx;
3491 
3492 	if (!vsi->netdev)
3493 		return;
3494 
3495 	ice_for_each_q_vector(vsi, v_idx) {
3496 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3497 			       ice_napi_poll);
3498 		__ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3499 	}
3500 }
3501 
3502 /**
3503  * ice_set_ops - set netdev and ethtools ops for the given netdev
3504  * @vsi: the VSI associated with the new netdev
3505  */
ice_set_ops(struct ice_vsi * vsi)3506 static void ice_set_ops(struct ice_vsi *vsi)
3507 {
3508 	struct net_device *netdev = vsi->netdev;
3509 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3510 
3511 	if (ice_is_safe_mode(pf)) {
3512 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3513 		ice_set_ethtool_safe_mode_ops(netdev);
3514 		return;
3515 	}
3516 
3517 	netdev->netdev_ops = &ice_netdev_ops;
3518 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3519 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3520 	ice_set_ethtool_ops(netdev);
3521 
3522 	if (vsi->type != ICE_VSI_PF)
3523 		return;
3524 
3525 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3526 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3527 			       NETDEV_XDP_ACT_RX_SG;
3528 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3529 }
3530 
3531 /**
3532  * ice_set_netdev_features - set features for the given netdev
3533  * @netdev: netdev instance
3534  */
ice_set_netdev_features(struct net_device * netdev)3535 static void ice_set_netdev_features(struct net_device *netdev)
3536 {
3537 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3538 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3539 	netdev_features_t csumo_features;
3540 	netdev_features_t vlano_features;
3541 	netdev_features_t dflt_features;
3542 	netdev_features_t tso_features;
3543 
3544 	if (ice_is_safe_mode(pf)) {
3545 		/* safe mode */
3546 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3547 		netdev->hw_features = netdev->features;
3548 		return;
3549 	}
3550 
3551 	dflt_features = NETIF_F_SG	|
3552 			NETIF_F_HIGHDMA	|
3553 			NETIF_F_NTUPLE	|
3554 			NETIF_F_RXHASH;
3555 
3556 	csumo_features = NETIF_F_RXCSUM	  |
3557 			 NETIF_F_IP_CSUM  |
3558 			 NETIF_F_SCTP_CRC |
3559 			 NETIF_F_IPV6_CSUM;
3560 
3561 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3562 			 NETIF_F_HW_VLAN_CTAG_TX     |
3563 			 NETIF_F_HW_VLAN_CTAG_RX;
3564 
3565 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3566 	if (is_dvm_ena)
3567 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3568 
3569 	tso_features = NETIF_F_TSO			|
3570 		       NETIF_F_TSO_ECN			|
3571 		       NETIF_F_TSO6			|
3572 		       NETIF_F_GSO_GRE			|
3573 		       NETIF_F_GSO_UDP_TUNNEL		|
3574 		       NETIF_F_GSO_GRE_CSUM		|
3575 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3576 		       NETIF_F_GSO_PARTIAL		|
3577 		       NETIF_F_GSO_IPXIP4		|
3578 		       NETIF_F_GSO_IPXIP6		|
3579 		       NETIF_F_GSO_UDP_L4;
3580 
3581 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3582 					NETIF_F_GSO_GRE_CSUM;
3583 	/* set features that user can change */
3584 	netdev->hw_features = dflt_features | csumo_features |
3585 			      vlano_features | tso_features;
3586 
3587 	/* add support for HW_CSUM on packets with MPLS header */
3588 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3589 				 NETIF_F_TSO     |
3590 				 NETIF_F_TSO6;
3591 
3592 	/* enable features */
3593 	netdev->features |= netdev->hw_features;
3594 
3595 	netdev->hw_features |= NETIF_F_HW_TC;
3596 	netdev->hw_features |= NETIF_F_LOOPBACK;
3597 
3598 	/* encap and VLAN devices inherit default, csumo and tso features */
3599 	netdev->hw_enc_features |= dflt_features | csumo_features |
3600 				   tso_features;
3601 	netdev->vlan_features |= dflt_features | csumo_features |
3602 				 tso_features;
3603 
3604 	/* advertise support but don't enable by default since only one type of
3605 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3606 	 * type turns on the other has to be turned off. This is enforced by the
3607 	 * ice_fix_features() ndo callback.
3608 	 */
3609 	if (is_dvm_ena)
3610 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3611 			NETIF_F_HW_VLAN_STAG_TX;
3612 
3613 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3614 	 * be changed at runtime
3615 	 */
3616 	netdev->hw_features |= NETIF_F_RXFCS;
3617 
3618 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3619 }
3620 
3621 /**
3622  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3623  * @lut: Lookup table
3624  * @rss_table_size: Lookup table size
3625  * @rss_size: Range of queue number for hashing
3626  */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3627 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3628 {
3629 	u16 i;
3630 
3631 	for (i = 0; i < rss_table_size; i++)
3632 		lut[i] = i % rss_size;
3633 }
3634 
3635 /**
3636  * ice_pf_vsi_setup - Set up a PF VSI
3637  * @pf: board private structure
3638  * @pi: pointer to the port_info instance
3639  *
3640  * Returns pointer to the successfully allocated VSI software struct
3641  * on success, otherwise returns NULL on failure.
3642  */
3643 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3644 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3645 {
3646 	struct ice_vsi_cfg_params params = {};
3647 
3648 	params.type = ICE_VSI_PF;
3649 	params.pi = pi;
3650 	params.flags = ICE_VSI_FLAG_INIT;
3651 
3652 	return ice_vsi_setup(pf, &params);
3653 }
3654 
3655 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3656 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3657 		   struct ice_channel *ch)
3658 {
3659 	struct ice_vsi_cfg_params params = {};
3660 
3661 	params.type = ICE_VSI_CHNL;
3662 	params.pi = pi;
3663 	params.ch = ch;
3664 	params.flags = ICE_VSI_FLAG_INIT;
3665 
3666 	return ice_vsi_setup(pf, &params);
3667 }
3668 
3669 /**
3670  * ice_ctrl_vsi_setup - Set up a control VSI
3671  * @pf: board private structure
3672  * @pi: pointer to the port_info instance
3673  *
3674  * Returns pointer to the successfully allocated VSI software struct
3675  * on success, otherwise returns NULL on failure.
3676  */
3677 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3678 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3679 {
3680 	struct ice_vsi_cfg_params params = {};
3681 
3682 	params.type = ICE_VSI_CTRL;
3683 	params.pi = pi;
3684 	params.flags = ICE_VSI_FLAG_INIT;
3685 
3686 	return ice_vsi_setup(pf, &params);
3687 }
3688 
3689 /**
3690  * ice_lb_vsi_setup - Set up a loopback VSI
3691  * @pf: board private structure
3692  * @pi: pointer to the port_info instance
3693  *
3694  * Returns pointer to the successfully allocated VSI software struct
3695  * on success, otherwise returns NULL on failure.
3696  */
3697 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3698 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3699 {
3700 	struct ice_vsi_cfg_params params = {};
3701 
3702 	params.type = ICE_VSI_LB;
3703 	params.pi = pi;
3704 	params.flags = ICE_VSI_FLAG_INIT;
3705 
3706 	return ice_vsi_setup(pf, &params);
3707 }
3708 
3709 /**
3710  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3711  * @netdev: network interface to be adjusted
3712  * @proto: VLAN TPID
3713  * @vid: VLAN ID to be added
3714  *
3715  * net_device_ops implementation for adding VLAN IDs
3716  */
3717 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3718 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3719 {
3720 	struct ice_netdev_priv *np = netdev_priv(netdev);
3721 	struct ice_vsi_vlan_ops *vlan_ops;
3722 	struct ice_vsi *vsi = np->vsi;
3723 	struct ice_vlan vlan;
3724 	int ret;
3725 
3726 	/* VLAN 0 is added by default during load/reset */
3727 	if (!vid)
3728 		return 0;
3729 
3730 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3731 		usleep_range(1000, 2000);
3732 
3733 	/* Add multicast promisc rule for the VLAN ID to be added if
3734 	 * all-multicast is currently enabled.
3735 	 */
3736 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3737 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3738 					       ICE_MCAST_VLAN_PROMISC_BITS,
3739 					       vid);
3740 		if (ret)
3741 			goto finish;
3742 	}
3743 
3744 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3745 
3746 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3747 	 * packets aren't pruned by the device's internal switch on Rx
3748 	 */
3749 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3750 	ret = vlan_ops->add_vlan(vsi, &vlan);
3751 	if (ret)
3752 		goto finish;
3753 
3754 	/* If all-multicast is currently enabled and this VLAN ID is only one
3755 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3756 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3757 	 */
3758 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3759 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3760 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3761 					   ICE_MCAST_PROMISC_BITS, 0);
3762 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3763 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3764 	}
3765 
3766 finish:
3767 	clear_bit(ICE_CFG_BUSY, vsi->state);
3768 
3769 	return ret;
3770 }
3771 
3772 /**
3773  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3774  * @netdev: network interface to be adjusted
3775  * @proto: VLAN TPID
3776  * @vid: VLAN ID to be removed
3777  *
3778  * net_device_ops implementation for removing VLAN IDs
3779  */
3780 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3781 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3782 {
3783 	struct ice_netdev_priv *np = netdev_priv(netdev);
3784 	struct ice_vsi_vlan_ops *vlan_ops;
3785 	struct ice_vsi *vsi = np->vsi;
3786 	struct ice_vlan vlan;
3787 	int ret;
3788 
3789 	/* don't allow removal of VLAN 0 */
3790 	if (!vid)
3791 		return 0;
3792 
3793 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3794 		usleep_range(1000, 2000);
3795 
3796 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3797 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3798 	if (ret) {
3799 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3800 			   vsi->vsi_num);
3801 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3802 	}
3803 
3804 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3805 
3806 	/* Make sure VLAN delete is successful before updating VLAN
3807 	 * information
3808 	 */
3809 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3810 	ret = vlan_ops->del_vlan(vsi, &vlan);
3811 	if (ret)
3812 		goto finish;
3813 
3814 	/* Remove multicast promisc rule for the removed VLAN ID if
3815 	 * all-multicast is enabled.
3816 	 */
3817 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3818 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3819 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3820 
3821 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3822 		/* Update look-up type of multicast promisc rule for VLAN 0
3823 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3824 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3825 		 */
3826 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3827 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3828 						   ICE_MCAST_VLAN_PROMISC_BITS,
3829 						   0);
3830 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3831 						 ICE_MCAST_PROMISC_BITS, 0);
3832 		}
3833 	}
3834 
3835 finish:
3836 	clear_bit(ICE_CFG_BUSY, vsi->state);
3837 
3838 	return ret;
3839 }
3840 
3841 /**
3842  * ice_rep_indr_tc_block_unbind
3843  * @cb_priv: indirection block private data
3844  */
ice_rep_indr_tc_block_unbind(void * cb_priv)3845 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3846 {
3847 	struct ice_indr_block_priv *indr_priv = cb_priv;
3848 
3849 	list_del(&indr_priv->list);
3850 	kfree(indr_priv);
3851 }
3852 
3853 /**
3854  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3855  * @vsi: VSI struct which has the netdev
3856  */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3857 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3858 {
3859 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3860 
3861 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3862 				 ice_rep_indr_tc_block_unbind);
3863 }
3864 
3865 /**
3866  * ice_tc_indir_block_register - Register TC indirect block notifications
3867  * @vsi: VSI struct which has the netdev
3868  *
3869  * Returns 0 on success, negative value on failure
3870  */
ice_tc_indir_block_register(struct ice_vsi * vsi)3871 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3872 {
3873 	struct ice_netdev_priv *np;
3874 
3875 	if (!vsi || !vsi->netdev)
3876 		return -EINVAL;
3877 
3878 	np = netdev_priv(vsi->netdev);
3879 
3880 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3881 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3882 }
3883 
3884 /**
3885  * ice_get_avail_q_count - Get count of queues in use
3886  * @pf_qmap: bitmap to get queue use count from
3887  * @lock: pointer to a mutex that protects access to pf_qmap
3888  * @size: size of the bitmap
3889  */
3890 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3891 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3892 {
3893 	unsigned long bit;
3894 	u16 count = 0;
3895 
3896 	mutex_lock(lock);
3897 	for_each_clear_bit(bit, pf_qmap, size)
3898 		count++;
3899 	mutex_unlock(lock);
3900 
3901 	return count;
3902 }
3903 
3904 /**
3905  * ice_get_avail_txq_count - Get count of Tx queues in use
3906  * @pf: pointer to an ice_pf instance
3907  */
ice_get_avail_txq_count(struct ice_pf * pf)3908 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3909 {
3910 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3911 				     pf->max_pf_txqs);
3912 }
3913 
3914 /**
3915  * ice_get_avail_rxq_count - Get count of Rx queues in use
3916  * @pf: pointer to an ice_pf instance
3917  */
ice_get_avail_rxq_count(struct ice_pf * pf)3918 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3919 {
3920 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3921 				     pf->max_pf_rxqs);
3922 }
3923 
3924 /**
3925  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3926  * @pf: board private structure to initialize
3927  */
ice_deinit_pf(struct ice_pf * pf)3928 static void ice_deinit_pf(struct ice_pf *pf)
3929 {
3930 	ice_service_task_stop(pf);
3931 	mutex_destroy(&pf->lag_mutex);
3932 	mutex_destroy(&pf->adev_mutex);
3933 	mutex_destroy(&pf->sw_mutex);
3934 	mutex_destroy(&pf->tc_mutex);
3935 	mutex_destroy(&pf->avail_q_mutex);
3936 	mutex_destroy(&pf->vfs.table_lock);
3937 
3938 	if (pf->avail_txqs) {
3939 		bitmap_free(pf->avail_txqs);
3940 		pf->avail_txqs = NULL;
3941 	}
3942 
3943 	if (pf->avail_rxqs) {
3944 		bitmap_free(pf->avail_rxqs);
3945 		pf->avail_rxqs = NULL;
3946 	}
3947 
3948 	if (pf->ptp.clock)
3949 		ptp_clock_unregister(pf->ptp.clock);
3950 }
3951 
3952 /**
3953  * ice_set_pf_caps - set PFs capability flags
3954  * @pf: pointer to the PF instance
3955  */
ice_set_pf_caps(struct ice_pf * pf)3956 static void ice_set_pf_caps(struct ice_pf *pf)
3957 {
3958 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3959 
3960 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3961 	if (func_caps->common_cap.rdma)
3962 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3963 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3964 	if (func_caps->common_cap.dcb)
3965 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3966 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3967 	if (func_caps->common_cap.sr_iov_1_1) {
3968 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3969 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3970 					      ICE_MAX_SRIOV_VFS);
3971 	}
3972 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3973 	if (func_caps->common_cap.rss_table_size)
3974 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3975 
3976 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3977 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3978 		u16 unused;
3979 
3980 		/* ctrl_vsi_idx will be set to a valid value when flow director
3981 		 * is setup by ice_init_fdir
3982 		 */
3983 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3984 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3985 		/* force guaranteed filter pool for PF */
3986 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3987 				       func_caps->fd_fltr_guar);
3988 		/* force shared filter pool for PF */
3989 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3990 				       func_caps->fd_fltr_best_effort);
3991 	}
3992 
3993 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3994 	if (func_caps->common_cap.ieee_1588 &&
3995 	    !(pf->hw.mac_type == ICE_MAC_E830))
3996 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3997 
3998 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3999 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4000 }
4001 
4002 /**
4003  * ice_init_pf - Initialize general software structures (struct ice_pf)
4004  * @pf: board private structure to initialize
4005  */
ice_init_pf(struct ice_pf * pf)4006 static int ice_init_pf(struct ice_pf *pf)
4007 {
4008 	ice_set_pf_caps(pf);
4009 
4010 	mutex_init(&pf->sw_mutex);
4011 	mutex_init(&pf->tc_mutex);
4012 	mutex_init(&pf->adev_mutex);
4013 	mutex_init(&pf->lag_mutex);
4014 
4015 	INIT_HLIST_HEAD(&pf->aq_wait_list);
4016 	spin_lock_init(&pf->aq_wait_lock);
4017 	init_waitqueue_head(&pf->aq_wait_queue);
4018 
4019 	init_waitqueue_head(&pf->reset_wait_queue);
4020 
4021 	/* setup service timer and periodic service task */
4022 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4023 	pf->serv_tmr_period = HZ;
4024 	INIT_WORK(&pf->serv_task, ice_service_task);
4025 	clear_bit(ICE_SERVICE_SCHED, pf->state);
4026 
4027 	mutex_init(&pf->avail_q_mutex);
4028 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4029 	if (!pf->avail_txqs)
4030 		return -ENOMEM;
4031 
4032 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4033 	if (!pf->avail_rxqs) {
4034 		bitmap_free(pf->avail_txqs);
4035 		pf->avail_txqs = NULL;
4036 		return -ENOMEM;
4037 	}
4038 
4039 	mutex_init(&pf->vfs.table_lock);
4040 	hash_init(pf->vfs.table);
4041 	ice_mbx_init_snapshot(&pf->hw);
4042 
4043 	return 0;
4044 }
4045 
4046 /**
4047  * ice_is_wol_supported - check if WoL is supported
4048  * @hw: pointer to hardware info
4049  *
4050  * Check if WoL is supported based on the HW configuration.
4051  * Returns true if NVM supports and enables WoL for this port, false otherwise
4052  */
ice_is_wol_supported(struct ice_hw * hw)4053 bool ice_is_wol_supported(struct ice_hw *hw)
4054 {
4055 	u16 wol_ctrl;
4056 
4057 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4058 	 * word) indicates WoL is not supported on the corresponding PF ID.
4059 	 */
4060 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4061 		return false;
4062 
4063 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4064 }
4065 
4066 /**
4067  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4068  * @vsi: VSI being changed
4069  * @new_rx: new number of Rx queues
4070  * @new_tx: new number of Tx queues
4071  * @locked: is adev device_lock held
4072  *
4073  * Only change the number of queues if new_tx, or new_rx is non-0.
4074  *
4075  * Returns 0 on success.
4076  */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4077 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4078 {
4079 	struct ice_pf *pf = vsi->back;
4080 	int err = 0, timeout = 50;
4081 
4082 	if (!new_rx && !new_tx)
4083 		return -EINVAL;
4084 
4085 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4086 		timeout--;
4087 		if (!timeout)
4088 			return -EBUSY;
4089 		usleep_range(1000, 2000);
4090 	}
4091 
4092 	if (new_tx)
4093 		vsi->req_txq = (u16)new_tx;
4094 	if (new_rx)
4095 		vsi->req_rxq = (u16)new_rx;
4096 
4097 	/* set for the next time the netdev is started */
4098 	if (!netif_running(vsi->netdev)) {
4099 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4100 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4101 		goto done;
4102 	}
4103 
4104 	ice_vsi_close(vsi);
4105 	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4106 	ice_pf_dcb_recfg(pf, locked);
4107 	ice_vsi_open(vsi);
4108 done:
4109 	clear_bit(ICE_CFG_BUSY, pf->state);
4110 	return err;
4111 }
4112 
4113 /**
4114  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4115  * @pf: PF to configure
4116  *
4117  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4118  * VSI can still Tx/Rx VLAN tagged packets.
4119  */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4120 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4121 {
4122 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4123 	struct ice_vsi_ctx *ctxt;
4124 	struct ice_hw *hw;
4125 	int status;
4126 
4127 	if (!vsi)
4128 		return;
4129 
4130 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4131 	if (!ctxt)
4132 		return;
4133 
4134 	hw = &pf->hw;
4135 	ctxt->info = vsi->info;
4136 
4137 	ctxt->info.valid_sections =
4138 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4139 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4140 			    ICE_AQ_VSI_PROP_SW_VALID);
4141 
4142 	/* disable VLAN anti-spoof */
4143 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4144 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4145 
4146 	/* disable VLAN pruning and keep all other settings */
4147 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4148 
4149 	/* allow all VLANs on Tx and don't strip on Rx */
4150 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4151 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4152 
4153 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4154 	if (status) {
4155 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4156 			status, ice_aq_str(hw->adminq.sq_last_status));
4157 	} else {
4158 		vsi->info.sec_flags = ctxt->info.sec_flags;
4159 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4160 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4161 	}
4162 
4163 	kfree(ctxt);
4164 }
4165 
4166 /**
4167  * ice_log_pkg_init - log result of DDP package load
4168  * @hw: pointer to hardware info
4169  * @state: state of package load
4170  */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4171 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4172 {
4173 	struct ice_pf *pf = hw->back;
4174 	struct device *dev;
4175 
4176 	dev = ice_pf_to_dev(pf);
4177 
4178 	switch (state) {
4179 	case ICE_DDP_PKG_SUCCESS:
4180 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4181 			 hw->active_pkg_name,
4182 			 hw->active_pkg_ver.major,
4183 			 hw->active_pkg_ver.minor,
4184 			 hw->active_pkg_ver.update,
4185 			 hw->active_pkg_ver.draft);
4186 		break;
4187 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4188 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4189 			 hw->active_pkg_name,
4190 			 hw->active_pkg_ver.major,
4191 			 hw->active_pkg_ver.minor,
4192 			 hw->active_pkg_ver.update,
4193 			 hw->active_pkg_ver.draft);
4194 		break;
4195 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4196 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4197 			hw->active_pkg_name,
4198 			hw->active_pkg_ver.major,
4199 			hw->active_pkg_ver.minor,
4200 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4201 		break;
4202 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4203 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4204 			 hw->active_pkg_name,
4205 			 hw->active_pkg_ver.major,
4206 			 hw->active_pkg_ver.minor,
4207 			 hw->active_pkg_ver.update,
4208 			 hw->active_pkg_ver.draft,
4209 			 hw->pkg_name,
4210 			 hw->pkg_ver.major,
4211 			 hw->pkg_ver.minor,
4212 			 hw->pkg_ver.update,
4213 			 hw->pkg_ver.draft);
4214 		break;
4215 	case ICE_DDP_PKG_FW_MISMATCH:
4216 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4217 		break;
4218 	case ICE_DDP_PKG_INVALID_FILE:
4219 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4220 		break;
4221 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4222 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4223 		break;
4224 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4225 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4226 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4227 		break;
4228 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4229 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4230 		break;
4231 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4232 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4233 		break;
4234 	case ICE_DDP_PKG_LOAD_ERROR:
4235 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4236 		/* poll for reset to complete */
4237 		if (ice_check_reset(hw))
4238 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4239 		break;
4240 	case ICE_DDP_PKG_ERR:
4241 	default:
4242 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4243 		break;
4244 	}
4245 }
4246 
4247 /**
4248  * ice_load_pkg - load/reload the DDP Package file
4249  * @firmware: firmware structure when firmware requested or NULL for reload
4250  * @pf: pointer to the PF instance
4251  *
4252  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4253  * initialize HW tables.
4254  */
4255 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4256 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4257 {
4258 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4259 	struct device *dev = ice_pf_to_dev(pf);
4260 	struct ice_hw *hw = &pf->hw;
4261 
4262 	/* Load DDP Package */
4263 	if (firmware && !hw->pkg_copy) {
4264 		state = ice_copy_and_init_pkg(hw, firmware->data,
4265 					      firmware->size);
4266 		ice_log_pkg_init(hw, state);
4267 	} else if (!firmware && hw->pkg_copy) {
4268 		/* Reload package during rebuild after CORER/GLOBR reset */
4269 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4270 		ice_log_pkg_init(hw, state);
4271 	} else {
4272 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4273 	}
4274 
4275 	if (!ice_is_init_pkg_successful(state)) {
4276 		/* Safe Mode */
4277 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4278 		return;
4279 	}
4280 
4281 	/* Successful download package is the precondition for advanced
4282 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4283 	 */
4284 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4285 }
4286 
4287 /**
4288  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4289  * @pf: pointer to the PF structure
4290  *
4291  * There is no error returned here because the driver should be able to handle
4292  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4293  * specifically with Tx.
4294  */
ice_verify_cacheline_size(struct ice_pf * pf)4295 static void ice_verify_cacheline_size(struct ice_pf *pf)
4296 {
4297 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4298 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4299 			 ICE_CACHE_LINE_BYTES);
4300 }
4301 
4302 /**
4303  * ice_send_version - update firmware with driver version
4304  * @pf: PF struct
4305  *
4306  * Returns 0 on success, else error code
4307  */
ice_send_version(struct ice_pf * pf)4308 static int ice_send_version(struct ice_pf *pf)
4309 {
4310 	struct ice_driver_ver dv;
4311 
4312 	dv.major_ver = 0xff;
4313 	dv.minor_ver = 0xff;
4314 	dv.build_ver = 0xff;
4315 	dv.subbuild_ver = 0;
4316 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4317 		sizeof(dv.driver_string));
4318 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4319 }
4320 
4321 /**
4322  * ice_init_fdir - Initialize flow director VSI and configuration
4323  * @pf: pointer to the PF instance
4324  *
4325  * returns 0 on success, negative on error
4326  */
ice_init_fdir(struct ice_pf * pf)4327 static int ice_init_fdir(struct ice_pf *pf)
4328 {
4329 	struct device *dev = ice_pf_to_dev(pf);
4330 	struct ice_vsi *ctrl_vsi;
4331 	int err;
4332 
4333 	/* Side Band Flow Director needs to have a control VSI.
4334 	 * Allocate it and store it in the PF.
4335 	 */
4336 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4337 	if (!ctrl_vsi) {
4338 		dev_dbg(dev, "could not create control VSI\n");
4339 		return -ENOMEM;
4340 	}
4341 
4342 	err = ice_vsi_open_ctrl(ctrl_vsi);
4343 	if (err) {
4344 		dev_dbg(dev, "could not open control VSI\n");
4345 		goto err_vsi_open;
4346 	}
4347 
4348 	mutex_init(&pf->hw.fdir_fltr_lock);
4349 
4350 	err = ice_fdir_create_dflt_rules(pf);
4351 	if (err)
4352 		goto err_fdir_rule;
4353 
4354 	return 0;
4355 
4356 err_fdir_rule:
4357 	ice_fdir_release_flows(&pf->hw);
4358 	ice_vsi_close(ctrl_vsi);
4359 err_vsi_open:
4360 	ice_vsi_release(ctrl_vsi);
4361 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4362 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4363 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4364 	}
4365 	return err;
4366 }
4367 
ice_deinit_fdir(struct ice_pf * pf)4368 static void ice_deinit_fdir(struct ice_pf *pf)
4369 {
4370 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4371 
4372 	if (!vsi)
4373 		return;
4374 
4375 	ice_vsi_manage_fdir(vsi, false);
4376 	ice_vsi_release(vsi);
4377 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4378 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4379 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4380 	}
4381 
4382 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4383 }
4384 
4385 /**
4386  * ice_get_opt_fw_name - return optional firmware file name or NULL
4387  * @pf: pointer to the PF instance
4388  */
ice_get_opt_fw_name(struct ice_pf * pf)4389 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4390 {
4391 	/* Optional firmware name same as default with additional dash
4392 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4393 	 */
4394 	struct pci_dev *pdev = pf->pdev;
4395 	char *opt_fw_filename;
4396 	u64 dsn;
4397 
4398 	/* Determine the name of the optional file using the DSN (two
4399 	 * dwords following the start of the DSN Capability).
4400 	 */
4401 	dsn = pci_get_dsn(pdev);
4402 	if (!dsn)
4403 		return NULL;
4404 
4405 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4406 	if (!opt_fw_filename)
4407 		return NULL;
4408 
4409 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4410 		 ICE_DDP_PKG_PATH, dsn);
4411 
4412 	return opt_fw_filename;
4413 }
4414 
4415 /**
4416  * ice_request_fw - Device initialization routine
4417  * @pf: pointer to the PF instance
4418  */
ice_request_fw(struct ice_pf * pf)4419 static void ice_request_fw(struct ice_pf *pf)
4420 {
4421 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4422 	const struct firmware *firmware = NULL;
4423 	struct device *dev = ice_pf_to_dev(pf);
4424 	int err = 0;
4425 
4426 	/* optional device-specific DDP (if present) overrides the default DDP
4427 	 * package file. kernel logs a debug message if the file doesn't exist,
4428 	 * and warning messages for other errors.
4429 	 */
4430 	if (opt_fw_filename) {
4431 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4432 		if (err) {
4433 			kfree(opt_fw_filename);
4434 			goto dflt_pkg_load;
4435 		}
4436 
4437 		/* request for firmware was successful. Download to device */
4438 		ice_load_pkg(firmware, pf);
4439 		kfree(opt_fw_filename);
4440 		release_firmware(firmware);
4441 		return;
4442 	}
4443 
4444 dflt_pkg_load:
4445 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4446 	if (err) {
4447 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4448 		return;
4449 	}
4450 
4451 	/* request for firmware was successful. Download to device */
4452 	ice_load_pkg(firmware, pf);
4453 	release_firmware(firmware);
4454 }
4455 
4456 /**
4457  * ice_print_wake_reason - show the wake up cause in the log
4458  * @pf: pointer to the PF struct
4459  */
ice_print_wake_reason(struct ice_pf * pf)4460 static void ice_print_wake_reason(struct ice_pf *pf)
4461 {
4462 	u32 wus = pf->wakeup_reason;
4463 	const char *wake_str;
4464 
4465 	/* if no wake event, nothing to print */
4466 	if (!wus)
4467 		return;
4468 
4469 	if (wus & PFPM_WUS_LNKC_M)
4470 		wake_str = "Link\n";
4471 	else if (wus & PFPM_WUS_MAG_M)
4472 		wake_str = "Magic Packet\n";
4473 	else if (wus & PFPM_WUS_MNG_M)
4474 		wake_str = "Management\n";
4475 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4476 		wake_str = "Firmware Reset\n";
4477 	else
4478 		wake_str = "Unknown\n";
4479 
4480 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4481 }
4482 
4483 /**
4484  * ice_pf_fwlog_update_module - update 1 module
4485  * @pf: pointer to the PF struct
4486  * @log_level: log_level to use for the @module
4487  * @module: module to update
4488  */
ice_pf_fwlog_update_module(struct ice_pf * pf,int log_level,int module)4489 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4490 {
4491 	struct ice_hw *hw = &pf->hw;
4492 
4493 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4494 }
4495 
4496 /**
4497  * ice_register_netdev - register netdev
4498  * @vsi: pointer to the VSI struct
4499  */
ice_register_netdev(struct ice_vsi * vsi)4500 static int ice_register_netdev(struct ice_vsi *vsi)
4501 {
4502 	int err;
4503 
4504 	if (!vsi || !vsi->netdev)
4505 		return -EIO;
4506 
4507 	err = register_netdev(vsi->netdev);
4508 	if (err)
4509 		return err;
4510 
4511 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4512 	netif_carrier_off(vsi->netdev);
4513 	netif_tx_stop_all_queues(vsi->netdev);
4514 
4515 	return 0;
4516 }
4517 
ice_unregister_netdev(struct ice_vsi * vsi)4518 static void ice_unregister_netdev(struct ice_vsi *vsi)
4519 {
4520 	if (!vsi || !vsi->netdev)
4521 		return;
4522 
4523 	unregister_netdev(vsi->netdev);
4524 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4525 }
4526 
4527 /**
4528  * ice_cfg_netdev - Allocate, configure and register a netdev
4529  * @vsi: the VSI associated with the new netdev
4530  *
4531  * Returns 0 on success, negative value on failure
4532  */
ice_cfg_netdev(struct ice_vsi * vsi)4533 static int ice_cfg_netdev(struct ice_vsi *vsi)
4534 {
4535 	struct ice_netdev_priv *np;
4536 	struct net_device *netdev;
4537 	u8 mac_addr[ETH_ALEN];
4538 
4539 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4540 				    vsi->alloc_rxq);
4541 	if (!netdev)
4542 		return -ENOMEM;
4543 
4544 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4545 	vsi->netdev = netdev;
4546 	np = netdev_priv(netdev);
4547 	np->vsi = vsi;
4548 
4549 	ice_set_netdev_features(netdev);
4550 	ice_set_ops(vsi);
4551 
4552 	if (vsi->type == ICE_VSI_PF) {
4553 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4554 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4555 		eth_hw_addr_set(netdev, mac_addr);
4556 	}
4557 
4558 	netdev->priv_flags |= IFF_UNICAST_FLT;
4559 
4560 	/* Setup netdev TC information */
4561 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4562 
4563 	netdev->max_mtu = ICE_MAX_MTU;
4564 
4565 	return 0;
4566 }
4567 
ice_decfg_netdev(struct ice_vsi * vsi)4568 static void ice_decfg_netdev(struct ice_vsi *vsi)
4569 {
4570 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4571 	free_netdev(vsi->netdev);
4572 	vsi->netdev = NULL;
4573 }
4574 
ice_start_eth(struct ice_vsi * vsi)4575 static int ice_start_eth(struct ice_vsi *vsi)
4576 {
4577 	int err;
4578 
4579 	err = ice_init_mac_fltr(vsi->back);
4580 	if (err)
4581 		return err;
4582 
4583 	err = ice_vsi_open(vsi);
4584 	if (err)
4585 		ice_fltr_remove_all(vsi);
4586 
4587 	return err;
4588 }
4589 
ice_stop_eth(struct ice_vsi * vsi)4590 static void ice_stop_eth(struct ice_vsi *vsi)
4591 {
4592 	ice_fltr_remove_all(vsi);
4593 	ice_vsi_close(vsi);
4594 }
4595 
ice_init_eth(struct ice_pf * pf)4596 static int ice_init_eth(struct ice_pf *pf)
4597 {
4598 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4599 	int err;
4600 
4601 	if (!vsi)
4602 		return -EINVAL;
4603 
4604 	/* init channel list */
4605 	INIT_LIST_HEAD(&vsi->ch_list);
4606 
4607 	err = ice_cfg_netdev(vsi);
4608 	if (err)
4609 		return err;
4610 	/* Setup DCB netlink interface */
4611 	ice_dcbnl_setup(vsi);
4612 
4613 	err = ice_init_mac_fltr(pf);
4614 	if (err)
4615 		goto err_init_mac_fltr;
4616 
4617 	err = ice_devlink_create_pf_port(pf);
4618 	if (err)
4619 		goto err_devlink_create_pf_port;
4620 
4621 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4622 
4623 	err = ice_register_netdev(vsi);
4624 	if (err)
4625 		goto err_register_netdev;
4626 
4627 	err = ice_tc_indir_block_register(vsi);
4628 	if (err)
4629 		goto err_tc_indir_block_register;
4630 
4631 	ice_napi_add(vsi);
4632 
4633 	return 0;
4634 
4635 err_tc_indir_block_register:
4636 	ice_unregister_netdev(vsi);
4637 err_register_netdev:
4638 	ice_devlink_destroy_pf_port(pf);
4639 err_devlink_create_pf_port:
4640 err_init_mac_fltr:
4641 	ice_decfg_netdev(vsi);
4642 	return err;
4643 }
4644 
ice_deinit_eth(struct ice_pf * pf)4645 static void ice_deinit_eth(struct ice_pf *pf)
4646 {
4647 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4648 
4649 	if (!vsi)
4650 		return;
4651 
4652 	ice_vsi_close(vsi);
4653 	ice_unregister_netdev(vsi);
4654 	ice_devlink_destroy_pf_port(pf);
4655 	ice_tc_indir_block_unregister(vsi);
4656 	ice_decfg_netdev(vsi);
4657 }
4658 
4659 /**
4660  * ice_wait_for_fw - wait for full FW readiness
4661  * @hw: pointer to the hardware structure
4662  * @timeout: milliseconds that can elapse before timing out
4663  */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)4664 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4665 {
4666 	int fw_loading;
4667 	u32 elapsed = 0;
4668 
4669 	while (elapsed <= timeout) {
4670 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4671 
4672 		/* firmware was not yet loaded, we have to wait more */
4673 		if (fw_loading) {
4674 			elapsed += 100;
4675 			msleep(100);
4676 			continue;
4677 		}
4678 		return 0;
4679 	}
4680 
4681 	return -ETIMEDOUT;
4682 }
4683 
ice_init_dev(struct ice_pf * pf)4684 static int ice_init_dev(struct ice_pf *pf)
4685 {
4686 	struct device *dev = ice_pf_to_dev(pf);
4687 	struct ice_hw *hw = &pf->hw;
4688 	int err;
4689 
4690 	err = ice_init_hw(hw);
4691 	if (err) {
4692 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4693 		return err;
4694 	}
4695 
4696 	/* Some cards require longer initialization times
4697 	 * due to necessity of loading FW from an external source.
4698 	 * This can take even half a minute.
4699 	 */
4700 	if (ice_is_pf_c827(hw)) {
4701 		err = ice_wait_for_fw(hw, 30000);
4702 		if (err) {
4703 			dev_err(dev, "ice_wait_for_fw timed out");
4704 			return err;
4705 		}
4706 	}
4707 
4708 	ice_init_feature_support(pf);
4709 
4710 	ice_request_fw(pf);
4711 
4712 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4713 	 * set in pf->state, which will cause ice_is_safe_mode to return
4714 	 * true
4715 	 */
4716 	if (ice_is_safe_mode(pf)) {
4717 		/* we already got function/device capabilities but these don't
4718 		 * reflect what the driver needs to do in safe mode. Instead of
4719 		 * adding conditional logic everywhere to ignore these
4720 		 * device/function capabilities, override them.
4721 		 */
4722 		ice_set_safe_mode_caps(hw);
4723 	}
4724 
4725 	err = ice_init_pf(pf);
4726 	if (err) {
4727 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4728 		goto err_init_pf;
4729 	}
4730 
4731 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4732 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4733 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4734 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4735 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4736 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4737 			pf->hw.tnl.valid_count[TNL_VXLAN];
4738 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4739 			UDP_TUNNEL_TYPE_VXLAN;
4740 	}
4741 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4742 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4743 			pf->hw.tnl.valid_count[TNL_GENEVE];
4744 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4745 			UDP_TUNNEL_TYPE_GENEVE;
4746 	}
4747 
4748 	err = ice_init_interrupt_scheme(pf);
4749 	if (err) {
4750 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4751 		err = -EIO;
4752 		goto err_init_interrupt_scheme;
4753 	}
4754 
4755 	/* In case of MSIX we are going to setup the misc vector right here
4756 	 * to handle admin queue events etc. In case of legacy and MSI
4757 	 * the misc functionality and queue processing is combined in
4758 	 * the same vector and that gets setup at open.
4759 	 */
4760 	err = ice_req_irq_msix_misc(pf);
4761 	if (err) {
4762 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4763 		goto err_req_irq_msix_misc;
4764 	}
4765 
4766 	return 0;
4767 
4768 err_req_irq_msix_misc:
4769 	ice_clear_interrupt_scheme(pf);
4770 err_init_interrupt_scheme:
4771 	ice_deinit_pf(pf);
4772 err_init_pf:
4773 	ice_deinit_hw(hw);
4774 	return err;
4775 }
4776 
ice_deinit_dev(struct ice_pf * pf)4777 static void ice_deinit_dev(struct ice_pf *pf)
4778 {
4779 	ice_free_irq_msix_misc(pf);
4780 	ice_deinit_pf(pf);
4781 	ice_deinit_hw(&pf->hw);
4782 
4783 	/* Service task is already stopped, so call reset directly. */
4784 	ice_reset(&pf->hw, ICE_RESET_PFR);
4785 	pci_wait_for_pending_transaction(pf->pdev);
4786 	ice_clear_interrupt_scheme(pf);
4787 }
4788 
ice_init_features(struct ice_pf * pf)4789 static void ice_init_features(struct ice_pf *pf)
4790 {
4791 	struct device *dev = ice_pf_to_dev(pf);
4792 
4793 	if (ice_is_safe_mode(pf))
4794 		return;
4795 
4796 	/* initialize DDP driven features */
4797 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4798 		ice_ptp_init(pf);
4799 
4800 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4801 		ice_gnss_init(pf);
4802 
4803 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4804 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4805 		ice_dpll_init(pf);
4806 
4807 	/* Note: Flow director init failure is non-fatal to load */
4808 	if (ice_init_fdir(pf))
4809 		dev_err(dev, "could not initialize flow director\n");
4810 
4811 	/* Note: DCB init failure is non-fatal to load */
4812 	if (ice_init_pf_dcb(pf, false)) {
4813 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4814 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4815 	} else {
4816 		ice_cfg_lldp_mib_change(&pf->hw, true);
4817 	}
4818 
4819 	if (ice_init_lag(pf))
4820 		dev_warn(dev, "Failed to init link aggregation support\n");
4821 
4822 	ice_hwmon_init(pf);
4823 }
4824 
ice_deinit_features(struct ice_pf * pf)4825 static void ice_deinit_features(struct ice_pf *pf)
4826 {
4827 	if (ice_is_safe_mode(pf))
4828 		return;
4829 
4830 	ice_deinit_lag(pf);
4831 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4832 		ice_cfg_lldp_mib_change(&pf->hw, false);
4833 	ice_deinit_fdir(pf);
4834 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4835 		ice_gnss_exit(pf);
4836 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4837 		ice_ptp_release(pf);
4838 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4839 		ice_dpll_deinit(pf);
4840 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4841 		xa_destroy(&pf->eswitch.reprs);
4842 }
4843 
ice_init_wakeup(struct ice_pf * pf)4844 static void ice_init_wakeup(struct ice_pf *pf)
4845 {
4846 	/* Save wakeup reason register for later use */
4847 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4848 
4849 	/* check for a power management event */
4850 	ice_print_wake_reason(pf);
4851 
4852 	/* clear wake status, all bits */
4853 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4854 
4855 	/* Disable WoL at init, wait for user to enable */
4856 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4857 }
4858 
ice_init_link(struct ice_pf * pf)4859 static int ice_init_link(struct ice_pf *pf)
4860 {
4861 	struct device *dev = ice_pf_to_dev(pf);
4862 	int err;
4863 
4864 	err = ice_init_link_events(pf->hw.port_info);
4865 	if (err) {
4866 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4867 		return err;
4868 	}
4869 
4870 	/* not a fatal error if this fails */
4871 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4872 	if (err)
4873 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4874 
4875 	/* not a fatal error if this fails */
4876 	err = ice_update_link_info(pf->hw.port_info);
4877 	if (err)
4878 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4879 
4880 	ice_init_link_dflt_override(pf->hw.port_info);
4881 
4882 	ice_check_link_cfg_err(pf,
4883 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4884 
4885 	/* if media available, initialize PHY settings */
4886 	if (pf->hw.port_info->phy.link_info.link_info &
4887 	    ICE_AQ_MEDIA_AVAILABLE) {
4888 		/* not a fatal error if this fails */
4889 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4890 		if (err)
4891 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4892 
4893 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4894 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4895 
4896 			if (vsi)
4897 				ice_configure_phy(vsi);
4898 		}
4899 	} else {
4900 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4901 	}
4902 
4903 	return err;
4904 }
4905 
ice_init_pf_sw(struct ice_pf * pf)4906 static int ice_init_pf_sw(struct ice_pf *pf)
4907 {
4908 	bool dvm = ice_is_dvm_ena(&pf->hw);
4909 	struct ice_vsi *vsi;
4910 	int err;
4911 
4912 	/* create switch struct for the switch element created by FW on boot */
4913 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4914 	if (!pf->first_sw)
4915 		return -ENOMEM;
4916 
4917 	if (pf->hw.evb_veb)
4918 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4919 	else
4920 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4921 
4922 	pf->first_sw->pf = pf;
4923 
4924 	/* record the sw_id available for later use */
4925 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4926 
4927 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4928 	if (err)
4929 		goto err_aq_set_port_params;
4930 
4931 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4932 	if (!vsi) {
4933 		err = -ENOMEM;
4934 		goto err_pf_vsi_setup;
4935 	}
4936 
4937 	return 0;
4938 
4939 err_pf_vsi_setup:
4940 err_aq_set_port_params:
4941 	kfree(pf->first_sw);
4942 	return err;
4943 }
4944 
ice_deinit_pf_sw(struct ice_pf * pf)4945 static void ice_deinit_pf_sw(struct ice_pf *pf)
4946 {
4947 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4948 
4949 	if (!vsi)
4950 		return;
4951 
4952 	ice_vsi_release(vsi);
4953 	kfree(pf->first_sw);
4954 }
4955 
ice_alloc_vsis(struct ice_pf * pf)4956 static int ice_alloc_vsis(struct ice_pf *pf)
4957 {
4958 	struct device *dev = ice_pf_to_dev(pf);
4959 
4960 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4961 	if (!pf->num_alloc_vsi)
4962 		return -EIO;
4963 
4964 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4965 		dev_warn(dev,
4966 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4967 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4968 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4969 	}
4970 
4971 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4972 			       GFP_KERNEL);
4973 	if (!pf->vsi)
4974 		return -ENOMEM;
4975 
4976 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4977 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4978 	if (!pf->vsi_stats) {
4979 		devm_kfree(dev, pf->vsi);
4980 		return -ENOMEM;
4981 	}
4982 
4983 	return 0;
4984 }
4985 
ice_dealloc_vsis(struct ice_pf * pf)4986 static void ice_dealloc_vsis(struct ice_pf *pf)
4987 {
4988 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4989 	pf->vsi_stats = NULL;
4990 
4991 	pf->num_alloc_vsi = 0;
4992 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4993 	pf->vsi = NULL;
4994 }
4995 
ice_init_devlink(struct ice_pf * pf)4996 static int ice_init_devlink(struct ice_pf *pf)
4997 {
4998 	int err;
4999 
5000 	err = ice_devlink_register_params(pf);
5001 	if (err)
5002 		return err;
5003 
5004 	ice_devlink_init_regions(pf);
5005 	ice_devlink_register(pf);
5006 
5007 	return 0;
5008 }
5009 
ice_deinit_devlink(struct ice_pf * pf)5010 static void ice_deinit_devlink(struct ice_pf *pf)
5011 {
5012 	ice_devlink_unregister(pf);
5013 	ice_devlink_destroy_regions(pf);
5014 	ice_devlink_unregister_params(pf);
5015 }
5016 
ice_init(struct ice_pf * pf)5017 static int ice_init(struct ice_pf *pf)
5018 {
5019 	int err;
5020 
5021 	err = ice_init_dev(pf);
5022 	if (err)
5023 		return err;
5024 
5025 	err = ice_alloc_vsis(pf);
5026 	if (err)
5027 		goto err_alloc_vsis;
5028 
5029 	err = ice_init_pf_sw(pf);
5030 	if (err)
5031 		goto err_init_pf_sw;
5032 
5033 	ice_init_wakeup(pf);
5034 
5035 	err = ice_init_link(pf);
5036 	if (err)
5037 		goto err_init_link;
5038 
5039 	err = ice_send_version(pf);
5040 	if (err)
5041 		goto err_init_link;
5042 
5043 	ice_verify_cacheline_size(pf);
5044 
5045 	if (ice_is_safe_mode(pf))
5046 		ice_set_safe_mode_vlan_cfg(pf);
5047 	else
5048 		/* print PCI link speed and width */
5049 		pcie_print_link_status(pf->pdev);
5050 
5051 	/* ready to go, so clear down state bit */
5052 	clear_bit(ICE_DOWN, pf->state);
5053 	clear_bit(ICE_SERVICE_DIS, pf->state);
5054 
5055 	/* since everything is good, start the service timer */
5056 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5057 
5058 	return 0;
5059 
5060 err_init_link:
5061 	ice_deinit_pf_sw(pf);
5062 err_init_pf_sw:
5063 	ice_dealloc_vsis(pf);
5064 err_alloc_vsis:
5065 	ice_deinit_dev(pf);
5066 	return err;
5067 }
5068 
ice_deinit(struct ice_pf * pf)5069 static void ice_deinit(struct ice_pf *pf)
5070 {
5071 	set_bit(ICE_SERVICE_DIS, pf->state);
5072 	set_bit(ICE_DOWN, pf->state);
5073 
5074 	ice_deinit_pf_sw(pf);
5075 	ice_dealloc_vsis(pf);
5076 	ice_deinit_dev(pf);
5077 }
5078 
5079 /**
5080  * ice_load - load pf by init hw and starting VSI
5081  * @pf: pointer to the pf instance
5082  */
ice_load(struct ice_pf * pf)5083 int ice_load(struct ice_pf *pf)
5084 {
5085 	struct ice_vsi_cfg_params params = {};
5086 	struct ice_vsi *vsi;
5087 	int err;
5088 
5089 	err = ice_init_dev(pf);
5090 	if (err)
5091 		return err;
5092 
5093 	vsi = ice_get_main_vsi(pf);
5094 
5095 	params = ice_vsi_to_params(vsi);
5096 	params.flags = ICE_VSI_FLAG_INIT;
5097 
5098 	rtnl_lock();
5099 	err = ice_vsi_cfg(vsi, &params);
5100 	if (err)
5101 		goto err_vsi_cfg;
5102 
5103 	err = ice_start_eth(ice_get_main_vsi(pf));
5104 	if (err)
5105 		goto err_start_eth;
5106 	rtnl_unlock();
5107 
5108 	err = ice_init_rdma(pf);
5109 	if (err)
5110 		goto err_init_rdma;
5111 
5112 	ice_init_features(pf);
5113 	ice_service_task_restart(pf);
5114 
5115 	clear_bit(ICE_DOWN, pf->state);
5116 
5117 	return 0;
5118 
5119 err_init_rdma:
5120 	ice_vsi_close(ice_get_main_vsi(pf));
5121 	rtnl_lock();
5122 err_start_eth:
5123 	ice_vsi_decfg(ice_get_main_vsi(pf));
5124 err_vsi_cfg:
5125 	rtnl_unlock();
5126 	ice_deinit_dev(pf);
5127 	return err;
5128 }
5129 
5130 /**
5131  * ice_unload - unload pf by stopping VSI and deinit hw
5132  * @pf: pointer to the pf instance
5133  */
ice_unload(struct ice_pf * pf)5134 void ice_unload(struct ice_pf *pf)
5135 {
5136 	ice_deinit_features(pf);
5137 	ice_deinit_rdma(pf);
5138 	rtnl_lock();
5139 	ice_stop_eth(ice_get_main_vsi(pf));
5140 	ice_vsi_decfg(ice_get_main_vsi(pf));
5141 	rtnl_unlock();
5142 	ice_deinit_dev(pf);
5143 }
5144 
5145 /**
5146  * ice_probe - Device initialization routine
5147  * @pdev: PCI device information struct
5148  * @ent: entry in ice_pci_tbl
5149  *
5150  * Returns 0 on success, negative on failure
5151  */
5152 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5153 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5154 {
5155 	struct device *dev = &pdev->dev;
5156 	struct ice_pf *pf;
5157 	struct ice_hw *hw;
5158 	int err;
5159 
5160 	if (pdev->is_virtfn) {
5161 		dev_err(dev, "can't probe a virtual function\n");
5162 		return -EINVAL;
5163 	}
5164 
5165 	/* when under a kdump kernel initiate a reset before enabling the
5166 	 * device in order to clear out any pending DMA transactions. These
5167 	 * transactions can cause some systems to machine check when doing
5168 	 * the pcim_enable_device() below.
5169 	 */
5170 	if (is_kdump_kernel()) {
5171 		pci_save_state(pdev);
5172 		pci_clear_master(pdev);
5173 		err = pcie_flr(pdev);
5174 		if (err)
5175 			return err;
5176 		pci_restore_state(pdev);
5177 	}
5178 
5179 	/* this driver uses devres, see
5180 	 * Documentation/driver-api/driver-model/devres.rst
5181 	 */
5182 	err = pcim_enable_device(pdev);
5183 	if (err)
5184 		return err;
5185 
5186 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5187 	if (err) {
5188 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5189 		return err;
5190 	}
5191 
5192 	pf = ice_allocate_pf(dev);
5193 	if (!pf)
5194 		return -ENOMEM;
5195 
5196 	/* initialize Auxiliary index to invalid value */
5197 	pf->aux_idx = -1;
5198 
5199 	/* set up for high or low DMA */
5200 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5201 	if (err) {
5202 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5203 		return err;
5204 	}
5205 
5206 	pci_set_master(pdev);
5207 
5208 	pf->pdev = pdev;
5209 	pci_set_drvdata(pdev, pf);
5210 	set_bit(ICE_DOWN, pf->state);
5211 	/* Disable service task until DOWN bit is cleared */
5212 	set_bit(ICE_SERVICE_DIS, pf->state);
5213 
5214 	hw = &pf->hw;
5215 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5216 	pci_save_state(pdev);
5217 
5218 	hw->back = pf;
5219 	hw->port_info = NULL;
5220 	hw->vendor_id = pdev->vendor;
5221 	hw->device_id = pdev->device;
5222 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5223 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5224 	hw->subsystem_device_id = pdev->subsystem_device;
5225 	hw->bus.device = PCI_SLOT(pdev->devfn);
5226 	hw->bus.func = PCI_FUNC(pdev->devfn);
5227 	ice_set_ctrlq_len(hw);
5228 
5229 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5230 
5231 #ifndef CONFIG_DYNAMIC_DEBUG
5232 	if (debug < -1)
5233 		hw->debug_mask = debug;
5234 #endif
5235 
5236 	err = ice_init(pf);
5237 	if (err)
5238 		goto err_init;
5239 
5240 	err = ice_init_eth(pf);
5241 	if (err)
5242 		goto err_init_eth;
5243 
5244 	err = ice_init_rdma(pf);
5245 	if (err)
5246 		goto err_init_rdma;
5247 
5248 	err = ice_init_devlink(pf);
5249 	if (err)
5250 		goto err_init_devlink;
5251 
5252 	ice_init_features(pf);
5253 
5254 	return 0;
5255 
5256 err_init_devlink:
5257 	ice_deinit_rdma(pf);
5258 err_init_rdma:
5259 	ice_deinit_eth(pf);
5260 err_init_eth:
5261 	ice_deinit(pf);
5262 err_init:
5263 	pci_disable_device(pdev);
5264 	return err;
5265 }
5266 
5267 /**
5268  * ice_set_wake - enable or disable Wake on LAN
5269  * @pf: pointer to the PF struct
5270  *
5271  * Simple helper for WoL control
5272  */
ice_set_wake(struct ice_pf * pf)5273 static void ice_set_wake(struct ice_pf *pf)
5274 {
5275 	struct ice_hw *hw = &pf->hw;
5276 	bool wol = pf->wol_ena;
5277 
5278 	/* clear wake state, otherwise new wake events won't fire */
5279 	wr32(hw, PFPM_WUS, U32_MAX);
5280 
5281 	/* enable / disable APM wake up, no RMW needed */
5282 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5283 
5284 	/* set magic packet filter enabled */
5285 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5286 }
5287 
5288 /**
5289  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5290  * @pf: pointer to the PF struct
5291  *
5292  * Issue firmware command to enable multicast magic wake, making
5293  * sure that any locally administered address (LAA) is used for
5294  * wake, and that PF reset doesn't undo the LAA.
5295  */
ice_setup_mc_magic_wake(struct ice_pf * pf)5296 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5297 {
5298 	struct device *dev = ice_pf_to_dev(pf);
5299 	struct ice_hw *hw = &pf->hw;
5300 	u8 mac_addr[ETH_ALEN];
5301 	struct ice_vsi *vsi;
5302 	int status;
5303 	u8 flags;
5304 
5305 	if (!pf->wol_ena)
5306 		return;
5307 
5308 	vsi = ice_get_main_vsi(pf);
5309 	if (!vsi)
5310 		return;
5311 
5312 	/* Get current MAC address in case it's an LAA */
5313 	if (vsi->netdev)
5314 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5315 	else
5316 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5317 
5318 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5319 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5320 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5321 
5322 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5323 	if (status)
5324 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5325 			status, ice_aq_str(hw->adminq.sq_last_status));
5326 }
5327 
5328 /**
5329  * ice_remove - Device removal routine
5330  * @pdev: PCI device information struct
5331  */
ice_remove(struct pci_dev * pdev)5332 static void ice_remove(struct pci_dev *pdev)
5333 {
5334 	struct ice_pf *pf = pci_get_drvdata(pdev);
5335 	int i;
5336 
5337 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5338 		if (!ice_is_reset_in_progress(pf->state))
5339 			break;
5340 		msleep(100);
5341 	}
5342 
5343 	ice_debugfs_exit();
5344 
5345 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5346 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5347 		ice_free_vfs(pf);
5348 	}
5349 
5350 	ice_hwmon_exit(pf);
5351 
5352 	ice_service_task_stop(pf);
5353 	ice_aq_cancel_waiting_tasks(pf);
5354 	set_bit(ICE_DOWN, pf->state);
5355 
5356 	if (!ice_is_safe_mode(pf))
5357 		ice_remove_arfs(pf);
5358 	ice_deinit_features(pf);
5359 	ice_deinit_devlink(pf);
5360 	ice_deinit_rdma(pf);
5361 	ice_deinit_eth(pf);
5362 	ice_deinit(pf);
5363 
5364 	ice_vsi_release_all(pf);
5365 
5366 	ice_setup_mc_magic_wake(pf);
5367 	ice_set_wake(pf);
5368 
5369 	pci_disable_device(pdev);
5370 }
5371 
5372 /**
5373  * ice_shutdown - PCI callback for shutting down device
5374  * @pdev: PCI device information struct
5375  */
ice_shutdown(struct pci_dev * pdev)5376 static void ice_shutdown(struct pci_dev *pdev)
5377 {
5378 	struct ice_pf *pf = pci_get_drvdata(pdev);
5379 
5380 	ice_remove(pdev);
5381 
5382 	if (system_state == SYSTEM_POWER_OFF) {
5383 		pci_wake_from_d3(pdev, pf->wol_ena);
5384 		pci_set_power_state(pdev, PCI_D3hot);
5385 	}
5386 }
5387 
5388 #ifdef CONFIG_PM
5389 /**
5390  * ice_prepare_for_shutdown - prep for PCI shutdown
5391  * @pf: board private structure
5392  *
5393  * Inform or close all dependent features in prep for PCI device shutdown
5394  */
ice_prepare_for_shutdown(struct ice_pf * pf)5395 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5396 {
5397 	struct ice_hw *hw = &pf->hw;
5398 	u32 v;
5399 
5400 	/* Notify VFs of impending reset */
5401 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5402 		ice_vc_notify_reset(pf);
5403 
5404 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5405 
5406 	/* disable the VSIs and their queues that are not already DOWN */
5407 	ice_pf_dis_all_vsi(pf, false);
5408 
5409 	ice_for_each_vsi(pf, v)
5410 		if (pf->vsi[v])
5411 			pf->vsi[v]->vsi_num = 0;
5412 
5413 	ice_shutdown_all_ctrlq(hw);
5414 }
5415 
5416 /**
5417  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5418  * @pf: board private structure to reinitialize
5419  *
5420  * This routine reinitialize interrupt scheme that was cleared during
5421  * power management suspend callback.
5422  *
5423  * This should be called during resume routine to re-allocate the q_vectors
5424  * and reacquire interrupts.
5425  */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5426 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5427 {
5428 	struct device *dev = ice_pf_to_dev(pf);
5429 	int ret, v;
5430 
5431 	/* Since we clear MSIX flag during suspend, we need to
5432 	 * set it back during resume...
5433 	 */
5434 
5435 	ret = ice_init_interrupt_scheme(pf);
5436 	if (ret) {
5437 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5438 		return ret;
5439 	}
5440 
5441 	/* Remap vectors and rings, after successful re-init interrupts */
5442 	ice_for_each_vsi(pf, v) {
5443 		if (!pf->vsi[v])
5444 			continue;
5445 
5446 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5447 		if (ret)
5448 			goto err_reinit;
5449 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5450 		ice_vsi_set_napi_queues(pf->vsi[v]);
5451 	}
5452 
5453 	ret = ice_req_irq_msix_misc(pf);
5454 	if (ret) {
5455 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5456 			ret);
5457 		goto err_reinit;
5458 	}
5459 
5460 	return 0;
5461 
5462 err_reinit:
5463 	while (v--)
5464 		if (pf->vsi[v])
5465 			ice_vsi_free_q_vectors(pf->vsi[v]);
5466 
5467 	return ret;
5468 }
5469 
5470 /**
5471  * ice_suspend
5472  * @dev: generic device information structure
5473  *
5474  * Power Management callback to quiesce the device and prepare
5475  * for D3 transition.
5476  */
ice_suspend(struct device * dev)5477 static int __maybe_unused ice_suspend(struct device *dev)
5478 {
5479 	struct pci_dev *pdev = to_pci_dev(dev);
5480 	struct ice_pf *pf;
5481 	int disabled, v;
5482 
5483 	pf = pci_get_drvdata(pdev);
5484 
5485 	if (!ice_pf_state_is_nominal(pf)) {
5486 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5487 		return -EBUSY;
5488 	}
5489 
5490 	/* Stop watchdog tasks until resume completion.
5491 	 * Even though it is most likely that the service task is
5492 	 * disabled if the device is suspended or down, the service task's
5493 	 * state is controlled by a different state bit, and we should
5494 	 * store and honor whatever state that bit is in at this point.
5495 	 */
5496 	disabled = ice_service_task_stop(pf);
5497 
5498 	ice_unplug_aux_dev(pf);
5499 
5500 	/* Already suspended?, then there is nothing to do */
5501 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5502 		if (!disabled)
5503 			ice_service_task_restart(pf);
5504 		return 0;
5505 	}
5506 
5507 	if (test_bit(ICE_DOWN, pf->state) ||
5508 	    ice_is_reset_in_progress(pf->state)) {
5509 		dev_err(dev, "can't suspend device in reset or already down\n");
5510 		if (!disabled)
5511 			ice_service_task_restart(pf);
5512 		return 0;
5513 	}
5514 
5515 	ice_setup_mc_magic_wake(pf);
5516 
5517 	ice_prepare_for_shutdown(pf);
5518 
5519 	ice_set_wake(pf);
5520 
5521 	/* Free vectors, clear the interrupt scheme and release IRQs
5522 	 * for proper hibernation, especially with large number of CPUs.
5523 	 * Otherwise hibernation might fail when mapping all the vectors back
5524 	 * to CPU0.
5525 	 */
5526 	ice_free_irq_msix_misc(pf);
5527 	ice_for_each_vsi(pf, v) {
5528 		if (!pf->vsi[v])
5529 			continue;
5530 		ice_vsi_free_q_vectors(pf->vsi[v]);
5531 	}
5532 	ice_clear_interrupt_scheme(pf);
5533 
5534 	pci_save_state(pdev);
5535 	pci_wake_from_d3(pdev, pf->wol_ena);
5536 	pci_set_power_state(pdev, PCI_D3hot);
5537 	return 0;
5538 }
5539 
5540 /**
5541  * ice_resume - PM callback for waking up from D3
5542  * @dev: generic device information structure
5543  */
ice_resume(struct device * dev)5544 static int __maybe_unused ice_resume(struct device *dev)
5545 {
5546 	struct pci_dev *pdev = to_pci_dev(dev);
5547 	enum ice_reset_req reset_type;
5548 	struct ice_pf *pf;
5549 	struct ice_hw *hw;
5550 	int ret;
5551 
5552 	pci_set_power_state(pdev, PCI_D0);
5553 	pci_restore_state(pdev);
5554 	pci_save_state(pdev);
5555 
5556 	if (!pci_device_is_present(pdev))
5557 		return -ENODEV;
5558 
5559 	ret = pci_enable_device_mem(pdev);
5560 	if (ret) {
5561 		dev_err(dev, "Cannot enable device after suspend\n");
5562 		return ret;
5563 	}
5564 
5565 	pf = pci_get_drvdata(pdev);
5566 	hw = &pf->hw;
5567 
5568 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5569 	ice_print_wake_reason(pf);
5570 
5571 	/* We cleared the interrupt scheme when we suspended, so we need to
5572 	 * restore it now to resume device functionality.
5573 	 */
5574 	ret = ice_reinit_interrupt_scheme(pf);
5575 	if (ret)
5576 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5577 
5578 	clear_bit(ICE_DOWN, pf->state);
5579 	/* Now perform PF reset and rebuild */
5580 	reset_type = ICE_RESET_PFR;
5581 	/* re-enable service task for reset, but allow reset to schedule it */
5582 	clear_bit(ICE_SERVICE_DIS, pf->state);
5583 
5584 	if (ice_schedule_reset(pf, reset_type))
5585 		dev_err(dev, "Reset during resume failed.\n");
5586 
5587 	clear_bit(ICE_SUSPENDED, pf->state);
5588 	ice_service_task_restart(pf);
5589 
5590 	/* Restart the service task */
5591 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5592 
5593 	return 0;
5594 }
5595 #endif /* CONFIG_PM */
5596 
5597 /**
5598  * ice_pci_err_detected - warning that PCI error has been detected
5599  * @pdev: PCI device information struct
5600  * @err: the type of PCI error
5601  *
5602  * Called to warn that something happened on the PCI bus and the error handling
5603  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5604  */
5605 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5606 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5607 {
5608 	struct ice_pf *pf = pci_get_drvdata(pdev);
5609 
5610 	if (!pf) {
5611 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5612 			__func__, err);
5613 		return PCI_ERS_RESULT_DISCONNECT;
5614 	}
5615 
5616 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5617 		ice_service_task_stop(pf);
5618 
5619 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5620 			set_bit(ICE_PFR_REQ, pf->state);
5621 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5622 		}
5623 	}
5624 
5625 	return PCI_ERS_RESULT_NEED_RESET;
5626 }
5627 
5628 /**
5629  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5630  * @pdev: PCI device information struct
5631  *
5632  * Called to determine if the driver can recover from the PCI slot reset by
5633  * using a register read to determine if the device is recoverable.
5634  */
ice_pci_err_slot_reset(struct pci_dev * pdev)5635 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5636 {
5637 	struct ice_pf *pf = pci_get_drvdata(pdev);
5638 	pci_ers_result_t result;
5639 	int err;
5640 	u32 reg;
5641 
5642 	err = pci_enable_device_mem(pdev);
5643 	if (err) {
5644 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5645 			err);
5646 		result = PCI_ERS_RESULT_DISCONNECT;
5647 	} else {
5648 		pci_set_master(pdev);
5649 		pci_restore_state(pdev);
5650 		pci_save_state(pdev);
5651 		pci_wake_from_d3(pdev, false);
5652 
5653 		/* Check for life */
5654 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5655 		if (!reg)
5656 			result = PCI_ERS_RESULT_RECOVERED;
5657 		else
5658 			result = PCI_ERS_RESULT_DISCONNECT;
5659 	}
5660 
5661 	return result;
5662 }
5663 
5664 /**
5665  * ice_pci_err_resume - restart operations after PCI error recovery
5666  * @pdev: PCI device information struct
5667  *
5668  * Called to allow the driver to bring things back up after PCI error and/or
5669  * reset recovery have finished
5670  */
ice_pci_err_resume(struct pci_dev * pdev)5671 static void ice_pci_err_resume(struct pci_dev *pdev)
5672 {
5673 	struct ice_pf *pf = pci_get_drvdata(pdev);
5674 
5675 	if (!pf) {
5676 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5677 			__func__);
5678 		return;
5679 	}
5680 
5681 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5682 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5683 			__func__);
5684 		return;
5685 	}
5686 
5687 	ice_restore_all_vfs_msi_state(pf);
5688 
5689 	ice_do_reset(pf, ICE_RESET_PFR);
5690 	ice_service_task_restart(pf);
5691 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5692 }
5693 
5694 /**
5695  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5696  * @pdev: PCI device information struct
5697  */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5698 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5699 {
5700 	struct ice_pf *pf = pci_get_drvdata(pdev);
5701 
5702 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5703 		ice_service_task_stop(pf);
5704 
5705 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5706 			set_bit(ICE_PFR_REQ, pf->state);
5707 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5708 		}
5709 	}
5710 }
5711 
5712 /**
5713  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5714  * @pdev: PCI device information struct
5715  */
ice_pci_err_reset_done(struct pci_dev * pdev)5716 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5717 {
5718 	ice_pci_err_resume(pdev);
5719 }
5720 
5721 /* ice_pci_tbl - PCI Device ID Table
5722  *
5723  * Wildcard entries (PCI_ANY_ID) should come last
5724  * Last entry must be all 0s
5725  *
5726  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5727  *   Class, Class Mask, private data (not used) }
5728  */
5729 static const struct pci_device_id ice_pci_tbl[] = {
5730 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5731 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5732 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5733 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5734 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5735 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5736 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5737 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5738 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5739 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5740 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5741 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5742 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5743 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5744 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5745 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5746 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5747 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5748 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5749 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5750 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5751 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5752 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5753 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5754 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5755 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5756 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5757 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5758 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5759 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5760 	/* required last entry */
5761 	{}
5762 };
5763 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5764 
5765 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5766 
5767 static const struct pci_error_handlers ice_pci_err_handler = {
5768 	.error_detected = ice_pci_err_detected,
5769 	.slot_reset = ice_pci_err_slot_reset,
5770 	.reset_prepare = ice_pci_err_reset_prepare,
5771 	.reset_done = ice_pci_err_reset_done,
5772 	.resume = ice_pci_err_resume
5773 };
5774 
5775 static struct pci_driver ice_driver = {
5776 	.name = KBUILD_MODNAME,
5777 	.id_table = ice_pci_tbl,
5778 	.probe = ice_probe,
5779 	.remove = ice_remove,
5780 #ifdef CONFIG_PM
5781 	.driver.pm = &ice_pm_ops,
5782 #endif /* CONFIG_PM */
5783 	.shutdown = ice_shutdown,
5784 	.sriov_configure = ice_sriov_configure,
5785 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5786 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5787 	.err_handler = &ice_pci_err_handler
5788 };
5789 
5790 /**
5791  * ice_module_init - Driver registration routine
5792  *
5793  * ice_module_init is the first routine called when the driver is
5794  * loaded. All it does is register with the PCI subsystem.
5795  */
ice_module_init(void)5796 static int __init ice_module_init(void)
5797 {
5798 	int status = -ENOMEM;
5799 
5800 	pr_info("%s\n", ice_driver_string);
5801 	pr_info("%s\n", ice_copyright);
5802 
5803 	ice_adv_lnk_speed_maps_init();
5804 
5805 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5806 	if (!ice_wq) {
5807 		pr_err("Failed to create workqueue\n");
5808 		return status;
5809 	}
5810 
5811 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5812 	if (!ice_lag_wq) {
5813 		pr_err("Failed to create LAG workqueue\n");
5814 		goto err_dest_wq;
5815 	}
5816 
5817 	ice_debugfs_init();
5818 
5819 	status = pci_register_driver(&ice_driver);
5820 	if (status) {
5821 		pr_err("failed to register PCI driver, err %d\n", status);
5822 		goto err_dest_lag_wq;
5823 	}
5824 
5825 	return 0;
5826 
5827 err_dest_lag_wq:
5828 	destroy_workqueue(ice_lag_wq);
5829 	ice_debugfs_exit();
5830 err_dest_wq:
5831 	destroy_workqueue(ice_wq);
5832 	return status;
5833 }
5834 module_init(ice_module_init);
5835 
5836 /**
5837  * ice_module_exit - Driver exit cleanup routine
5838  *
5839  * ice_module_exit is called just before the driver is removed
5840  * from memory.
5841  */
ice_module_exit(void)5842 static void __exit ice_module_exit(void)
5843 {
5844 	pci_unregister_driver(&ice_driver);
5845 	destroy_workqueue(ice_wq);
5846 	destroy_workqueue(ice_lag_wq);
5847 	pr_info("module unloaded\n");
5848 }
5849 module_exit(ice_module_exit);
5850 
5851 /**
5852  * ice_set_mac_address - NDO callback to set MAC address
5853  * @netdev: network interface device structure
5854  * @pi: pointer to an address structure
5855  *
5856  * Returns 0 on success, negative on failure
5857  */
ice_set_mac_address(struct net_device * netdev,void * pi)5858 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5859 {
5860 	struct ice_netdev_priv *np = netdev_priv(netdev);
5861 	struct ice_vsi *vsi = np->vsi;
5862 	struct ice_pf *pf = vsi->back;
5863 	struct ice_hw *hw = &pf->hw;
5864 	struct sockaddr *addr = pi;
5865 	u8 old_mac[ETH_ALEN];
5866 	u8 flags = 0;
5867 	u8 *mac;
5868 	int err;
5869 
5870 	mac = (u8 *)addr->sa_data;
5871 
5872 	if (!is_valid_ether_addr(mac))
5873 		return -EADDRNOTAVAIL;
5874 
5875 	if (test_bit(ICE_DOWN, pf->state) ||
5876 	    ice_is_reset_in_progress(pf->state)) {
5877 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5878 			   mac);
5879 		return -EBUSY;
5880 	}
5881 
5882 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5883 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5884 			   mac);
5885 		return -EAGAIN;
5886 	}
5887 
5888 	netif_addr_lock_bh(netdev);
5889 	ether_addr_copy(old_mac, netdev->dev_addr);
5890 	/* change the netdev's MAC address */
5891 	eth_hw_addr_set(netdev, mac);
5892 	netif_addr_unlock_bh(netdev);
5893 
5894 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5895 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5896 	if (err && err != -ENOENT) {
5897 		err = -EADDRNOTAVAIL;
5898 		goto err_update_filters;
5899 	}
5900 
5901 	/* Add filter for new MAC. If filter exists, return success */
5902 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5903 	if (err == -EEXIST) {
5904 		/* Although this MAC filter is already present in hardware it's
5905 		 * possible in some cases (e.g. bonding) that dev_addr was
5906 		 * modified outside of the driver and needs to be restored back
5907 		 * to this value.
5908 		 */
5909 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5910 
5911 		return 0;
5912 	} else if (err) {
5913 		/* error if the new filter addition failed */
5914 		err = -EADDRNOTAVAIL;
5915 	}
5916 
5917 err_update_filters:
5918 	if (err) {
5919 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5920 			   mac);
5921 		netif_addr_lock_bh(netdev);
5922 		eth_hw_addr_set(netdev, old_mac);
5923 		netif_addr_unlock_bh(netdev);
5924 		return err;
5925 	}
5926 
5927 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5928 		   netdev->dev_addr);
5929 
5930 	/* write new MAC address to the firmware */
5931 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5932 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5933 	if (err) {
5934 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5935 			   mac, err);
5936 	}
5937 	return 0;
5938 }
5939 
5940 /**
5941  * ice_set_rx_mode - NDO callback to set the netdev filters
5942  * @netdev: network interface device structure
5943  */
ice_set_rx_mode(struct net_device * netdev)5944 static void ice_set_rx_mode(struct net_device *netdev)
5945 {
5946 	struct ice_netdev_priv *np = netdev_priv(netdev);
5947 	struct ice_vsi *vsi = np->vsi;
5948 
5949 	if (!vsi || ice_is_switchdev_running(vsi->back))
5950 		return;
5951 
5952 	/* Set the flags to synchronize filters
5953 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5954 	 * flags
5955 	 */
5956 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5957 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5958 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5959 
5960 	/* schedule our worker thread which will take care of
5961 	 * applying the new filter changes
5962 	 */
5963 	ice_service_task_schedule(vsi->back);
5964 }
5965 
5966 /**
5967  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5968  * @netdev: network interface device structure
5969  * @queue_index: Queue ID
5970  * @maxrate: maximum bandwidth in Mbps
5971  */
5972 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5973 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5974 {
5975 	struct ice_netdev_priv *np = netdev_priv(netdev);
5976 	struct ice_vsi *vsi = np->vsi;
5977 	u16 q_handle;
5978 	int status;
5979 	u8 tc;
5980 
5981 	/* Validate maxrate requested is within permitted range */
5982 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5983 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5984 			   maxrate, queue_index);
5985 		return -EINVAL;
5986 	}
5987 
5988 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5989 	tc = ice_dcb_get_tc(vsi, queue_index);
5990 
5991 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5992 	if (!vsi) {
5993 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5994 			   queue_index);
5995 		return -EINVAL;
5996 	}
5997 
5998 	/* Set BW back to default, when user set maxrate to 0 */
5999 	if (!maxrate)
6000 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6001 					       q_handle, ICE_MAX_BW);
6002 	else
6003 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6004 					  q_handle, ICE_MAX_BW, maxrate * 1000);
6005 	if (status)
6006 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6007 			   status);
6008 
6009 	return status;
6010 }
6011 
6012 /**
6013  * ice_fdb_add - add an entry to the hardware database
6014  * @ndm: the input from the stack
6015  * @tb: pointer to array of nladdr (unused)
6016  * @dev: the net device pointer
6017  * @addr: the MAC address entry being added
6018  * @vid: VLAN ID
6019  * @flags: instructions from stack about fdb operation
6020  * @extack: netlink extended ack
6021  */
6022 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)6023 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6024 	    struct net_device *dev, const unsigned char *addr, u16 vid,
6025 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
6026 {
6027 	int err;
6028 
6029 	if (vid) {
6030 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6031 		return -EINVAL;
6032 	}
6033 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6034 		netdev_err(dev, "FDB only supports static addresses\n");
6035 		return -EINVAL;
6036 	}
6037 
6038 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6039 		err = dev_uc_add_excl(dev, addr);
6040 	else if (is_multicast_ether_addr(addr))
6041 		err = dev_mc_add_excl(dev, addr);
6042 	else
6043 		err = -EINVAL;
6044 
6045 	/* Only return duplicate errors if NLM_F_EXCL is set */
6046 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
6047 		err = 0;
6048 
6049 	return err;
6050 }
6051 
6052 /**
6053  * ice_fdb_del - delete an entry from the hardware database
6054  * @ndm: the input from the stack
6055  * @tb: pointer to array of nladdr (unused)
6056  * @dev: the net device pointer
6057  * @addr: the MAC address entry being added
6058  * @vid: VLAN ID
6059  * @extack: netlink extended ack
6060  */
6061 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)6062 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6063 	    struct net_device *dev, const unsigned char *addr,
6064 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
6065 {
6066 	int err;
6067 
6068 	if (ndm->ndm_state & NUD_PERMANENT) {
6069 		netdev_err(dev, "FDB only supports static addresses\n");
6070 		return -EINVAL;
6071 	}
6072 
6073 	if (is_unicast_ether_addr(addr))
6074 		err = dev_uc_del(dev, addr);
6075 	else if (is_multicast_ether_addr(addr))
6076 		err = dev_mc_del(dev, addr);
6077 	else
6078 		err = -EINVAL;
6079 
6080 	return err;
6081 }
6082 
6083 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6084 					 NETIF_F_HW_VLAN_CTAG_TX | \
6085 					 NETIF_F_HW_VLAN_STAG_RX | \
6086 					 NETIF_F_HW_VLAN_STAG_TX)
6087 
6088 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6089 					 NETIF_F_HW_VLAN_STAG_RX)
6090 
6091 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6092 					 NETIF_F_HW_VLAN_STAG_FILTER)
6093 
6094 /**
6095  * ice_fix_features - fix the netdev features flags based on device limitations
6096  * @netdev: ptr to the netdev that flags are being fixed on
6097  * @features: features that need to be checked and possibly fixed
6098  *
6099  * Make sure any fixups are made to features in this callback. This enables the
6100  * driver to not have to check unsupported configurations throughout the driver
6101  * because that's the responsiblity of this callback.
6102  *
6103  * Single VLAN Mode (SVM) Supported Features:
6104  *	NETIF_F_HW_VLAN_CTAG_FILTER
6105  *	NETIF_F_HW_VLAN_CTAG_RX
6106  *	NETIF_F_HW_VLAN_CTAG_TX
6107  *
6108  * Double VLAN Mode (DVM) Supported Features:
6109  *	NETIF_F_HW_VLAN_CTAG_FILTER
6110  *	NETIF_F_HW_VLAN_CTAG_RX
6111  *	NETIF_F_HW_VLAN_CTAG_TX
6112  *
6113  *	NETIF_F_HW_VLAN_STAG_FILTER
6114  *	NETIF_HW_VLAN_STAG_RX
6115  *	NETIF_HW_VLAN_STAG_TX
6116  *
6117  * Features that need fixing:
6118  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6119  *	These are mutually exlusive as the VSI context cannot support multiple
6120  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6121  *	is not done, then default to clearing the requested STAG offload
6122  *	settings.
6123  *
6124  *	All supported filtering has to be enabled or disabled together. For
6125  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6126  *	together. If this is not done, then default to VLAN filtering disabled.
6127  *	These are mutually exclusive as there is currently no way to
6128  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6129  *	prune rules.
6130  */
6131 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6132 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6133 {
6134 	struct ice_netdev_priv *np = netdev_priv(netdev);
6135 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6136 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6137 
6138 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6139 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6140 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6141 
6142 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6143 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6144 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6145 
6146 	if (req_vlan_fltr != cur_vlan_fltr) {
6147 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6148 			if (req_ctag && req_stag) {
6149 				features |= NETIF_VLAN_FILTERING_FEATURES;
6150 			} else if (!req_ctag && !req_stag) {
6151 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6152 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6153 				   (!cur_stag && req_stag && !cur_ctag)) {
6154 				features |= NETIF_VLAN_FILTERING_FEATURES;
6155 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6156 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6157 				   (cur_stag && !req_stag && cur_ctag)) {
6158 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6159 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6160 			}
6161 		} else {
6162 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6163 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6164 
6165 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6166 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6167 		}
6168 	}
6169 
6170 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6171 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6172 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6173 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6174 			      NETIF_F_HW_VLAN_STAG_TX);
6175 	}
6176 
6177 	if (!(netdev->features & NETIF_F_RXFCS) &&
6178 	    (features & NETIF_F_RXFCS) &&
6179 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6180 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6181 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6182 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6183 	}
6184 
6185 	return features;
6186 }
6187 
6188 /**
6189  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6190  * @vsi: PF's VSI
6191  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6192  *
6193  * Store current stripped VLAN proto in ring packet context,
6194  * so it can be accessed more efficiently by packet processing code.
6195  */
6196 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6197 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6198 {
6199 	u16 i;
6200 
6201 	ice_for_each_alloc_rxq(vsi, i)
6202 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6203 }
6204 
6205 /**
6206  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6207  * @vsi: PF's VSI
6208  * @features: features used to determine VLAN offload settings
6209  *
6210  * First, determine the vlan_ethertype based on the VLAN offload bits in
6211  * features. Then determine if stripping and insertion should be enabled or
6212  * disabled. Finally enable or disable VLAN stripping and insertion.
6213  */
6214 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6215 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6216 {
6217 	bool enable_stripping = true, enable_insertion = true;
6218 	struct ice_vsi_vlan_ops *vlan_ops;
6219 	int strip_err = 0, insert_err = 0;
6220 	u16 vlan_ethertype = 0;
6221 
6222 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6223 
6224 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6225 		vlan_ethertype = ETH_P_8021AD;
6226 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6227 		vlan_ethertype = ETH_P_8021Q;
6228 
6229 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6230 		enable_stripping = false;
6231 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6232 		enable_insertion = false;
6233 
6234 	if (enable_stripping)
6235 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6236 	else
6237 		strip_err = vlan_ops->dis_stripping(vsi);
6238 
6239 	if (enable_insertion)
6240 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6241 	else
6242 		insert_err = vlan_ops->dis_insertion(vsi);
6243 
6244 	if (strip_err || insert_err)
6245 		return -EIO;
6246 
6247 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6248 				    htons(vlan_ethertype) : 0);
6249 
6250 	return 0;
6251 }
6252 
6253 /**
6254  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6255  * @vsi: PF's VSI
6256  * @features: features used to determine VLAN filtering settings
6257  *
6258  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6259  * features.
6260  */
6261 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6262 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6263 {
6264 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6265 	int err = 0;
6266 
6267 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6268 	 * if either bit is set
6269 	 */
6270 	if (features &
6271 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6272 		err = vlan_ops->ena_rx_filtering(vsi);
6273 	else
6274 		err = vlan_ops->dis_rx_filtering(vsi);
6275 
6276 	return err;
6277 }
6278 
6279 /**
6280  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6281  * @netdev: ptr to the netdev being adjusted
6282  * @features: the feature set that the stack is suggesting
6283  *
6284  * Only update VLAN settings if the requested_vlan_features are different than
6285  * the current_vlan_features.
6286  */
6287 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6288 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6289 {
6290 	netdev_features_t current_vlan_features, requested_vlan_features;
6291 	struct ice_netdev_priv *np = netdev_priv(netdev);
6292 	struct ice_vsi *vsi = np->vsi;
6293 	int err;
6294 
6295 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6296 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6297 	if (current_vlan_features ^ requested_vlan_features) {
6298 		if ((features & NETIF_F_RXFCS) &&
6299 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6300 			dev_err(ice_pf_to_dev(vsi->back),
6301 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6302 			return -EIO;
6303 		}
6304 
6305 		err = ice_set_vlan_offload_features(vsi, features);
6306 		if (err)
6307 			return err;
6308 	}
6309 
6310 	current_vlan_features = netdev->features &
6311 		NETIF_VLAN_FILTERING_FEATURES;
6312 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6313 	if (current_vlan_features ^ requested_vlan_features) {
6314 		err = ice_set_vlan_filtering_features(vsi, features);
6315 		if (err)
6316 			return err;
6317 	}
6318 
6319 	return 0;
6320 }
6321 
6322 /**
6323  * ice_set_loopback - turn on/off loopback mode on underlying PF
6324  * @vsi: ptr to VSI
6325  * @ena: flag to indicate the on/off setting
6326  */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6327 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6328 {
6329 	bool if_running = netif_running(vsi->netdev);
6330 	int ret;
6331 
6332 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6333 		ret = ice_down(vsi);
6334 		if (ret) {
6335 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6336 			return ret;
6337 		}
6338 	}
6339 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6340 	if (ret)
6341 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6342 	if (if_running)
6343 		ret = ice_up(vsi);
6344 
6345 	return ret;
6346 }
6347 
6348 /**
6349  * ice_set_features - set the netdev feature flags
6350  * @netdev: ptr to the netdev being adjusted
6351  * @features: the feature set that the stack is suggesting
6352  */
6353 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6354 ice_set_features(struct net_device *netdev, netdev_features_t features)
6355 {
6356 	netdev_features_t changed = netdev->features ^ features;
6357 	struct ice_netdev_priv *np = netdev_priv(netdev);
6358 	struct ice_vsi *vsi = np->vsi;
6359 	struct ice_pf *pf = vsi->back;
6360 	int ret = 0;
6361 
6362 	/* Don't set any netdev advanced features with device in Safe Mode */
6363 	if (ice_is_safe_mode(pf)) {
6364 		dev_err(ice_pf_to_dev(pf),
6365 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6366 		return ret;
6367 	}
6368 
6369 	/* Do not change setting during reset */
6370 	if (ice_is_reset_in_progress(pf->state)) {
6371 		dev_err(ice_pf_to_dev(pf),
6372 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6373 		return -EBUSY;
6374 	}
6375 
6376 	/* Multiple features can be changed in one call so keep features in
6377 	 * separate if/else statements to guarantee each feature is checked
6378 	 */
6379 	if (changed & NETIF_F_RXHASH)
6380 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6381 
6382 	ret = ice_set_vlan_features(netdev, features);
6383 	if (ret)
6384 		return ret;
6385 
6386 	/* Turn on receive of FCS aka CRC, and after setting this
6387 	 * flag the packet data will have the 4 byte CRC appended
6388 	 */
6389 	if (changed & NETIF_F_RXFCS) {
6390 		if ((features & NETIF_F_RXFCS) &&
6391 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6392 			dev_err(ice_pf_to_dev(vsi->back),
6393 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6394 			return -EIO;
6395 		}
6396 
6397 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6398 		ret = ice_down_up(vsi);
6399 		if (ret)
6400 			return ret;
6401 	}
6402 
6403 	if (changed & NETIF_F_NTUPLE) {
6404 		bool ena = !!(features & NETIF_F_NTUPLE);
6405 
6406 		ice_vsi_manage_fdir(vsi, ena);
6407 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6408 	}
6409 
6410 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6411 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6412 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6413 		return -EACCES;
6414 	}
6415 
6416 	if (changed & NETIF_F_HW_TC) {
6417 		bool ena = !!(features & NETIF_F_HW_TC);
6418 
6419 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6420 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6421 	}
6422 
6423 	if (changed & NETIF_F_LOOPBACK)
6424 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6425 
6426 	return ret;
6427 }
6428 
6429 /**
6430  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6431  * @vsi: VSI to setup VLAN properties for
6432  */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6433 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6434 {
6435 	int err;
6436 
6437 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6438 	if (err)
6439 		return err;
6440 
6441 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6442 	if (err)
6443 		return err;
6444 
6445 	return ice_vsi_add_vlan_zero(vsi);
6446 }
6447 
6448 /**
6449  * ice_vsi_cfg_lan - Setup the VSI lan related config
6450  * @vsi: the VSI being configured
6451  *
6452  * Return 0 on success and negative value on error
6453  */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6454 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6455 {
6456 	int err;
6457 
6458 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6459 		ice_set_rx_mode(vsi->netdev);
6460 
6461 		err = ice_vsi_vlan_setup(vsi);
6462 		if (err)
6463 			return err;
6464 	}
6465 	ice_vsi_cfg_dcb_rings(vsi);
6466 
6467 	err = ice_vsi_cfg_lan_txqs(vsi);
6468 	if (!err && ice_is_xdp_ena_vsi(vsi))
6469 		err = ice_vsi_cfg_xdp_txqs(vsi);
6470 	if (!err)
6471 		err = ice_vsi_cfg_rxqs(vsi);
6472 
6473 	return err;
6474 }
6475 
6476 /* THEORY OF MODERATION:
6477  * The ice driver hardware works differently than the hardware that DIMLIB was
6478  * originally made for. ice hardware doesn't have packet count limits that
6479  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6480  * which is hard-coded to a limit of 250,000 ints/second.
6481  * If not using dynamic moderation, the INTRL value can be modified
6482  * by ethtool rx-usecs-high.
6483  */
6484 struct ice_dim {
6485 	/* the throttle rate for interrupts, basically worst case delay before
6486 	 * an initial interrupt fires, value is stored in microseconds.
6487 	 */
6488 	u16 itr;
6489 };
6490 
6491 /* Make a different profile for Rx that doesn't allow quite so aggressive
6492  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6493  * second.
6494  */
6495 static const struct ice_dim rx_profile[] = {
6496 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6497 	{8},    /* 125,000 ints/s */
6498 	{16},   /*  62,500 ints/s */
6499 	{62},   /*  16,129 ints/s */
6500 	{126}   /*   7,936 ints/s */
6501 };
6502 
6503 /* The transmit profile, which has the same sorts of values
6504  * as the previous struct
6505  */
6506 static const struct ice_dim tx_profile[] = {
6507 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6508 	{8},    /* 125,000 ints/s */
6509 	{40},   /*  16,125 ints/s */
6510 	{128},  /*   7,812 ints/s */
6511 	{256}   /*   3,906 ints/s */
6512 };
6513 
ice_tx_dim_work(struct work_struct * work)6514 static void ice_tx_dim_work(struct work_struct *work)
6515 {
6516 	struct ice_ring_container *rc;
6517 	struct dim *dim;
6518 	u16 itr;
6519 
6520 	dim = container_of(work, struct dim, work);
6521 	rc = dim->priv;
6522 
6523 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6524 
6525 	/* look up the values in our local table */
6526 	itr = tx_profile[dim->profile_ix].itr;
6527 
6528 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6529 	ice_write_itr(rc, itr);
6530 
6531 	dim->state = DIM_START_MEASURE;
6532 }
6533 
ice_rx_dim_work(struct work_struct * work)6534 static void ice_rx_dim_work(struct work_struct *work)
6535 {
6536 	struct ice_ring_container *rc;
6537 	struct dim *dim;
6538 	u16 itr;
6539 
6540 	dim = container_of(work, struct dim, work);
6541 	rc = dim->priv;
6542 
6543 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6544 
6545 	/* look up the values in our local table */
6546 	itr = rx_profile[dim->profile_ix].itr;
6547 
6548 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6549 	ice_write_itr(rc, itr);
6550 
6551 	dim->state = DIM_START_MEASURE;
6552 }
6553 
6554 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6555 
6556 /**
6557  * ice_init_moderation - set up interrupt moderation
6558  * @q_vector: the vector containing rings to be configured
6559  *
6560  * Set up interrupt moderation registers, with the intent to do the right thing
6561  * when called from reset or from probe, and whether or not dynamic moderation
6562  * is enabled or not. Take special care to write all the registers in both
6563  * dynamic moderation mode or not in order to make sure hardware is in a known
6564  * state.
6565  */
ice_init_moderation(struct ice_q_vector * q_vector)6566 static void ice_init_moderation(struct ice_q_vector *q_vector)
6567 {
6568 	struct ice_ring_container *rc;
6569 	bool tx_dynamic, rx_dynamic;
6570 
6571 	rc = &q_vector->tx;
6572 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6573 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6574 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6575 	rc->dim.priv = rc;
6576 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6577 
6578 	/* set the initial TX ITR to match the above */
6579 	ice_write_itr(rc, tx_dynamic ?
6580 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6581 
6582 	rc = &q_vector->rx;
6583 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6584 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6585 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6586 	rc->dim.priv = rc;
6587 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6588 
6589 	/* set the initial RX ITR to match the above */
6590 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6591 				       rc->itr_setting);
6592 
6593 	ice_set_q_vector_intrl(q_vector);
6594 }
6595 
6596 /**
6597  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6598  * @vsi: the VSI being configured
6599  */
ice_napi_enable_all(struct ice_vsi * vsi)6600 static void ice_napi_enable_all(struct ice_vsi *vsi)
6601 {
6602 	int q_idx;
6603 
6604 	if (!vsi->netdev)
6605 		return;
6606 
6607 	ice_for_each_q_vector(vsi, q_idx) {
6608 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6609 
6610 		ice_init_moderation(q_vector);
6611 
6612 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6613 			napi_enable(&q_vector->napi);
6614 	}
6615 }
6616 
6617 /**
6618  * ice_up_complete - Finish the last steps of bringing up a connection
6619  * @vsi: The VSI being configured
6620  *
6621  * Return 0 on success and negative value on error
6622  */
ice_up_complete(struct ice_vsi * vsi)6623 static int ice_up_complete(struct ice_vsi *vsi)
6624 {
6625 	struct ice_pf *pf = vsi->back;
6626 	int err;
6627 
6628 	ice_vsi_cfg_msix(vsi);
6629 
6630 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6631 	 * Tx queue group list was configured and the context bits were
6632 	 * programmed using ice_vsi_cfg_txqs
6633 	 */
6634 	err = ice_vsi_start_all_rx_rings(vsi);
6635 	if (err)
6636 		return err;
6637 
6638 	clear_bit(ICE_VSI_DOWN, vsi->state);
6639 	ice_napi_enable_all(vsi);
6640 	ice_vsi_ena_irq(vsi);
6641 
6642 	if (vsi->port_info &&
6643 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6644 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6645 		ice_print_link_msg(vsi, true);
6646 		netif_tx_start_all_queues(vsi->netdev);
6647 		netif_carrier_on(vsi->netdev);
6648 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6649 	}
6650 
6651 	/* Perform an initial read of the statistics registers now to
6652 	 * set the baseline so counters are ready when interface is up
6653 	 */
6654 	ice_update_eth_stats(vsi);
6655 
6656 	if (vsi->type == ICE_VSI_PF)
6657 		ice_service_task_schedule(pf);
6658 
6659 	return 0;
6660 }
6661 
6662 /**
6663  * ice_up - Bring the connection back up after being down
6664  * @vsi: VSI being configured
6665  */
ice_up(struct ice_vsi * vsi)6666 int ice_up(struct ice_vsi *vsi)
6667 {
6668 	int err;
6669 
6670 	err = ice_vsi_cfg_lan(vsi);
6671 	if (!err)
6672 		err = ice_up_complete(vsi);
6673 
6674 	return err;
6675 }
6676 
6677 /**
6678  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6679  * @syncp: pointer to u64_stats_sync
6680  * @stats: stats that pkts and bytes count will be taken from
6681  * @pkts: packets stats counter
6682  * @bytes: bytes stats counter
6683  *
6684  * This function fetches stats from the ring considering the atomic operations
6685  * that needs to be performed to read u64 values in 32 bit machine.
6686  */
6687 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6688 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6689 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6690 {
6691 	unsigned int start;
6692 
6693 	do {
6694 		start = u64_stats_fetch_begin(syncp);
6695 		*pkts = stats.pkts;
6696 		*bytes = stats.bytes;
6697 	} while (u64_stats_fetch_retry(syncp, start));
6698 }
6699 
6700 /**
6701  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6702  * @vsi: the VSI to be updated
6703  * @vsi_stats: the stats struct to be updated
6704  * @rings: rings to work on
6705  * @count: number of rings
6706  */
6707 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6708 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6709 			     struct rtnl_link_stats64 *vsi_stats,
6710 			     struct ice_tx_ring **rings, u16 count)
6711 {
6712 	u16 i;
6713 
6714 	for (i = 0; i < count; i++) {
6715 		struct ice_tx_ring *ring;
6716 		u64 pkts = 0, bytes = 0;
6717 
6718 		ring = READ_ONCE(rings[i]);
6719 		if (!ring || !ring->ring_stats)
6720 			continue;
6721 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6722 					     ring->ring_stats->stats, &pkts,
6723 					     &bytes);
6724 		vsi_stats->tx_packets += pkts;
6725 		vsi_stats->tx_bytes += bytes;
6726 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6727 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6728 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6729 	}
6730 }
6731 
6732 /**
6733  * ice_update_vsi_ring_stats - Update VSI stats counters
6734  * @vsi: the VSI to be updated
6735  */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6736 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6737 {
6738 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6739 	struct rtnl_link_stats64 *vsi_stats;
6740 	u64 pkts, bytes;
6741 	int i;
6742 
6743 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6744 	if (!vsi_stats)
6745 		return;
6746 
6747 	/* reset non-netdev (extended) stats */
6748 	vsi->tx_restart = 0;
6749 	vsi->tx_busy = 0;
6750 	vsi->tx_linearize = 0;
6751 	vsi->rx_buf_failed = 0;
6752 	vsi->rx_page_failed = 0;
6753 
6754 	rcu_read_lock();
6755 
6756 	/* update Tx rings counters */
6757 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6758 				     vsi->num_txq);
6759 
6760 	/* update Rx rings counters */
6761 	ice_for_each_rxq(vsi, i) {
6762 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6763 		struct ice_ring_stats *ring_stats;
6764 
6765 		ring_stats = ring->ring_stats;
6766 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6767 					     ring_stats->stats, &pkts,
6768 					     &bytes);
6769 		vsi_stats->rx_packets += pkts;
6770 		vsi_stats->rx_bytes += bytes;
6771 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6772 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6773 	}
6774 
6775 	/* update XDP Tx rings counters */
6776 	if (ice_is_xdp_ena_vsi(vsi))
6777 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6778 					     vsi->num_xdp_txq);
6779 
6780 	rcu_read_unlock();
6781 
6782 	net_stats = &vsi->net_stats;
6783 	stats_prev = &vsi->net_stats_prev;
6784 
6785 	/* clear prev counters after reset */
6786 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6787 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6788 		stats_prev->tx_packets = 0;
6789 		stats_prev->tx_bytes = 0;
6790 		stats_prev->rx_packets = 0;
6791 		stats_prev->rx_bytes = 0;
6792 	}
6793 
6794 	/* update netdev counters */
6795 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6796 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6797 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6798 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6799 
6800 	stats_prev->tx_packets = vsi_stats->tx_packets;
6801 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6802 	stats_prev->rx_packets = vsi_stats->rx_packets;
6803 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6804 
6805 	kfree(vsi_stats);
6806 }
6807 
6808 /**
6809  * ice_update_vsi_stats - Update VSI stats counters
6810  * @vsi: the VSI to be updated
6811  */
ice_update_vsi_stats(struct ice_vsi * vsi)6812 void ice_update_vsi_stats(struct ice_vsi *vsi)
6813 {
6814 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6815 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6816 	struct ice_pf *pf = vsi->back;
6817 
6818 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6819 	    test_bit(ICE_CFG_BUSY, pf->state))
6820 		return;
6821 
6822 	/* get stats as recorded by Tx/Rx rings */
6823 	ice_update_vsi_ring_stats(vsi);
6824 
6825 	/* get VSI stats as recorded by the hardware */
6826 	ice_update_eth_stats(vsi);
6827 
6828 	cur_ns->tx_errors = cur_es->tx_errors;
6829 	cur_ns->rx_dropped = cur_es->rx_discards;
6830 	cur_ns->tx_dropped = cur_es->tx_discards;
6831 	cur_ns->multicast = cur_es->rx_multicast;
6832 
6833 	/* update some more netdev stats if this is main VSI */
6834 	if (vsi->type == ICE_VSI_PF) {
6835 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6836 		cur_ns->rx_errors = pf->stats.crc_errors +
6837 				    pf->stats.illegal_bytes +
6838 				    pf->stats.rx_undersize +
6839 				    pf->hw_csum_rx_error +
6840 				    pf->stats.rx_jabber +
6841 				    pf->stats.rx_fragments +
6842 				    pf->stats.rx_oversize;
6843 		/* record drops from the port level */
6844 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6845 	}
6846 }
6847 
6848 /**
6849  * ice_update_pf_stats - Update PF port stats counters
6850  * @pf: PF whose stats needs to be updated
6851  */
ice_update_pf_stats(struct ice_pf * pf)6852 void ice_update_pf_stats(struct ice_pf *pf)
6853 {
6854 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6855 	struct ice_hw *hw = &pf->hw;
6856 	u16 fd_ctr_base;
6857 	u8 port;
6858 
6859 	port = hw->port_info->lport;
6860 	prev_ps = &pf->stats_prev;
6861 	cur_ps = &pf->stats;
6862 
6863 	if (ice_is_reset_in_progress(pf->state))
6864 		pf->stat_prev_loaded = false;
6865 
6866 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6867 			  &prev_ps->eth.rx_bytes,
6868 			  &cur_ps->eth.rx_bytes);
6869 
6870 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6871 			  &prev_ps->eth.rx_unicast,
6872 			  &cur_ps->eth.rx_unicast);
6873 
6874 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6875 			  &prev_ps->eth.rx_multicast,
6876 			  &cur_ps->eth.rx_multicast);
6877 
6878 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6879 			  &prev_ps->eth.rx_broadcast,
6880 			  &cur_ps->eth.rx_broadcast);
6881 
6882 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6883 			  &prev_ps->eth.rx_discards,
6884 			  &cur_ps->eth.rx_discards);
6885 
6886 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6887 			  &prev_ps->eth.tx_bytes,
6888 			  &cur_ps->eth.tx_bytes);
6889 
6890 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6891 			  &prev_ps->eth.tx_unicast,
6892 			  &cur_ps->eth.tx_unicast);
6893 
6894 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6895 			  &prev_ps->eth.tx_multicast,
6896 			  &cur_ps->eth.tx_multicast);
6897 
6898 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6899 			  &prev_ps->eth.tx_broadcast,
6900 			  &cur_ps->eth.tx_broadcast);
6901 
6902 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6903 			  &prev_ps->tx_dropped_link_down,
6904 			  &cur_ps->tx_dropped_link_down);
6905 
6906 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6907 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6908 
6909 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6910 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6911 
6912 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6913 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6914 
6915 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6916 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6917 
6918 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6919 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6920 
6921 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6922 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6923 
6924 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6925 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6926 
6927 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6928 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6929 
6930 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6931 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6932 
6933 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6934 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6935 
6936 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6937 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6938 
6939 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6940 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6941 
6942 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6943 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6944 
6945 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6946 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6947 
6948 	fd_ctr_base = hw->fd_ctr_base;
6949 
6950 	ice_stat_update40(hw,
6951 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6952 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6953 			  &cur_ps->fd_sb_match);
6954 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6955 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6956 
6957 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6958 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6959 
6960 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6961 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6962 
6963 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6964 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6965 
6966 	ice_update_dcb_stats(pf);
6967 
6968 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6969 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6970 
6971 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6972 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6973 
6974 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6975 			  &prev_ps->mac_local_faults,
6976 			  &cur_ps->mac_local_faults);
6977 
6978 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6979 			  &prev_ps->mac_remote_faults,
6980 			  &cur_ps->mac_remote_faults);
6981 
6982 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6983 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6984 
6985 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6986 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6987 
6988 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6989 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6990 
6991 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6992 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6993 
6994 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6995 
6996 	pf->stat_prev_loaded = true;
6997 }
6998 
6999 /**
7000  * ice_get_stats64 - get statistics for network device structure
7001  * @netdev: network interface device structure
7002  * @stats: main device statistics structure
7003  */
7004 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7005 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7006 {
7007 	struct ice_netdev_priv *np = netdev_priv(netdev);
7008 	struct rtnl_link_stats64 *vsi_stats;
7009 	struct ice_vsi *vsi = np->vsi;
7010 
7011 	vsi_stats = &vsi->net_stats;
7012 
7013 	if (!vsi->num_txq || !vsi->num_rxq)
7014 		return;
7015 
7016 	/* netdev packet/byte stats come from ring counter. These are obtained
7017 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7018 	 * But, only call the update routine and read the registers if VSI is
7019 	 * not down.
7020 	 */
7021 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
7022 		ice_update_vsi_ring_stats(vsi);
7023 	stats->tx_packets = vsi_stats->tx_packets;
7024 	stats->tx_bytes = vsi_stats->tx_bytes;
7025 	stats->rx_packets = vsi_stats->rx_packets;
7026 	stats->rx_bytes = vsi_stats->rx_bytes;
7027 
7028 	/* The rest of the stats can be read from the hardware but instead we
7029 	 * just return values that the watchdog task has already obtained from
7030 	 * the hardware.
7031 	 */
7032 	stats->multicast = vsi_stats->multicast;
7033 	stats->tx_errors = vsi_stats->tx_errors;
7034 	stats->tx_dropped = vsi_stats->tx_dropped;
7035 	stats->rx_errors = vsi_stats->rx_errors;
7036 	stats->rx_dropped = vsi_stats->rx_dropped;
7037 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7038 	stats->rx_length_errors = vsi_stats->rx_length_errors;
7039 }
7040 
7041 /**
7042  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7043  * @vsi: VSI having NAPI disabled
7044  */
ice_napi_disable_all(struct ice_vsi * vsi)7045 static void ice_napi_disable_all(struct ice_vsi *vsi)
7046 {
7047 	int q_idx;
7048 
7049 	if (!vsi->netdev)
7050 		return;
7051 
7052 	ice_for_each_q_vector(vsi, q_idx) {
7053 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7054 
7055 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7056 			napi_disable(&q_vector->napi);
7057 
7058 		cancel_work_sync(&q_vector->tx.dim.work);
7059 		cancel_work_sync(&q_vector->rx.dim.work);
7060 	}
7061 }
7062 
7063 /**
7064  * ice_down - Shutdown the connection
7065  * @vsi: The VSI being stopped
7066  *
7067  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7068  */
ice_down(struct ice_vsi * vsi)7069 int ice_down(struct ice_vsi *vsi)
7070 {
7071 	int i, tx_err, rx_err, vlan_err = 0;
7072 
7073 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7074 
7075 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
7076 		vlan_err = ice_vsi_del_vlan_zero(vsi);
7077 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
7078 		netif_carrier_off(vsi->netdev);
7079 		netif_tx_disable(vsi->netdev);
7080 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
7081 		ice_eswitch_stop_all_tx_queues(vsi->back);
7082 	}
7083 
7084 	ice_vsi_dis_irq(vsi);
7085 
7086 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7087 	if (tx_err)
7088 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7089 			   vsi->vsi_num, tx_err);
7090 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
7091 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7092 		if (tx_err)
7093 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7094 				   vsi->vsi_num, tx_err);
7095 	}
7096 
7097 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7098 	if (rx_err)
7099 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7100 			   vsi->vsi_num, rx_err);
7101 
7102 	ice_napi_disable_all(vsi);
7103 
7104 	ice_for_each_txq(vsi, i)
7105 		ice_clean_tx_ring(vsi->tx_rings[i]);
7106 
7107 	if (ice_is_xdp_ena_vsi(vsi))
7108 		ice_for_each_xdp_txq(vsi, i)
7109 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7110 
7111 	ice_for_each_rxq(vsi, i)
7112 		ice_clean_rx_ring(vsi->rx_rings[i]);
7113 
7114 	if (tx_err || rx_err || vlan_err) {
7115 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7116 			   vsi->vsi_num, vsi->vsw->sw_id);
7117 		return -EIO;
7118 	}
7119 
7120 	return 0;
7121 }
7122 
7123 /**
7124  * ice_down_up - shutdown the VSI connection and bring it up
7125  * @vsi: the VSI to be reconnected
7126  */
ice_down_up(struct ice_vsi * vsi)7127 int ice_down_up(struct ice_vsi *vsi)
7128 {
7129 	int ret;
7130 
7131 	/* if DOWN already set, nothing to do */
7132 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7133 		return 0;
7134 
7135 	ret = ice_down(vsi);
7136 	if (ret)
7137 		return ret;
7138 
7139 	ret = ice_up(vsi);
7140 	if (ret) {
7141 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7142 		return ret;
7143 	}
7144 
7145 	return 0;
7146 }
7147 
7148 /**
7149  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7150  * @vsi: VSI having resources allocated
7151  *
7152  * Return 0 on success, negative on failure
7153  */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7154 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7155 {
7156 	int i, err = 0;
7157 
7158 	if (!vsi->num_txq) {
7159 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7160 			vsi->vsi_num);
7161 		return -EINVAL;
7162 	}
7163 
7164 	ice_for_each_txq(vsi, i) {
7165 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7166 
7167 		if (!ring)
7168 			return -EINVAL;
7169 
7170 		if (vsi->netdev)
7171 			ring->netdev = vsi->netdev;
7172 		err = ice_setup_tx_ring(ring);
7173 		if (err)
7174 			break;
7175 	}
7176 
7177 	return err;
7178 }
7179 
7180 /**
7181  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7182  * @vsi: VSI having resources allocated
7183  *
7184  * Return 0 on success, negative on failure
7185  */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7186 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7187 {
7188 	int i, err = 0;
7189 
7190 	if (!vsi->num_rxq) {
7191 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7192 			vsi->vsi_num);
7193 		return -EINVAL;
7194 	}
7195 
7196 	ice_for_each_rxq(vsi, i) {
7197 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7198 
7199 		if (!ring)
7200 			return -EINVAL;
7201 
7202 		if (vsi->netdev)
7203 			ring->netdev = vsi->netdev;
7204 		err = ice_setup_rx_ring(ring);
7205 		if (err)
7206 			break;
7207 	}
7208 
7209 	return err;
7210 }
7211 
7212 /**
7213  * ice_vsi_open_ctrl - open control VSI for use
7214  * @vsi: the VSI to open
7215  *
7216  * Initialization of the Control VSI
7217  *
7218  * Returns 0 on success, negative value on error
7219  */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7220 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7221 {
7222 	char int_name[ICE_INT_NAME_STR_LEN];
7223 	struct ice_pf *pf = vsi->back;
7224 	struct device *dev;
7225 	int err;
7226 
7227 	dev = ice_pf_to_dev(pf);
7228 	/* allocate descriptors */
7229 	err = ice_vsi_setup_tx_rings(vsi);
7230 	if (err)
7231 		goto err_setup_tx;
7232 
7233 	err = ice_vsi_setup_rx_rings(vsi);
7234 	if (err)
7235 		goto err_setup_rx;
7236 
7237 	err = ice_vsi_cfg_lan(vsi);
7238 	if (err)
7239 		goto err_setup_rx;
7240 
7241 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7242 		 dev_driver_string(dev), dev_name(dev));
7243 	err = ice_vsi_req_irq_msix(vsi, int_name);
7244 	if (err)
7245 		goto err_setup_rx;
7246 
7247 	ice_vsi_cfg_msix(vsi);
7248 
7249 	err = ice_vsi_start_all_rx_rings(vsi);
7250 	if (err)
7251 		goto err_up_complete;
7252 
7253 	clear_bit(ICE_VSI_DOWN, vsi->state);
7254 	ice_vsi_ena_irq(vsi);
7255 
7256 	return 0;
7257 
7258 err_up_complete:
7259 	ice_down(vsi);
7260 err_setup_rx:
7261 	ice_vsi_free_rx_rings(vsi);
7262 err_setup_tx:
7263 	ice_vsi_free_tx_rings(vsi);
7264 
7265 	return err;
7266 }
7267 
7268 /**
7269  * ice_vsi_open - Called when a network interface is made active
7270  * @vsi: the VSI to open
7271  *
7272  * Initialization of the VSI
7273  *
7274  * Returns 0 on success, negative value on error
7275  */
ice_vsi_open(struct ice_vsi * vsi)7276 int ice_vsi_open(struct ice_vsi *vsi)
7277 {
7278 	char int_name[ICE_INT_NAME_STR_LEN];
7279 	struct ice_pf *pf = vsi->back;
7280 	int err;
7281 
7282 	/* allocate descriptors */
7283 	err = ice_vsi_setup_tx_rings(vsi);
7284 	if (err)
7285 		goto err_setup_tx;
7286 
7287 	err = ice_vsi_setup_rx_rings(vsi);
7288 	if (err)
7289 		goto err_setup_rx;
7290 
7291 	err = ice_vsi_cfg_lan(vsi);
7292 	if (err)
7293 		goto err_setup_rx;
7294 
7295 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7296 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7297 	err = ice_vsi_req_irq_msix(vsi, int_name);
7298 	if (err)
7299 		goto err_setup_rx;
7300 
7301 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7302 
7303 	if (vsi->type == ICE_VSI_PF) {
7304 		/* Notify the stack of the actual queue counts. */
7305 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7306 		if (err)
7307 			goto err_set_qs;
7308 
7309 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7310 		if (err)
7311 			goto err_set_qs;
7312 	}
7313 
7314 	err = ice_up_complete(vsi);
7315 	if (err)
7316 		goto err_up_complete;
7317 
7318 	return 0;
7319 
7320 err_up_complete:
7321 	ice_down(vsi);
7322 err_set_qs:
7323 	ice_vsi_free_irq(vsi);
7324 err_setup_rx:
7325 	ice_vsi_free_rx_rings(vsi);
7326 err_setup_tx:
7327 	ice_vsi_free_tx_rings(vsi);
7328 
7329 	return err;
7330 }
7331 
7332 /**
7333  * ice_vsi_release_all - Delete all VSIs
7334  * @pf: PF from which all VSIs are being removed
7335  */
ice_vsi_release_all(struct ice_pf * pf)7336 static void ice_vsi_release_all(struct ice_pf *pf)
7337 {
7338 	int err, i;
7339 
7340 	if (!pf->vsi)
7341 		return;
7342 
7343 	ice_for_each_vsi(pf, i) {
7344 		if (!pf->vsi[i])
7345 			continue;
7346 
7347 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7348 			continue;
7349 
7350 		err = ice_vsi_release(pf->vsi[i]);
7351 		if (err)
7352 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7353 				i, err, pf->vsi[i]->vsi_num);
7354 	}
7355 }
7356 
7357 /**
7358  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7359  * @pf: pointer to the PF instance
7360  * @type: VSI type to rebuild
7361  *
7362  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7363  */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7364 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7365 {
7366 	struct device *dev = ice_pf_to_dev(pf);
7367 	int i, err;
7368 
7369 	ice_for_each_vsi(pf, i) {
7370 		struct ice_vsi *vsi = pf->vsi[i];
7371 
7372 		if (!vsi || vsi->type != type)
7373 			continue;
7374 
7375 		/* rebuild the VSI */
7376 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7377 		if (err) {
7378 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7379 				err, vsi->idx, ice_vsi_type_str(type));
7380 			return err;
7381 		}
7382 
7383 		/* replay filters for the VSI */
7384 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7385 		if (err) {
7386 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7387 				err, vsi->idx, ice_vsi_type_str(type));
7388 			return err;
7389 		}
7390 
7391 		/* Re-map HW VSI number, using VSI handle that has been
7392 		 * previously validated in ice_replay_vsi() call above
7393 		 */
7394 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7395 
7396 		/* enable the VSI */
7397 		err = ice_ena_vsi(vsi, false);
7398 		if (err) {
7399 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7400 				err, vsi->idx, ice_vsi_type_str(type));
7401 			return err;
7402 		}
7403 
7404 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7405 			 ice_vsi_type_str(type));
7406 	}
7407 
7408 	return 0;
7409 }
7410 
7411 /**
7412  * ice_update_pf_netdev_link - Update PF netdev link status
7413  * @pf: pointer to the PF instance
7414  */
ice_update_pf_netdev_link(struct ice_pf * pf)7415 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7416 {
7417 	bool link_up;
7418 	int i;
7419 
7420 	ice_for_each_vsi(pf, i) {
7421 		struct ice_vsi *vsi = pf->vsi[i];
7422 
7423 		if (!vsi || vsi->type != ICE_VSI_PF)
7424 			return;
7425 
7426 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7427 		if (link_up) {
7428 			netif_carrier_on(pf->vsi[i]->netdev);
7429 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7430 		} else {
7431 			netif_carrier_off(pf->vsi[i]->netdev);
7432 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7433 		}
7434 	}
7435 }
7436 
7437 /**
7438  * ice_rebuild - rebuild after reset
7439  * @pf: PF to rebuild
7440  * @reset_type: type of reset
7441  *
7442  * Do not rebuild VF VSI in this flow because that is already handled via
7443  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7444  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7445  * to reset/rebuild all the VF VSI twice.
7446  */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7447 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7448 {
7449 	struct device *dev = ice_pf_to_dev(pf);
7450 	struct ice_hw *hw = &pf->hw;
7451 	bool dvm;
7452 	int err;
7453 
7454 	if (test_bit(ICE_DOWN, pf->state))
7455 		goto clear_recovery;
7456 
7457 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7458 
7459 #define ICE_EMP_RESET_SLEEP_MS 5000
7460 	if (reset_type == ICE_RESET_EMPR) {
7461 		/* If an EMP reset has occurred, any previously pending flash
7462 		 * update will have completed. We no longer know whether or
7463 		 * not the NVM update EMP reset is restricted.
7464 		 */
7465 		pf->fw_emp_reset_disabled = false;
7466 
7467 		msleep(ICE_EMP_RESET_SLEEP_MS);
7468 	}
7469 
7470 	err = ice_init_all_ctrlq(hw);
7471 	if (err) {
7472 		dev_err(dev, "control queues init failed %d\n", err);
7473 		goto err_init_ctrlq;
7474 	}
7475 
7476 	/* if DDP was previously loaded successfully */
7477 	if (!ice_is_safe_mode(pf)) {
7478 		/* reload the SW DB of filter tables */
7479 		if (reset_type == ICE_RESET_PFR)
7480 			ice_fill_blk_tbls(hw);
7481 		else
7482 			/* Reload DDP Package after CORER/GLOBR reset */
7483 			ice_load_pkg(NULL, pf);
7484 	}
7485 
7486 	err = ice_clear_pf_cfg(hw);
7487 	if (err) {
7488 		dev_err(dev, "clear PF configuration failed %d\n", err);
7489 		goto err_init_ctrlq;
7490 	}
7491 
7492 	ice_clear_pxe_mode(hw);
7493 
7494 	err = ice_init_nvm(hw);
7495 	if (err) {
7496 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7497 		goto err_init_ctrlq;
7498 	}
7499 
7500 	err = ice_get_caps(hw);
7501 	if (err) {
7502 		dev_err(dev, "ice_get_caps failed %d\n", err);
7503 		goto err_init_ctrlq;
7504 	}
7505 
7506 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7507 	if (err) {
7508 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7509 		goto err_init_ctrlq;
7510 	}
7511 
7512 	dvm = ice_is_dvm_ena(hw);
7513 
7514 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7515 	if (err)
7516 		goto err_init_ctrlq;
7517 
7518 	err = ice_sched_init_port(hw->port_info);
7519 	if (err)
7520 		goto err_sched_init_port;
7521 
7522 	/* start misc vector */
7523 	err = ice_req_irq_msix_misc(pf);
7524 	if (err) {
7525 		dev_err(dev, "misc vector setup failed: %d\n", err);
7526 		goto err_sched_init_port;
7527 	}
7528 
7529 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7530 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7531 		if (!rd32(hw, PFQF_FD_SIZE)) {
7532 			u16 unused, guar, b_effort;
7533 
7534 			guar = hw->func_caps.fd_fltr_guar;
7535 			b_effort = hw->func_caps.fd_fltr_best_effort;
7536 
7537 			/* force guaranteed filter pool for PF */
7538 			ice_alloc_fd_guar_item(hw, &unused, guar);
7539 			/* force shared filter pool for PF */
7540 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7541 		}
7542 	}
7543 
7544 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7545 		ice_dcb_rebuild(pf);
7546 
7547 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7548 	 * the VSI rebuild. If not, this causes the PTP link status events to
7549 	 * fail.
7550 	 */
7551 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7552 		ice_ptp_reset(pf);
7553 
7554 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7555 		ice_gnss_init(pf);
7556 
7557 	/* rebuild PF VSI */
7558 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7559 	if (err) {
7560 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7561 		goto err_vsi_rebuild;
7562 	}
7563 
7564 	err = ice_eswitch_rebuild(pf);
7565 	if (err) {
7566 		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7567 		goto err_vsi_rebuild;
7568 	}
7569 
7570 	if (reset_type == ICE_RESET_PFR) {
7571 		err = ice_rebuild_channels(pf);
7572 		if (err) {
7573 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7574 				err);
7575 			goto err_vsi_rebuild;
7576 		}
7577 	}
7578 
7579 	/* If Flow Director is active */
7580 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7581 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7582 		if (err) {
7583 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7584 			goto err_vsi_rebuild;
7585 		}
7586 
7587 		/* replay HW Flow Director recipes */
7588 		if (hw->fdir_prof)
7589 			ice_fdir_replay_flows(hw);
7590 
7591 		/* replay Flow Director filters */
7592 		ice_fdir_replay_fltrs(pf);
7593 
7594 		ice_rebuild_arfs(pf);
7595 	}
7596 
7597 	ice_update_pf_netdev_link(pf);
7598 
7599 	/* tell the firmware we are up */
7600 	err = ice_send_version(pf);
7601 	if (err) {
7602 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7603 			err);
7604 		goto err_vsi_rebuild;
7605 	}
7606 
7607 	ice_replay_post(hw);
7608 
7609 	/* if we get here, reset flow is successful */
7610 	clear_bit(ICE_RESET_FAILED, pf->state);
7611 
7612 	ice_plug_aux_dev(pf);
7613 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7614 		ice_lag_rebuild(pf);
7615 
7616 	/* Restore timestamp mode settings after VSI rebuild */
7617 	ice_ptp_restore_timestamp_mode(pf);
7618 	return;
7619 
7620 err_vsi_rebuild:
7621 err_sched_init_port:
7622 	ice_sched_cleanup_all(hw);
7623 err_init_ctrlq:
7624 	ice_shutdown_all_ctrlq(hw);
7625 	set_bit(ICE_RESET_FAILED, pf->state);
7626 clear_recovery:
7627 	/* set this bit in PF state to control service task scheduling */
7628 	set_bit(ICE_NEEDS_RESTART, pf->state);
7629 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7630 }
7631 
7632 /**
7633  * ice_change_mtu - NDO callback to change the MTU
7634  * @netdev: network interface device structure
7635  * @new_mtu: new value for maximum frame size
7636  *
7637  * Returns 0 on success, negative on failure
7638  */
ice_change_mtu(struct net_device * netdev,int new_mtu)7639 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7640 {
7641 	struct ice_netdev_priv *np = netdev_priv(netdev);
7642 	struct ice_vsi *vsi = np->vsi;
7643 	struct ice_pf *pf = vsi->back;
7644 	struct bpf_prog *prog;
7645 	u8 count = 0;
7646 	int err = 0;
7647 
7648 	if (new_mtu == (int)netdev->mtu) {
7649 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7650 		return 0;
7651 	}
7652 
7653 	prog = vsi->xdp_prog;
7654 	if (prog && !prog->aux->xdp_has_frags) {
7655 		int frame_size = ice_max_xdp_frame_size(vsi);
7656 
7657 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7658 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7659 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7660 			return -EINVAL;
7661 		}
7662 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7663 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7664 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7665 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7666 			return -EINVAL;
7667 		}
7668 	}
7669 
7670 	/* if a reset is in progress, wait for some time for it to complete */
7671 	do {
7672 		if (ice_is_reset_in_progress(pf->state)) {
7673 			count++;
7674 			usleep_range(1000, 2000);
7675 		} else {
7676 			break;
7677 		}
7678 
7679 	} while (count < 100);
7680 
7681 	if (count == 100) {
7682 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7683 		return -EBUSY;
7684 	}
7685 
7686 	netdev->mtu = (unsigned int)new_mtu;
7687 	err = ice_down_up(vsi);
7688 	if (err)
7689 		return err;
7690 
7691 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7692 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7693 
7694 	return err;
7695 }
7696 
7697 /**
7698  * ice_eth_ioctl - Access the hwtstamp interface
7699  * @netdev: network interface device structure
7700  * @ifr: interface request data
7701  * @cmd: ioctl command
7702  */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7703 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7704 {
7705 	struct ice_netdev_priv *np = netdev_priv(netdev);
7706 	struct ice_pf *pf = np->vsi->back;
7707 
7708 	switch (cmd) {
7709 	case SIOCGHWTSTAMP:
7710 		return ice_ptp_get_ts_config(pf, ifr);
7711 	case SIOCSHWTSTAMP:
7712 		return ice_ptp_set_ts_config(pf, ifr);
7713 	default:
7714 		return -EOPNOTSUPP;
7715 	}
7716 }
7717 
7718 /**
7719  * ice_aq_str - convert AQ err code to a string
7720  * @aq_err: the AQ error code to convert
7721  */
ice_aq_str(enum ice_aq_err aq_err)7722 const char *ice_aq_str(enum ice_aq_err aq_err)
7723 {
7724 	switch (aq_err) {
7725 	case ICE_AQ_RC_OK:
7726 		return "OK";
7727 	case ICE_AQ_RC_EPERM:
7728 		return "ICE_AQ_RC_EPERM";
7729 	case ICE_AQ_RC_ENOENT:
7730 		return "ICE_AQ_RC_ENOENT";
7731 	case ICE_AQ_RC_ENOMEM:
7732 		return "ICE_AQ_RC_ENOMEM";
7733 	case ICE_AQ_RC_EBUSY:
7734 		return "ICE_AQ_RC_EBUSY";
7735 	case ICE_AQ_RC_EEXIST:
7736 		return "ICE_AQ_RC_EEXIST";
7737 	case ICE_AQ_RC_EINVAL:
7738 		return "ICE_AQ_RC_EINVAL";
7739 	case ICE_AQ_RC_ENOSPC:
7740 		return "ICE_AQ_RC_ENOSPC";
7741 	case ICE_AQ_RC_ENOSYS:
7742 		return "ICE_AQ_RC_ENOSYS";
7743 	case ICE_AQ_RC_EMODE:
7744 		return "ICE_AQ_RC_EMODE";
7745 	case ICE_AQ_RC_ENOSEC:
7746 		return "ICE_AQ_RC_ENOSEC";
7747 	case ICE_AQ_RC_EBADSIG:
7748 		return "ICE_AQ_RC_EBADSIG";
7749 	case ICE_AQ_RC_ESVN:
7750 		return "ICE_AQ_RC_ESVN";
7751 	case ICE_AQ_RC_EBADMAN:
7752 		return "ICE_AQ_RC_EBADMAN";
7753 	case ICE_AQ_RC_EBADBUF:
7754 		return "ICE_AQ_RC_EBADBUF";
7755 	}
7756 
7757 	return "ICE_AQ_RC_UNKNOWN";
7758 }
7759 
7760 /**
7761  * ice_set_rss_lut - Set RSS LUT
7762  * @vsi: Pointer to VSI structure
7763  * @lut: Lookup table
7764  * @lut_size: Lookup table size
7765  *
7766  * Returns 0 on success, negative on failure
7767  */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7768 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7769 {
7770 	struct ice_aq_get_set_rss_lut_params params = {};
7771 	struct ice_hw *hw = &vsi->back->hw;
7772 	int status;
7773 
7774 	if (!lut)
7775 		return -EINVAL;
7776 
7777 	params.vsi_handle = vsi->idx;
7778 	params.lut_size = lut_size;
7779 	params.lut_type = vsi->rss_lut_type;
7780 	params.lut = lut;
7781 
7782 	status = ice_aq_set_rss_lut(hw, &params);
7783 	if (status)
7784 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7785 			status, ice_aq_str(hw->adminq.sq_last_status));
7786 
7787 	return status;
7788 }
7789 
7790 /**
7791  * ice_set_rss_key - Set RSS key
7792  * @vsi: Pointer to the VSI structure
7793  * @seed: RSS hash seed
7794  *
7795  * Returns 0 on success, negative on failure
7796  */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7797 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7798 {
7799 	struct ice_hw *hw = &vsi->back->hw;
7800 	int status;
7801 
7802 	if (!seed)
7803 		return -EINVAL;
7804 
7805 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7806 	if (status)
7807 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7808 			status, ice_aq_str(hw->adminq.sq_last_status));
7809 
7810 	return status;
7811 }
7812 
7813 /**
7814  * ice_get_rss_lut - Get RSS LUT
7815  * @vsi: Pointer to VSI structure
7816  * @lut: Buffer to store the lookup table entries
7817  * @lut_size: Size of buffer to store the lookup table entries
7818  *
7819  * Returns 0 on success, negative on failure
7820  */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7821 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7822 {
7823 	struct ice_aq_get_set_rss_lut_params params = {};
7824 	struct ice_hw *hw = &vsi->back->hw;
7825 	int status;
7826 
7827 	if (!lut)
7828 		return -EINVAL;
7829 
7830 	params.vsi_handle = vsi->idx;
7831 	params.lut_size = lut_size;
7832 	params.lut_type = vsi->rss_lut_type;
7833 	params.lut = lut;
7834 
7835 	status = ice_aq_get_rss_lut(hw, &params);
7836 	if (status)
7837 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7838 			status, ice_aq_str(hw->adminq.sq_last_status));
7839 
7840 	return status;
7841 }
7842 
7843 /**
7844  * ice_get_rss_key - Get RSS key
7845  * @vsi: Pointer to VSI structure
7846  * @seed: Buffer to store the key in
7847  *
7848  * Returns 0 on success, negative on failure
7849  */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7850 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7851 {
7852 	struct ice_hw *hw = &vsi->back->hw;
7853 	int status;
7854 
7855 	if (!seed)
7856 		return -EINVAL;
7857 
7858 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7859 	if (status)
7860 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7861 			status, ice_aq_str(hw->adminq.sq_last_status));
7862 
7863 	return status;
7864 }
7865 
7866 /**
7867  * ice_set_rss_hfunc - Set RSS HASH function
7868  * @vsi: Pointer to VSI structure
7869  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
7870  *
7871  * Returns 0 on success, negative on failure
7872  */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)7873 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
7874 {
7875 	struct ice_hw *hw = &vsi->back->hw;
7876 	struct ice_vsi_ctx *ctx;
7877 	bool symm;
7878 	int err;
7879 
7880 	if (hfunc == vsi->rss_hfunc)
7881 		return 0;
7882 
7883 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
7884 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
7885 		return -EOPNOTSUPP;
7886 
7887 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7888 	if (!ctx)
7889 		return -ENOMEM;
7890 
7891 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
7892 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
7893 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
7894 	ctx->info.q_opt_rss |=
7895 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
7896 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
7897 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
7898 
7899 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
7900 	if (err) {
7901 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
7902 			vsi->vsi_num, err);
7903 	} else {
7904 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
7905 		vsi->rss_hfunc = hfunc;
7906 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
7907 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
7908 			    "Symmetric " : "");
7909 	}
7910 	kfree(ctx);
7911 	if (err)
7912 		return err;
7913 
7914 	/* Fix the symmetry setting for all existing RSS configurations */
7915 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
7916 	return ice_set_rss_cfg_symm(hw, vsi, symm);
7917 }
7918 
7919 /**
7920  * ice_bridge_getlink - Get the hardware bridge mode
7921  * @skb: skb buff
7922  * @pid: process ID
7923  * @seq: RTNL message seq
7924  * @dev: the netdev being configured
7925  * @filter_mask: filter mask passed in
7926  * @nlflags: netlink flags passed in
7927  *
7928  * Return the bridge mode (VEB/VEPA)
7929  */
7930 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)7931 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7932 		   struct net_device *dev, u32 filter_mask, int nlflags)
7933 {
7934 	struct ice_netdev_priv *np = netdev_priv(dev);
7935 	struct ice_vsi *vsi = np->vsi;
7936 	struct ice_pf *pf = vsi->back;
7937 	u16 bmode;
7938 
7939 	bmode = pf->first_sw->bridge_mode;
7940 
7941 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7942 				       filter_mask, NULL);
7943 }
7944 
7945 /**
7946  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7947  * @vsi: Pointer to VSI structure
7948  * @bmode: Hardware bridge mode (VEB/VEPA)
7949  *
7950  * Returns 0 on success, negative on failure
7951  */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)7952 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7953 {
7954 	struct ice_aqc_vsi_props *vsi_props;
7955 	struct ice_hw *hw = &vsi->back->hw;
7956 	struct ice_vsi_ctx *ctxt;
7957 	int ret;
7958 
7959 	vsi_props = &vsi->info;
7960 
7961 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7962 	if (!ctxt)
7963 		return -ENOMEM;
7964 
7965 	ctxt->info = vsi->info;
7966 
7967 	if (bmode == BRIDGE_MODE_VEB)
7968 		/* change from VEPA to VEB mode */
7969 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7970 	else
7971 		/* change from VEB to VEPA mode */
7972 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7973 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7974 
7975 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7976 	if (ret) {
7977 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7978 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7979 		goto out;
7980 	}
7981 	/* Update sw flags for book keeping */
7982 	vsi_props->sw_flags = ctxt->info.sw_flags;
7983 
7984 out:
7985 	kfree(ctxt);
7986 	return ret;
7987 }
7988 
7989 /**
7990  * ice_bridge_setlink - Set the hardware bridge mode
7991  * @dev: the netdev being configured
7992  * @nlh: RTNL message
7993  * @flags: bridge setlink flags
7994  * @extack: netlink extended ack
7995  *
7996  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7997  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7998  * not already set for all VSIs connected to this switch. And also update the
7999  * unicast switch filter rules for the corresponding switch of the netdev.
8000  */
8001 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8002 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8003 		   u16 __always_unused flags,
8004 		   struct netlink_ext_ack __always_unused *extack)
8005 {
8006 	struct ice_netdev_priv *np = netdev_priv(dev);
8007 	struct ice_pf *pf = np->vsi->back;
8008 	struct nlattr *attr, *br_spec;
8009 	struct ice_hw *hw = &pf->hw;
8010 	struct ice_sw *pf_sw;
8011 	int rem, v, err = 0;
8012 
8013 	pf_sw = pf->first_sw;
8014 	/* find the attribute in the netlink message */
8015 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8016 	if (!br_spec)
8017 		return -EINVAL;
8018 
8019 	nla_for_each_nested(attr, br_spec, rem) {
8020 		__u16 mode;
8021 
8022 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
8023 			continue;
8024 		mode = nla_get_u16(attr);
8025 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8026 			return -EINVAL;
8027 		/* Continue  if bridge mode is not being flipped */
8028 		if (mode == pf_sw->bridge_mode)
8029 			continue;
8030 		/* Iterates through the PF VSI list and update the loopback
8031 		 * mode of the VSI
8032 		 */
8033 		ice_for_each_vsi(pf, v) {
8034 			if (!pf->vsi[v])
8035 				continue;
8036 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8037 			if (err)
8038 				return err;
8039 		}
8040 
8041 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8042 		/* Update the unicast switch filter rules for the corresponding
8043 		 * switch of the netdev
8044 		 */
8045 		err = ice_update_sw_rule_bridge_mode(hw);
8046 		if (err) {
8047 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8048 				   mode, err,
8049 				   ice_aq_str(hw->adminq.sq_last_status));
8050 			/* revert hw->evb_veb */
8051 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8052 			return err;
8053 		}
8054 
8055 		pf_sw->bridge_mode = mode;
8056 	}
8057 
8058 	return 0;
8059 }
8060 
8061 /**
8062  * ice_tx_timeout - Respond to a Tx Hang
8063  * @netdev: network interface device structure
8064  * @txqueue: Tx queue
8065  */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8066 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8067 {
8068 	struct ice_netdev_priv *np = netdev_priv(netdev);
8069 	struct ice_tx_ring *tx_ring = NULL;
8070 	struct ice_vsi *vsi = np->vsi;
8071 	struct ice_pf *pf = vsi->back;
8072 	u32 i;
8073 
8074 	pf->tx_timeout_count++;
8075 
8076 	/* Check if PFC is enabled for the TC to which the queue belongs
8077 	 * to. If yes then Tx timeout is not caused by a hung queue, no
8078 	 * need to reset and rebuild
8079 	 */
8080 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8081 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8082 			 txqueue);
8083 		return;
8084 	}
8085 
8086 	/* now that we have an index, find the tx_ring struct */
8087 	ice_for_each_txq(vsi, i)
8088 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8089 			if (txqueue == vsi->tx_rings[i]->q_index) {
8090 				tx_ring = vsi->tx_rings[i];
8091 				break;
8092 			}
8093 
8094 	/* Reset recovery level if enough time has elapsed after last timeout.
8095 	 * Also ensure no new reset action happens before next timeout period.
8096 	 */
8097 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8098 		pf->tx_timeout_recovery_level = 1;
8099 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8100 				       netdev->watchdog_timeo)))
8101 		return;
8102 
8103 	if (tx_ring) {
8104 		struct ice_hw *hw = &pf->hw;
8105 		u32 head, val = 0;
8106 
8107 		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8108 				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8109 		/* Read interrupt register */
8110 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8111 
8112 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8113 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8114 			    head, tx_ring->next_to_use, val);
8115 	}
8116 
8117 	pf->tx_timeout_last_recovery = jiffies;
8118 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8119 		    pf->tx_timeout_recovery_level, txqueue);
8120 
8121 	switch (pf->tx_timeout_recovery_level) {
8122 	case 1:
8123 		set_bit(ICE_PFR_REQ, pf->state);
8124 		break;
8125 	case 2:
8126 		set_bit(ICE_CORER_REQ, pf->state);
8127 		break;
8128 	case 3:
8129 		set_bit(ICE_GLOBR_REQ, pf->state);
8130 		break;
8131 	default:
8132 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8133 		set_bit(ICE_DOWN, pf->state);
8134 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8135 		set_bit(ICE_SERVICE_DIS, pf->state);
8136 		break;
8137 	}
8138 
8139 	ice_service_task_schedule(pf);
8140 	pf->tx_timeout_recovery_level++;
8141 }
8142 
8143 /**
8144  * ice_setup_tc_cls_flower - flower classifier offloads
8145  * @np: net device to configure
8146  * @filter_dev: device on which filter is added
8147  * @cls_flower: offload data
8148  */
8149 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)8150 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8151 			struct net_device *filter_dev,
8152 			struct flow_cls_offload *cls_flower)
8153 {
8154 	struct ice_vsi *vsi = np->vsi;
8155 
8156 	if (cls_flower->common.chain_index)
8157 		return -EOPNOTSUPP;
8158 
8159 	switch (cls_flower->command) {
8160 	case FLOW_CLS_REPLACE:
8161 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8162 	case FLOW_CLS_DESTROY:
8163 		return ice_del_cls_flower(vsi, cls_flower);
8164 	default:
8165 		return -EINVAL;
8166 	}
8167 }
8168 
8169 /**
8170  * ice_setup_tc_block_cb - callback handler registered for TC block
8171  * @type: TC SETUP type
8172  * @type_data: TC flower offload data that contains user input
8173  * @cb_priv: netdev private data
8174  */
8175 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8176 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8177 {
8178 	struct ice_netdev_priv *np = cb_priv;
8179 
8180 	switch (type) {
8181 	case TC_SETUP_CLSFLOWER:
8182 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8183 					       type_data);
8184 	default:
8185 		return -EOPNOTSUPP;
8186 	}
8187 }
8188 
8189 /**
8190  * ice_validate_mqprio_qopt - Validate TCF input parameters
8191  * @vsi: Pointer to VSI
8192  * @mqprio_qopt: input parameters for mqprio queue configuration
8193  *
8194  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8195  * needed), and make sure user doesn't specify qcount and BW rate limit
8196  * for TCs, which are more than "num_tc"
8197  */
8198 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8199 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8200 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8201 {
8202 	int non_power_of_2_qcount = 0;
8203 	struct ice_pf *pf = vsi->back;
8204 	int max_rss_q_cnt = 0;
8205 	u64 sum_min_rate = 0;
8206 	struct device *dev;
8207 	int i, speed;
8208 	u8 num_tc;
8209 
8210 	if (vsi->type != ICE_VSI_PF)
8211 		return -EINVAL;
8212 
8213 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8214 	    mqprio_qopt->qopt.num_tc < 1 ||
8215 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8216 		return -EINVAL;
8217 
8218 	dev = ice_pf_to_dev(pf);
8219 	vsi->ch_rss_size = 0;
8220 	num_tc = mqprio_qopt->qopt.num_tc;
8221 	speed = ice_get_link_speed_kbps(vsi);
8222 
8223 	for (i = 0; num_tc; i++) {
8224 		int qcount = mqprio_qopt->qopt.count[i];
8225 		u64 max_rate, min_rate, rem;
8226 
8227 		if (!qcount)
8228 			return -EINVAL;
8229 
8230 		if (is_power_of_2(qcount)) {
8231 			if (non_power_of_2_qcount &&
8232 			    qcount > non_power_of_2_qcount) {
8233 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8234 					qcount, non_power_of_2_qcount);
8235 				return -EINVAL;
8236 			}
8237 			if (qcount > max_rss_q_cnt)
8238 				max_rss_q_cnt = qcount;
8239 		} else {
8240 			if (non_power_of_2_qcount &&
8241 			    qcount != non_power_of_2_qcount) {
8242 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8243 					qcount, non_power_of_2_qcount);
8244 				return -EINVAL;
8245 			}
8246 			if (qcount < max_rss_q_cnt) {
8247 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8248 					qcount, max_rss_q_cnt);
8249 				return -EINVAL;
8250 			}
8251 			max_rss_q_cnt = qcount;
8252 			non_power_of_2_qcount = qcount;
8253 		}
8254 
8255 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8256 		 * converts the bandwidth rate limit into Bytes/s when
8257 		 * passing it down to the driver. So convert input bandwidth
8258 		 * from Bytes/s to Kbps
8259 		 */
8260 		max_rate = mqprio_qopt->max_rate[i];
8261 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8262 
8263 		/* min_rate is minimum guaranteed rate and it can't be zero */
8264 		min_rate = mqprio_qopt->min_rate[i];
8265 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8266 		sum_min_rate += min_rate;
8267 
8268 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8269 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8270 				min_rate, ICE_MIN_BW_LIMIT);
8271 			return -EINVAL;
8272 		}
8273 
8274 		if (max_rate && max_rate > speed) {
8275 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8276 				i, max_rate, speed);
8277 			return -EINVAL;
8278 		}
8279 
8280 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8281 		if (rem) {
8282 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8283 				i, ICE_MIN_BW_LIMIT);
8284 			return -EINVAL;
8285 		}
8286 
8287 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8288 		if (rem) {
8289 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8290 				i, ICE_MIN_BW_LIMIT);
8291 			return -EINVAL;
8292 		}
8293 
8294 		/* min_rate can't be more than max_rate, except when max_rate
8295 		 * is zero (implies max_rate sought is max line rate). In such
8296 		 * a case min_rate can be more than max.
8297 		 */
8298 		if (max_rate && min_rate > max_rate) {
8299 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8300 				min_rate, max_rate);
8301 			return -EINVAL;
8302 		}
8303 
8304 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8305 			break;
8306 		if (mqprio_qopt->qopt.offset[i + 1] !=
8307 		    (mqprio_qopt->qopt.offset[i] + qcount))
8308 			return -EINVAL;
8309 	}
8310 	if (vsi->num_rxq <
8311 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8312 		return -EINVAL;
8313 	if (vsi->num_txq <
8314 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8315 		return -EINVAL;
8316 
8317 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8318 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8319 			sum_min_rate, speed);
8320 		return -EINVAL;
8321 	}
8322 
8323 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8324 	vsi->ch_rss_size = max_rss_q_cnt;
8325 
8326 	return 0;
8327 }
8328 
8329 /**
8330  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8331  * @pf: ptr to PF device
8332  * @vsi: ptr to VSI
8333  */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8334 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8335 {
8336 	struct device *dev = ice_pf_to_dev(pf);
8337 	bool added = false;
8338 	struct ice_hw *hw;
8339 	int flow;
8340 
8341 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8342 		return -EINVAL;
8343 
8344 	hw = &pf->hw;
8345 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8346 		struct ice_fd_hw_prof *prof;
8347 		int tun, status;
8348 		u64 entry_h;
8349 
8350 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8351 		      hw->fdir_prof[flow]->cnt))
8352 			continue;
8353 
8354 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8355 			enum ice_flow_priority prio;
8356 
8357 			/* add this VSI to FDir profile for this flow */
8358 			prio = ICE_FLOW_PRIO_NORMAL;
8359 			prof = hw->fdir_prof[flow];
8360 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8361 						    prof->prof_id[tun],
8362 						    prof->vsi_h[0], vsi->idx,
8363 						    prio, prof->fdir_seg[tun],
8364 						    &entry_h);
8365 			if (status) {
8366 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8367 					vsi->idx, flow);
8368 				continue;
8369 			}
8370 
8371 			prof->entry_h[prof->cnt][tun] = entry_h;
8372 		}
8373 
8374 		/* store VSI for filter replay and delete */
8375 		prof->vsi_h[prof->cnt] = vsi->idx;
8376 		prof->cnt++;
8377 
8378 		added = true;
8379 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8380 			flow);
8381 	}
8382 
8383 	if (!added)
8384 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8385 
8386 	return 0;
8387 }
8388 
8389 /**
8390  * ice_add_channel - add a channel by adding VSI
8391  * @pf: ptr to PF device
8392  * @sw_id: underlying HW switching element ID
8393  * @ch: ptr to channel structure
8394  *
8395  * Add a channel (VSI) using add_vsi and queue_map
8396  */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8397 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8398 {
8399 	struct device *dev = ice_pf_to_dev(pf);
8400 	struct ice_vsi *vsi;
8401 
8402 	if (ch->type != ICE_VSI_CHNL) {
8403 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8404 		return -EINVAL;
8405 	}
8406 
8407 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8408 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8409 		dev_err(dev, "create chnl VSI failure\n");
8410 		return -EINVAL;
8411 	}
8412 
8413 	ice_add_vsi_to_fdir(pf, vsi);
8414 
8415 	ch->sw_id = sw_id;
8416 	ch->vsi_num = vsi->vsi_num;
8417 	ch->info.mapping_flags = vsi->info.mapping_flags;
8418 	ch->ch_vsi = vsi;
8419 	/* set the back pointer of channel for newly created VSI */
8420 	vsi->ch = ch;
8421 
8422 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8423 	       sizeof(vsi->info.q_mapping));
8424 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8425 	       sizeof(vsi->info.tc_mapping));
8426 
8427 	return 0;
8428 }
8429 
8430 /**
8431  * ice_chnl_cfg_res
8432  * @vsi: the VSI being setup
8433  * @ch: ptr to channel structure
8434  *
8435  * Configure channel specific resources such as rings, vector.
8436  */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8437 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8438 {
8439 	int i;
8440 
8441 	for (i = 0; i < ch->num_txq; i++) {
8442 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8443 		struct ice_ring_container *rc;
8444 		struct ice_tx_ring *tx_ring;
8445 		struct ice_rx_ring *rx_ring;
8446 
8447 		tx_ring = vsi->tx_rings[ch->base_q + i];
8448 		rx_ring = vsi->rx_rings[ch->base_q + i];
8449 		if (!tx_ring || !rx_ring)
8450 			continue;
8451 
8452 		/* setup ring being channel enabled */
8453 		tx_ring->ch = ch;
8454 		rx_ring->ch = ch;
8455 
8456 		/* following code block sets up vector specific attributes */
8457 		tx_q_vector = tx_ring->q_vector;
8458 		rx_q_vector = rx_ring->q_vector;
8459 		if (!tx_q_vector && !rx_q_vector)
8460 			continue;
8461 
8462 		if (tx_q_vector) {
8463 			tx_q_vector->ch = ch;
8464 			/* setup Tx and Rx ITR setting if DIM is off */
8465 			rc = &tx_q_vector->tx;
8466 			if (!ITR_IS_DYNAMIC(rc))
8467 				ice_write_itr(rc, rc->itr_setting);
8468 		}
8469 		if (rx_q_vector) {
8470 			rx_q_vector->ch = ch;
8471 			/* setup Tx and Rx ITR setting if DIM is off */
8472 			rc = &rx_q_vector->rx;
8473 			if (!ITR_IS_DYNAMIC(rc))
8474 				ice_write_itr(rc, rc->itr_setting);
8475 		}
8476 	}
8477 
8478 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8479 	 * GLINT_ITR register would have written to perform in-context
8480 	 * update, hence perform flush
8481 	 */
8482 	if (ch->num_txq || ch->num_rxq)
8483 		ice_flush(&vsi->back->hw);
8484 }
8485 
8486 /**
8487  * ice_cfg_chnl_all_res - configure channel resources
8488  * @vsi: pte to main_vsi
8489  * @ch: ptr to channel structure
8490  *
8491  * This function configures channel specific resources such as flow-director
8492  * counter index, and other resources such as queues, vectors, ITR settings
8493  */
8494 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8495 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8496 {
8497 	/* configure channel (aka ADQ) resources such as queues, vectors,
8498 	 * ITR settings for channel specific vectors and anything else
8499 	 */
8500 	ice_chnl_cfg_res(vsi, ch);
8501 }
8502 
8503 /**
8504  * ice_setup_hw_channel - setup new channel
8505  * @pf: ptr to PF device
8506  * @vsi: the VSI being setup
8507  * @ch: ptr to channel structure
8508  * @sw_id: underlying HW switching element ID
8509  * @type: type of channel to be created (VMDq2/VF)
8510  *
8511  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8512  * and configures Tx rings accordingly
8513  */
8514 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8515 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8516 		     struct ice_channel *ch, u16 sw_id, u8 type)
8517 {
8518 	struct device *dev = ice_pf_to_dev(pf);
8519 	int ret;
8520 
8521 	ch->base_q = vsi->next_base_q;
8522 	ch->type = type;
8523 
8524 	ret = ice_add_channel(pf, sw_id, ch);
8525 	if (ret) {
8526 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8527 		return ret;
8528 	}
8529 
8530 	/* configure/setup ADQ specific resources */
8531 	ice_cfg_chnl_all_res(vsi, ch);
8532 
8533 	/* make sure to update the next_base_q so that subsequent channel's
8534 	 * (aka ADQ) VSI queue map is correct
8535 	 */
8536 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8537 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8538 		ch->num_rxq);
8539 
8540 	return 0;
8541 }
8542 
8543 /**
8544  * ice_setup_channel - setup new channel using uplink element
8545  * @pf: ptr to PF device
8546  * @vsi: the VSI being setup
8547  * @ch: ptr to channel structure
8548  *
8549  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8550  * and uplink switching element
8551  */
8552 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8553 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8554 		  struct ice_channel *ch)
8555 {
8556 	struct device *dev = ice_pf_to_dev(pf);
8557 	u16 sw_id;
8558 	int ret;
8559 
8560 	if (vsi->type != ICE_VSI_PF) {
8561 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8562 		return false;
8563 	}
8564 
8565 	sw_id = pf->first_sw->sw_id;
8566 
8567 	/* create channel (VSI) */
8568 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8569 	if (ret) {
8570 		dev_err(dev, "failed to setup hw_channel\n");
8571 		return false;
8572 	}
8573 	dev_dbg(dev, "successfully created channel()\n");
8574 
8575 	return ch->ch_vsi ? true : false;
8576 }
8577 
8578 /**
8579  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8580  * @vsi: VSI to be configured
8581  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8582  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8583  */
8584 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8585 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8586 {
8587 	int err;
8588 
8589 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8590 	if (err)
8591 		return err;
8592 
8593 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8594 }
8595 
8596 /**
8597  * ice_create_q_channel - function to create channel
8598  * @vsi: VSI to be configured
8599  * @ch: ptr to channel (it contains channel specific params)
8600  *
8601  * This function creates channel (VSI) using num_queues specified by user,
8602  * reconfigs RSS if needed.
8603  */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8604 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8605 {
8606 	struct ice_pf *pf = vsi->back;
8607 	struct device *dev;
8608 
8609 	if (!ch)
8610 		return -EINVAL;
8611 
8612 	dev = ice_pf_to_dev(pf);
8613 	if (!ch->num_txq || !ch->num_rxq) {
8614 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8615 		return -EINVAL;
8616 	}
8617 
8618 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8619 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8620 			vsi->cnt_q_avail, ch->num_txq);
8621 		return -EINVAL;
8622 	}
8623 
8624 	if (!ice_setup_channel(pf, vsi, ch)) {
8625 		dev_info(dev, "Failed to setup channel\n");
8626 		return -EINVAL;
8627 	}
8628 	/* configure BW rate limit */
8629 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8630 		int ret;
8631 
8632 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8633 				       ch->min_tx_rate);
8634 		if (ret)
8635 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8636 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8637 		else
8638 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8639 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8640 	}
8641 
8642 	vsi->cnt_q_avail -= ch->num_txq;
8643 
8644 	return 0;
8645 }
8646 
8647 /**
8648  * ice_rem_all_chnl_fltrs - removes all channel filters
8649  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8650  *
8651  * Remove all advanced switch filters only if they are channel specific
8652  * tc-flower based filter
8653  */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8654 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8655 {
8656 	struct ice_tc_flower_fltr *fltr;
8657 	struct hlist_node *node;
8658 
8659 	/* to remove all channel filters, iterate an ordered list of filters */
8660 	hlist_for_each_entry_safe(fltr, node,
8661 				  &pf->tc_flower_fltr_list,
8662 				  tc_flower_node) {
8663 		struct ice_rule_query_data rule;
8664 		int status;
8665 
8666 		/* for now process only channel specific filters */
8667 		if (!ice_is_chnl_fltr(fltr))
8668 			continue;
8669 
8670 		rule.rid = fltr->rid;
8671 		rule.rule_id = fltr->rule_id;
8672 		rule.vsi_handle = fltr->dest_vsi_handle;
8673 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8674 		if (status) {
8675 			if (status == -ENOENT)
8676 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8677 					rule.rule_id);
8678 			else
8679 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8680 					status);
8681 		} else if (fltr->dest_vsi) {
8682 			/* update advanced switch filter count */
8683 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8684 				u32 flags = fltr->flags;
8685 
8686 				fltr->dest_vsi->num_chnl_fltr--;
8687 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8688 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8689 					pf->num_dmac_chnl_fltrs--;
8690 			}
8691 		}
8692 
8693 		hlist_del(&fltr->tc_flower_node);
8694 		kfree(fltr);
8695 	}
8696 }
8697 
8698 /**
8699  * ice_remove_q_channels - Remove queue channels for the TCs
8700  * @vsi: VSI to be configured
8701  * @rem_fltr: delete advanced switch filter or not
8702  *
8703  * Remove queue channels for the TCs
8704  */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8705 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8706 {
8707 	struct ice_channel *ch, *ch_tmp;
8708 	struct ice_pf *pf = vsi->back;
8709 	int i;
8710 
8711 	/* remove all tc-flower based filter if they are channel filters only */
8712 	if (rem_fltr)
8713 		ice_rem_all_chnl_fltrs(pf);
8714 
8715 	/* remove ntuple filters since queue configuration is being changed */
8716 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8717 		struct ice_hw *hw = &pf->hw;
8718 
8719 		mutex_lock(&hw->fdir_fltr_lock);
8720 		ice_fdir_del_all_fltrs(vsi);
8721 		mutex_unlock(&hw->fdir_fltr_lock);
8722 	}
8723 
8724 	/* perform cleanup for channels if they exist */
8725 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8726 		struct ice_vsi *ch_vsi;
8727 
8728 		list_del(&ch->list);
8729 		ch_vsi = ch->ch_vsi;
8730 		if (!ch_vsi) {
8731 			kfree(ch);
8732 			continue;
8733 		}
8734 
8735 		/* Reset queue contexts */
8736 		for (i = 0; i < ch->num_rxq; i++) {
8737 			struct ice_tx_ring *tx_ring;
8738 			struct ice_rx_ring *rx_ring;
8739 
8740 			tx_ring = vsi->tx_rings[ch->base_q + i];
8741 			rx_ring = vsi->rx_rings[ch->base_q + i];
8742 			if (tx_ring) {
8743 				tx_ring->ch = NULL;
8744 				if (tx_ring->q_vector)
8745 					tx_ring->q_vector->ch = NULL;
8746 			}
8747 			if (rx_ring) {
8748 				rx_ring->ch = NULL;
8749 				if (rx_ring->q_vector)
8750 					rx_ring->q_vector->ch = NULL;
8751 			}
8752 		}
8753 
8754 		/* Release FD resources for the channel VSI */
8755 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8756 
8757 		/* clear the VSI from scheduler tree */
8758 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8759 
8760 		/* Delete VSI from FW, PF and HW VSI arrays */
8761 		ice_vsi_delete(ch->ch_vsi);
8762 
8763 		/* free the channel */
8764 		kfree(ch);
8765 	}
8766 
8767 	/* clear the channel VSI map which is stored in main VSI */
8768 	ice_for_each_chnl_tc(i)
8769 		vsi->tc_map_vsi[i] = NULL;
8770 
8771 	/* reset main VSI's all TC information */
8772 	vsi->all_enatc = 0;
8773 	vsi->all_numtc = 0;
8774 }
8775 
8776 /**
8777  * ice_rebuild_channels - rebuild channel
8778  * @pf: ptr to PF
8779  *
8780  * Recreate channel VSIs and replay filters
8781  */
ice_rebuild_channels(struct ice_pf * pf)8782 static int ice_rebuild_channels(struct ice_pf *pf)
8783 {
8784 	struct device *dev = ice_pf_to_dev(pf);
8785 	struct ice_vsi *main_vsi;
8786 	bool rem_adv_fltr = true;
8787 	struct ice_channel *ch;
8788 	struct ice_vsi *vsi;
8789 	int tc_idx = 1;
8790 	int i, err;
8791 
8792 	main_vsi = ice_get_main_vsi(pf);
8793 	if (!main_vsi)
8794 		return 0;
8795 
8796 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8797 	    main_vsi->old_numtc == 1)
8798 		return 0; /* nothing to be done */
8799 
8800 	/* reconfigure main VSI based on old value of TC and cached values
8801 	 * for MQPRIO opts
8802 	 */
8803 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8804 	if (err) {
8805 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8806 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8807 		return err;
8808 	}
8809 
8810 	/* rebuild ADQ VSIs */
8811 	ice_for_each_vsi(pf, i) {
8812 		enum ice_vsi_type type;
8813 
8814 		vsi = pf->vsi[i];
8815 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8816 			continue;
8817 
8818 		type = vsi->type;
8819 
8820 		/* rebuild ADQ VSI */
8821 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8822 		if (err) {
8823 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8824 				ice_vsi_type_str(type), vsi->idx, err);
8825 			goto cleanup;
8826 		}
8827 
8828 		/* Re-map HW VSI number, using VSI handle that has been
8829 		 * previously validated in ice_replay_vsi() call above
8830 		 */
8831 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8832 
8833 		/* replay filters for the VSI */
8834 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8835 		if (err) {
8836 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8837 				ice_vsi_type_str(type), err, vsi->idx);
8838 			rem_adv_fltr = false;
8839 			goto cleanup;
8840 		}
8841 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8842 			 ice_vsi_type_str(type), vsi->idx);
8843 
8844 		/* store ADQ VSI at correct TC index in main VSI's
8845 		 * map of TC to VSI
8846 		 */
8847 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8848 	}
8849 
8850 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8851 	 * channel for main VSI's Tx and Rx rings
8852 	 */
8853 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8854 		struct ice_vsi *ch_vsi;
8855 
8856 		ch_vsi = ch->ch_vsi;
8857 		if (!ch_vsi)
8858 			continue;
8859 
8860 		/* reconfig channel resources */
8861 		ice_cfg_chnl_all_res(main_vsi, ch);
8862 
8863 		/* replay BW rate limit if it is non-zero */
8864 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8865 			continue;
8866 
8867 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8868 				       ch->min_tx_rate);
8869 		if (err)
8870 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8871 				err, ch->max_tx_rate, ch->min_tx_rate,
8872 				ch_vsi->vsi_num);
8873 		else
8874 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8875 				ch->max_tx_rate, ch->min_tx_rate,
8876 				ch_vsi->vsi_num);
8877 	}
8878 
8879 	/* reconfig RSS for main VSI */
8880 	if (main_vsi->ch_rss_size)
8881 		ice_vsi_cfg_rss_lut_key(main_vsi);
8882 
8883 	return 0;
8884 
8885 cleanup:
8886 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8887 	return err;
8888 }
8889 
8890 /**
8891  * ice_create_q_channels - Add queue channel for the given TCs
8892  * @vsi: VSI to be configured
8893  *
8894  * Configures queue channel mapping to the given TCs
8895  */
ice_create_q_channels(struct ice_vsi * vsi)8896 static int ice_create_q_channels(struct ice_vsi *vsi)
8897 {
8898 	struct ice_pf *pf = vsi->back;
8899 	struct ice_channel *ch;
8900 	int ret = 0, i;
8901 
8902 	ice_for_each_chnl_tc(i) {
8903 		if (!(vsi->all_enatc & BIT(i)))
8904 			continue;
8905 
8906 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8907 		if (!ch) {
8908 			ret = -ENOMEM;
8909 			goto err_free;
8910 		}
8911 		INIT_LIST_HEAD(&ch->list);
8912 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8913 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8914 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8915 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8916 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8917 
8918 		/* convert to Kbits/s */
8919 		if (ch->max_tx_rate)
8920 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8921 						  ICE_BW_KBPS_DIVISOR);
8922 		if (ch->min_tx_rate)
8923 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8924 						  ICE_BW_KBPS_DIVISOR);
8925 
8926 		ret = ice_create_q_channel(vsi, ch);
8927 		if (ret) {
8928 			dev_err(ice_pf_to_dev(pf),
8929 				"failed creating channel TC:%d\n", i);
8930 			kfree(ch);
8931 			goto err_free;
8932 		}
8933 		list_add_tail(&ch->list, &vsi->ch_list);
8934 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8935 		dev_dbg(ice_pf_to_dev(pf),
8936 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8937 	}
8938 	return 0;
8939 
8940 err_free:
8941 	ice_remove_q_channels(vsi, false);
8942 
8943 	return ret;
8944 }
8945 
8946 /**
8947  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8948  * @netdev: net device to configure
8949  * @type_data: TC offload data
8950  */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)8951 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8952 {
8953 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8954 	struct ice_netdev_priv *np = netdev_priv(netdev);
8955 	struct ice_vsi *vsi = np->vsi;
8956 	struct ice_pf *pf = vsi->back;
8957 	u16 mode, ena_tc_qdisc = 0;
8958 	int cur_txq, cur_rxq;
8959 	u8 hw = 0, num_tcf;
8960 	struct device *dev;
8961 	int ret, i;
8962 
8963 	dev = ice_pf_to_dev(pf);
8964 	num_tcf = mqprio_qopt->qopt.num_tc;
8965 	hw = mqprio_qopt->qopt.hw;
8966 	mode = mqprio_qopt->mode;
8967 	if (!hw) {
8968 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8969 		vsi->ch_rss_size = 0;
8970 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8971 		goto config_tcf;
8972 	}
8973 
8974 	/* Generate queue region map for number of TCF requested */
8975 	for (i = 0; i < num_tcf; i++)
8976 		ena_tc_qdisc |= BIT(i);
8977 
8978 	switch (mode) {
8979 	case TC_MQPRIO_MODE_CHANNEL:
8980 
8981 		if (pf->hw.port_info->is_custom_tx_enabled) {
8982 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8983 			return -EBUSY;
8984 		}
8985 		ice_tear_down_devlink_rate_tree(pf);
8986 
8987 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8988 		if (ret) {
8989 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8990 				   ret);
8991 			return ret;
8992 		}
8993 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8994 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8995 		/* don't assume state of hw_tc_offload during driver load
8996 		 * and set the flag for TC flower filter if hw_tc_offload
8997 		 * already ON
8998 		 */
8999 		if (vsi->netdev->features & NETIF_F_HW_TC)
9000 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9001 		break;
9002 	default:
9003 		return -EINVAL;
9004 	}
9005 
9006 config_tcf:
9007 
9008 	/* Requesting same TCF configuration as already enabled */
9009 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9010 	    mode != TC_MQPRIO_MODE_CHANNEL)
9011 		return 0;
9012 
9013 	/* Pause VSI queues */
9014 	ice_dis_vsi(vsi, true);
9015 
9016 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9017 		ice_remove_q_channels(vsi, true);
9018 
9019 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9020 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9021 				     num_online_cpus());
9022 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9023 				     num_online_cpus());
9024 	} else {
9025 		/* logic to rebuild VSI, same like ethtool -L */
9026 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9027 
9028 		for (i = 0; i < num_tcf; i++) {
9029 			if (!(ena_tc_qdisc & BIT(i)))
9030 				continue;
9031 
9032 			offset = vsi->mqprio_qopt.qopt.offset[i];
9033 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9034 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9035 		}
9036 		vsi->req_txq = offset + qcount_tx;
9037 		vsi->req_rxq = offset + qcount_rx;
9038 
9039 		/* store away original rss_size info, so that it gets reused
9040 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9041 		 * determine, what should be the rss_sizefor main VSI
9042 		 */
9043 		vsi->orig_rss_size = vsi->rss_size;
9044 	}
9045 
9046 	/* save current values of Tx and Rx queues before calling VSI rebuild
9047 	 * for fallback option
9048 	 */
9049 	cur_txq = vsi->num_txq;
9050 	cur_rxq = vsi->num_rxq;
9051 
9052 	/* proceed with rebuild main VSI using correct number of queues */
9053 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9054 	if (ret) {
9055 		/* fallback to current number of queues */
9056 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9057 		vsi->req_txq = cur_txq;
9058 		vsi->req_rxq = cur_rxq;
9059 		clear_bit(ICE_RESET_FAILED, pf->state);
9060 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9061 			dev_err(dev, "Rebuild of main VSI failed again\n");
9062 			return ret;
9063 		}
9064 	}
9065 
9066 	vsi->all_numtc = num_tcf;
9067 	vsi->all_enatc = ena_tc_qdisc;
9068 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9069 	if (ret) {
9070 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9071 			   vsi->vsi_num);
9072 		goto exit;
9073 	}
9074 
9075 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9076 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9077 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9078 
9079 		/* set TC0 rate limit if specified */
9080 		if (max_tx_rate || min_tx_rate) {
9081 			/* convert to Kbits/s */
9082 			if (max_tx_rate)
9083 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9084 			if (min_tx_rate)
9085 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9086 
9087 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9088 			if (!ret) {
9089 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9090 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9091 			} else {
9092 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9093 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9094 				goto exit;
9095 			}
9096 		}
9097 		ret = ice_create_q_channels(vsi);
9098 		if (ret) {
9099 			netdev_err(netdev, "failed configuring queue channels\n");
9100 			goto exit;
9101 		} else {
9102 			netdev_dbg(netdev, "successfully configured channels\n");
9103 		}
9104 	}
9105 
9106 	if (vsi->ch_rss_size)
9107 		ice_vsi_cfg_rss_lut_key(vsi);
9108 
9109 exit:
9110 	/* if error, reset the all_numtc and all_enatc */
9111 	if (ret) {
9112 		vsi->all_numtc = 0;
9113 		vsi->all_enatc = 0;
9114 	}
9115 	/* resume VSI */
9116 	ice_ena_vsi(vsi, true);
9117 
9118 	return ret;
9119 }
9120 
9121 static LIST_HEAD(ice_block_cb_list);
9122 
9123 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9124 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9125 	     void *type_data)
9126 {
9127 	struct ice_netdev_priv *np = netdev_priv(netdev);
9128 	struct ice_pf *pf = np->vsi->back;
9129 	bool locked = false;
9130 	int err;
9131 
9132 	switch (type) {
9133 	case TC_SETUP_BLOCK:
9134 		return flow_block_cb_setup_simple(type_data,
9135 						  &ice_block_cb_list,
9136 						  ice_setup_tc_block_cb,
9137 						  np, np, true);
9138 	case TC_SETUP_QDISC_MQPRIO:
9139 		if (ice_is_eswitch_mode_switchdev(pf)) {
9140 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9141 			return -EOPNOTSUPP;
9142 		}
9143 
9144 		if (pf->adev) {
9145 			mutex_lock(&pf->adev_mutex);
9146 			device_lock(&pf->adev->dev);
9147 			locked = true;
9148 			if (pf->adev->dev.driver) {
9149 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9150 				err = -EBUSY;
9151 				goto adev_unlock;
9152 			}
9153 		}
9154 
9155 		/* setup traffic classifier for receive side */
9156 		mutex_lock(&pf->tc_mutex);
9157 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9158 		mutex_unlock(&pf->tc_mutex);
9159 
9160 adev_unlock:
9161 		if (locked) {
9162 			device_unlock(&pf->adev->dev);
9163 			mutex_unlock(&pf->adev_mutex);
9164 		}
9165 		return err;
9166 	default:
9167 		return -EOPNOTSUPP;
9168 	}
9169 	return -EOPNOTSUPP;
9170 }
9171 
9172 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9173 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9174 			   struct net_device *netdev)
9175 {
9176 	struct ice_indr_block_priv *cb_priv;
9177 
9178 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9179 		if (!cb_priv->netdev)
9180 			return NULL;
9181 		if (cb_priv->netdev == netdev)
9182 			return cb_priv;
9183 	}
9184 	return NULL;
9185 }
9186 
9187 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9188 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9189 			void *indr_priv)
9190 {
9191 	struct ice_indr_block_priv *priv = indr_priv;
9192 	struct ice_netdev_priv *np = priv->np;
9193 
9194 	switch (type) {
9195 	case TC_SETUP_CLSFLOWER:
9196 		return ice_setup_tc_cls_flower(np, priv->netdev,
9197 					       (struct flow_cls_offload *)
9198 					       type_data);
9199 	default:
9200 		return -EOPNOTSUPP;
9201 	}
9202 }
9203 
9204 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9205 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9206 			struct ice_netdev_priv *np,
9207 			struct flow_block_offload *f, void *data,
9208 			void (*cleanup)(struct flow_block_cb *block_cb))
9209 {
9210 	struct ice_indr_block_priv *indr_priv;
9211 	struct flow_block_cb *block_cb;
9212 
9213 	if (!ice_is_tunnel_supported(netdev) &&
9214 	    !(is_vlan_dev(netdev) &&
9215 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9216 		return -EOPNOTSUPP;
9217 
9218 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9219 		return -EOPNOTSUPP;
9220 
9221 	switch (f->command) {
9222 	case FLOW_BLOCK_BIND:
9223 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9224 		if (indr_priv)
9225 			return -EEXIST;
9226 
9227 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9228 		if (!indr_priv)
9229 			return -ENOMEM;
9230 
9231 		indr_priv->netdev = netdev;
9232 		indr_priv->np = np;
9233 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9234 
9235 		block_cb =
9236 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9237 						 indr_priv, indr_priv,
9238 						 ice_rep_indr_tc_block_unbind,
9239 						 f, netdev, sch, data, np,
9240 						 cleanup);
9241 
9242 		if (IS_ERR(block_cb)) {
9243 			list_del(&indr_priv->list);
9244 			kfree(indr_priv);
9245 			return PTR_ERR(block_cb);
9246 		}
9247 		flow_block_cb_add(block_cb, f);
9248 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9249 		break;
9250 	case FLOW_BLOCK_UNBIND:
9251 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9252 		if (!indr_priv)
9253 			return -ENOENT;
9254 
9255 		block_cb = flow_block_cb_lookup(f->block,
9256 						ice_indr_setup_block_cb,
9257 						indr_priv);
9258 		if (!block_cb)
9259 			return -ENOENT;
9260 
9261 		flow_indr_block_cb_remove(block_cb, f);
9262 
9263 		list_del(&block_cb->driver_list);
9264 		break;
9265 	default:
9266 		return -EOPNOTSUPP;
9267 	}
9268 	return 0;
9269 }
9270 
9271 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9272 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9273 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9274 		     void *data,
9275 		     void (*cleanup)(struct flow_block_cb *block_cb))
9276 {
9277 	switch (type) {
9278 	case TC_SETUP_BLOCK:
9279 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9280 					       data, cleanup);
9281 
9282 	default:
9283 		return -EOPNOTSUPP;
9284 	}
9285 }
9286 
9287 /**
9288  * ice_open - Called when a network interface becomes active
9289  * @netdev: network interface device structure
9290  *
9291  * The open entry point is called when a network interface is made
9292  * active by the system (IFF_UP). At this point all resources needed
9293  * for transmit and receive operations are allocated, the interrupt
9294  * handler is registered with the OS, the netdev watchdog is enabled,
9295  * and the stack is notified that the interface is ready.
9296  *
9297  * Returns 0 on success, negative value on failure
9298  */
ice_open(struct net_device * netdev)9299 int ice_open(struct net_device *netdev)
9300 {
9301 	struct ice_netdev_priv *np = netdev_priv(netdev);
9302 	struct ice_pf *pf = np->vsi->back;
9303 
9304 	if (ice_is_reset_in_progress(pf->state)) {
9305 		netdev_err(netdev, "can't open net device while reset is in progress");
9306 		return -EBUSY;
9307 	}
9308 
9309 	return ice_open_internal(netdev);
9310 }
9311 
9312 /**
9313  * ice_open_internal - Called when a network interface becomes active
9314  * @netdev: network interface device structure
9315  *
9316  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9317  * handling routine
9318  *
9319  * Returns 0 on success, negative value on failure
9320  */
ice_open_internal(struct net_device * netdev)9321 int ice_open_internal(struct net_device *netdev)
9322 {
9323 	struct ice_netdev_priv *np = netdev_priv(netdev);
9324 	struct ice_vsi *vsi = np->vsi;
9325 	struct ice_pf *pf = vsi->back;
9326 	struct ice_port_info *pi;
9327 	int err;
9328 
9329 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9330 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9331 		return -EIO;
9332 	}
9333 
9334 	netif_carrier_off(netdev);
9335 
9336 	pi = vsi->port_info;
9337 	err = ice_update_link_info(pi);
9338 	if (err) {
9339 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9340 		return err;
9341 	}
9342 
9343 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9344 
9345 	/* Set PHY if there is media, otherwise, turn off PHY */
9346 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9347 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9348 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9349 			err = ice_init_phy_user_cfg(pi);
9350 			if (err) {
9351 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9352 					   err);
9353 				return err;
9354 			}
9355 		}
9356 
9357 		err = ice_configure_phy(vsi);
9358 		if (err) {
9359 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9360 				   err);
9361 			return err;
9362 		}
9363 	} else {
9364 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9365 		ice_set_link(vsi, false);
9366 	}
9367 
9368 	err = ice_vsi_open(vsi);
9369 	if (err)
9370 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9371 			   vsi->vsi_num, vsi->vsw->sw_id);
9372 
9373 	/* Update existing tunnels information */
9374 	udp_tunnel_get_rx_info(netdev);
9375 
9376 	return err;
9377 }
9378 
9379 /**
9380  * ice_stop - Disables a network interface
9381  * @netdev: network interface device structure
9382  *
9383  * The stop entry point is called when an interface is de-activated by the OS,
9384  * and the netdevice enters the DOWN state. The hardware is still under the
9385  * driver's control, but the netdev interface is disabled.
9386  *
9387  * Returns success only - not allowed to fail
9388  */
ice_stop(struct net_device * netdev)9389 int ice_stop(struct net_device *netdev)
9390 {
9391 	struct ice_netdev_priv *np = netdev_priv(netdev);
9392 	struct ice_vsi *vsi = np->vsi;
9393 	struct ice_pf *pf = vsi->back;
9394 
9395 	if (ice_is_reset_in_progress(pf->state)) {
9396 		netdev_err(netdev, "can't stop net device while reset is in progress");
9397 		return -EBUSY;
9398 	}
9399 
9400 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9401 		int link_err = ice_force_phys_link_state(vsi, false);
9402 
9403 		if (link_err) {
9404 			if (link_err == -ENOMEDIUM)
9405 				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9406 					    vsi->vsi_num);
9407 			else
9408 				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9409 					   vsi->vsi_num, link_err);
9410 
9411 			ice_vsi_close(vsi);
9412 			return -EIO;
9413 		}
9414 	}
9415 
9416 	ice_vsi_close(vsi);
9417 
9418 	return 0;
9419 }
9420 
9421 /**
9422  * ice_features_check - Validate encapsulated packet conforms to limits
9423  * @skb: skb buffer
9424  * @netdev: This port's netdev
9425  * @features: Offload features that the stack believes apply
9426  */
9427 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9428 ice_features_check(struct sk_buff *skb,
9429 		   struct net_device __always_unused *netdev,
9430 		   netdev_features_t features)
9431 {
9432 	bool gso = skb_is_gso(skb);
9433 	size_t len;
9434 
9435 	/* No point in doing any of this if neither checksum nor GSO are
9436 	 * being requested for this frame. We can rule out both by just
9437 	 * checking for CHECKSUM_PARTIAL
9438 	 */
9439 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9440 		return features;
9441 
9442 	/* We cannot support GSO if the MSS is going to be less than
9443 	 * 64 bytes. If it is then we need to drop support for GSO.
9444 	 */
9445 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9446 		features &= ~NETIF_F_GSO_MASK;
9447 
9448 	len = skb_network_offset(skb);
9449 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9450 		goto out_rm_features;
9451 
9452 	len = skb_network_header_len(skb);
9453 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9454 		goto out_rm_features;
9455 
9456 	if (skb->encapsulation) {
9457 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9458 		 * the case of IPIP frames, the transport header pointer is
9459 		 * after the inner header! So check to make sure that this
9460 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9461 		 */
9462 		if (gso && (skb_shinfo(skb)->gso_type &
9463 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9464 			len = skb_inner_network_header(skb) -
9465 			      skb_transport_header(skb);
9466 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9467 				goto out_rm_features;
9468 		}
9469 
9470 		len = skb_inner_network_header_len(skb);
9471 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9472 			goto out_rm_features;
9473 	}
9474 
9475 	return features;
9476 out_rm_features:
9477 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9478 }
9479 
9480 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9481 	.ndo_open = ice_open,
9482 	.ndo_stop = ice_stop,
9483 	.ndo_start_xmit = ice_start_xmit,
9484 	.ndo_set_mac_address = ice_set_mac_address,
9485 	.ndo_validate_addr = eth_validate_addr,
9486 	.ndo_change_mtu = ice_change_mtu,
9487 	.ndo_get_stats64 = ice_get_stats64,
9488 	.ndo_tx_timeout = ice_tx_timeout,
9489 	.ndo_bpf = ice_xdp_safe_mode,
9490 };
9491 
9492 static const struct net_device_ops ice_netdev_ops = {
9493 	.ndo_open = ice_open,
9494 	.ndo_stop = ice_stop,
9495 	.ndo_start_xmit = ice_start_xmit,
9496 	.ndo_select_queue = ice_select_queue,
9497 	.ndo_features_check = ice_features_check,
9498 	.ndo_fix_features = ice_fix_features,
9499 	.ndo_set_rx_mode = ice_set_rx_mode,
9500 	.ndo_set_mac_address = ice_set_mac_address,
9501 	.ndo_validate_addr = eth_validate_addr,
9502 	.ndo_change_mtu = ice_change_mtu,
9503 	.ndo_get_stats64 = ice_get_stats64,
9504 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9505 	.ndo_eth_ioctl = ice_eth_ioctl,
9506 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9507 	.ndo_set_vf_mac = ice_set_vf_mac,
9508 	.ndo_get_vf_config = ice_get_vf_cfg,
9509 	.ndo_set_vf_trust = ice_set_vf_trust,
9510 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9511 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9512 	.ndo_get_vf_stats = ice_get_vf_stats,
9513 	.ndo_set_vf_rate = ice_set_vf_bw,
9514 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9515 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9516 	.ndo_setup_tc = ice_setup_tc,
9517 	.ndo_set_features = ice_set_features,
9518 	.ndo_bridge_getlink = ice_bridge_getlink,
9519 	.ndo_bridge_setlink = ice_bridge_setlink,
9520 	.ndo_fdb_add = ice_fdb_add,
9521 	.ndo_fdb_del = ice_fdb_del,
9522 #ifdef CONFIG_RFS_ACCEL
9523 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9524 #endif
9525 	.ndo_tx_timeout = ice_tx_timeout,
9526 	.ndo_bpf = ice_xdp,
9527 	.ndo_xdp_xmit = ice_xdp_xmit,
9528 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9529 };
9530